WorldWideScience

Sample records for solar sources savonius

  1. Performance Analysis of a Savonius Wind Turbine in the Solar Integrated Rotor House

    Directory of Open Access Journals (Sweden)

    ABDUL LATIFMANGANHAR

    2017-07-01

    Full Text Available Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor.

  2. Performance analysis of a savonius wind turbine in the solar integrated rotor house

    International Nuclear Information System (INIS)

    Manganhar, A.L.

    2017-01-01

    Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House) which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp) of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor. (author)

  3. Experimental investigation of the characteristics of a Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.K.; Gupta, R.; Singh, S.K.; Singh, S.R.

    2005-01-01

    Many tests have been conducted on models in a wind tunnel for an optimum configuration of a Savonius rotor wind turbine. Three types of Savonius rotor have been used (a simple Savonius rotor of mild steel, an overlapped Savonius rotor of mild steel and one overlapped Savonius rotor of aluminium). The effect of different design parameters, namely rotor shape, overlap between rotor blades was studied. The results have corroborated some of the original findings of Savonius. (author)

  4. Solar Power Sources

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  5. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  6. Study of aerodynamical and mechanical behaviours of Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Hadj Lakhdar Univ., Batna (Algeria). Applied Energetic Physic Laboratory

    2007-07-01

    Although the efficiency of a Savonius rotor is not as high conventional propeller-type and Darrieus wind turbines, it has the advantage of simple construction; acceptance of wind from various directions, thereby eliminating the need for reorientation; high starting torque; and, relatively low operating speed. These advantages outweigh its low efficiency and make it an ideal economic source to meet small-scale power requirements. The instantaneous pressure field on the blades surface was determined in order to analyze the flow around a Savonius rotor. A two dimensional analysis was used to determine the aerodynamic strengths, which led to underline the Magnus effect and to vibrations on the rotor. An anti-vibratory system was also proposed to stabilize or avoid these vibrations. The drag and lift coefficients were found to be in good agreement with results reported in literature. This study identified an inversion lift effect on a Savonius rotor, which closely resembled the Reynolds number, particularly in the peripheral speed coefficient values. It was shown that the machine does not move in accordance with the Magnus effect. 22 refs., 1 tab., 9 figs.

  7. Geometrical optimization of a swirling Savonius wind turbine using an open jet wind tun

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Faruk

    2016-09-01

    Full Text Available It has been suggested that waste heats or naturally available heat sources can be utilized to produce swirling flow by a design similar to that of split channels which is currently used to initiate fire whirls in laboratories. The new design combines the conventional Savonius wind turbine and split channel mechanisms. Previous computational and preliminary experimental works indicate a performance improvement in the new design (named as swirling Savonius turbine compared to the conventional Savonius design. In this study, wind tunnel experiments have been carried out to optimize the swirling Savonius turbine geometry in terms of maximum power coefficient by considering several design parameters. The results indicate that the blade overlap ratio, hot air inlet diameter and the condition of the top end plate have significant influence on power and torque coefficients, while a larger aspect ratio and closed top end plate have some favourable effects on the performance. The optimum configuration has been tested in four different wind velocities to determine its influence on the performance, and power coefficients were found to be higher in high wind velocities. The performance comparison of optimum configuration with conventional Savonius rotor showed an increase of 24.12% in the coefficient of power.

  8. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  9. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  10. Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine

    Directory of Open Access Journals (Sweden)

    Kaprawi Sahim

    2018-01-01

    Full Text Available Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.

  11. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  12. Slotted Blades Savonius Wind Turbine Analysis by CFD

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2013-12-01

    Full Text Available In this paper a new bucket configuration for a Savonius wind generator is proposed. Numerical analyses are performed to estimate the performances of the proposed configuration by means of the commercial code COMSOL Multiphysics® with respect to Savonius wind turbine with overlap only. Parametric analyses are performed, for a fixed overlap ratio, by varying the slot position; the results show that for slot positioned near the blade root, the Savonius rotor improves performances at low tip speed ratio, evidencing a better starting torque. This circumstance is confirmed by static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savonius wind generator configuration.

  13. Flowfield Analysis of Savonius-type Wind Turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Tae Hyun; Chang, Se Myong [Kunsan National Univ., Kunsan (Korea, Republic of); Seo, Hyun Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, we researched flow of 8000 {approx} 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly.

  14. Study on the Interaction between Two Hydrokinetic Savonius Turbines

    Directory of Open Access Journals (Sweden)

    Kailash Golecha

    2012-01-01

    Full Text Available Savonius turbine is simple in design and easy to fabricate at a lower cost. The drag is the basic driving force for Savonius turbine. Savonius turbines are mainly used for the small-scale electricity generation in remote areas. In real life, multiple Savonius turbines are to be arranged to form a farm to scale up the electricity generation. So, it is important to study the interaction among them to avoid the power loss due to negative interaction between turbines. The purpose of this investigation is to examine closely the effect of interaction between two Savonius turbines arranged in line. Experimental investigations are carried out to study the mutual interaction between turbines with water as the working medium at a Reynolds number of 1.2×105 based on the diameter of the turbine. Influence of separation gap between the two Savonius turbines is studied by varying the separation gap ratio (/ from 3 to 8. As the separation gap ratio increases from 3 to 8, becomes lesser the mutual interaction between the turbines. Results conclude that two turbines placed at a separation gap ratio of 8 performed independently without affecting the performance of each other.

  15. Coeficientes de potencia en molinos Savonius

    Directory of Open Access Journals (Sweden)

    Julio Mario Rodríguez Devis

    1985-09-01

    Full Text Available La mayoría de los trabajos en los Molinos de Viento tipo savonius se han realizado experimentalmente por la dificultad de encontrar una expresión teórica que relacione la máxima eficiencia con las características del modelo. Todos los trabajos tienden a encontrar una forma de los rotores que mejoren su eficiencia o coeficiente de potencia. Como consecuencia de la aparición de un artículo en la revista ETA (6 en la cual los autores obtienen un Cpmax = 0,42, se hace un resumen de los Cpmax encontrados internacionalmente, de las características de dichos rotores y algunas observaciones pertinentes.

  16. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  17. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors

    International Nuclear Information System (INIS)

    Bhuyan, S.; Biswas, A.

    2014-01-01

    Highlights: • Hybrid H-Savonius vertical axis wind rotor for built-in environmental wind speeds. • Self-starting characteristics of unsymmetrical H-rotor and Hybrid H-Savonius rotor. • Comparisons between unsymmetrical H-rotor and Hybrid rotor at same experimental conditions. • Insight of the performances of optimum hybrid H-Savonius rotor. • Higher power performance of the optimum rotor compared with some existing VAWT rotors. - Abstract: With recent surge in fossil fuel prices and demands for renewable energy sources, vertical axis wind turbine (VAWT) technologies have emerged out as one of the prime growing sector for small-scale power generation in the built environment. In such an environment, self-starting and high performances are of utmost importance. Amongst all VAWT designs, H-rotor, being a lift-driven device, exhibits a high power coefficient. However, it suffers from poor starting behavior due to its conventional symmetrical NACA airfoil blades. The objective of the present study is to design a VAWT rotor that possesses both self-starting and high power coefficient simultaneously. For this, a three bladed H-rotor with unsymmetrical cambered S818 airfoil blades is investigated, which shows self-starting characteristics at many of the azimuthal angles. However to make the rotor completely self-starting, the same H-rotor is incorporated in a hybrid system with Savonius rotor as its starter. It is found that the hybrid design fully exhibits self-starting capability at all azimuthal positions, signified by the positive static torque coefficient values. For improving power performance of the hybrid rotor, the same is subjected to rigorous experimentations on the wind tunnel at different Reynolds numbers (Re) between 1.44 × 10 5 and 2.31 × 10 5 for five different overlap conditions in the Savonius rotor part. The performance coefficients of the hybrid rotor are compared with the simple H-rotor. Out of all the designs investigated, the maximum Cp

  18. Experimental study on power augmentation of Savonius rotor; Savonius gata fusha no shutsuryoku zokyo ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Kikuchi, K; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1997-11-25

    Wind power now being used is mostly for power generation, and the power generating rotor is represented by the horizontal propeller type. The vertical type, such as Savonius rotor which uses drag force, may be used for special purposes. The Savonius rotor has been used for water pumping-up and ventilation for its characteristics of low rotational speed and high torque. The authors have proposed, based on the data collected by operating a wind mill of 10W, a method for reducing resistance by deflecting wind flowing onto the return bucket to augment drag force, in an attempt to make the system more functional. The Savonius rotor is equipped with a semi-cylindrical cover, and guide and side plates, to follow their effects. It is found that these plates work to augment power without needing expansion of sweeping area. 4 refs., 12 figs.

  19. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  20. Theoretical analysis of the flow around a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z.; Djoumati, D. [Batna Univ., Batna (Algeria). Laboratoire de Physique Energetique Appliquee; Djamel, H. [Batna Univ., Batna (Algeria). Dept. de Mecanique Energetique

    2009-07-01

    While Savonius rotors do not perform as well as Darrieus wind turbine rotors, Savonius rotors work in all wind directions, do not require a rudder, and are capable of operating at relatively low speeds. A discrete vortex method was used to analyze the complex flow around a Savonius rotor. Velocity and pressure fields obtained in the analysis were used to determine both mechanical and energetic rotor performance. Savonius rotor bi-blades were considered in relation to 4 free eddies, the leakage points of each blade, and the distribution of basic eddies along the blades. Each blade was divided into equal elementary arcs. Linear equations and Kelvin theorem were reduced to a single equation. Results showed good agreement with data obtained in previous experimental studies. The study demonstrated that vortice emissions were unbalanced. The resistant blade had 2 vortice emissions, while the driving blade had only a single vortex. The results of the study will be used to clarify the mechanical and aerodynamic functions as well as to determine the different values between the blades and the speed of the turbine's engine. 9 refs., 4 figs.

  1. A technique for detection of savonius rotar oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A

    Laboratory and field experiments by many investigators have shown that an effect of oscillatory flows on a Savonius rotor current meter is over-speed registration during flow lag. The exact reason for this phenomenon appears to be unknown. It has...

  2. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate buildings...... to improve the discharge flow rate. Results indicate that the twist on Savonius wind rotor reduces the negative torque and improves its performance. According to the results, a twisted Savonius wind turbine with conical shaft is associated with 18% increase in power coefficient and 31% increase in discharge...... flowrate compared to simple Savonius wind turbine. Also, wind turbine with variable cut plane has a 12% decrease in power coefficient and 5% increase in discharge flow rate compared to simple Savonius wind turbine. Therefore, it can be inferred that twisted wind turbine with conical shaft indicated...

  3. Performance of Combined Water Turbine with Semielliptic Section of the Savonius Rotor

    OpenAIRE

    Sahim, Kaprawi; Santoso, Dyos; Radentan, Agus

    2013-01-01

    The Darrieus turbine is a suitable power generation in free stream flow because it is simple in construction, but it has the disadvantage of its small starting torque. The Savonius turbine has a high starting torque but the efficiency is smaller than that of Darrieus turbine. To improve the starting torque of Darrieus turbine, the Savonius buckets are introduced into the Darrieus turbine and the combined turbine is called Darrieus-Savonius turbine. In this study, three semielliptic sections o...

  4. Efisiensi Prototipe Turbin Savonius pada Kecepatan Angin Rendah

    Directory of Open Access Journals (Sweden)

    Melda Latif

    2013-04-01

    Full Text Available Wind energy can be transformed into electrical energy using wind turbine. Based on rotation axis, there are two types of wind turbine, namely turbine with horizontal axis and the one with vertical axis. Turbine with vertical axis has been known with various names that are Darrieus turbine, Savonius turbine and H turbine. This research designed and implemented a prototype of simple Savonius turbine for small scale wind speed. Resistor with resistance of 200 ohm and LED are used as the load. Material of the prototype is alumunium plate, which is light and easy to find. The experiment was conducted at the beach. Permanent magnet synchronous generator was chosen for generating equipment. Voltage resulted by the generator increased as the wind speed increased. The prototype began rotating at wind speed 2.4 m/s. Average efficiency for Y and D connected load are 4.8% and 14.5% respectively.

  5. Aero dynamical and mechanical behaviour of the Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory

    2009-07-01

    Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.

  6. Effect of blades number to performance of Savonius water turbine in water pipe

    Science.gov (United States)

    Hamzah, Imron; Prasetyo, Ari; Tjahjana, D. D. D. Prija; Hadi, Syamsul

    2018-02-01

    Savonius is usually known as a wind turbine that works efficiently at low wind speed. In this research, the Savonius turbine is proposed for a pico hydro power plant that is installed straightly on the 3-inch vertical pipeline of rainwater and household waste. The Savonius water turbine was designed with blade curvature angle of 70°, the aspect ratio of 1, turbine diameter of 82 mm, and endplate ratio of 1,1. The experimental study investigated the effect of blades number to the performance of Savonius turbine on various volume flow rate of water. Savonius turbine with three blades number generated the highest coefficient of performance of 0.23 on tip speed ratio of 1.7 compared to turbines with the number of other blades.

  7. SOLAR SOURCES OF 3He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3 He-rich solar energetic particle events at ≲1 MeV nucleon −1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3 He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3 He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3 He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed

  8. Plasma sources of solar system magnetospheres

    CERN Document Server

    Blanc, Michel; Chappell, Charles; Krupp, Norbert

    2016-01-01

    This volume reviews what we know of the corresponding plasma source for each intrinsically magnetized planet. Plasma sources fall essentially in three categories: the solar wind, the ionosphere (both prevalent on Earth), and the satellite-related sources. Throughout the text, the case of each planet is described, including the characteristics, chemical composition and intensity of each source. The authors also describe how the plasma generated at the source regions is transported to populate the magnetosphere, and how it is later lost. To summarize, the dominant sources are found to be the solar wind and sputtered surface ions at Mercury, the solar wind and ionosphere at Earth (the relative importance of the two being discussed in a specific introductory chapter), Io at Jupiter and – a big surprise of the Cassini findings – Enceladus at Saturn. The situation for Uranus and Neptune, which were investigated by only one fly-by each, is still open and requires further studies and exploration. In the final cha...

  9. Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance

    Science.gov (United States)

    Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.

  10. Optimization design of Savonius diffuser blade with moving deflector for hydrokınetıc cross flow turbıne rotor

    NARCIS (Netherlands)

    Wahjudi, B.; Soeparman, S.B.; Hoeijmakers, Hendrik Willem Marie; bin Abu Bakar, Rosli; Froome, Craig

    2015-01-01

    The conventional Savonius turbine is a good concept for small size wind-renewable energy systems; unfortunately always it has low efficiency. Inspired from the Savonius Blade, this research project designed the diffuser form as compartment between S blade and Tandem Blade of Savonius to produce “jet

  11. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud

    2012-03-01

    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  12. Pressure coefficient evolutions on the blades of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, A.; Guignard, S. [UMRR 7343, Marseilles (France). Lab. IUSTI; Kamoun, B. [Faculte des Sciences de Sfax (Tunisia). Lab. de Physique

    2012-07-01

    Measurements of the pressure field distribution on the blades of a vertical axis Savonius wind machine are presented. The rotor used in the wind tunnel is a two blades cylindrical shape with a central gap. Pressure gauges are placed on each side of a blade, so the pressure jumps between intrados and extrados of a blade during a whole rotation are drawn. In the static configuration, the machine is disposed at various incidences. The determination of pressure jumps allows to calculate the static torque of the machine versus the incidence angle. In the dynamic situation the machine is rotating at various frequencies and gauges signals are varying dynamically of course with the incidence. The dynamic torque coefficient is calculated. Evolutions of the starting torque and starting conditions are then described and dynamic effects on torque evolution are presented. (orig.)

  13. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  14. Sources of type III solar microwave bursts

    Directory of Open Access Journals (Sweden)

    Zhdanov D.A.

    2016-06-01

    Full Text Available Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with EUV data, made it possible to localize sources of III type microwave bursts in August 10, 2011 event within the entire frequency band of burst occurrence, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates, whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to those at other frequencies.

  15. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    Science.gov (United States)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  16. Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

    Directory of Open Access Journals (Sweden)

    Ola Dwi Sandra Hasan

    2013-09-01

    Full Text Available Salah satu  teknologi sistem konversi energi angin  yang ada adalah turbin Savonius yang merupakan salah satu jenis Vertical Axis Wind Turbine ( VAWT . Turbin Savonius  memiliki  karakteristik strating torsi yang baik, mudah dalam pembutannya dan dapat menerima angin dari segala arah namun kekurangan yang dimiliki adalah coefficient of power (Cp turbin yang rendah. Untuk itu banyak dilakukan penelitian untuk meningkatkan efisiensi dari turbin Savonius. Salah satunya adalah penambahan end plate yang mampu meningkatkan perbedaan tekanan dari kedua sisi sudu sehingga memperbesar drag positif turbin. Untuk itu pada penelitian ini dilakukan variasi jumlah penambahan fin pada sudu. Variasi jumlah fin yang dilakukan adalah 1,2,4 dan 7 fin serta pengujian dengan menggunakan generator dan tanpa generator. Dari hasil pengujian, variasi fin yang dapat meningkatkan Cp turbin Savonius adalah variasi 1 fin jika dibandingkan  turbin standarnya dengan nilai Cp sebesar 0,11.  SKEA turbin Savonius menggunakan generator 12 V;400W dapat  menghasilkan daya maksimal 5,71 Watt pada putaran 134 rpm

  17. The Two Sources of Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2013-06-01

    Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to "impulsive" SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of ( Z>50)/O. Alternatively, in "gradual" SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ˜2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the "reservoir", a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing "magnetic bottle" expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow

  18. Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems

    Science.gov (United States)

    Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio

    The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.

  19. CFD Analysis of a Finite Linear Array of Savonius Wind Turbines

    Science.gov (United States)

    Belkacem, Belabes; Paraschivoiu, Marius

    2016-09-01

    Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.

  20. Effect of the blade arc angle on the performance of a Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Zhaoyong Mao

    2015-05-01

    Full Text Available Savonius wind turbine is a common vertical axis wind turbine which simply comprises two or three arc-type blades and can generate power under poor wind conditions. With the aim of increasing the turbine’s power efficiency, the effect of the blade arc angle on the performance of a typical two-bladed Savonius wind turbine is investigated with a transient computational fluid dynamics method. Simulations were based on the Reynolds Averaged Navier–Stokes equations, and the renormalization group k − ε turbulent model was utilized. The numerical method was validated with existing experimental data. The results indicate that the turbine with a blade arc angle of 160 ∘ generates the maximum power coefficient, 0.2836, which is 8.37% higher than that from a conventional Savonius turbine.

  1. CFD Analysis of a Finite Linear Array of Savonius Wind Turbines

    International Nuclear Information System (INIS)

    Belkacem, Belabes; Paraschivoiu, Marius

    2016-01-01

    Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm. (paper)

  2. Turbin Angin Poros Vertikal Tipe Savonius Bertingkat Dengan Variasi Posisi Sudut

    OpenAIRE

    Alit, I.B; Nurchayati, N; Pamuji, S.H

    2016-01-01

    Wind turbine is a technology that converts wind energy to electric power. A Savonius type rotor blade is a simple wind turbine that operates on the concept of drag. The turbine has a potential to be developed as it has a simple construction and it is suitable for low wind speeds. Savonius rotor can be designed with two or three blades in single level or multi-levels. This research was conducted to obtain two levels wind turbine performance characteristics with variations in wind speed and dif...

  3. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  4. The Solar Wind Source Cycle: Relationship to Dynamo Behavior

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.

    2017-12-01

    Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.

  5. Evaluation of Sources of Uncertainties in Solar Resource Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of sources of uncertainties in solar resource measurement, demonstrating the impact of various sources of uncertainties -- such as cosine response, thermal offset, spectral response, and others -- on the accuracy of data from several radiometers. The study provides insight on how to reduce the impact of some of the sources of uncertainties.

  6. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2015-07-01

    Full Text Available The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient computational fluid dynamics (CFD. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations with a renormalization group turbulent model. This numerical method is validated with existing experimental data and then utilized to quantify the performance of design variants. Results quantify the relationship between blade fullness and turbine performance with a blade fullness of 1 resulting in the highest coefficient of power, 0.2573. This power coefficient is 10.98% higher than a conventional Savonius turbine.

  7. Optimization of Savonius turbines using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2010-11-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. In Germany, wind energy is becoming particularly important. Although considerable progress has already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a Savonius turbine with either two or three blades. In addition, the improved design leads to a better self-starting capability. To achieve these objectives, the position of an obstacle shielding the returning blade of the Savonius turbine and possibly leading to a better flow orientation toward the advancing blade is optimized. This automatic optimization is carried out by coupling an in-house optimization library (OPAL) with an industrial flow simulation code (ANSYS-Fluent). The optimization process takes into account the output power coefficient as target function, considers the position and the angle of the shield as optimization parameters, and relies on Evolutionary Algorithms. A considerable improvement of the performance of Savonius turbines can be obtained in this manner, in particular a relative increase of the power output coefficient by more than 27%. It is furthermore demonstrated that the optimized configuration involving a two-blade rotor is better than the three-blade design. (author)

  8. Improvement in torque and power transmission system of Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, K.; Kumar, A.; Gupta, S. [Indian Inst. of Technology, Kanpur (India). Aerospace Engineering Dept.

    2006-07-01

    The Savonius vertical axis wind turbine has a simple geometry and is inexpensive to build due to its high power coefficient. However, because its torque coefficient varies widely with wind angles and even becomes negative twice in a revolution, it has not been widely commercialized. A Savonius rotor is conventionally built in 2 or 3 tiers, with 90-degree or 60-degree stagger between tiers for smoother torque. The torque coefficient versus wind angle data for multi-tier rotors can be generated by overlapping single-tier data with requisite stagger. This process ignores aerodynamic interference between tiers. The torque coefficient versus wind angle was measured in static mode and the power coefficient was measured in rotating mode of a 2-tier Savonius using a wind tunnel technique involving the brake-dynamometer principle and wind tunnel balance. A significant aerodynamic interference and lower power coefficient were observed. Static and dynamic testing procedures were described and smoke flow models and visualization were also presented. Subsequently, a discussion of the results of the testing were presented. It was concluded that there is significant aerodynamic interference between the tiers of a 2-tier model leading to reduced values of torque and power. Modification of the Savonius wind turbine by adding 20 per cent thick symmetrical airfoils results in improved torque, without significantly increasing average wake width. 3 refs., 1 tab., 13 refs.

  9. Current development of GHE solar dryer

    International Nuclear Information System (INIS)

    Kamaruddin Abdullah

    2006-01-01

    Field tests of the previous GHE solar dryer design had shown that the system can be used effectively to dry various agricultural and marine products. In order to improve further the performance of this dryer, particularly, to reduce dependency on electricity, mechanical energy and on heat generated from non-renewable energy sources, several new prototypes are now in the stage of preliminary testing. These new systems were designed to dry granular products using vibrated drums and for non-granular products such as chili, sliced vegetables and fish products using vibrating racks. The hybrid renewable energy system for drying accommodate Savonius windmill for air moving device as well as vibration generator and simple biomass stove as auxiliary heating unit

  10. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    Science.gov (United States)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  11. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  12. Design and field testing of Savonius wind pump in East Africa

    International Nuclear Information System (INIS)

    Rabah, K.V.O.; Osawa, B.M.

    1995-04-01

    We present here improvements in the wind-scoop geometry and efficiency of a double-stack Savonius rotor, developed through a series of wind tunnel and field testing in East Africa. On an aerodynamic performance basis, the Savonius rotor cannot generally compete with other types of wind turbines. This is entirely due to its mode of operation. Unlike its counter-parts that operate by rotating around a horizontal axis, it rotates around a vertical axis. This has the unfortunate effect of lowering its efficiency, but it has several compensating factors. Its main advantages are that it has better starting torque performance with operating characteristics independent of the wind direction. In addition, it is simple in structure and the fabrication technology required is less sophisticated when compared to similar types of windmills. This makes it a suitable system for small scale applications in wind energy conversion; especially in remote rural regions in developing countries. (author). 8 refs, 5 figs

  13. Performance Analysis of Savonius Rotor Based Hydropower Generation Scheme with Electronic Load Controller

    Directory of Open Access Journals (Sweden)

    Rajen Pudur

    2016-01-01

    Full Text Available This paper describes the performance of electronic load controller (ELC of asynchronous generator (AG coupled to an uncontrolled Savonius turbine and variable water velocity. An AC-DC-AC converter with a dc link capacitor is employed to maintain the required frequency. The ELC which is feeding a resistive dump load is connected in parallel with the generating system and the power consumption is varied through the duty cycle of the chopper. Gate triggering of ELC is accomplished through sinusoidal pulse width modulation (SPWM by sensing the load current. A MATLAB/Simulink model of Savonius rotor, asynchronous generator, ELC, and three-phase load is presented. The proposed scheme is tested under various load conditions under varying water velocities and the performances are observed to be satisfactory.

  14. PERFORMANCE ANALYSIS OF A HELICAL SAVONIUS ROTOR WITHOUT SHAFT AT 45° TWIST ANGLE USING CFD

    Directory of Open Access Journals (Sweden)

    Bachu Deb

    2013-06-01

    Full Text Available Helical Savonius rotor exhibits better performance characteristics at all the rotor angles compared to conventional Savonius rotor. However studies related to the performance measurement and flow physics of such rotor are very scarce. Keeping this in view, in this paper, a three dimensional Computational Fluid Dynamics analysis using commercial Fluent 6.2 software was done to predict the performance of a two-bucket helical Savonius rotor without shaft and with end plates in a complete cycle of rotation. A two-bucket helical Savonius rotor having height of 60 cm and diameter of 17 cm with 45° bucket twist angle was designed using Gambit. The buckets were connected at the top and bottom circular end plates, which are 1.1 times the rotor diameter. The k-ε turbulence model with second order upwind discretization scheme was adopted with standard wall condition. Power coefficients (Cp and torque coefficients (Ct at different tip speed ratios were evaluated at different rotor angles. From the investigation, it was observed that power coefficient increased with increase of tip speed ratio up to an optimum limit, but then decreased even further tip speed ratio was increased. Further investigation was done on the variations of Cp & Ct in a complete cycle of rotation from 0° to 360° in a step of 45° rotor corresponding to the optimum tip speed ratio. The value of Cp at all the rotor angles is positive. Moreover, velocity magnitude contours were analyzed for each rotor angle and it could be concluded that high aerodynamic torque and power can be expected when the rotor is positioned at 45º & 90º with respect to incoming flow.

  15. Preliminary study of a SAVONIUS rotor and its adaptation to a pumping system using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Lebchek, Kamel; Outtas, T.; Mesmoudi, K. [Mechanical Engineering Departement, Faculty of Engineering Sciences, University of Batna, Batna (Algeria)

    2013-07-01

    The Wind energy is an uncertain and discontinuous energy in the time, asking for no primary extraction, it is free and its capture is without serious influence on the climate and doesn't produce none poisonous residues for the atmosphere. The capture of the Wind energy is assured by the wind rotors, and among a big number of variants rotors, those with vertical axis present the advantage of construction simplicity, because they don't require any system of orientation and a simple pylon can serve like support. In this setting, our work consists in a experimental study of a rotor with vertical axis called SAVONIUS and its adaptation to a pumping system using the Wind energy. The experimental study has been achieved in subsonic wind tunnel, after realisation of a model of the SAVONIUS rotor and a special installation of transmission of the energy. The adaptation of the experimental results to a pumping system in the real case, permitted us the determination of the variation of (ıCp) and (ıı) according to the speed of wind and the establishment of a range of debits of the pump according to a range of wind speeds chosen by the meteorological evaluations of Batna region . Key words: Wind energy, SAVONIUS rotor, pumping system , coefficient of strength, transmission of energy.

  16. Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation

    Science.gov (United States)

    Apha Sanditya, Taufan; Prasetyo, Ari; Kristiawan, Budi; Hadi, Syamsul

    2018-03-01

    The water energy is one of potential alternative in creating power generation specifically for the picohydro energy. Savonius is a kind of wind turbine which now proposed to be operated utilizing the energy from low fluid flow. Researches about the utilization of Savonius turbine have been developed in the horizontal water pipelines and wave. The testing experimental on the Savonius Horizontal Axis Water Turbine (HAWT) by observing the effect of the blade curvature angle (ψ) of 110°, 120°, 130°, and 140° at the debit of 176.4 lpm, 345 lpm, 489.6 lpm, and 714 lpm in order to know the power output was already conducted. The optimal result in every debit variation was obtained in the blade curvature angle of 120°. In the maximum debit of 714 lpm with blade curvature angle of 120° the power output is 39.15 Watt with the coefficient power (Cp) of 0.23 and tip speed ratio (TSR) of 1.075.

  17. A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines

    Directory of Open Access Journals (Sweden)

    Baoshou Zhang

    2017-03-01

    Full Text Available Under the inspiration of polar coordinates, a novel parametric modeling and optimization method for Savonius wind turbines was proposed to obtain the highest power output, in which a quadratic polynomial curve was bent to describe a blade. Only two design parameters are needed for the shape-complicated blade. Therefore, this novel method reduces sampling scale. A series of transient simulations was run to get the optimal performance coefficient (power coefficient C p for different modified turbines based on computational fluid dynamics (CFD method. Then, a global response surface model and a more precise local response surface model were created according to Kriging Method. These models defined the relationship between optimization objective Cp and design parameters. Particle swarm optimization (PSO algorithm was applied to find the optimal design based on these response surface models. Finally, the optimal Savonius blade shaped like a “hook” was obtained. Cm (torque coefficient, Cp and flow structure were compared for the optimal design and the classical design. The results demonstrate that the optimal Savonius turbine has excellent comprehensive performance. The power coefficient Cp is significantly increased from 0.247 to 0.262 (6% higher. The weight of the optimal blade is reduced by 17.9%.

  18. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  19. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  20. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  1. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  2. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  3. Evaluation of the aerodynamic performances of a new vertical axis wind turbine type derived from the Savonius rotor; Prevision des performances aerodynamiques d'un nouveau type d'eolienne a axe vertical derivee du rotor Savonius

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Luc Menet [Ecole Nationale Superieure d' Ingenieurs en Informatique Automatique Mecanique energetique electronique de Valenciennes, Universite de Valenciennes, Le Mont Houy F-59313 Valenciennes Cedex 9, (France); Andrew Leiper [Department of Engineering, University of Aberdeen, Aberdeen, Scotland (United Kingdom)

    2005-07-01

    The Savonius rotor is a slow running vertical axis wind turbine, the advantages of which are numerous; however, it has a poor aerodynamic efficiency. We present a study aiming to raise this efficiency by adjusting several geometrical parameters, in particular the overlap of the paddles and their respective position. The results are coming from a bidimensional numerical simulation, using the CFD code Fluent v6.0. First the numerical model is validated on the conventional Savonius rotor. Then the geometry of an optimised Savonius rotor is proposed, the overlap ratio of which is 0.242. Last a different positioning of the paddles leads to an optimal paddle angle of about 55 degrees, corresponding to the maximum of the mean starting torque coefficient. (authors)

  4. Wind power plants. Planning procedure using the example of a system with savonius rotor; Windenergieanlagen. Planungsablauf am Beispiel einer Anlage mit Savoniusrotor

    Energy Technology Data Exchange (ETDEWEB)

    Beecken, Christoph; Knull, Bjoern [bow ingenieure gmbh, Braunschweig (Germany)

    2011-05-15

    Wind energy gained in importance for electric power supply due to financial incentives for wind turbine generators (WTG) as politically favoured renewable energy source and the resulting technical further development. Building a relevant landscape element, the approvability of the structure plays a decisive role in planning and design of WTG. Another topic is the structural (and the related economical) optimisation of the plants in terms of most effective exploitation of the building material. As most of the WTG are fabricated in small batch series, certification or type testing is advantageous. Using the example of a WTG with savonius rotor, the proceeding of the structural analysis is shown including the most important load assumptions and an outlook on the required verifications. (orig.)

  5. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  6. Solar heating - a major source of renewable energy

    International Nuclear Information System (INIS)

    Bosselaar, L.

    2001-01-01

    Actions that can be taken to increase the uptake of technology for solar water heaters and solar buildings are discussed. An overview of existing technology covers solar water heating, solar buildings, space heating, solar cooling, solar drying, solar desalination. Solar water heating, solar buildings and solar crop drying are discussed individually under the sub-headings of (a) the technology; (b) the market; (c) potential; (d) economics and (e) market acceleration strategies. Other subjects discussed are market acceleration, main opportunities, R and D needs and conclusions. The IEA solar heating and solar cooling programme is described

  7. A Model fot the Sources of the Slow Solar Wind

    Science.gov (United States)

    Antiochos, S. K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2011-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to approx.60deg, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model. Key words: solar wind - Sun: corona - Sun: magnetic topology

  8. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  9. Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Ducoin, Antoine

    2016-01-01

    Highlights: • Two-dimensional unsteady simulations on a novel Savonius-style wind turbine. • Instantaneous behavior of drag and lift coefficients, and corresponding moment arms. • Effect of tip speed ratio on the instantaneous force coefficients and moments arms. • Effect of force coefficients and moment arms on the instantaneous moment and power. • Analysis of power and moment coefficients at different tip speed ratios. - Abstract: This paper aims to present a transient analysis on the forces acting on a novel two-bladed Savonius-style wind turbine. Two-dimensional unsteady Reynolds Averaged Navier Stokes equations are solved using shear stress transport k–ω turbulence model at a Reynolds number of 1.23 × 10"5. The instantaneous longitudinal drag and lateral lift forces acting on each of the blades and their acting points are calculated. The corresponding moment arms responsible for the torque generation are obtained. Further, the effect of tip speed ratio on the force coefficients, moment arms and overall turbine performances are observed. Throughout the paper, the obtained results for the new design are discussed with reference to conventional semi-circular design of Savonius turbines. A significant performance improvement is achieved with the new design due to its increased lift and moment arm contribution as compared to the conventional design. More interestingly, the present study sets a platform for future aerodynamic research and improvements for Savonius-style wind turbines.

  10. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  11. Consideration on a Low Power Solar Energy Renewable Source

    Directory of Open Access Journals (Sweden)

    Andrei Marusca

    2008-05-01

    Full Text Available This paper presents the contribution of theauthors regarding the implementation of a low powersolar energy renewable source. To optimize theconversion efficiency of the solar irradiance intoelectrical energy an embedded system was designed. Theembedded system can accomplish the maximum powerpoint tracking by evaluation the output voltage andcurrent of the photovoltaic panels and calculate a propercommand for the DC-DC converter of the renewablesource. The key device in this system is a midrange 8 bitmicrocontroller that consists of acquisition, commandand control integrated hardware resources.

  12. An experimental and numerical study on the improvement of the performance of Savonius wind rotor

    International Nuclear Information System (INIS)

    Altan, Burcin Deda; Atilgan, Mehmet

    2008-01-01

    In the present study, a curtain has been designed to increase the low performance of the Savonius wind rotor, a type of vertical-axis wind rotor, and the effect of this curtain on the static rotor performance has been analyzed both experimentally and numerically. Designed to prevent the torque that occurs on the convex blade of the rotor in the negative direction, this curtain has been placed in front of the rotor. Experimental measurements and numerical analysis have been conducted when the Savonius wind rotor is with and without curtain. The static torque values of the rotor have been measured by experiments and calculated by numerical analysis, and finally they have been compared. The best results have been obtained by means of the rotor with curtain. Low static torque values have been obtained with the short curtain dimensions, while a considerable increase has been acquired in the static torque values with the long curtain dimensions. Fluent 6.0 trade software has been used as the numerical method

  13. Transient power coefficients for a two-blade Savonius wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pope, K.; Naterer, G. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The wind power industry had a 29 percent growth rate in installed capacity in 2008, and technological advances are helping to speed up growth by significantly increasing wind turbine power yields. While the majority of the industry's growth has come from large horizontal axis wind turbine installations, small wind turbines can also be used in a wide variety of applications. This study predicted the transient power coefficient for a Savonius vertical axis wind turbine (VAWT) wind turbine with 2 blades. The turbine's flow field was used to analyze pressure distribution along the rotor blades in relation to the momentum, lift, and drag forces on the rotor surfaces. The integral force balance was used to predict the transient torque and power output of the turbine. The study examined the implications of the addition of a second blade on the model's ability to predict transient power outputs. Computational fluid dynamics (CFD) programs were used to verify that the formulation can be used to accurately predict the transient power coefficients of VAWTs with Savonius blades. 11 refs., 1 tab., 6 figs.

  14. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  15. A Model for the Sources of the Slow Solar Wind

    Science.gov (United States)

    Antiochos, S. K.; Mikić, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2011-04-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to ~60°, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model.

  16. Analysis of Energy Efficiency in Dynamic Optical Networks Employing Solar Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    The paper presents energy efficient routing in dynamic optical networks, where solar energy sources are employed for the network nodes. Different parameters are evaluated, including the number of nodes that have access to solar energy sources, the different maximum solar output power, traffic type...... and the locations of solar powered nodes. Results show a maximum 39% savings in energy consumption with different increases in connection blocking probability....

  17. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  18. Numerical analysis of the flow around the Bach-type Savonius wind turbine

    International Nuclear Information System (INIS)

    Kacprzak, K; Sobczak, K

    2014-01-01

    The performance of the Bach-type Savonius wind turbine with a constant cross-section is examined by means of quasi 2D and 3D flow predictions obtained from ANSYS CFX. Simulations were performed in a way allowing for a comparison with the wind tunnel data presented by Kamoji et al. The comparison with the experiment has revealed that 2D solutions give much higher deviation from the reference data than the 3D ones, which guarantees a good solution quality. It can be stated that even simplified (lack of laminar-turbulence transition modelling and a coarser mesh) 3D simulations can yield more accurate results than complex 2D solutions for turbines with a low aspect ratio. The paper also presents a systematic analysis of the most characteristic flow structures which are identified in the rotor.

  19. Numerical analysis of the flow around the Bach-type Savonius wind turbine

    Science.gov (United States)

    Kacprzak, K.; Sobczak, K.

    2014-08-01

    The performance of the Bach-type Savonius wind turbine with a constant cross-section is examined by means of quasi 2D and 3D flow predictions obtained from ANSYS CFX. Simulations were performed in a way allowing for a comparison with the wind tunnel data presented by Kamoji et al. The comparison with the experiment has revealed that 2D solutions give much higher deviation from the reference data than the 3D ones, which guarantees a good solution quality. It can be stated that even simplified (lack of laminar-turbulence transition modelling and a coarser mesh) 3D simulations can yield more accurate results than complex 2D solutions for turbines with a low aspect ratio. The paper also presents a systematic analysis of the most characteristic flow structures which are identified in the rotor.

  20. SOLAR ENERGETIC PARTICLE EVENT ONSETS: FAR BACKSIDE SOLAR SOURCES AND THE EAST–WEST HEMISPHERIC ASYMMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W., E-mail: stephen.kahler@kirtland.af.mil [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States)

    2016-03-10

    Prompt onsets and short rise times to peak intensities Ip have been noted in a few solar energetic (E > 10 MeV) particle (SEP) events from far behind (≥25°) the west limb. We discuss 15 archival and recent examples of these prompt events, giving their source longitudes, onset and rise times, and associated coronal mass ejection (CME) speeds. Their timescales and CME speeds are not exceptional in comparison with a larger set of SEP events from behind the west limb. A further statistical comparison of observed timescales of SEP events from behind the west limb with events similarly poorly magnetically connected to the eastern hemisphere (EH) shows the longer timescales of the latter group. We interpret this result in terms of a difference between SEP production at parallel shocks on the eastern flanks of western backside events and at perpendicular shocks on the western flanks of EH events.

  1. Solar cells: An environment-benign energy source?

    International Nuclear Information System (INIS)

    Alsema, E.; Van Engelenburg, B.

    1993-01-01

    Attention is paid to a study on the environmental aspects of solar cell production techniques and the possibility of recycling solar cell materials. In the study the following types of solar cell modules are dealt with: CdTe and CuInSe 2 , amorphous silicon, crystalline silicon, and GaAs. It appears that silicon solar cells have minor environmental effects and are controllable. However, attention should be paid to the energy consumption and the use of etching and purification materials during the production of solar cells, and the emission of heavy metals from f.e. CdTe/CIS solar cells during and after usage. Without effective recycling enough supplies of indium, selenium and tellurium cannot be guaranteed. 3 figs., 1 ill

  2. Green cooperative communication network using solar energy sources

    OpenAIRE

    Sanjay kumar; jaya diptilal; S.V charhate

    2016-01-01

    Solar energy has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies supportive of renewable energy development and utilization. This study analyzes the technical, economic and policy aspects of solar energy development and deployment. While the cost of solar energy has declined rapidly in the recent past, it still remains much higher than the cost of conventional energy technologies. Like other ...

  3. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  4. The solar neutrino problem after the GALLEX artificial neutrino source experiment

    International Nuclear Information System (INIS)

    Vignaud, D.

    1995-01-01

    Using an intense 51 Cr artificial neutrino source (more than 60 PBq), the GALLEX solar neutrino collaboration has recently checked that its radiochemical detector was fully efficient for the detection of solar neutrinos. After this crucial result, the status of the solar neutrino problem is reviewed, with emphasis on how neutrino oscillations may explain (through the MSW effect) the different deficits observed in the four existing experiments. (author). 25 refs., 5 figs., 1 tab

  5. Long-lived sources of solar cosmic rays

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1979-01-01

    The high correlation between prompt solar cosmic rays and a flare-induced MHD shock is well known. We point out that the propagation properties of such a shock cause shock heating of the solar atmosphere to be confined to a unipolar magnetic region. As a result, if particles can be accelerated within the shock-processed part of the corona, the fluxes of suc particles will exhibit sharp spatial gradients near quiescent filaments. The passage of an MHD shock leads to the rapid collapse of magnetic neutral regions which prior to shock passage were collapsing too slowly to accelerate particles. We suggest that these newly triggered magnetic acceleration regions provide a third phase of solar flare acceleration regions provide a third phase of solar flare acceleration which may persist for many days after a flare. Collapsing magnetic regions with lengths scales of order 100 km can explain a variety of coronal phenomena

  6. Integrating rooftop solar into a multi-source energy planning optimization model

    International Nuclear Information System (INIS)

    Arnette, Andrew N.

    2013-01-01

    Highlights: • There is significant technical capacity for rooftop solar installations. • Rooftop solar generation is heavily dependent on key parameters. • Rooftop solar should be one of several options for increasing renewable energy. • Renewable energy planning should consider both cost and benefits. - Abstract: This research uses an optimization model to compare the role of rooftop solar generation versus large-scale solar and wind farm installations in renewable energy planning. The model consists of competing objectives, minimizing annual generation costs and minimizing annual greenhouse gas emissions. Rather than focus on the individual consumer’s investment decision, over 20 scenarios were developed which explored key input parameters such as the maximum penetration level of rooftop solar installations, pricing of equipment, tax credits, and net-metering policy to determine what role rooftop solar plays in renewable energy investment at an aggregate level. The research finds that at lower levels of penetration, such as those currently found in the United States, other renewable energy sources remain viable options, thus rooftop solar should be just one option considered when increasing development of renewable energy sources. The research also shows that a balanced approach taking into account both of the opposing objectives will lead to greater levels of rooftop solar generation than focusing solely on cost or emissions. Therefore, rooftop solar should be considered as part of an overall balanced approach to increasing renewable energy generation

  7. Advantages of geosynchronous solar power satellites for terrestrial base-load electrical supply compared to other renewable energy sources - or why civilization needs solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, J.K. Jr. [Texas Univ., Austin, TX (United States)

    1998-06-01

    The arguments in favour of using solar power satellites for primary base-load electrical supply are presented and compared with the advantages and drawbacks of other renewable energy sources, especially ground solar and wind systems. Popular misconceptions about energy use and the importation of space solar energy to the Earth`s surface are examined and discounted. Finally an optimal mix of space solar (focusing on geosynchronous solar power satellites), ground solar, and other energy sources is described which, it is argued, would be capable to meet future global energy demand. (UK)

  8. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  9. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    Science.gov (United States)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  10. Solar energy: an environment friendly reliable and sustainable source

    International Nuclear Information System (INIS)

    Siddique, M.A.; Akhtar, W.

    2011-01-01

    The rapid enhancement in consumption of fossil fuels in order to meet the day-to day increasing energy requirements has blown a danger sign for all nations. Global warming effect has compelled researchers to discover other techniques of energy generation instead of traditional ways in order to reduce adverse effects on global terrain. Renewable energy resources have got attention of global entrepreneurs due to their long lasting availability and environment friendliness. Solar technology is finding increased application in both domestic and military application. This paper discusses the ideas behind the art of design of solar cells and their historical developments. It also covers the kind of techniques/ methodologies used for solar energy conversion into electrical energy with comparison between different renewable technologies and solar technology. This paper gives the brief review of world energy resources and their consumption v/s Solar energy production percentage. Researchers in the field of energy generation have impressed by the Prodigious results of Renewable Energies. Today's most of the high ranked international universities of developed countries in collaboration with government/ industries have been carrying on advance researches in the field of renewable technologies. (author)

  11. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  12. Turbulence and Waves as Sources for the Solar Wind

    Science.gov (United States)

    Cranmer, S. R.

    2008-05-01

    Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.

  13. Diseño de un aerogenerador de eje vertical tipo Savonius para electrificación rural

    OpenAIRE

    Arbeloa Sola, Lorena

    2012-01-01

    Este proyecto fin de carrera describe el cálculo y el diseño de un aerogenerador de eje vertical tipo Savonius para electrificación rural aprovechando la energía del viento. El objeto de este proyecto es proporcionar toda la información necesaria para la construcción e instalación de un aerogenerador de este tipo en una comunidad boliviana, concretamente en la comunidad de Vilacollo, situada en el departamento de Oruro, en la parte oeste de Bolivia. Si dicho proyecto resulta e...

  14. Computational assessment of the influence of the overlap ratio on the power characteristics of a Classical Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Kacprzak Konrad

    2015-09-01

    Full Text Available An influence of the overlap on the performance of the Classical Savonius wind turbine was investigated. Unsteady two-dimensional numerical simulations were carried out for a wide range of overlap ratios. For selected configurations computation quality was verified by comparison with three-dimensional simulations and the wind tunnel experimental data available in literature. A satisfactory agreement was achieved. Power characteristics were determined for all the investigated overlap ratios for selected tip speed ratios. Obtained results indicate that the maximum device performance is achieved for the buckets overlap ratio close to 0.

  15. Source term boundary adaptive estimation in a first-order 1D hyperbolic PDE: Application to a one loop solar collector through

    KAUST Repository

    Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem

    2016-01-01

    In this paper, boundary adaptive estimation of solar radiation in a solar collector plant is investigated. The solar collector is described by a 1D first-order hyperbolic partial differential equation where the solar radiation models the source term

  16. CLOSED LOOP CONTROL OF EMBEDDED Z-SOURCE INVERTER WITH FUZZY CONTROLLER FOR SOLAR PV APPLICATIONS

    OpenAIRE

    Midde Mahesh*, K. Leleedhar Rao

    2017-01-01

    This paper proposes the use of Embedded Z –source inverter system with fuzzy controller for Solar Photo Voltaic (PV) applications with adjustable speed drives. Closed loop operation FUZZY control strategies of EZSI system are proposed. EZSI produces the same voltage gain as Z-source inverter (ZSI) but due to the DC sources embedded within the X- shaped impedance network, it has the added advantage of inherent source filtering capability and also reduced capacitor sizing. This can be achiev...

  17. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  18. Analysis of the prospects of solar energy and other alternative energy sources in Ukraine

    OpenAIRE

    Mogylko, O.

    2010-01-01

    The need to develop an alternative energy sources in Ukraine to increase energy efficiency and energy security it is explained in the article. The international experience of development of solar energy are analyzed. The prospects and other alternative energy sources in Ukraine are defined. The conclusions and recommendations to address the problems are identified.

  19. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  20. Unsteady Aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessandro, V.; Montelpare, S.; Ricci, R.; Secchiaroli, A. [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche 1, 60131 Ancona (Italy)

    2010-08-15

    When compared with of other wind turbine the Savonius wind rotor offers lower performance in terms of power coefficient, on the other hand it offers a number of advantages as it is extremely simple to built, it is self-starting and it has no need to be oriented in the wind direction. Although it is well suited to be integrated in urban environment as mini or micro wind turbine it is inappropriate when high power is requested. For this reason several studies have been carried-out in recent years in order to improve its aerodynamic performance. The aim of this research is to gain an insight into the complex flow field developing around a Savonius wind rotor and to evaluate its performance. A mathematical model of the interaction between the flow field and the rotor blades was developed and validated by comparing its results with data obtained at Environmental Wind Tunnel (EWT) laboratory of the ''Polytechnic University of Marche''. (author)

  1. Search for the sources of the solar wind in the 9.1 cm brightness temperature

    International Nuclear Information System (INIS)

    George, R.G.

    1975-01-01

    The sources of solar wind streams have been the object of intensive research for many years, but the various ideas of where and how streams originate on the sun are still incomplete and contradictory. The present study is an attempt to find the solar wind sources by mathematically approximating the 9.1 cm brightness temperature which would be expected at the foot of spacecraft-measured solar wind streams and by then comparing it with actual radio brightness temperature measurements. Several significant results were found from an analysis of the correlation results. Most plasma emanating from the sun was found to come from high solar latitudes and to deviate significantly from the normally expected east-west path in the low corona. Magnetic channelng causes correlation studies to fail when the sun's magnetic configuration is unstable. The travel time of the plasma from the sun's 9.1 cm emission level to the earth is often more than a month

  2. Non-LTE H2+ as the source of missing opacity in the solar atmosphere

    Science.gov (United States)

    Swamy, K. S. K.; Stecher, T. P.

    1974-01-01

    The population of the various vibrational levels of the H2+ molecule has been calculated from the consideration of formation and destruction mechanisms. The resulting population is used in calculating the total absorption due to H2+ and is compared with the other known sources of opacity at several optical depths of the solar atmosphere. It is shown that the absorption due to H2+ can probably account for the missing ultraviolet opacity in the solar atmosphere.

  3. Complex active regions as the main source of extreme and large solar proton events

    Science.gov (United States)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  4. Evidence for Alfvén Waves in Source Flares of Impulsive Solar Energetic Particle Events

    Science.gov (United States)

    Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.; Gomez-Herrero, R.; Nitta, N.

    2017-12-01

    Impulsive solar energetic particle events, characterised by a peculiar elemental composition with the rare elements like 3He and ultra-heavy ions enhanced by factors up to ten thousand above their thermal abundance, have been puzzling for almost 50 years. The solar sources of these events have been commonly associated with coronal jets, believed to be a signature of magnetic reconnection involving field lines open to interplanetary space. Here we present some of the most intense events, highly enriched in both 3He and heavier ions. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. During the last decade, it has been established that the helical motions in coronal jets represent propagating Alfvén waves. Revealing such magnetic-untwisting waves in the solar sources of highly enriched events in this study is consistent with a stochastic acceleration mechanism. An examination of jets in previously reported impulsive solar energetic particle events indicates that they tend to be large-scale blowout jets, sometimes cleanly showing a twisted configuration.The work of R. Bucik is supported by the Deutsche Forschungsgemeinschaft grant BU 3115/2-1.

  5. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  6. Estimates of the price of hydrogen as a medium for wind and solar sources

    International Nuclear Information System (INIS)

    Bockris, John O'M.; Veziroglu, T. Nejat

    2007-01-01

    The rejection of hydrogen as a solution to global warming by becoming the medium of wind and solar was made when gasoline was priced at $1/gallon. From wind, H 2 would now cost (by electrolysis of water and steam) less than $3 for an amount equivalent in energy to that in a gallon of gasoline ('equivalent'). From solar photovoltaics (pv), H 2 would be sinking in price between $8 toward $5 equivalent as the efficiency of solar pv increases toward 20%. Solar thermal's present prices offer about one-half the solar pv prices. Prediction of the maximum of the delivery rate of world oil is [Laherre's Oil Production Forecast, 1950-2150. Reprinted with permission from correspondence with William Horvath, U.S. Department of Energy, March 29, 2001] 2010. Future energy sources will develop inexhaustible energies from wind, solar, geothermal, tidal, and wave sources. The common media will be hydrogen and electricity. These sources yield energy at around one-half the cost of nuclear fission. Growing corn to make alcohol involves a net loss of energy and need for a heating mechanism. It may increase the Greenhouse. (author)

  7. Studi Eksperimen Pengaruh Sudut Plat Pengganggu Di Depan Returning Blade Turbin Angin Tipe Savonius Terhadap Performa Turbin “ Studi Kasus Untuk Rasio Lebar Plat Pengganggu Terhadap Diameter Turbin (L/D = 1,4144”

    Directory of Open Access Journals (Sweden)

    Yoga Erry Priandika

    2017-01-01

    Full Text Available Energi Angin merupakan salah satu energi alternatif yang sangat menjanjikan jika dapat dimanfaatkan dengan baik. Pemanfaatan energi angin untuk diubah menjadi energi listrik dapat menggunakan turbin angin dan generator. Turbin angin tipe Savonius merupakan rotor angin dengan sumbu tegak (vertical yang dikembangkan oleh Singuard J. Savonius pada tahun 1920. Salah satu kelemahan yang dimiliki turbin Savonius yaitu efisiensi yang rendah. Torsi dan putaran yang dihasilkan oleh turbin Savonius disebabkan oleh adanya perbedaan gaya drag pada advancing blade dan returning blade. Salah satu cara untuk meningkatkan performa turbin Savonius  dapat dilakukan dengan pemberian plat pengganggu didepan returning blade. Untuk meningkatkan performa turbin Savonius dengan diameter D sebesar 60 mm dan tinggi h sebesar 80 mm, sebuah plat dengan tebal 3 mm dan lebar 84,9 mm digunakan sebagai pengganggu yang diletakkan didepan returning blade turbin. Pengganggu tersebut diletakkan dengan pada sudut 0o< ɑ < 90o. Penelitian ini dilakukan pada subsonic open circuit wind tunnel. Alat ini memiliki panjang 2980 mm, dengan test section 304 mm x 304 mm. Kecepatan free stream pada wind tunnel diatur sebesar 8,752 m/s, 10,94 m/s, 13,128 m/s, sesuai dengan Reynolds number Re = 6.0 x 104, 7.5 x 104, 9.0 x 104 (berdasarkan panjang karakteristik d = 2D-b, dimana b adalah lebar diameter overlap dari kedua sudu turbin, dan kecepatan free stream. Kecepatan aliran udara diukur menggunakan static pitot tube yang dihubungkan dengan inclined manometer. Putaran turbin Savonius diukur menggunakan tachometer. Torsi statis diukur menggunakan torsi meter digital dan daya output dihasilkan dari pengukuran tegangan dan arus listrik yang dihasilkan generator yang dihubungkan dengan poros turbin. Untuk Re = 60.000, penggunaan plat dengan lebar L/D = 1,4144 pada posisi ɑ = 40o sebagai pengganggu didepan turbin Savonius, terbukti paling efektif untuk meningkatkan performa turbin Savonius. Pada

  8. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  9. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  10. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  11. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  12. The S-Web Model for the Sources of the Slow Solar Wind

    Science.gov (United States)

    Antiochos, Spiro K.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind has large angular width, up to 60 degrees, suggesting that its source extends far from the open-closed boundary. We describe a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices (the S-Web) and quasi-separatrix layers in the heliosphere. We discuss the dynamics of the S-Web model and its implications for present observations and for the upcoming observations from Solar Orbiter and Solar Probe Plus.

  13. Solar energy: a suitable alternative energy source; Energia solar: uma fonte de energia viavel

    Energy Technology Data Exchange (ETDEWEB)

    Queiros Mattoso e Sousa, K. de; Sousa, R.M.A de [KR Consultoria, Projetos e Edificacoes. Belo Horizonte, MG (Brazil)

    1993-12-31

    The passive solar water heaters systems are highlighted in this paper. The authors show its electrical energy accounting for a 13 stories building with 4 flat unities of 150,00 square meters of area per story, proposed project of hydraulic and electrical system. Reduction of costs due to: reduction of demanded power as a result of the substitution of gas or electrical boilers by the heaters. Data reflecting the designed system are presented in the electric and hydraulic projects in 2 tables. 8 refs., 2 tabs

  14. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  15. Solar quiet day ionospheric source current in the West African region.

    Science.gov (United States)

    Obiekezie, Theresa N; Okeke, Francisca N

    2013-05-01

    The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January-December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year's change in the source current system of Sq.

  16. Solar quiet day ionospheric source current in the West African region

    Directory of Open Access Journals (Sweden)

    Theresa N. Obiekezie

    2013-05-01

    Full Text Available The Solar Quiet (Sq day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced components of Sq using Spherical Harmonics Analysis (SHA method. The range of the source current was calculated and this enabled the viewing of a full year’s change in the source current system of Sq.

  17. Solar quiet day ionospheric source current in the West African region

    OpenAIRE

    Obiekezie, Theresa N.; Okeke, Francisca N.

    2012-01-01

    The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method....

  18. Indirect solar wind geothermal: Alternative energy sources 4, volume 4

    Science.gov (United States)

    Veziroglu, T. N.

    The utilities are obliged to provide electricity in a reliable and cost effective manner. Some unique problems posed by large scale wind turbines as an electricity source have to be considered. A value model is presented which is based upon the fuel displacement capability and the capacity displacement capability of wind turbines. The amount of fossil fuels which is saved by wind turbines depends on the forecasted wind power output, the actual power output fluctuations of the wind turbines and on system operation. The highly controversial capacity credit of wind turbines is discussed under the aspect of system reliability. It is shown that calculations of the capacity credit should be based upon detailed investigations with regard to the time dependence of the hourly wind power output.

  19. An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Saha, Ujjwal K.

    2014-01-01

    Highlights: • Significance of the blockage correction in wind tunnel experiments of Savonius-style wind turbine. • Adaptation of blockage factor correlations under open type test sections for blockage ratio of 21.16%. • Effectiveness of adapted correlations for smaller blockage ratios (BRs) of 16% and 12.25%. • Estimate the magnitude of the blockage correction under various loading conditions for each BR. • Variation of blockage correction factor with respect to tip speed ratio and BR. - Abstract: An investigation into the blockage correction effects in wind tunnel experiments of a small-scale wind energy conversion system in an open type test section is carried out. The energy conversion system includes a Savonius-style wind turbine (SSWT) and a power measurement assembly. As the available correlations for the closed type test sections may not be appropriate for the open test section under dynamic loading conditions, new correlations are adapted for the blockage correction factors with free stream wind speed, turbine rotational speed and variable load applied to the turbine to quantify the energy conversion coefficients more precisely. These are obtained for a blockage ratio of 21.16% through a comparison of present experimental data with those of established experimental data under dynamic loading conditions. Further, the accuracy of the adapted correlations is substantiated into the experiments with smaller blockage ratios of 16% and 12.25%. The relationships of the tip speed ratios and blockage ratios with the blockage correction factor are also discussed. Using these correlations, this study provides evidence of increase of blockage correction in the range 1–10% with the increase of both tip speed ratio and blockage ratio. The results also indicate that for blockage ratios approaching 10 and tip speed ratios below 0.5, the blockage effects are almost negligible in the open type test sections

  20. The Source of Solar Energy, ca. 1840-1910: From Meteoric Hypothesis to Radioactive Speculations

    OpenAIRE

    Kragh, Helge

    2016-01-01

    Why does the Sun shine? Today we know the answer to the question and we also know that earlier answers were quite wrong. The problem of the source of solar energy became an important part of physics and astronomy only with the emergence of the law of energy conservation in the 1840s. The first theory of solar heat based on the new law, due to J. R. Mayer, assumed the heat to be the result of meteors or asteroids falling into the Sun. A different and more successful version of gravitation-to-h...

  1. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  2. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  3. Characteristics of hard X-ray double sources in impulsive solar flares

    Science.gov (United States)

    Sakao, T.; Kosugi, T.; Masuda, S.; Yaji, K.; Inda-Koide, M.; Makishima, K.

    1996-01-01

    Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.

  4. Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1977-01-01

    Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO

  5. AN INVESTIGATION OF THE SOURCES OF EARTH-DIRECTED SOLAR WIND DURING CARRINGTON ROTATION 2053

    Energy Technology Data Exchange (ETDEWEB)

    Fazakerley, A. N.; Harra, L. K.; Van Driel-Gesztelyi, L., E-mail: a.fazakerley@ucl.ac.uk [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode ’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  6. An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053

    Science.gov (United States)

    Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  7. 37Ar based neutron source for calibration of the iodine solar neutrino detector

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Gavrin, V.N.; Mirmov, I.N.; Veretenkin, E.P.; Yants, V.Eh.; Cleveland, B.T.; Davis, R. Jr.; Lande, K.; Wildenhain, P.; Khomyakov, Yu.S.

    2001-01-01

    The methodology of the creation of a compact neutrino source based on the 37 Ar isotope as well as the technique of calibration of an iodine detector of solar neutrinos is described. An important overall expected result is the creation of a prototype of the source with the intensity up to 400 kCi, delivery of this source to the Baksan neutrino observatory and the test calibration of the single module of the iodine detector. Simulation shows that at least 45-70 127 Xe atoms will be detected in the irradiation of ∼40 tons of methylene iodide by the source leading to ∼19% of the error on the measured production rate. This result should be considered as a test of the developed technology and will verify overall technical readiness for the creation of a full scale neutrino source and the full scale calibration of the iodine detector

  8. Low frequency wave sources in the outer magnetosphere, magnetosheath, and near Earth solar wind

    Directory of Open Access Journals (Sweden)

    O. D. Constantinescu

    2007-11-01

    Full Text Available The interaction of the solar wind with the Earth magnetosphere generates a broad variety of plasma waves through different mechanisms. The four Cluster spacecraft allow one to determine the regions where these waves are generated and their propagation directions. One of the tools which takes full advantage of the multi-point capabilities of the Cluster mission is the wave telescope technique which provides the wave vector using a plane wave representation. In order to determine the distance to the wave sources, the source locator – a generalization of the wave telescope to spherical waves – has been recently developed. We are applying the source locator to magnetic field data from a typical traversal of Cluster from the cusp region and the outer magnetosphere into the magnetosheath and the near Earth solar wind. We find a high concentration of low frequency wave sources in the electron foreshock and in the cusp region. To a lower extent, low frequency wave sources are also found in other magnetospheric regions.

  9. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  10. Double-coronal X-Ray and Microwave Sources Associated with a Magnetic Breakout Solar Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yao; Wu, Zhao; Zhao, Di; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schwartz, Richard A., E-mail: yaochen@sdu.edu.cn [NASA Goddard Space Flight Center and American University, Greenbelt, MD 20771 (United States)

    2017-07-01

    Double-coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in large-scale current sheets in solar flares. Here, we present a study on double-coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (2014 April 25, starting at 00:17 UT) and a coronal mass ejection that were likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially occulted flare loops and the upper source co-incident with rapidly squeezing-in side lobes (at a speed of ∼250 km s{sup −1} on both sides). The upper source can be identified at energies as high as 70–100 keV. The X-ray upper source is characterized by flux curves that differ from those of the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration, and an HXR photon spectrum slightly harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double-source structure and the microwave spectra at both sources are in line with gyrosynchrotron emission given by non-thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (and possibly caused by) this fast motion of arcades. This sheds new light on the origin of the corona double-source structure observed in both HXRs and microwaves.

  11. The source of solar energy, ca. 1840-1910: From meteoric hypothesis to radioactive speculations

    Science.gov (United States)

    Kragh, Helge

    2016-12-01

    Why does the Sun shine? Today we know the answer to the question and we also know that earlier answers were quite wrong. The problem of the source of solar energy became an important part of physics and astronomy only with the emergence of the law of energy conservation in the 1840s. The first theory of solar heat based on the new law, due to J.R. Mayer, assumed the heat to be the result of meteors or asteroids falling into the Sun. A different and more successful version of gravitation-to-heat energy conversion was proposed by H. Helmholtz in 1854 and further developed by W. Thomson. For more than forty years the once so celebrated Helmholtz-Thomson contraction theory was accepted as the standard theory of solar heat despite its prediction of an age of the Sun of only 20 million years. In between the gradual demise of this theory and the radically different one based on nuclear processes there was a period in which radioactivity was considered a possible alternative to gravitational contraction. The essay discusses various pre-nuclear ideas of solar energy production, including the broader relevance of the question as it was conceived in the Victorian era.

  12. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    yields of solar energy/hydrogen conversion and the hydrogen quantities produced by a central receiver tower solar process. A size of the process and of the solar plant has been carried out in order to estimate by an economic study, the cost of hydrogen production by these thermochemical cycles coupled to a concentrated solar energy source. (O.M.)

  13. Program to monitor and evaluate a passive solar greenhouse/aquaculture system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A temperature monitoring program of Amity's solar greenhouse demonstrated that air, soil, and water temperatures can be maintained at optimal levels without supplemental heat. A foil reflector placed in front of the greenhouse glazing at an angle of between 0 and 5/sup 0/ above horizontal enhanced direct light entering the greenhouse by as much as 22%. Aquaculture in the water heat storage of a solar greenhouse has been a success. Fish reached harvest size in about seven months. The two species that were received the best by the public were African perch (Tilapia mossambica) and channel catfish (Ictalurus punctatus). Although carp (Cyprinus carpio) were the fastest growers they were not well received by the public. Linking hydroponics to greenhouse aquaculture shows a lot of promise. Different support medias were examined and tomatoes and European cucumbers were raised successfully. A savonius windmill was successfully linked to an aquaculture aeration system but because of the wind pattern in the Willamette valley the windmill system did not provide air in the evening when it was needed most. Alternate designs are discussed. Locally grown fish diets were evaluated for their ability to promote fish growth. Diets such as water hyacinth, duckweed, earthworms, beans, and comfrey were raised on the Amity site, pelleted with a hand grinder and solar dried. Duckweed and earthworms appear to hold promise for a nutritous, easy to grow and pelletize, food source. Amity's solar greenhouse, three coldframe designs and a PVC tunnel cloche were compared in a vegetable growing trial. Most impressive was the cloche design because it provided adequate protection, was inexpensive and very easy to build.

  14. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  15. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  16. Solar, wind and waves: Natural limits to renewable sources of energy within the Earth system

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, Axel [Max-Planck-Institute for Biogeochemistry, Jena (Germany)

    2013-07-01

    Renewable sources of energy, such as solar, wind, wave, or hydropower, utilize energy that is continuously generated by natural processes within the Earth system from the planetary forcing. Here we estimate the limits of these natural energy conversions and the extent to which these can be used as renewable energy sources using the laws of thermodynamics. At most, wind power in the order of 1 000 TW (1 TW = 1E12 W) can be derived from the total flux of incoming solar radiation of 175 000 TW, which is consistent with estimates based on observations. Other generation rates that are derived from the kinetic energy of wind are in the order of 10-100 TW. In comparison, the human primary energy demand of about 17 TW constitutes a considerable fraction of these rates. We provide some further analysis on the limits of wind power using a combination of conceptual models, observational data, and numerical simulation models. We find that many current estimates of wind power substantially overestimate the potential of wind power because the effect of kinetic energy extraction on the air flow is neglected. We conclude that the only form of renewable energy that is available in substantial amounts and that is associated with minor climatic impacts is solar power.

  17. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  18. The size of coronal hard X-ray sources in solar flares: How big are they?

    Science.gov (United States)

    Effenberger, F.; Krucker, S.; Rubio da Costa, F.

    2017-12-01

    Coronal hard X-ray sources are considered to be one of the key signatures of non-thermal particle acceleration and heating during the energy release in solar flares. In some cases, X-ray observations reveal multiple components spatially located near and above the loop top and even further up in the corona. Here, we combine a detailed RHESSI imaging analysis of near-limb solar flares with occulted footpoints and a multi-wavelength study of the flare loop evolution in SDO/AIA. We connect our findings to different current sheet formation and magnetic break-out scenarios and relate it to particle acceleration theory. We find that the upper and usually fainter emission regions can be underestimated in their size due to the majority of flux originating from the lower loops.

  19. Evidence for multiple sources of 10Be in the early solar system

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel; Nagashima, Kazuhide; Krot, Alexander N.

    2012-01-01

    Beryllium-10 is a short-lived radionuclide (t 1/2 = 1.4 Myr) uniquely synthesized by spallation reactions and inferred to have been present when the solar system's oldest solids (calcium-aluminum-rich inclusions, CAIs) formed. Yet, the astrophysical site of 10Be nucleosynthesis is uncertain. We...... in the gaseous CAI-forming reservoir, or in the inclusions themselves: this indicates at least two nucleosynthetic sources of 10Be in the early solar system. The most promising locale for 10Be synthesis is close to the proto-Sun during its early mass-accreting stages, as these are thought to coincide...

  20. Design of absorption system water-ammonia by using solar radiation as thermal source

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Eduardo J. Cidade; Souza, Luiz Guilherme Meira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Tecnlogia. Dept. de Engenharia Mecanica], E-mails: educanti@gmail.com, lguilherme@dem.ufrn.br

    2010-07-01

    An absorption refrigeration system with the single effect of par ammonia water with 1.758 kW (1 / 2 RT) cooling capacity was designed. The system was operating under conditions of 5 degree C evaporation and 45 degree C condensation temperature. The absorption system has a heat exchanger to improve performance. The heat source is the cylinder parabolic solar concentrator (CPC). The design of the concentrator was estimated based on experimental data of the pilot plant built in the Solar Energy Laboratory, Federal University of Rio Grande do Norte. The thermodynamic model with heat and mass transfer was made to the project areas of heat exchange (absorber) and consequent construction of the system. The rectifying column was modeling assuming that liquid is in equilibrium with the vapor state in all plate. The results should show the dimensions of the compact and allows a future assessment of the operational cost. (author)

  1. AnalysisThe Availability of Using Concentrated Solar Power (CSP as Electricity Source in Al-Hilla City

    Directory of Open Access Journals (Sweden)

    Wisam Shamkhi Jaber

    2017-03-01

    Full Text Available The needing of using clean energy increases every year because of the negative impact of emissions from electricity power plant and to reduce the costs of generating power by using natural energies like solar, wind, and other sources. The availability of using solar energy as source of producing electricity in Al-Hilla city by using Concentrating Solar Power (CSP was investigated in this research. The major parameters in this study were the city position, and the annually amount of solar received, also, number of charts related to solar parameters for the management of CSP were derived and showed in this research. The using of CSP as electricity power can be important solution to force the problem of high cost of electricity power fuel needed and the lack of power produced because of increasing of power consumed specially in summer season.

  2. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  3. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  4. Influence of the side-by-side arrangement on the performance of a small Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Jang Choon-Man

    2016-01-01

    Full Text Available Scaled-down Savonius turbine rotors arrayed side-by-side are introduced to analyze the effects of design parameters on the performance between turbine rotors. Unsteady flow simulation and experimental measurement have been performed to compare turbine performance and validate the numerical simulation of the turbine rotor. Commercial code, SC/Tetra, which uses an unstructured grid system, has been used to solve the three-dimensional unsteady Reynolds-averaged Navier–Stokes equations. Single turbine rotors and two turbine rotors arrayed side-by-side were numerically analyzed. The distance between rotor tips is 0.5 times the rotor diameter. Throughout the numerical simulation, the power coefficient obtained by the time-averaged result of unsteady flow simulation was found to be in good agreement with the experimental result. A discussion on the design parameters using both a single and arrayed turbine rotors is presented based on the results of the unsteady flow simulation, including the flow field, power coefficient, velocity and vorticity contours.

  5. Numerical study on the effect of width of single curtain on the performance of Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Yuwono Triyogi

    2018-01-01

    Full Text Available This is a preliminary results of the flow around the Savonius wind turbine with installing curtain plate in front of the returning blade turbine. It was investigated numerically in a uniform flow at Reynolds number of 30,000 and 90,000. The velocity vector and pressure distribution around the turbine were simulate by varying the width of curtain plate relative to the diameter of rotor blade (S/D of = 1.00, 1.02, 1.03, 1.15, 1.41, and 2.00, using STAR CCM++ Software. The k-ɛ realizable as turbulence model was used to visualize the flow phenomena occurred around the turbine, and where in this simulation, the rotor turbine was set static. The results show that it seems the width of the curtain installed in front of the returning blade of the turbine plays an important role in the performance of the turbine. In general, the installing of the curtain in front of the returning blade of the turbine is more effective to improve the turbine performance. This is not necessarily, but depends on the width of the curtain and the number of Reynolds (Re. For the width of the large curtain of S/D = 2 at Re = 90,000, the performance of the turbine is estimated lower than when the turbine without the curtain.

  6. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  7. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    Science.gov (United States)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  8. 3D laser scanning and open source GIS for solar potential assessment

    International Nuclear Information System (INIS)

    Jochem, A.

    2011-01-01

    such as roof overhangs or building parts covered by e.g. vegetation are not represented in 2.5D raster data, they have been used for building detection and solar radiation modeling in many cases. This thesis aims to utilize the highest degree of information - the third dimension - of the laser scanning point cloud for both the detection of planar areas of buildings and solar radiation modeling. The algorithms and workflows developed in the framework of this thesis are implemented in Open Source GRASS and SAGA GIS allowing the integration of own modules and the use of existing visualization and spatial analysis tools to interpret and further process the results. Methods are demonstrated generating 2D GIS-ready information in the form of vector polygons and vector lines of the detected objects and their properties (e.g. area, total amount of the incoming solar energy). This offers the possibility for 'normal' GIS users such as spatial planners to analyze and further process the spatial information in standard GIS environments. In the first part of this thesis approaches for the detection and segmentation, respectively, of roof planes using 3D point cloud data acquired by Airborne Laser Scanning (ALS) are presented. The detected roof planes are used as input for point cloud-based solar radiation modeling. Shadows of nearby objects are considered by modeling the 3D horizon of each point being reflected from a roof plane within the original laser scanning point cloud. As solar thermal and photovoltaic conversion systems can also be mounted on building facades the developed point cloud based solar radiation model is transferred on building walls extracted from Mobile Laser Scanning (MLS) data in order to assess their solar potential. The developed algorithms are completely executed within the computer's main memory and thus are not suitable for large study areas because the huge amount of point cloud data produced by LiDAR technology cannot be processed at once. In the

  9. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory/Oulu Unit, University of Oulu, P.O.B. 3000, Oulu FI-90014 (Finland); Pohjolainen, Silja [Tuorla Observatory, University of Turku, Piikkiö FI-21500 (Finland); Mishev, Alexander [Space Climate Research Unit, University of Oulu, Oulu FI-90014 (Finland); Reiner, Mike J. [The Catholic University of America, Washington, DC, and NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Lee, Jeongwoo [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Didkovsky, Leonid V. [University of Southern California Space Sciences Center, 835 Bloom Walk, Los Angeles CA 90089 (United States); Pizzo, Victor J. [NOAA Space Weather Prediction Center, Boulder, CO 80305 (United States); Kim, Roksoon; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Klassen, Andreas [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, Kiel D-24118 (Germany); Karlicky, Marian [Astronomical Institute of the Czech Academy of Sciences, Fričova 258, Ondřejov 251 65 (Czech Republic); Gary, Dale E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark NJ 07102-1982 (United States); Valtonen, Eino; Vainio, Rami [Space Research Laboratory, University of Turku, Turku FI-20014 (Finland)

    2017-04-20

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associated with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.

  10. TITANIUM ISOTOPE SOURCE RELATIONS AND THE EXTENT OF MIXING IN THE PROTO-SOLAR NEBULA EXAMINED BY INDEPENDENT COMPONENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Robert C. J.; Boehnke, Patrick [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2015-04-01

    The Ti isotope variations observed in hibonites represent some of the largest isotope anomalies observed in the solar system. Titanium isotope compositions have previously been reported for a wide variety of different early solar system materials, including calcium, aluminum rich inclusions (CAIs) and CM hibonite grains, some of the earliest materials to form in the solar system, and bulk meteorites which formed later. These data have the potential to allow mixing of material to be traced between many different regions of the early solar system. We have used independent component analysis to examine the mixing end-members required to produce the compositions observed in the different data sets. The independent component analysis yields results identical to a linear regression for the bulk meteorites. The components identified for hibonite suggest that most of the grains are consistent with binary mixing from one of three highly anomalous nucleosynthetic sources. Comparison of these end-members show that the sources which dominate the variation of compositions in the meteorite parent body forming regions was not present in the region in which the hibonites formed. This suggests that the source which dominates variation in Ti isotope anomalies between the bulk meteorites was not present when the hibonite grains were forming. One explanation is that the bulk meteorite source may not be a primary nucleosynthetic source but was created by mixing two or more of the hibonite sources. Alternatively, the hibonite sources may have been diluted during subsequent nebula processing and are not a dominant solar system signatures.

  11. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  12. Solar energetic particles a modern primer on understanding sources, acceleration and propagation

    CERN Document Server

    Reames, Donald V

    2017-01-01

    This concise primer introduces the non-specialist reader to the physics of solar energetic particles (SEP) and systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. More specifically, the timing of the onsets, the longitude distributions, the high-energy spectral shapes, the correlations with other solar phenomena (e.g. coronal mass ejections), as well as the all-important elemental and isotopic abundances of SEPs are investigated. Impulsive SEP events are related to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfvén waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a new technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated. Last but not ...

  13. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  14. Helioviewer.org: An Open-source Tool for Visualizing Solar Data

    Science.gov (United States)

    Hughitt, V. Keith; Ireland, J.; Schmiedel, P.; Dimitoglou, G.; Mueller, D.; Fleck, B.

    2009-05-01

    As the amount of solar data available to scientists continues to increase at faster and faster rates, it is important that there exist simple tools for navigating this data quickly with a minimal amount of effort. By combining heterogeneous solar physics datatypes such as full-disk images and coronagraphs, along with feature and event information, Helioviewer offers a simple and intuitive way to browse multiple datasets simultaneously. Images are stored in a repository using the JPEG 2000 format and tiled dynamically upon a client's request. By tiling images and serving only the portions of the image requested, it is possible for the client to work with very large images without having to fetch all of the data at once. Currently, Helioviewer enables users to browse the entire SOHO data archive, updated hourly, as well as data feature/event catalog data from eight different catalogs including active region, flare, coronal mass ejection, type II radio burst data. In addition to a focus on intercommunication with other virtual observatories and browsers (VSO, HEK, etc), Helioviewer will offer a number of externally-available application programming interfaces (APIs) to enable easy third party use, adoption and extension. Future functionality will include: support for additional data-sources including TRACE, SDO and STEREO, dynamic movie generation, a navigable timeline of recorded solar events, social annotation, and basic client-side image processing.

  15. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  16. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  17. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  18. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Department of Space Science/CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Dasgupta, B.; Khare, A.; Webb, G. M., E-mail: qh0001@uah.edu, E-mail: qiu@physics.montana.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ≳ 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  19. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  20. Comparison of diverse climatic sources for the simulation of facilities of solar refrigeration; Comparacion de diversas fuentes climaticas para la simulacion de instalaciones de refrigeracion solar

    Energy Technology Data Exchange (ETDEWEB)

    Bujedo, L. A.; Vicente, J.; Torre, C. de; Macia, A.; Rodriguez, J.

    2008-07-01

    With the present work they are sought to analyze the results based on simulations hourly of an installation of solar refrigeration by absorption, subjected to different sources of weather data. For it, the authors have modelled one of the facilities of the Technology Centre CARTIF located in Boecillo (Valladolid), under the environment TRNSYS. (Author)

  1. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    Science.gov (United States)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  2. Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Shuai, Yong; Gong, Liang; Tan, Heping

    2014-01-01

    Highlights: • H 2 production by hybrid solar energy and methane steam reforming is analyzed. • MCRT and FVM coupling method is used for chemical reaction in solar porous reactor. • LTNE model is used to study the solid phase and fluid phase thermal performance. • Modified P1 approximation programmed by UDFs is used for irradiative heat transfer. - Abstract: The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production

  3. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  4. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  5. An open-source optimization tool for solar home systems: A case study in Namibia

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Holmberg, Aksel; Pettersson, Oscar; Klintenberg, Patrik; Hangula, Abraham; Araoz, Fabian Benavente; Zhang, Yang; Stridh, Bengt; Yan, Jinyue

    2016-01-01

    Highlights: • An open-source optimization tool for solar home systems (SHSs) design is developed. • The optimization tool is written in MS Excel-VBA. • The optimization tool is validated with a commercial and open-source software. • The optimization tool has the potential of improving future SHS installations. - Abstract: Solar home systems (SHSs) represent a viable technical solution for providing electricity to households and improving standard of living conditions in areas not reached by the national grid or local grids. For this reason, several rural electrification programmes in developing countries, including Namibia, have been relying on SHSs to electrify rural off-grid communities. However, the limited technical know-how of service providers, often resulting in over- or under-sized SHSs, is an issue that has to be solved to avoid dissatisfaction of SHSs’ users. The solution presented here is to develop an open-source software that service providers can use to optimally design SHSs components based on the specific electricity requirements of the end-user. The aim of this study is to develop and validate an optimization model written in MS Excel-VBA which calculates the optimal SHSs components capacities guaranteeing the minimum costs and the maximum system reliability. The results obtained with the developed tool showed good agreement with a commercial software and a computational code used in research activities. When applying the developed optimization tool to existing systems, the results identified that several components were incorrectly sized. The tool has thus the potentials of improving future SHSs installations, contributing to increasing satisfaction of end-users.

  6. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal, E-mail: moka@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-02-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (≳15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E{sub c}. In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10{sup 9} cm{sup –3}), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10{sup 10} cm{sup –3}), the non-thermal tail is suppressed or thermalized by Coulomb collisions.

  7. The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe

    Science.gov (United States)

    Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul

    2018-03-01

    Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.

  8. Studi Eksperimen Pengaruh Silinder Pengganggu Di Depan Returning Blade Turbin Angin Savonius Terhadap Performa Turbin “ Studi Kasus Untuk Rasio Diameter Silinder Pengganggu Terhadap Diameter Turbin (d/D = 0,75 “

    Directory of Open Access Journals (Sweden)

    Retno Dewi Pamungkas

    2017-01-01

    Full Text Available Indonesia merupakan negara yang memiliki sumber daya alam yang melimpah, dimana sumber daya alam tersebut dapat dijadikan sebagai sumber energi. Seiring berjalannya waktu, ketersediaannya semakin menipis. Untuk mengatasi ketergantungan energi fosil, maka perlu pengembangan untuk mendapatkan sumber energi terbarukan.  Energi terbarukan yang belum banyak dimanfaatkan secara optimal dan berpotensi untuk dikembangkan adalah energi angin. Dengan meletakkan silinder pengganggu di depan returning blade turbin angin tipe Savonius, maka performa turbin angin dapat ditingkatkan. Hal tersebut merupakan tujuan dari penelitian ini. Untuk meningkatkan performa turbin angin Savonius yang berdiameter (D = 60 mm dan tinggi (H = 80 mm, digunakan silinder yang berdiameter (d = 45 mm yang diletakkan di depan returning blade turbin. Pengganggu diletakkan dengan variasi jarak 1,5 ≤ S/D ≤ 2,4. Penelitian dilakukan di dalam open circuit wind tunnel, dengan dimensi tes uji; panjang 457 mm, lebar 304 mm dan tinggi 304 mm. Pada kecepatan angin masuk sebesar 8,77 m/s; 10,97 m/s; 13,16 m/s yang sesuai dengan Re = 6,0 x 104; 7,5 x 104; 9,0 x 104 Kecepatan angin diukur menggunakan pitot-static tube ­yang terhubung dengan inclined manometer. Putaran dari turbin angin diukur menggunakan tachometer, torsi statis menggunakan torque meter dan daya turbin angin diperoleh dengan mengukur tegangan dan kuat arus yang dihasilkan oleh generator yang terhubung dengan poros turbin Savonius. Hasil yang diperoleh dari penelitian ini adalah penggunaan silinder pengganggu yang diletakkan di depan returning blade terbukti efektif meningkatkan performa turbin angin. Selain itu, variasi jarak S/D yang diteliti berpengaruh terhadap performa turbin Savonius. Untuk semua bilangan Reynolds yang digunakan dalam penelitian ini didapatkan bahwa jarak S/D = 1,7 terbukti efektif meningkatkan performa turbin Savonius yang digunakan dalam penelitian. Hal ini ditandai dengan peak value dari putaran

  9. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Rijal, G.K. [Metropolitan Water Reclamation District of Greater Chicago, Cicero, Illinois (United States); Fujioka, R.S. [University of Hawaii, Honolulu (United States). Water Resources Research Center

    2004-07-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to <1 CFU/100 ml to meet drinking water standards. Solar units with reflectors disinfected to the water sooner by increasing the water temperature by 8-10{sup o}C to 64-75{sup o}C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4{sup o}C to a maximum of 43-49{sup o}C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56{sup o}C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C perfringens > FRNA coliphages > enterococci >E. coli > faecal coliform. (author)

  10. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2003-01-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to water standards. Solar units with reflectors disinfected the water sooner by increasing the water temperature by 8-10 degrees C to 64-75 degrees C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4 degrees C to a maximum of 43-49 degrees C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56 degrees C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C. perfringens > FRNA coliphages > enterococci > E. coli > faecal coliform.

  11. Greywater as a sustainable water source: A photocatalytic treatment technology under artificial and solar illumination.

    Science.gov (United States)

    Tsoumachidou, Sophia; Velegraki, Theodora; Antoniadis, Apostolos; Poulios, Ioannis

    2017-06-15

    Greywater considers being a highly reclaimable water source particularly important for water-stressed nations. In this work, heterogeneous photocatalysis using artificial and solar illumination has been applied for the mineralization of simulated light greywater (effluents from dishwashers and kitchen sinks were excluded from the study). The effects on the process' efficiency of TiO 2 P25 catalyst's concentration, initial concentration of H 2 O 2 and Fe 3+ , pH of the solution, as well as the type of radiation, were evaluated in a bench-scale Pyrex reactor and a pilot-scale slurry fountain photoreactor. The treatment efficiency has been followed through the evolution of the organic matter content expresses as dissolved organic carbon (DOC). Best results were obtained with the photo-Fenton-assisted TiO 2 photocatalytic process with 72% DOC removal after 210 min of bench scale treatment, while under the same photocatalytic conditions in the pilot reactor the DOC removal reached almost 64%. Moreover, the decrease in toxicity, phytotoxicity and biodegradability of the simulated wastewater has been observed after solar-induced photocatalytic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Measurement of minority carrier lifetime in silicon solar cells using an a. c. light source

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, A.; Gupta, R.S.; Srivastava, G.P. (Delhi Univ., New Delhi (India). Dept. of Electronic Sciences); Jain, V.K. (Solid State Physics Lab., Delhi (India)); Chilana, G.S. (Delhi Univ. (India). Dept. of Physics and Astrophysics)

    1990-06-01

    A simple technique for the measurement of minority carriers lifetimes is proposed. It is based on the modification of the junction structure by the addition of a d.c. bias to the a.c. source. This always keeps the solar cell in the forward biased condition and also keeps it in the operating range. This method provides a direct measurement of minority carriers lifetimes. The lifetime is found to increase from 2.89 {mu}s at 30deg C to 4.55 {mu}s at 120deg C. The lifetime reduces to 1.45 {mu}s at liquid air temperature. Based on these lifetime measurements, the diffusion length of the carriers has also been calculated. (orig.).

  13. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Science.gov (United States)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  14. Solar sources of interplanetary southward B/sub z/ events responsible for major magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Tang, F.; Tsurutani, B.T.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J.

    1989-01-01

    Tsurutani et al. [1988] analyzed the 10 intense interplanetary southward B/sub z/ events that led to major magnetic storms (Dst 3.0) are associated with prominence eruptions. For three of the five southward B/sub z/ events in which the driver gases are the causes of the intense southward field leading to magnetic storms, the photospheric fields of the solar sources have no dominant southward component, indicating the driver gas fields do not always result from a simple outward convection of solar magnetic fields. Finally we compare the solar events and their resulting interplanetary shocks and find that the standard solar parameters do not correlate with the strengths of the resulting shocks at 1 AU. The implications are discussed. copyright American Geophysical Union 1989

  15. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    Science.gov (United States)

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event. Copyright © 2014, American Association for the Advancement of Science.

  16. Household Solar Photovoltaics: Supplier of Marginal Abatement, or Primary Source of Low-Emission Power?

    Directory of Open Access Journals (Sweden)

    Graham Palmer

    2013-03-01

    Full Text Available With declining system costs and assuming a short energy payback period, photovoltaics (PV should, at face value, be able to make a meaningful contribution to reducing the emission intensity of Australia’s electricity system. However, solar is an intermittent power source and households remain completely dependent on a “less than green” electricity grid for reliable electricity. Further, much of the energy impact of PV occurs outside of the conventional boundaries of PV life-cycle analyses (LCA. This paper examines these competing observations and explores the broader impacts of a high penetration of household PV using Melbourne, Victoria as a reference. It concludes that in a grid dominated by unsequestered coal and gas, PV provides a legitimate source of emission abatement at high, but declining costs, with the potential for network and peak demand support. It may be technically possible to integrate a high penetration of PV, but the economic and energy cost of accommodating high-penetration PV erodes much of the benefits. Future developments in PV, storage, and integration technologies may allow PV to take on a greater long term role, but in the time horizon usually discussed in climate policy, a large-scale expansion of household PV may hinder rather than assist deep cuts to the emission intensity of Australia’s electricity system.

  17. Suppression of Astronomical Sources Using Starshades and the McMath-Pierce Solar Telescope

    Science.gov (United States)

    Novicki, Megan; Warwick, Steve; Smith, Daniel; Richards, Michael; Harness, Anthony

    2016-01-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. Tests of this approach have been and continue to be conducted in the lab and in the field (Samuele et al., 2010, Glassman et al., 2014) using non-collimated light sources with a spherical wavefront. We extend the current approach to performing night-time observations of astronomical objects using small-scale (approximately 1/300th) starshades and the McMath-Pierce Solar Telescope at Kitt Peak National Observatory. We placed a starshade directly in the path of the beam from an astronomical object in front of the main heliostat. Using only flat mirrors, we then directed the light through the observatory path and reflected it off the West heliostat to an external telescope located approximately 270m away, for an effective baseline of 420m.This configuration allowed us to make measurements of flat wavefront sources with a Fresnel number close to those expected in proposed full-scale space configurations. We present the results of our engineering runs conducted in 2015.

  18. Waves and Turbulence in the Solar Corona: A Surplus of Sources and Sinks

    Science.gov (United States)

    Cranmer, Steven R.

    2018-06-01

    The Sun's corona is a hot, dynamic, and highly stochastic plasma environment, and we still do not yet understand how it is heated. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be filled with waves and turbulent eddies. Models that invoke the dissipation of these magnetohydrodynamic (MHD) fluctuations have had some success in explaining the heating. In this presentation I will review some new insights about the different ways these waves are thought to be created and destroyed. For example: (1) Intergranular bright points in the photosphere are believed to extend upwards as coronal flux tubes, and their transverse oscillations are driven by the underlying convection. New high-resolution MHD simulations predict the kinetic energy spectra of the resulting coronal waves and serve as predictions for upcoming DKIST observations. (2) Magnetic reconnection in the supergranular network of the low corona can also generate MHD waves, and new Monte Carlo models of the resulting power spectra will be presented. The total integrated power in these waves is typically small in comparison to that of photosphere-driven waves, but they dominate the total spectrum at periods longer than about 30 minutes. (3) Because each magnetic field line in the corona is tied to at least one specific chromospheric footpoint (each with its own base pressure), the corona also plays host to field-aligned "density striations." These fluctuations vary with the supergranular network on timescales of roughly a day, but they also act as a spatially varying background through which the higher-frequency waves propagate. These multiple sources of space/time variability must be taken into account to properly understand off-limb measurements from CoMP and EIS/Hinode, as well as in-situ measurements from Parker Solar Probe.

  19. Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system

    International Nuclear Information System (INIS)

    Ozgener, Onder; Hepbasli, Arif

    2005-01-01

    EXCEM analysis may prove useful to investigators in engineering and other disciplines due to the methodology are being based on the quantities exergy, cost, energy and mass. The main objective of the present study is to investigate between capital costs and thermodynamic losses for devices in solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 32 mm nominal diameter U-bend ground heat exchanger. This system was designed and installed at the Solar Energy Institute, Ege University, Izmir, Turkey. Thermodynamic loss rate-to-capital cost ratios are used to show that, for components and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful air conditioning are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and its devices. The results may, (i) provide useful insights into the relations between thermodynamics and economics, both in general and for SAGSHPGHS (ii) help demonstrate the merits of second-law analysis. It is observed from the results that the maximum exergy destructions in the system particularly occur due to the electrical, mechanical and isentropic efficiencies and emphasize the need for paying close attention to the selection of this type of equipment, since components of inferior performance can considerably reduce the overall performance of the system. In conjunction with this, the total exergy losses values are obtained to be from 0.010 kW to 0.480 kW for the system. As expected, the largest energy and exergy losses occur in the greenhouse and compressor. The ratio of thermodynamic loss rate to capital cost values are obtained for a range from 0.035 to 1.125

  20. EVIDENCE FOR MULTIPLE SOURCES OF 10Be IN THE EARLY SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Wielandt, Daniel; Krot, Alexander N.; Bizzarro, Martin; Nagashima, Kazuhide; Huss, Gary R.; Ivanova, Marina A.

    2012-01-01

    Beryllium-10 is a short-lived radionuclide (t 1/2 = 1.4 Myr) uniquely synthesized by spallation reactions and inferred to have been present when the solar system's oldest solids (calcium-aluminum-rich inclusions, CAIs) formed. Yet, the astrophysical site of 10 Be nucleosynthesis is uncertain. We report Li-Be-B isotope measurements of CAIs from CV chondrites, including CAIs that formed with the canonical 26 Al/ 27 Al ratio of ∼5 × 10 –5 (canonical CAIs) and CAIs with Fractionation and Unidentified Nuclear isotope effects (FUN-CAIs) characterized by 26 Al/ 27 Al ratios much lower than the canonical value. Our measurements demonstrate the presence of four distinct fossil 10 Be/ 9 Be isochrons, lower in the FUN-CAIs than in the canonical CAIs, and variable within these classes. Given that FUN-CAI precursors escaped evaporation-recondensation prior to evaporative melting, we suggest that the 10 Be/ 9 Be ratio recorded by FUN-CAIs represents a baseline level present in presolar material inherited from the protosolar molecular cloud, generated via enhanced trapping of galactic cosmic rays. The higher and possibly variable apparent 10 Be/ 9 Be ratios of canonical CAIs reflect additional spallogenesis, either in the gaseous CAI-forming reservoir, or in the inclusions themselves: this indicates at least two nucleosynthetic sources of 10 Be in the early solar system. The most promising locale for 10 Be synthesis is close to the proto-Sun during its early mass-accreting stages, as these are thought to coincide with periods of intense particle irradiation occurring on timescales significantly shorter than the formation interval of canonical CAIs.

  1. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  2. A novel syngas-fired hybrid heating source for solar-thermal applications: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Biomass-derived syngas as a hybrid energy source for solar thermal power plants. • A novel combustor concept using rich-catalytic and MILD combustion technologies. • Hybrid energy source for a solar-driven supercritical CO 2 -based Brayton cycle. • Comprehensive energetic and exergetic analysis of the combined system. - Abstract: A hybrid heating source using biomass-derived syngas is proposed to enable continuous operation of standalone solar thermal power generation plants. A novel, two-stage, low temperature combustion system is proposed that has the potential to provide stable combustion of syngas with near-zero NO x emissions. The hybrid heating system consists of a downdraft gasifier, a two-stage combustion system, and other auxiliaries. When integrated with a solar cycle, the entire system can be referred to as the integrated gasification solar combined cycle (IGSCC). The supercritical CO 2 Brayton cycle (SCO 2 ) is selected for the solar cycle due to its high efficiency. The thermodynamic performance evaluation of the individual unit and the combined system has been conducted from both energy and exergy considerations. The effect of parameters such as gasification temperature, biomass moisture content, equivalence ratio, and pressure ratio is studied. The efficiency of the IGSCC exhibited a non-monotonic behavior. A maximum thermal efficiency of 36.5% was achieved at an overall equivalence ratio of 0.22 and pressure ratio of 2.75 when the gasifier was operating at T g = 1073 K with biomass containing 20% moisture. The efficiency increased to 40.8% when dry biomass was gasified at a temperature of 973 K. The exergy analysis revealed that the maximum exergy destruction occurred in the gasification system, followed by the combustion system, SCO 2 cycle, and regenerator. The exergy analysis also showed that 8.72% of the total exergy is lost in the exhaust; however, this can be utilized for drying of the biomass.

  3. Sources and Propagation of High Frequency Waves in the Solar Photosphere and Chromosphere

    Science.gov (United States)

    Lawrence, John K.; Cadavid, A. C.

    2009-05-01

    We study the spatial distribution of oscillatory power in two sequences of high-cadence, high-resolution images taken by the Solar Optical Telescope on board Hinode. The sequences consist of simultaneous, co-registered G-Band (GB) and Ca II H-Line (HL) images with pixel scale 80 km and fields of view 40 x 40 Mm and 80 x 40 Mm. The first sequence has cadence 21 s over 3 hours on 2007 April 14; the other has cadence 24 s over 2 hours on 2007 March 30. Both sequences include network and internetwork at heliocentric angle 35 degrees. Time averaging of Morlet wavelet transforms gives smoothed Fourier spectra for each spatial location in the GB and HL data. We averaged over four different frequency bands to highlight different physical regimes: "evolutionary” timescales (f web of a cellular pattern with scales 2 - 3 Mm. These are found to coincide with the boundaries of stable clusters of granules. These dark boundaries may correspond to downflows that control the cell structuring and that could be the source of acoustic power.

  4. Deviation from local thermodynamical equilibrium in the solar atmosphere. Metodology. The line source function

    International Nuclear Information System (INIS)

    Shchukina, N.G.

    1980-01-01

    The methodology of the problem of deviation from local thermodynamical equilibrium in the solar atmosphere is presented. The difficulties of solution and methods of realization are systematized. The processes of line formation are considered which take into account velocity fields, structural inhomogeneity, radiation non-coherence etc. as applied to a quiet solar atmosphere. The conclusion is made on the regularity of deviation of the local thermodynamic equilibrium in upper layers of the solar atmosphere

  5. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  6. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    International Nuclear Information System (INIS)

    Sulaiman, A; Inambao, F; Bright, G

    2014-01-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future

  7. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  8. GRAN SASSO/GRENOBLE: Artificial neutrino source confirms solar neutrino result

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In 1992, the Gallex experiment announced the first observation of the neutrinos produced in the primary proton-proton fusion reaction in the core of the Sun, reaction at the origin of the energy production by our star (September 1992, page 1). The Gallex team stressed that the observed neutrino flux was only about two-thirds of the predicted level, confirming the deficit observed by the two pioneering experiments, Ray Davis' chlorine-based detector in the USA and the Kamiokande study in Japan (which are only sensitive to neutrinos from subsidiary solar fusion processes). This deficit demands explanation, and could considerably modify our understanding of how stars shine and/or of neutrino physics. But before drawing conclusions, the Gallex result had to be checked. Gallex, installed in the Italian Gran Sasso underground Laboratory, is a radiochemical experiment using neutrino interactions to transform gallium-71 into germanium-71. The latter is radioactive and decays with a half-life of 11.4 days. Counting the germanium-71 atoms extracted from the target tank measures the neutrino flux to which the detector is exposed. Neutrinos are famous for their reluctance to interact. 65 billion per square centimetre per second on the surface of the Earth produce only one germanium-71 atom in the Gallex target containing 30 tons of gallium. This is at the limit of homeopathy (extracting few atoms of germanium-71 from a solution containing 10 30 atoms) and needs careful checking. Since it is not possible to switch off the Sun, the only recourse was to build an artificial neutrino source more powerful than the Sun as a benchmark. This was done last summer. Last May, 36 kilograms of chromium grains were placed in the Siloe reactor of the French Commissariat à l'énergie atomique, Grenoble. The chromium had been previously enriched to 40% chromium-50 by the Kurchatov Institute in Moscow (natural chromium contains only 4.5% chromium-50). A dedicated core was built for

  9. CIGS thin films, solar cells, and submodules fabricated using a rf-plasma cracked Se-radical beam source

    International Nuclear Information System (INIS)

    Ishizuka, Shogo; Yamada, Akimasa; Shibata, Hajime; Fons, Paul; Niki, Shigeru

    2011-01-01

    Coevaporated Cu(In,Ga)Se 2 (CIGS) film growth using a rf-plasma cracked Se-radical beam (R-Se) source leads to a significant reduction in the amount of raw Se source material wasted during growth and exhibits unique film properties such as highly dense, smooth surfaces and large grain size. R-Se grown CIGS solar cells also show concomitant unique properties different from conventional evaporative Se (E-Se) source grown CIGS cells. In the present work, the impact of modified surfaces, interfaces, and bulk crystal properties of R-Se grown CIGS films on the solar cell performance was studied. When a R-Se source was used, Na diffusion into CIGS layers was enhanced while a remarkable diffusion of elemental Ga and Se into Mo back contact layers was observed. Improvements in the bulk crystal quality as manifested by large grain size and increased Na concentration with the use of a R-Se source is expected to be effective to improve photovoltaic performance. Using a R-Se source for the growth of CIGS absorber layers at a relatively low growth temperature, we have successfully demonstrated a monolithically integrated submodule efficiency of 15.0% (17 cells, aperture area of 76.5 cm 2 ) on 0.25-mm thick soda-lime glass substrates.

  10. Studi Numerik 2D dan Uji Eksperimen tentang Karakteristik Aliran dan Unjuk Kerja Helical Savonius Blade dengan Variasi Overlap Ratio 0,1 ; 0,3 dan 0,5

    Directory of Open Access Journals (Sweden)

    Dwi Septyan Waluyo

    2012-09-01

    Full Text Available Pemanfaatan energi angin sebagai energi alternatif ramah lingkungan di Indonesia masih tergolong sedikit. Salah satu penyebab adalah karakteristik arah angin di Indonesia yang memiliki kecenderungan berubah-ubah dikarenakan letak geografis Indonesia. Maka dari itu guna meningkatkan pemanfaatan energi angin, diperlukanlah penelitian mengenai Vertcal Axis Wind Turbin (VAWT. Salah satu jenis VAWT adalah Helical Savonius Blade. Penelitian mengenai Helical Savonius Blade dilakukan dengan metode pemodelan numerik 2D menggunakan software FLUENT dan uji seksperimen. Pemodelan numerik 2D dimaksudkan untuk mengetahui karakteristik aliran yang melintasi turbin Savonius dengan variasi overlap ratio 0,1;0,3 dan 0,5 serta variasi posisi 90o, 45o, 0o. Unjuk kerja turbin dinyatakan dalam nilai coefficient of power (Cp. Nilai Cp didapatkan dengan menggunakan pemodelan numerik 2D dan uji eksperimen. Berdasarkan pemodelan numerik 2D, nilai Cp tertinggi secara umum dimiliki oleh overlap ratio 0,1 sebesar 0,284. Sedangkan berdasarkan uji eksperimen nilai Cp terbesar tetap dimiliki overlap ratio 0,436 (perhitungan teoritis dan 0,091 (perhitungan riil.

  11. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  12. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    Directory of Open Access Journals (Sweden)

    Przenzak Estera

    2016-01-01

    Full Text Available This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30% is not satisfactory but possibility of improvements exist.

  13. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  14. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  15. Indium phosphide solar cell research in the United States: Comparison with non-photovoltaic sources

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1989-01-01

    Highlights of the InP solar cell research program are presented. Homojunction cells with efficiencies approaching 19 percent are demonstrated, while 17 percent is achieved for ITO/InP cells. The superior radiation resistance of the two latter cell configurations over both Si and GaAs cells has been shown. InP cells aboard the LIPS3 satellite show no degradation after more than a year in orbit. Computed array specific powers are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.

  16. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  17. Longitudinal distribution of recurrent solar activity sources and its reflection in geomagnetic variations

    International Nuclear Information System (INIS)

    Letfus, V.; Apostolov, E.M.

    1980-01-01

    By analysing the autocorrelation function of the geomagnetic Asup(p)-index, a series of subsidiary maxima were found which seem to indicate that they correspond to periods considerably different from the solar rotation period. It was found that these subsidiary maxima are located symmetrically around the maxima of the first and second recurrences of the solar rotation period (and probably also around the subsequent ones). This fact leads to a model of two or more geoactive longitudes on the Sun. (author)

  18. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  19. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  20. Evaluation of the solar conditions for the acquisitions of energy from renewable sources on the base of Sosnowiec city (Poland)

    Science.gov (United States)

    Sarapata, Sonia

    2014-09-01

    The country's energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)

  1. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources

    International Nuclear Information System (INIS)

    Bhandari, Binayak; Lee, Kyung-Tae; Lee, Caroline Sunyong; Song, Chul-Ki; Maskey, Ramesh K.; Ahn, Sung-Hoon

    2014-01-01

    Highlights: • We propose two hybridization methods for small off-grid power systems consisting solar (PV), wind, and micro-hydro sources. • One of the methods was implemented in a mini-grid connecting Thingan and Kolkhop villages in Makawanpur District, Nepal. • The results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. • This is the first implementation anywhere comprising of three renewable energy power, in a single off-grid power system. • This research may be applied as a practical guide for implementing similar systems in various locations. - Abstract: Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sources—specifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was

  2. AN ANOMALOUS COMPOSITION IN SLOW SOLAR WIND AS A SIGNATURE OF MAGNETIC RECONNECTION IN ITS SOURCE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M., E-mail: lzh@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  3. Source term boundary adaptive estimation in a first-order 1D hyperbolic PDE: Application to a one loop solar collector through

    KAUST Repository

    Mechhoud, Sarra

    2016-08-04

    In this paper, boundary adaptive estimation of solar radiation in a solar collector plant is investigated. The solar collector is described by a 1D first-order hyperbolic partial differential equation where the solar radiation models the source term and only boundary measurements are available. Using boundary injection, the estimator is developed in the Lyapunov approach and consists of a combination of a state observer and a parameter adaptation law which guarantee the asymptotic convergence of the state and parameter estimation errors. Simulation results are provided to illustrate the performance of the proposed identifier.

  4. Modeling and simulation of a solar power source at 3kW for a clean energy without pollution

    Directory of Open Access Journals (Sweden)

    Louzazni M.

    2014-04-01

    Full Text Available The air pollution was much worse, and it became necessary to replace the fossil energy sources by the renewable energies. The causes are related to reserves that can be exhausted, to pollution and their impacts on the environment. Production of toxic gases from the combustion of coal for the effect of increasing the temperature of the earth. Solar energy is a clean and inexhaustible excellent alternative. We propose a modeling and simulation of a solar system consists of a photovoltaic generator (PVG, a boost chopper, to supply a telecommunications relay station (BTS, According to the load characteristics (I = 60A, V = 48V DC (3 kW. A stage adaptation composed of this chopper controlled by a PWM controller (Pulse Width Modulation is used to control the optimal operating point (MPPT and optimize system performance using Matlab / Simulink.

  5. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  6. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  7. Single source precursors for fabrication of I-III-VI{sub 2} thin-film solar cells via spray CVD

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J.A.; Banger, K.K.; Jin, M.H.-C.; Harris, J.D.; Cowen, J.E.; Bohannan, E.W.; Switzer, J.A.; Buhro, W.E.; Hepp, A.F

    2003-05-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors can be used in either a hot, or cold-wall spray chemical vapour deposition reactor, for depositing CuInS{sub 2}, CuGaS{sub 2} and CuGaInS{sub 2} at reduced temperatures (400-450 sign C), which display good electrical and optical properties suitable for photovoltaic devices. X-ray diffraction studies, energy dispersive spectroscopy and scanning electron microscopy confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  8. The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Richardson, I. G.; Thompson, B. J.; Rosenvinge, T. T. von; Mays, M. L.; Mäkelä, P. A.; Xie, H.; Thakur, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bain, H. M. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Zhang, M.; Zhao, L. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL (United States); Cane, H. V. [Department of Mathematics and Physics, University of Tasmania, Hobart (Australia); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Riley, P., E-mail: david.lario@jhuapl.edu [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2017-03-20

    We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fast halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.

  9. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  10. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  11. Controlling solar light and heat in a forest by managing shadow sources

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1974-01-01

    Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...

  12. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  13. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-11-05

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  14. Biogas from Agricultural Residues as Energy Source in Hybrid Concentrated Solar Power

    NARCIS (Netherlands)

    Corré, W.J.; Conijn, J.G.

    2016-01-01

    This paper explores the possibilities of sustainable biogas use for hybridisation of Concentrated Solar Power (HCSP) in Europe. The optimal system for the use of biogas from agricultural residues (manure and crop residues) in HCSP involves anaerobic digestion with upgrading of biogas to

  15. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2015-11-01

    Full Text Available The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

  16. Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.F.P.; Silva, M.R.A.; Trovo, A.G. [UNESP, Sao Paulo State University, Institute of Chemistry of Araraquara, P.O. Box 355, 14800-970, Araraquara, SP (Brazil)

    2005-10-01

    In this work the influence of two different iron sources, Fe(NO{sub 3}){sub 3} and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO{sub 3}){sub 3}, the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. On the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5L capacity and 4.5cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9Lh{sup -1}, in the presence of 10.0mmolL{sup -1} H{sub 2}O{sub 2} and 1.0mmolL{sup -1} ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (author)

  17. A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources

    International Nuclear Information System (INIS)

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2015-01-01

    This paper provides a multi-objective optimization of a hybrid organic Rankine plant for solar and low-grade energy sources. In this plant, water, with a mass flow rate of 1 kg/s at a temperature of 90 °C, preheats the working fluid. The objective of this work is to search for solutions with the highest first and second law efficiencies of the plant and the lowest LEC (levelized energy cost). The design parameters are i) the working fluid, ii) the evaporating and condensing pressure, iii) the maximum temperature of the collector thermal fluid and iv) a parameter representative of the temperature profiles in the heat exchangers. A NSGAII (non-dominated sorting genetic algorithm) has been used. The Pareto front solutions provide Cyclopropane, R143a and R32 as working fluids. The lowest LEC (0.114 $/kWh) and the highest first law efficiency (9.65%) are achieved by using Cyclopropane, with a power output greater than 100 kW. The highest second law efficiency (44%) is obtained by employing R143a, with a low contribution of the solar source and a power output greater than 10 kW. Finally, R32 solutions have comparable performance with respect to R143a solutions. - Highlights: • The optimization of a low-grade energy source in an ORC hybrid solar power plant is carried out. • Thermodynamic and economic indicators are computed with different design parameters. • The study employs the NSGAII (non-dominated sorting genetic algorithm II). • Cyclopropane is the working fluid that provides the lowest cost and the highest first law efficiency. • R143a is the working fluid that provides the highest second law efficiency.

  18. Solar Panel Integration as an Alternate Power Source on Centaur 2 (SPIAPS)

    Science.gov (United States)

    Gebara, Christine A.; Schuetze, Nich A.; Knochel, Aviana M.; Magruder, Darby F.

    2011-01-01

    The dream of exploration has inspired thousands throughout time. Space exploration, in particular, has taken the past century by storm and caused a great advance in technology. In this project, a retractable solar panel array will be developed for use on the Centaur 2 Rover. Energy generated by the solar panels will go to power the Centaur 2 Robot (C2) or Regolith & Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE) payload, an in-situ resource utilization project. Such payload is designed to drill into lunar and Martian terrain as well as be able to conduct other geological testing; RESOLVE is slated for testing in 2012. Ultimately, this project will fit into NASA s larger goal of deep space exploration as well as long term presence outside Earth s orbit.

  19. Source of proton anisotrophy in the high-speed solar wind

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Feldman, W.C.; Gary, S.P.

    1981-01-01

    Two factors which can contribute to proton anisotropy in the high-speed solar wind are investigated. We present evidence that observed proton Tperpendicular< Tparallel anisotropies are maintained locally by plasma instabilities driven by proton and helium beams. The transfer of beam energy to T/sub perpendicular/ by means of these instabilities is shown to be sufficient to account for the aforementioned proton temperature anisotropy

  20. Analysis of influence on the solar simulator light source off-focus to the spot

    Directory of Open Access Journals (Sweden)

    Jiayu ZHANG

    2015-12-01

    Full Text Available Aiming at focusing-type solar simulator, the paper researches the relationship between the defocusing amount and the facula irradiance. With the optical system of focusing-type solar simulator as research object, simulation is conducted based on a short-arc xenon lamps and its ellipsoidal condenser. According to the xenon lamp energy distribution figure and its distribution curve flux, the luminous body is simplified to cylindrical luminous light which emits light only on the flank. Model for the simplified luminous light and its ellipsoidal condenser are established in the optical simulation software TracePro, and the impact of axial and radial deviation on the facula is simulated. The results show that light off-focus has little influence on the average of facula irradiance, but has great influence on the maximum value and the distribution of facula irradiance as well as the facula area. The result provides a theoretical reference for the design and alignment of solar simulator focusing system.

  1. 太阳能辅助地源热泵供暖实验研究%Experimental study of a solar assisted ground source heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    赵忠超; 丰威仙; 巩学梅; 米浩君; 成华; 云龙

    2014-01-01

    An experimental study is performed to determine the performance of the solar assisted ground source heat pump(SAGSHP)by using a solar-ground source heat pump hybrid system in the city of Ningbo. The result shows that comparing with the ground source heat pump(GSHP),when the ratio of solar energy to the whole en-ergy is 41. 9% ,the coefficient of performance( COP)of the heat pump and system can improve 15. 1% and 7. 7% respectively. Therefore,the solar assisted ground source heat pump has a significant performance advan-tage according to the experimental result.%选取宁波某公用建筑的太阳能-地源热泵复合系统为实验系统,对太阳能辅助地源热泵( solar assisted ground source heat pump,SAGSHP)供暖进行了实验研究.研究结果表明:与单一的地源热泵(ground source heat pump,GSHP)相比,当太阳能承担41.9%负荷时,热泵机组和整个系统的能效比(coefficient of performance,COP)分别提高了15.1%和7.7%, SAGSHP 供暖运行模式具有明显的性能优势.

  2. COMPARISON OF MAGNETIC PROPERTIES IN A MAGNETIC CLOUD AND ITS SOLAR SOURCE ON 2013 APRIL 11–14

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Indian Institute of Astrophysics, Koramangala, Bangalore-560034 (India); Möstl, C.; Amerstorfer, T. [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria); Mishra, W. [Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei-230026 (China); Farrugia, C. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Leitner, M., E-mail: vemareddy@iiap.res.in [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, A-8010 Graz (Austria)

    2016-09-01

    In the context of the Sun–Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14–15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory . The MCs magnetic structure is reconstructed from the Grad–Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10{sup −7}–10{sup −6} m{sup −1}) at the sigmoid leg matches the range of twist number in the MC of 1–2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold–Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.

  3. COMPARISON OF MAGNETIC PROPERTIES IN A MAGNETIC CLOUD AND ITS SOLAR SOURCE ON 2013 APRIL 11–14

    International Nuclear Information System (INIS)

    Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.

    2016-01-01

    In the context of the Sun–Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14–15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory . The MCs magnetic structure is reconstructed from the Grad–Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10 −7 –10 −6 m −1 ) at the sigmoid leg matches the range of twist number in the MC of 1–2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold–Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.

  4. Comparison of Magnetic Properties in a Magnetic Cloud and Its Solar Source on 2013 April 11-14

    Science.gov (United States)

    Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.

    2016-09-01

    In the context of the Sun-Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14-15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory. The MCs magnetic structure is reconstructed from the Grad-Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10-7-10-6 m-1) at the sigmoid leg matches the range of twist number in the MC of 1-2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold-Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.

  5. Environmental 222Rn as a background source in the solar neutrino experiment GALLEX

    International Nuclear Information System (INIS)

    Wojcik, M.

    1996-01-01

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs

  6. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  7. Environmental {sup 222}Rn as a background source in the solar neutrino experiment GALLEX

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, M. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; BOREXINO

    1996-12-31

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs.

  8. Environmental {sup 222}Rn as a background source in the solar neutrino experiment GALLEX

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, M [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; BOREXINO,

    1997-12-31

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs.

  9. Towards Renewable Iodide Sources for Electrolytes in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Iryna Sagaidak

    2016-03-01

    Full Text Available A novel family of iodide salts and ionic liquids based on different carbohydrate core units is herein described for application in dye-sensitized solar cell (DSC. The influence of the molecular skeleton and the cationic structure on the electrolyte properties, device performance and on interfacial charge transfer has been investigated. In combination with the C106 polypyridyl ruthenium sensitizer, power conversion efficiencies lying between 5.0% and 7.3% under standard Air Mass (A.M. 1.5G conditions were obtained in association with a low volatile methoxypropionitrile (MPN-based electrolyte.

  10. Relationship between Hard X-Ray Footpoint Sources and Photospheric Electric Currents in Solar Flares: a Statistical Study

    Science.gov (United States)

    Zimovets, I. V.; Sharykin, I. N.; Wang, R.; Liu, Y. D.; Kosovichev, A. G.

    2017-12-01

    It is believed that solar flares are a result of release of free magnetic energy contained in electric currents (ECs) flowing in active regions (ARs). However, there are still debates whether the primary energy release and acceleration of electrons take place in coronal current sheets or in chromospheric footpoints of current-carrying magnetic flux tubes (loops). We present results of an observational statistical study of spatial relationship between hard X-ray (HXR; EHXR≥50keV) footpoint sources detected by RHESSI and vertical photospheric ECs calculated using vector magnetograms obtained from the SDO/HMI data. We found that for a sample of 47 flares (from C3.0 to X3.1 class) observed on the solar disk by both instruments in 2010-2016, at least one HXR source was in a region of strong (within 20% of the maximum EC density in the corresponding ARs) vertical ECs having the form of a ribbon (79%) or an island (21%). The total vertical ECs in such HXR sources are in the range of 1010-1013 A. The EC density is in the range of 0.01-1.0 A/m2. We found no correlation between intensity of the HXR sources and the EC density. By comparing pre-flare and post-flare EC maps we did not find evidences of significant dissipation of vertical ECs in the regions corresponding to the HXR sources. In some cases, we found amplification of ECs during flares. We discuss effects of sensitivity and angular resolution of RHESSI and SDO/HMI. In general, the results indicate that there is a link between the flare HXR footpoint sources and enhanced vertical ECs in the photosphere. However, the results do not support a concept of electron acceleration by the electric field excited in footpoints of current-carrying loops due to some (e.g. Rayleigh-Taylor) instabilities (Zaitsev et al., 2016), since strong correlation between the HXR intensity and the EC density is expected in such concept.

  11. Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects

    Science.gov (United States)

    Murray, Sophie A.; Guerra, Jordan A.; Zucca, Pietro; Park, Sung-Hong; Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole; Bothmer, Volker

    2018-04-01

    Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.

  12. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    Science.gov (United States)

    Bruner, M. E.; Crannell, C. J.; Goetz, F.; Magun, A.; Mckenzie, D. L.

    1988-01-01

    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 x 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again.

  13. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    International Nuclear Information System (INIS)

    Bruner, M.E.; Crannell, C.J.; Goetz, F.; Magun, A.; Mckenzie, D.L.

    1987-12-01

    This study compares flare source volumes inferred from impulsive hard x rays and microwaves with those derived from density sensitive soft x ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard x ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard x rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard x ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard x ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again

  14. Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions

    International Nuclear Information System (INIS)

    Bruner, M.E.; Crannell, C.J.; Goetz, F.; Magun, A.; Mckenzie, D.L.

    1988-01-01

    This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 x 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again. 29 references

  15. Optimal placement and sizing of wind / solar based DG sources in distribution system

    Science.gov (United States)

    Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng

    2017-06-01

    Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.

  16. Magnetic pumping as a source of particle heating in the solar wind

    Science.gov (United States)

    Lichko, E. R.; Egedal, J.; Daughton, W. S.; Kasper, J. C.

    2017-12-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. In this study a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. In most previous studies turbulent energy is only dissipated at microscopic kinetic scales. In contrast, magnetic pumping energizes the particles through the largest scale turbulent fluctuations, thus bypassing the energy cascade. Kinetic simulations are applied to verify these analytic predictions. Previous results for the one-dimensional model, as well as initial results for a two-dimensional model which includes the effects of trapped and passing particles are presented. Preliminary results of the presence of this mechanism in the bow shock region, using spacecraft data from the Magnetospheric Multiscale mission, are presented as well.

  17. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-06-01

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some of these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.

  18. A prototype machine using thermal type Stirling solar energy and bio fuel as a primary energy source

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carlos Cesar; Sousa, Regina Celia de; Santos, Jose Maria Ramos dos; Oliveira, Antonio Jose Silva [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Fisica

    2011-07-01

    Full text. Depending on the energy crisis and global warming became necessary to seek new sources of energy that could minimize the serious problems arising from this situation. The energy base that supported our growth in recent decades has supported - heavily on fossil fuel, highly polluting since its extraction and consumption, causing great environmental impact. Before his coal, also harmful to human health and nature. Modern life has been moved at the expense of exhaustible resources that took millions of years to form and will end one day. In this work we developed a prototype that uses a heat engine cycle of the Stirling engine with a heat source, arising from the burning of bio fuels or solar power. The main bio fuel used was ethanol. Ethanol is a product of today's diverse market applications, widely used as automotive fuel in hydrated form or blended with gasoline. The main layout of our prototype are: the four-cylinder, two for expansion and the other two for compression, a heat spreader and heat sinks. These simple components can be arranged in various configurations allowing a large space to the adequacy and efficiency of the machine. In experimental measurements made in our prototype, we have an angular speed of 360.1 rpm (revolutions per minute) with an average temperature of 215.6 deg C camera hot (expansion cylinder) and 30 deg C cold source (compression cylinders) and torque generated by our machine is 0.388 Nm Our device is multi-fuel and can be used virtually any source of energy: gasoline, ethanol, methanol, natural gas, diesel, biogas, LPG and solar energy. The construction of this device allowed us to investigate the processes of transformation of energy: chemical, thermal, and mechanical and maximize efficiency of the Stirling engine. To complete the monitoring apparatus, use equipment such as notebook, digital tachometer and a data acquisition Agilent 34970A model. These devices were used in monitoring the angular velocity and

  19. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Science.gov (United States)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  20. Dynamics of voltage source converter in a grid connected solar photovoltaic system

    DEFF Research Database (Denmark)

    Haribabu, Divyanagalakshmi; Vangari, Adithya; Sakamuri, Jayachandra N.

    2015-01-01

    This paper emphasises the modelling and control of a voltage source converter (VSC) for three phase grid connected PV system. The transfer functions for inner current control and outer DC link voltage control for VSC are derived. The controllers for VSC are designed based on PI and K factor contr...

  1. Study on a groundwater source heat pump cooling system in solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Lilong; Ma, Chengwei [China Agricultural Univ., Beijing (China). Coll. of Water Conservancy and Civil Engineering. Dept. of Agricultural Structure and Bio-environmental Engineering], E-mail: macwbs@cau.edu.cn

    2008-07-01

    This study aims at exploiting the potential of ground source heat pump (GSHP) technology in cooling agricultural greenhouse, and advocating the use of renewable and clean energy in agriculture. GSHP has the multi-function of heating, cooling and dehumidifying, which is one of the fastest growing technologies of renewable energy air conditioning in recent years. The authors carried out experiment on the ground source heat pump system in cooling greenhouse in Beijing region during the summertime of 2007, and conducted analysis on the energy efficiency of the system by using coefficient of performance (COP). According to the data collected during Aug.13-18th, 2007, the coefficient of performance of GSHP system (COP{sub sys}) has reached 3.15 on average during the test. (author)

  2. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    Science.gov (United States)

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  3. Double plasma resonance instability as a source of solar zebra emission

    Science.gov (United States)

    Benáček, J.; Karlický, M.

    2018-03-01

    Context. The double plasma resonance (DPR) instability plays a basic role in the generation of solar radio zebras. In the plasma, consisting of the loss-cone type distribution of hot electrons and much denser and colder background plasma, this instability generates the upper-hybrid waves, which are then transformed into the electromagnetic waves and observed as radio zebras. Aims: In the present paper we numerically study the double plasma resonance instability from the point of view of the zebra interpretation. Methods: We use a 3-dimensional electromagnetic particle-in-cell (3D PIC) relativistic model. We use this model in two versions: (a) a spatially extended "multi-mode" model and (b) a spatially limited "specific-mode" model. While the multi-mode model is used for detailed computations and verifications of the results obtained by the "specific-mode" model, the specific-mode model is used for computations in a broad range of model parameters, which considerably save computational time. For an analysis of the computational results, we developed software tools in Python. Results: First using the multi-mode model, we study details of the double plasma resonance instability. We show how the distribution function of hot electrons changes during this instability. Then we show that there is a very good agreement between results obtained by the multi-mode and specific-mode models, which is caused by a dominance of the wave with the maximal growth rate. Therefore, for computations in a broad range of model parameters, we use the specific-mode model. We compute the maximal growth rates of the double plasma resonance instability with a dependence on the ratio between the upper-hybrid ωUH and electron-cyclotron ωce frequency. We vary temperatures of both the hot and background plasma components and study their effects on the resulting growth rates. The results are compared with the analytical ones. We find a very good agreement between numerical and analytical growth

  4. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-latitude of Their Solar Source Coronal Holes.

    Science.gov (United States)

    Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan

    2018-03-01

    We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

  5. THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xia; Yuan, Ding; Xia, Chun; Doorsselaere, Tom Van; Keppens, Rony [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium)

    2016-12-10

    We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHI vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.

  6. Renewable energy made easy free energy from solar, wind, hydropower, and other alternative energy sources

    CERN Document Server

    Craddock, David

    2008-01-01

    Studies have shown that the average North American family will spend more than a quarter of a million dollars on energy in a lifetime. What many other countries, including Germany, Spain, France, Denmark, China, Brazil, and even Iceland, have realized is that there is a better way to power our homes, businesses, and cars by using renewable energy sources. Recently, the United States has begun to understand the importance of reducing its reliance on coal, natural gas, nuclear power, and hydropower plants, which comprise the majority of the nation's electricity, due to increasing oil prices.

  7. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project alternative energy sources: solar, eolic, shale, ocean, hydrogen, organic wastes, peat and lignite

    International Nuclear Information System (INIS)

    1993-07-01

    Several aspects of solar, eolic and ocean energy and shale, peat lignite, hydrogen and organic waste in Brazil are described, including reserves, potential, technology economy and environment. Based in data and information presented in this report, the necessity of a more detailed survey with the potential of alternative energy sources in Brazil, emphasizing the more promiser regions is also mentioned. (C.G.C.)

  8. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation?Emission Matrix Spectra

    OpenAIRE

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrea...

  9. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes

    Science.gov (United States)

    Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel

    2017-06-01

    Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.

  10. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    Science.gov (United States)

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  11. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  12. Error sources in the real-time NLDAS incident surface solar radiation and an evaluation against field observations and the NARR

    Science.gov (United States)

    Park, G.; Gao, X.; Sorooshian, S.

    2005-12-01

    The atmospheric model is sensitive to the land surface interactions and its coupling with Land surface Models (LSMs) leads to a better ability to forecast weather under extreme climate conditions, such as droughts and floods (Atlas et al. 1993; Beljaars et al. 1996). However, it is still questionable how accurately the surface exchanges can be simulated using LSMs, since terrestrial properties and processes have high variability and heterogeneity. Examinations with long-term and multi-site surface observations including both remotely sensed and ground observations are highly needed to make an objective evaluation on the effectiveness and uncertainty of LSMs at different circumstances. Among several atmospheric forcing required for the offline simulation of LSMs, incident surface solar radiation is one of the most significant components, since it plays a major role in total incoming energy into the land surface. The North American Land Data Assimilation System (NLDAS) and North American Regional Reanalysis (NARR) are two important data sources providing high-resolution surface solar radiation data for the use of research communities. In this study, these data are evaluated against field observations (AmeriFlux) to identify their advantages, deficiencies and sources of errors. The NLDAS incident solar radiation shows a pretty good agreement in monthly mean prior to the summer of 2001, while it overestimates after the summer of 2001 and its bias is pretty close to the EDAS. Two main error sources are identified: 1) GOES solar radiation was not used in the NLDAS for several months in 2001 and 2003, and 2) GOES incident solar radiation when available, was positively biased in year 2002. The known snow detection problem is sometimes identified in the NLDAS, since it is inherited from GOES incident solar radiation. The NARR consistently overestimates incident surface solar radiation, which might produce erroneous outputs if used in the LSMs. Further attention is given to

  13. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  14. Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities

    Directory of Open Access Journals (Sweden)

    Debbie L. King

    2014-04-01

    Full Text Available Manufacturing in areas of the developing world that lack electricity severely restricts the technical sophistication of what is produced. More than a billion people with no access to electricity still have access to some imported higher-technologies; however, these often lack customization and often appropriateness for their community. Open source appropriate tech­nology (OSAT can over­come this challenge, but one of the key impediments to the more rapid development and distri­bution of OSAT is the lack of means of production beyond a specific technical complexity. This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any com­munity with access to sunlight. The first, designed for com­munity use, such as in schools or maker­spaces, is semi-mobile and capable of nearly continuous 3-D printing using RepRap technology, while also powering multiple computers. The second design, which can be completely packed into a standard suitcase, allows for specialist travel from community to community to provide the ability to custom manufacture OSAT as needed, anywhere. These designs not only bring the possibility of complex manufacturing and replacement part fabrication to isolated rural communities lacking access to the electric grid, but they also offer the opportunity to leap-frog the entire conventional manufacturing supply chain, while radically reducing both the cost and the environmental impact of products for developing communities.

  15. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  16. Applicability Analysis of Solar Water Source Heat Pump for Building%太阳能水源热泵的建筑适用性研究

    Institute of Scientific and Technical Information of China (English)

    朱继宏; 李德英

    2015-01-01

    太阳能水源热泵系统是一种新型高效节能环保的系统,太阳能与热泵联合供暖可以发挥各自的优势,弥补单一形式的不足,提高采暖的稳定性和系统运行性能。针对我国太阳能水源热泵建筑适应性问题,以哈尔滨、北京、上海的气象数据库作为基础条件,分析了典型建筑热负荷特征,建立系统数学模型,并用 TRNSYS 平台进行优化求解,为适用性研究提供了必要的数据基础。依据寿命周期评价理论,对各地区太阳能水源热泵建筑适用性进行分析,结果表明严寒地区及寒冷地区太阳能水源热泵适用性较好,环境效益明显。%The solar water source heat pump system is an environmental friendly and high-efficient system. When solar heating system couples with water source heat pump, the two systems can complement each other, and improve the stability and performance of the heating system. Aiming at applicability of solar water source heat pump for building in our country, with meteorological database of Harbin, Beijing, Shanghai as basic conditions, the paper analyzes heat load characteristics of typical building. Mathematical model is established. Using TRNSYS platform for optimal solution, the article provides the necessary data basis for study on applicability of solar water source heat pump. According to the theory of life cycle assessment, the paper analyzes applicability of solar water source heat pump for building of each region. The result shows that the applicability of solar water source heat pump in severely cold region and cold region is environmentally beneficial.

  17. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  18. Features of the low-power charge controller of lead-acid current sources charged by solar batteries

    International Nuclear Information System (INIS)

    Tukfatullin, O.F.; Yuldoshev, I.A.; Solieva, N.A.

    2008-01-01

    Influence of different factors on exploitations characteristics of solar photoelectric plant is investigated by field-performance data. A construction of charge controller of the lead-acid accumulator battery charging by means of solar battery is analyzed taking into account these factors. (authors)

  19. Formation of amino acid precursors in the Solar System small bodies using Aluminium-26 as an energy source

    Science.gov (United States)

    Kebukawa, Yoko; Kobayashi, Kensei; Kawai, Jun; Mita, Hajime; Tachibana, Shogo; Yoda, Isao; Misawa, Shusuke

    2016-07-01

    Carbonaceous chondrites contain various organic matter including amino acids that may have played an important role for origin of life on the early Earth. The parent bodies of the chondritic meteorites likely formed from silicate dust grains containing some water ice and organic compounds. These planetesimals are known to contain short-lived radio isotopes such as ^{26}Al, and the heat generated from the decay of ^{26}Al was considered to be used for melting ice. The liquid water, for example, changed anhydrous silicates into hydrous silicates, i.e., aqueous alteration. The liquid water would act also as an ideal reaction medium for various organic chemistry. Cody et al. [1] proposed IOM formation via formose reaction starting with formaldehyde and glycolaldehyde during aqueous activity in the small bodies. Additional hydrothermal experiments showed that ammonia enhanced the yields of IOM like organic solids [2]. Formaldehyde and ammonia are ubiquitous in the Solar System and beyond, e.g., comets contain H _{2}CO : NH _{3} : H _{2}O = 0.4-4 : 0.5-1.5 : 100 [3]. Thus these molecules can be expected to have existed in some Solar System small bodies. We study the liquid phase chemistry of the formaldehyde and ammonia, including formations of amino acid precursor molecules, via hydrothermal experiments at isothermal temperatures of 90 °C to 200 °C. We also evaluate the effects of gamma-ray which is released from the decay of ^{26}Al with gamma-ray irradiation experiments using a ^{60}Co gamma-ray source at Tokyo Institute of Technology. Amino acids were detected mostly after acid hydrolysis of heated or irradiated solutions, indicating that most of the amino acids in the products exist as precursors. Some samples contained 'free' amino acids that were detected without acid hydrolysis, but much lower abundance than after acid hydrolysis. Kendrick mass defect (KMD) analyses of High resolution mass spectra obtained using ESI-MS revealed that various CHO and CHNO

  20. Aprovechamiento de la energía eólica mediante turbinas savonius para bombeo de agua en el poblado de San Jerónimo, Región Junín (2011 - 2013)

    OpenAIRE

    Tacza Casallo, Óscar Teodoro

    2014-01-01

    La investigación se realizó en el poblado de San Jerónimo, Región Junín, en la cual el diseño propuesto permite el aprovechamiento de la energía eólica para transformarla en energía mecánica mediante turbinas Savonius. El diseño propuesto permite el bombeo del agua de 2 709,6 litros por hora, que es utilizado para solucionar el problema de la escasez del agua y así poder obtener hasta dos cosechas por año. Para el diseño del sistema se determinó la localización de la zona, en la rivera del ri...

  1. Solar Energy Basics | NREL

    Science.gov (United States)

    Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for

  2. Progress in Studing Solar-earth Source Compound Heat Pump%太阳能-土壤源复合热泵的研究进展

    Institute of Scientific and Technical Information of China (English)

    张来栋; 郭风全

    2013-01-01

    介绍了太阳能-土壤源复合热泵的工作原理和技术特点,比较了不同太阳能-土壤源复合热泵的系统组成及其性能指标,提出了当前复合热泵所存在的问题与相关建议,并对其发展前景做了展望。%Working principle and performance characteristics of solar-earth source compound heat pump are described, and the system component and indicators are compared between different solar-earth source compound heat pumps. The problems existing in the compound heat pump and related suggestion are put forward, and the development prospect is expected.

  3. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  4. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  5. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  6. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  7. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Xiang, Yongyuan, E-mail: ruishengzheng@sdu.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China)

    2017-05-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  8. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Li, Gang; Xiang, Yongyuan

    2017-01-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  9. The achievements of solar children from the natural created octave whose source is the emanating sun reflected by the Foundation for Solar Achievement with the Arts

    International Nuclear Information System (INIS)

    Petacchi, D.V.

    1997-01-01

    The Foundation for Solar Achievement With The Arts is a not-for-profit school training gifted children in the use of their talent in accordance with the philosophy and experience that children in harmony with their natural environment based upon the sun's position in the course of the day have the greater capacity of attention necessary to enhance learning and creativity. Uncluttered as much as possible by the distractions of technology or the artificial glare of electricity, the learning environment of the Foundation for Solar Achievement With The Arts is conducive to this hands-on action. The Foundation was started by an individual whose life long search for the meaning of his life and whose pondering on the meaning human life on this planet led him to many conclusions modern science is just beginning to reach. With the help of dedicated architect John Jehring and likeminded others, Mr. Petacchi is utilizing natural sunlight in an environment conducive to the psyche of children. A building is planned that will expand into indoor form the natural lighting and free space of the out-of-doors

  10. Experimental Study on Various Solar Still Designs

    OpenAIRE

    T. Arunkumar; K. Vinothkumar; Amimul Ahsan; R. Jayaprakash; Sanjay Kumar

    2012-01-01

    Humankind has depended for ages on underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. In this paper, the fabrication of seven solar still designs such as spherical solar still, pyramid solar still, hemispherical solar still, double basin glass solar still, concentrator coupled single slope solar still, tubular solar still and tubular solar still coupled with pyramid solar still and ...

  11. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  12. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    Science.gov (United States)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  13. Practical investigation for road lighting using renewable energy sources "Sizing and modelling of solar/wind hybrid system for road lighting application"

    Directory of Open Access Journals (Sweden)

    Maged A. Abu Adma

    2017-12-01

    Full Text Available This study explains a design of a fully independent -off grid- hybrid solar and wind road lighting system according to geography and weather conditions recorded from the Egyptian National Research Institute of Astronomy and Geophysics.Presenting here the virtual simulation by using Matlab/Simulink & real-time implementation of road lighting system consists of 150 W photovoltaic cell, 420 W wind generator, 100 Ah acid gel battery and LED lighting luminar 30 W -12 VDC . Over three different stages; 1.Operating the system with PV only as power source, 2. Switching to Wind generator only configuration and 3.  Running the hybrid design with both PV & Wind power sources ; load characteristics and output real-time data will be recorded, evaluated ,compared  and validated against the virtual simulation generated by Matlab/Simulink model.The results of this research will be used to investigate the advantages of using a hybrid system to counteract the limitations of solar and wind as solo renewable energy sources due to adverse weather conditions ,the efficiency of the proposed system as an alternative for the current conventional road lighting poles as well as the accuracy of the virtual model data in order to be used for future adaptation of the model for different geographical locations.

  14. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  15. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  16. Determining of the optimal design of a closed loop solar dual source heat pump system coupled with a residential building application

    International Nuclear Information System (INIS)

    Chargui, Ridha; Awani, Sami

    2017-01-01

    Graphical abstract: Operation of the system in heating mode. - Highlights: • We examine the control function in the level of heat pump and collector. • We examine the temporal evolution of the temperature and energy in the all components of the system. • A better system with a significant energy saving was achieved. • The system gives good results in all operating states. - Abstract: This work highlights the results on the coupling of a flat plate collector coupled with a dual source heat pump system and a heat exchanger for building application. The novelty point of this work is to integrate a heat exchanger in the floor and in the interstitial space of the residential house roof in order to minimize the consumed electric power. This technology defining the operational state of the system has been developed and adapted in the present investigation by adopting the Tunisian climate. The dimensioning of this installation for different component makes it possible to operate the hot water heating systems ecologically. Hence, our objective is to ameliorate the performance of the system using the solar radiation converted to the thermal energy in the level of the flat plate collector and the heat pump. A several experimental data have been added for realizing a numerical model based on TRNSYS software. From this point of view, a numerical model was improved in building application using a 150 m 2 as surface area of the building which consists of two floor zones. The dual source heat pump was coupled with a ground heat exchanger (GHE) with 0.2 m of depth. The distance between two consecutive tubes is 0.3 m and the surface area of the solar collector is 8 m 2 . The simulation results have been obtained for 48 h operation in January and all inputs data of the system have been predicted during 48 h and 6 months of heating in Tunisia. It was demonstrated that the COP of the dual source heat pump was enhanced with the increase of the solar radiation during the typical

  17. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    Science.gov (United States)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  18. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  19. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  20. Solar unit

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A M; Trushevskiy, S N; Tveryanovich, E V

    1982-01-01

    A solar unit is proposed which contains an inclined solar collector with supply and outlet pipelines, the first of which is connected to the source of a heat carrier, while the second is connected through the valve to the tank for collecting heated heat carrier equipped with a device for recovery. In order to improve the effectiveness of heating the heat carrier, it additionally contains a concentrator of solar radiation and a device for maintaining a level of the heat carrier in the collector in the zone of the focal spot of the concentrator, while the heat pipeline is connected to the source of the heat carrier with the help of a device for maintaining the level of the heat carrier.

  1. sin2 θ W estimate and bounds on nonstandard interactions at source and detector in the solar neutrino low-energy regime

    Science.gov (United States)

    Khan, Amir N.; McKay, Douglas W.

    2017-07-01

    We explore the implications of the Borexino experiment's real time measurements of the lowest energy part of the neutrino spectrum from the primary pp fusion process up to 0.420 MeV through the 7Be decay at 0.862 MeV to the pep reaction at 1.44 MeV. We exploit the fact that at such low energies, the large mixing angle solution to the Mikheyev-Smirnov-Wolfenstein matter effects in the sun are small for 7Be and pep and negligible for pp. Consequently, the neutrinos produced in the sun change their flavor almost entirely through vacuum oscillations during propagation from the sun's surface and through possible nonstandard interactions acting at the solar source and Borexino detector. We combine the different NSI effects at source and detector in a single framework and use the current Borexino data to bound NSI non-universal and flavor-changing parameters at energies below the reach of reactor neutrino experiments. We also study the implication of the current data for the weak-mixing angle at this "low-energy frontier" data from the Borexino experiment, where it is expected to be slightly larger than its value at the Z mass. We find sin2 θ W = 0.224 ± 0.016, the lowest energy-scale estimate to date. Looking to the future, we use projected sensitivities to solar neutrinos in next generation dedicated solar experiments and direct dark matter detection experiments and find a potential factor five improvement in determination of the weak-mixing angle and up to an order of magnitude improvement in probing the NSI parameters space.

  2. An economic analysis of space solar power and its cost competitiveness as a supplemental source of energy for space and ground markets

    Science.gov (United States)

    Marzwell, N. I.

    2002-01-01

    Economic Growth has been historically associated with nations that first made use of each new energy source. There is no doubt that Solar Power Satellites is high as a potential energy system for the future. A conceptual cost model of the economics value of space solar power (SSP) as a source of complementary power for in-space and ground applications will be discussed. Several financial analysis will be offered based on present and new technological innovations that may compete with or be complementary to present energy market suppliers depending on various institutional arrangements for government and the private sector in a Global Economy. Any of the systems based on fossil fuels such as coal, oil, natural gas, and synthetic fuels share the problem of being finite resources and are subject to ever-increasing cost as they grow ever more scarce with drastic increase in world population. Increasing world population and requirements from emerging underdeveloped countries will also increase overall demand. This paper would compare the future value of SSP with that of other terrestrial renewable energy in distinct geographic markets within the US, in developing countries, Europe, Asia, and Eastern Europe.

  3. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  4. On the energy dependence of the relative contributions ionospheric and solar sources of the ring current protons

    International Nuclear Information System (INIS)

    Kovtyukh, A.

    2007-01-01

    The energy dependence of a fraction of ring current protons of i onospheric origin is calculated using the AMPTE/CCE data for a typical magnetic storm (D st = -120 nT). It is shown that at L = 6-7 (L is the Mcllwain parameter) this fraction monotonically decreases from ∼83 to 25-30% with an increase in proton energy from 5 to 315 keV and is 30-40% at energy 40-50 keV corresponding to the maximum of proton energy density at L 6-7. It is evident that the core of the ring current (L = 3.7-4.7) is enriched by solar protons with E∼10-200 keV during storm main phase (the maximum effect is achieved at E∼20-50 keV). (author)

  5. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  6. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  7. Solar Adaptive Optics.

    Science.gov (United States)

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  8. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources.

    Science.gov (United States)

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2016-06-01

    This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.

  9. Solar energy and nuclear power. Energy sources, environmental pollution and CO{sub 2} - problem; Solarenergie und Atomstrom. Energiequellen, Umweltbelastung und das CO{sub 2}-Problem

    Energy Technology Data Exchange (ETDEWEB)

    Metzner, H.

    1999-07-01

    In this volume the energy sources used today and possible alternatives like solar-, wind-, and hydro power, geothermal energy and renewable fuels are presented. The environmental pollution due to fossil fuel application (e.g. sulfur- and nitrogen oxides) as the use of nuclear power are discussed in detail. An extra chapter covers the CO2 problem (greenhouse effect, ice cover on earth, sea level, influence on plant growth and agricultural crop) as climatic forecasting. [German] In diesem Band werden die heute nutzbaren Energiequellen und die dazu moeglichen Alternativen wie Solarenergie, Wind-, und Wasserkraft, Erdwaerme und nachwachsende Rohstoffe aufgezeigt. Die Umweltbelastungen aus der Nutzung fossiler Brennstoffe (z.B. Schwefel- und Stickoxide) sowie der Kernenergie sind ausfuehrlich besprochen. Dem CO2-Problem (Treibhauseffekt, Eisbedeckung der Erde, Hoehe des Meeresspiegels, Auswirkungen auf Pflanzenwuchs und Agrarertraege) sowie den Klimaprognosen ist ein eigenes Kapitel gewidmet.

  10. A New Type of Complex System of Solar Energy Air Source Heat Pump Water Heater%一种新型的太阳能——空气源复合热泵热水器系统

    Institute of Scientific and Technical Information of China (English)

    王军军

    2011-01-01

    基于太阳能热利用技术、空气源热泵热水器理论,介绍了一种将太阳能与空气源相结合的双热源热泵热水器系统。该系统可充分利用太阳能加热生活用热水,辅以空气源热泵来满足太阳辐射照度不足时的用热水需求,同时用太阳能辅助加热来解决低温环境下空气源热泵运行工况恶劣的问题。系统充分利用了低品位的太阳能,保证稳定性,又可提高夏季阴雨天气、过渡季节及冬季太阳能热水器的热水温度,对于节约能源和环境保护具有重要意义。%Based on the technology of solar thermal and the theory of air-source heat pump water heater, a combined water heater system about solar and air source heat pump was introduced. The system Could make full use of solar energy to heat domestic hot water, combined with air-source heat pump to meet the shortage of solar irradiance when the hot water demand, and the auxiliary heating with solar energy to solve the problems of air source heat pump operating conditions in low temperature. The system took full use of the low-grade solar energy, and stability could be assured. And it could improve the temperature of the water in solar water heaters in rainy summers, transition seasons and winters. The system had significance for energy conservation and environmental protection.

  11. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    International Nuclear Information System (INIS)

    Ramadan, Abdulghani M.; Agha, Khairy R.; Abughres, M.

    2012-01-01

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  12. Hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The long-range options of energy sources are the breeding reactor, nuclear fusion, and solar energy. Concerning solar energy three systems are being developed: First the photovoltaic cells which are almost ready for industrial production, but which are still too expensive - at least today. Secondly the thermal utilization of solar radiation. Compared to these, thirdly, the photobiological and photochemical possibilities of solar energy utilization have been somewhat neglected so far. However, the photolysis of water by solar energy is a very promising option for future energy demands. This can be done by making use of the photo-synthetic splitting of water in technical facilities or with semiconductors.

  13. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  14. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  15. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. The Application Research of the Solar Energy Combines with Air Source Heat Pump System%太阳能结合空气源热泵系统应用研究

    Institute of Scientific and Technical Information of China (English)

    王文周

    2014-01-01

    太阳能结合空气源热泵系统作为生活热水、低温采暖热源、空调冷源,通过系统智能化优化控制及精准控温运行模式,完全采集太阳能、空气能免费能源,实现了工程上的节能、经济运行。%Solar energy combines with air source heat pump system as domestic hot water, low temperature heat sources for heating, and air conditioning cold source, which achieve the project on energy saving and economic operation through the intel igent optimization control system and precise temperature control operation mode with the completely col ection of solar energy and free air source energy.

  20. 太阳能—地源热泵联合循环技术研究%Study on Technologies of Solar Energy and Ground Source Heat Pump Combined Circulation

    Institute of Scientific and Technical Information of China (English)

    孙洲阳; 陈武

    2011-01-01

    太阳能—地源热泵系统联合循环的研究目前还没有形成完备的理论体系,可供应用的基础数据不足,还不能为工程实际应用提供充足的理论依据.本文就太阳能与地源热泵系统联合运行的必要性和可行性进行探讨,提出了相应的技术方案;总结太阳能—地源热泵空调系统的特性,提出太阳能—地源热泵空调系统有待解决的问题,为太阳能—地源热泵联合循环技术在建筑上应用提供参考和借鉴.%Theory system of solar energy combined with ground-source heat pump has not been mature, thereby lack basic data and theory thereunder for engineering application. Necessarity and feasibility of solar energy combined with ground-source heat pump is discussed, bring forward corresponding technique scheme. Character of solar energy combined with ground-source heat pump system is summarized, and bring forward await settle problems, provide reference for architecture application of solar energy combined with ground-source heat pump.

  1. The Potential in Water Supply and Sanitation Services of the On Site Production of Sodium Hypochlorite (OSEC Driven by PV Solar Source

    Directory of Open Access Journals (Sweden)

    Andrea Micangeli

    2013-12-01

    Full Text Available This study aims at evaluating the impact of an On Site Electro Chlorination (OSEC device, a system for the sodium hypochlorite production, on the improvement of health and hygienic standards in Mesoamerica focusing on Chiapas-Mexico and Costa Rica, as well as in Africa, Western Sahara (Refugees Camp and Tanzania. The threat of infectious diseases and the importance of cleaned and treated water with the consequent high impact on the vulnerable population have been studied in each of the above countries. In this framework the production of low cost sodium hypochlorite through a stand-alone system powered by PV solar source could be a good starting point in improving sanitation conditions, assuring the disinfection of water and clothes, and improve food safety. The cost analysis shows that producing sodium hypochlorite with an OSEC solar system could lead to 10 to 15 times saving with respect to the purchasing of it at market price, above all in developing countries. Furthermore, the LCA study highlights the low environmental impact of the on-site production of sodium hypochlorite through qualitative and quantitative data that demonstrate how this system has pollutant emissions from 14 to 56 times lower than the equivalent industrial process (N factor. The paper describes as well possible practical applications of the sodium hypochlorite in the African and Latin American context. Additionally, it demonstrates the potential to create an impact on the social context and microenterprises specialised in the production of hygiene and sanitation products, managed by local people selling at affordable prices and reaching the poorest villages of developing countries.

  2. 太阳能耦合地源热泵供暖系统的实验研究%Experimental Study on Heating System of Solar Coupled Ground Source Heat Pump

    Institute of Scientific and Technical Information of China (English)

    智超英; 赵宇含

    2017-01-01

    太阳能耦合地源热泵系统的设计以太阳能为辅助、地源热泵为主,最大化地利用太阳能资源,在满足地板采暖制备的情况下,富裕的热量可以补充到生活用水当中.通过实验验证了太阳能耦合地源热泵供暖系统可以有效恢复土壤温度,提高机组性能系数,实现热泵长期稳定的运行.%The design of solar coupled ground source heat pump system is based on solar energy and ground source heat pump.The system can maximize solar energy utilization in the preparation of floor heating.Rich heat can be added to the life water.This paper introduces the solar coupled ground source heat pump heating system.The experiment proves that the system can effectively restore the soil temperature, improve the performance coefficient of the crew, and realize the long-term stable operation of the heat pump.

  3. 地源热泵与太阳能联合供热系统集热器面积优化的研究%Collector Area Optimization of Ground Source Heat Pump and Solar Combined Heating System

    Institute of Scientific and Technical Information of China (English)

    智超英; 赵宇含

    2018-01-01

    This paper mainly analyzes various influence factors on heat collector area of the ground source heat pump and solar combined heating system, studies the relationship of the cost of solar heat collection system,ground source heat pump operating costs per square meter,the maximum net benefit and solar collector area. In one run cycle,considering the maximum income,solar heating guarantee rate and ground source heat pump operating costs per square meter, the collector area of the combined heating system is optimized finally.%分析影响地源热泵与太阳能联合供热系统集热器面积的各种因素,研究太阳能集热系统造价、地源热泵每平方米运行费用、最大净受益、太阳能集热器面积相互间的关系.在一个循环周期内参考最大净收益,利用太阳能采暖保证率和地源热泵每平方米的运行费用的统计数据,最终联合供热系统的集热器面积达到最优.

  4. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  5. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  6. Status of the accretion flow solution in the Golden Jubilee year of the discovery of extra-solar X-ray sources

    Science.gov (United States)

    Chakrabarti, S. K.

    Fifty years have just passed since the first discovery of the extra-solar X-ray sources by Giacconi and his team which we know today to be some stellar mass black holes. By 1973, not only a catalog of these enigmatic objects were made, and their spectra were obtained. Today, forty years have passed since the revolutionary idea of the thin, axisymmetric, Keplerian, disk model by Shakura and Sunyaev was published. Yet, the complete predictability of their radiative properties remains as illusive as ever. The only available and self-consistent solution to date is the generalized viscous transonic flow solutions where both heating and cooling effects are included. I demonstrate that the latest `Avatar' of the accretion/outflow picture, the Generalized Two Component Advective Flow (GTCAF), is capable of explaining almost all the black hole observational results, when the results of the time dependent simulation of viscous and radiative processes are also taken into consideration. I also discuss the problems with predictability and argue that understanding companion's behaviour in terms of its habit of mass loss, ellipticity of its orbit, magnetic properties, etc. is extremely important for the prediction of emission properties of the accretion flow.

  7. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra.

    Science.gov (United States)

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN:TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN:TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0-9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%-5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  8. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  9. Energy Efficiency Analysis of Solar Photovoltaic Solar-Thermal Components lntegrating with Double Source Heat Pump System%太阳能光伏光热组件与双源热泵一体化系统节能性分析

    Institute of Scientific and Technical Information of China (English)

    李新锐; 陈剑波; 王成武

    2018-01-01

    The integration of distributed solar photovoltaic solar -thermal components and double source heat pump system is a system combined with a variety of energy - saving technology, so it is necessary to study its energy saving property. Based on the comparison with the solar heat pump and air-source heat pump, through opening the double source mode and separately opening the water source mode,or running air source mode,the water-heating time of heating water tank and the input power of the heat pump are compared,it is concluded that the double heat source heat pump unit has higher energy efficiency than the single air source heat pump and the conventional solar heat pump unit.%考虑到分布式太阳能光伏光热组件与双源热泵一体化系统是一种结合多种节能技术的系统,有必要对其节能性进行研究.在对该系统与常规太阳能热泵、空气源热泵比较的基础上,选取冬天开启双源模式和单独开启水源模式、空气源模式时的3种工况,通过比较供热水箱完成制热水的时间和热泵输入功率,分析得出双热源热泵机组比单一的空气源热泵、常规太阳能热泵机组具有较高的节能性.

  10. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  11. Solar neutrino experiments

    International Nuclear Information System (INIS)

    Hampel, W.

    1996-01-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial 51 Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs

  12. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  13. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  14. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  15. Long Island Solar Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  16. Trends in Solar energy Driven Vertical Ground Source Heat Pump Systems in Sweden - An Analysis Based on the Swedish Well Database

    Science.gov (United States)

    Juhlin, K.; Gehlin, S.

    2016-12-01

    Sweden is a world leader in developing and using vertical ground source heat pump (GSHP) technology. GSHP systems extract passively stored solar energy in the ground and the Earth's natural geothermal energy. Geothermal energy is an admitted renewable energy source in Sweden since 2007 and is the third largest renewable energy source in the country today. The Geological Survey of Sweden (SGU) is the authority in Sweden that provides open access geological data of rock, soil and groundwater for the public. All wells drilled must be registered in the SGU Well Database and it is the well driller's duty to submit registration of drilled wells.Both active and passive geothermal energy systems are in use. Large GSHP systems, with at least 20 boreholes, are active geothermal energy systems. Energy is stored in the ground which allows both comfort heating and cooling to be extracted. Active systems are therefore relevant for larger properties and industrial buildings. Since 1978 more than 600 000 wells (water wells, GSHP boreholes etc) have been registered in the Well Database, with around 20 000 new registrations per year. Of these wells an estimated 320 000 wells are registered as GSHP boreholes. The vast majority of these boreholes are single boreholes for single-family houses. The number of properties with registered vertical borehole GSHP installations amounts to approximately 243 000. Of these sites between 300-350 are large GSHP systems with at least 20 boreholes. While the increase in number of new registrations for smaller homes and households has slowed down after the rapid development in the 80's and 90's, the larger installations for commercial and industrial buildings have increased in numbers over the last ten years. This poster uses data from the SGU Well Database to quantify and analyze the trends in vertical GSHP systems reported between 1978-2015 in Sweden, with special focus on large systems. From the new aggregated data, conclusions can be drawn about

  17. 太阳能与地源热泵复合系统的优化配置与运行方式%Optimizing configuring and running-mode of solar energy and ground-source heat pump hybrid systems

    Institute of Scientific and Technical Information of China (English)

    冯晓梅; 张昕宇; 邹瑜; 郑瑞澄

    2011-01-01

    以某实际工程为例,对太阳能系统与地源热泵系统联合运行时的优化配置与运行方式进行了模拟分析.得到结论:要优先利用太阳能系统;对太阳能资源要梯级利用;尽可能增大太阳能集热器面积,提高太阳能直接利用的可能性;单位面积太阳能集热器成本为250元/m2左右比较合适.%With a project, simulates and analyses optimizing configuring and running-mode of the hybrid system. Concludes that the solar energy system should be prior to the ground-source heat pump system in operation, the utilization of solar energy resource should be the way according to the energy grade, a possibly larger solar collector area is good for direct utilization of solar energy, and the solar collector cost of 250 RMB per square meter is appropriate.

  18. Theoretical analysis and experimental study to solar assisted ground-source heat pump system%太阳能辅助系统的理论分析和实验研究

    Institute of Scientific and Technical Information of China (English)

    杨鹏; 刘自强; 侯静

    2011-01-01

    As a clean, renewable energy, the geothermal energy and solar energy are trend of develo- ping and using new energies in the future. This paper introduces solar assisted Ground Source Heat Pump system, combined with the advantage of t the geothermal energy and solar energy. Through theoretical analysis and experiment, the solar assisted Ground Source Heat Pump system is proved to be feasible and scientific.%地热能和太阳能作为清洁、可再生的能源,是未来开发和利用新能源的趋势,本文介绍了太阳能辅助地源热泵系统,是将二者结合,取长补短的一种热泵形式。通过理论分析和实验验证。证明了太阳能辅助地源热泵系统的可行性和科学性。

  19. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  20. Solar energy: a UK assessment

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A panel convened by UK-ISES to analyze all aspects of solar energy systems and to assess the potential for solar energy utilization and research and development needs in the UK and for export is reported. Topics covered include: solar energy in relation to other energy sources; international solar energy research and development program; the physical nature of solar energy and its availability in the UK and other countries; thermal collection, storage, and low-temperature applications; solar energy and architecture; solar thermal power systems; solar cells; agricultural and biological systems; photochemical systems; social, legal, and political considerations with particular reference to the UK; and future policy on solar research and development for the UK. (WDM)

  1. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    Science.gov (United States)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  2. 北方地区应用太阳能辅助土壤源热泵效能分析%Efficiency Analysis of Utilizing Solar-assisted Ground Source Heat Pump in the Northern China

    Institute of Scientific and Technical Information of China (English)

    赵金秀

    2015-01-01

    针对北方寒冷地区气候特点,指出了太阳能辅助土壤源热泵系统相对于单独的土壤源热泵或单独的太阳能应用的技术特点。对北方寒冷地区某学校综合楼建筑进行了太阳能辅助土壤源热泵系统设计;并针对该建筑采用太阳能辅助土壤源热泵系统、采用单独的土壤源热泵系统或采用传统采暖空调系统,从三者经济效益、社会效益、环境效益等方面进行了比较,从而体现了太阳能辅助土壤源热泵系统相对于单独的土壤源热泵系统或传统采暖空调系统的高效、经济、节能、环保等优异性。%For the cold climate characteristics of the Northern China, the paper introduces the technical characteristics of solar-assisted ground source heat pump system relative to the separate ground source heat pump system or the separate solar energy application. For a complex building of a university in the cold northern area, the solar -assisted ground source heat pump system is designed, and economic benefits, social benefits, environmental benefits and other aspects about using the solar-assisted ground source heat pump system or using the ground source heat pump system alone or using the traditional air conditioning system are compared, thus reflects the excellent efficiency, cost-saving and energy -saving characteristics, and environmental protection about the solar assisted ground source heat pump system.

  3. 太阳能-地源热泵复合系统在医疗建筑中的应用分析%Application analysis of solar ground-source heat pump composite system to medical building

    Institute of Scientific and Technical Information of China (English)

    高世康; 卢志鹏

    2017-01-01

    太阳能-地源热泵复合系统具有良好的节能效果和运行特性,本文利用TRNSYS分析其应用于山东某医院综合楼的可行性,并分析其与常规系统(城市热网配套+冷水机组)的全寿命周期成本.分析结果表明,太阳能-地源热泵复合系统的全寿命周期成本比常规系统节省26.4%,在2.16年之后,太阳能-地源热泵复合系统经济性优势明显.%The solar ground-source heat pump composite system has good energy-saving effect and operation characteristic.The feasibility of its application to one medical building in Shandong is analyzed using TRNSYS, and the life cycle cost of solar ground-source heat pump composite system and the conventional system of urban network supporting & chiller is analyzed.The analysis results show that the former life cycle cost can be saved by 26.4% compared with the latter, and 2.16 years later, the solar ground-source heat pump composite system will have evident economy trend.

  4. Effects of auxiliary heat sources on energy efficiency of active solar heating systems%辅助热源对主动式太阳能供暖系统节能性的影响

    Institute of Scientific and Technical Information of China (English)

    于国清; 周继瑞

    2015-01-01

    According to the solar fraction and the energy efficiency of auxiliary heating equipments, analyses the effects of different auxiliary heat sources on the energy efficiency of active solar heating systems by converting energy consumption to primary energy,and believes that the active solar heating system must satisfy certain conditions for achieving energy saving effect.The results indicate that the auxiliary heat source and the solar fraction have a great impact on the energy efficiency of solar heating systems.Compared to the gas-fired boiler heating alone,the solar heating system assisted by electric heating is energy efficient only when the solar fraction is greater than 65.4%,which is very difficult to achieve for many real systems.The primary energy consumption of the solar heating system assisted by heat pump is lower in general instances (when the average COP of heat pump is 2.5,the solar fraction should be greater than 7%).When heat pumps with average COP above 3.0 or gas-fired boilers are used as auxiliary heat sources,the solar heating system is energy efficient,and the higher the solar fraction is,the more obvious the energy saving effect is.%根据太阳能贡献率和辅助加热设备的能源效率,将系统的能耗折算成一次能源,分析不同辅助热源对太阳能供暖系统节能性的影响,认为主动式太阳能供暖系统要达到节能效果必须满足一定的前提条件。研究结果表明:辅助热源方式和太阳能贡献率对系统的节能性影响很大;相对于燃气锅炉单独供暖,电加热辅助太阳能供暖系统只有在太阳能贡献率高于65.4%时才节能,而大多数系统的太阳能贡献率很难达到这么高,因此要尽量避免使用;热泵辅助太阳能供暖系统在大多数情况下都是节能的(热泵的平均 COP =2.5时,太阳能贡献率需高于7%);采用平均COP 高于3.0的热泵或采用燃气锅炉作为辅助热源时,系统都是节

  5. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra

    Science.gov (United States)

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN∶TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN∶TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0–9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%–5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  6. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  7. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  8. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  9. Photodegradation of the herbicide azimsulfuron using nanocrystalline titania films as photocatalyst and low intensity Black Light radiation or simulated solar radiation as excitation source

    International Nuclear Information System (INIS)

    Pelentridou, Katerina; Stathatos, Elias; Karasali, Helen; Lianos, Panagiotis

    2009-01-01

    Aqueous solutions of the herbicide azimsulfuron have been treated by a photocatalytic process employing titania nanocrystalline films as photocatalyst. Results showed that solutions of this herbicide at maximum possible concentration can be photodegraded in a time of a few hours by using low intensity UVA radiation comparable with that of the UVA of solar noon. Similar results have also been obtained with simulated solar radiation. Thus heterogeneous photocatalysis can be employed for the treatment of waters polluted by this herbicide

  10. Solar Assisted Water Source Heat Pump System for Heating in Winter%关于太阳能辅助水源热泵系统联合冬季供暖的研究

    Institute of Scientific and Technical Information of China (English)

    石东森; 赵展

    2014-01-01

    Along with the increased awareness of energy shortage and environmental protection in China, solar energy and shallow geothermal energy as renewable energy are getting more and more atten-tion. But regardless of the solar system or single water source heat pump system has some limitations, few of joint operation for both applications. Based on the actual project as an example, the solar system can be combined with water source heat pump system, and the system will achieve the required indoor air temper-ature; and the technical analysis of operation cost for solar system with water source heat pump system shows the energy efficiency is completely obvious.%随着我国能源的紧缺和环保意识的加强,太阳能、浅层地热能作为可再生能源,越来越受到人们的重视。但无论是太阳能系统,还是水源热泵系统,单独运行时均有一定的局限性,两者联合运行的应用很少。通过实际工程分析,太阳能系统与水源热泵系统可以联合工作,并可达到预期的室内空调温度;对太阳能系统与水源热泵系统联合运行的运行费用做了技术分析,证实这种联合模式节能效果十分明显。

  11. An investigation of the magnetic field of Transient Disturbances (TD) at the Earth's orbit, and a determination of solar sources of TD from their characteristics at R = 1 AU

    Science.gov (United States)

    Fainshtein, V. .G.; Kaigorodov, A. P.

    1995-01-01

    We have investigated and intercompared the typical features of the magnetic field of two types of solar wind transient disturbances with shock waves: the shock wave is accompanied by a magnetic cloud (MC), and the shock wave is followed by a region with bidirectional solar wind electron heat flux (BEHF), with no MC present. In this case, a separate study was made of the field features in two typical TD structures: in the region of impact-compressed solar wind between the shock wave and MC or BEHF, as well as in MC and BEHF. The study has provided new results on the influence of the ambient SW upon the TD magnetic field and the relationship between fields in various TD structures. A new test for the existence of interplanetary magnetic field draping around MC and BEHF is proposed and verified. It is concluded that the magnetic field configuration around MC is more adequately consistent with the concept of magnetic line draping than is the case around BEHF Two methods are proposed to infer the location of solar sources of TD from their characteristics at R = 1 AU.

  12. solar dryer with biomass backup heater for drying fruits

    African Journals Online (AJOL)

    SOLAR DRYER WITH BIOMASS BACKUP HEATER FOR DRYING FRUITS: DEVELOPMENT AND PERFORMANCE ANALYSIS. ... Journal of Science and Technology (Ghana) ... Most solar dryers rely on only solar energy as the heat source.

  13. Solar cities

    International Nuclear Information System (INIS)

    Roaf, S.; Fuentes, M.; Gupta, R.

    2005-01-01

    Over the last decade, climate change has moved from being the concern of few to a widely recognized threat to humanity itself and the natural environment. The 1990s were the warmest decade on record, and ever-increasing atmospheric levels of greenhouse gases such as carbon dioxide (CO/sub 2/), could, if left unchecked lead to serious consequences globally, including increased risks of droughts, floods and storms, disruption to agriculture, rising sea levels and the spread of disease. The contribution of anthropogenic emissions of carbon dioxide has been recognized as the principal cause of the atmospheric changes that drive these climate trends. Globally, buildings are the largest source of indirect carbon emissions. In 2000, the UK Royal Commission on Environmental Pollution estimated that in order to stabilise carbon emissions at levels, which avoid catastrophic alterations in the climate, we would have to reduce emissions from the built environment by at least 60% by 2050 and 80% by 2100 relative to 1997 levels. Studies of the Oxford Ecohouse have demonstrated that it is not difficult to reduce carbon emissions from houses by 60% or more through energy efficiency measures, but it is only possible to reach the 90% level of reductions required by using renewable energy technologies. Solar energy technologies have been the most successfully applied of all renewable to date largely because they are the only systems that can be incorporated easily into the urban fabric. In addition, the short fossil fuel horizons that are predicted (c. 40 years left for oil and 65 years for gas) will drive the markets for solar technologies. For these reasons, the cities of the future will be powered by solar energy, to a greater or lesser extent, depending on the city form and location. In recognition of the need to move rapidly towards a renewable energy future, a group of international cities, including Oxford, have started the Solar City Network. In this paper we outline the

  14. 加热原油的太阳能-污水源热泵系统的开发%Development on solar-assisted sewage source heat pump system for crude oil heating

    Institute of Scientific and Technical Information of China (English)

    钱剑峰; 王强

    2017-01-01

    In this paper, the situations of crude oil heating and oily water utilization were analyzed.The development situation of solar heat pump at home and abroad was introduced.It was put forward that the solar-assisted sewage source heat pump system could be used to reuse oily water for crude oil heating.The composition of the system and five kinds of operation mode were analyzed.The mathematical model was also established.It provided some references for the application of solar-assisted sewage source heat pump system.%分析了油田用热现状和含油污水利用现状,详述了太阳能热泵在国内外的发展现状.在此基础上,提出应用太阳能-污水源热泵系统回收含油污水余热来加热原油,进而分析了该系统的组成及五种运行模式,建立了系统的数学模型,为太阳能-污水源热泵系统的应用提供参考.

  15. Engineering Design and Economic Analysis of Air Source Heat Pump Assisted Solar Water Heating System%热泵+太阳能热水系统的工程设计与经济分析

    Institute of Scientific and Technical Information of China (English)

    李永华

    2013-01-01

    以空气源热泵为辅助热源的太阳能集中热水系统,不仅节能效率高,而且能保证全天候连续热水供应,是近年来太阳能利用的发展方向之一。淮海工学院学生浴室采用了空气源热泵辅助太阳能热水系统,设计用水人数17000人,日需热水量184 t。介绍了该热水系统的工作原理及设计计算,并对5种热水工程方案从初期投资和运行费用方面进行了详细的经济性分析,结果表明:以空气源热泵为辅助热源的热水方案较其他方案具有更好的经济、环保效益。%The high energy-efficient solar energy water heating system in conjunction with air source heat pump, supplying all-weather continuous hot water, is one of the developing direction of solar energy utilization in recent years. Students ’ Bathroom of Huaihai Institute of Technology use solar water heating system assisted with air source heat pump for 17000 students, requiring 184 tons of hot water every day. The working principle and design calculation of hot water system are expounded with detailed analysis of the initial investment and operating costs for five kinds of heating water engineering solutions. Results show that air source heat pump as auxiliary heat source has better economic and environmental benefits.

  16. 太阳能一空气双热源复合热泵系统性能研究%Studying of the System Performance of the Solar - air Dual - source Heat Pump

    Institute of Scientific and Technical Information of China (English)

    张超; 赵晓丹; 周光辉

    2011-01-01

    太阳能—空气双热源复合热泵技术能有效解决空气源热泵室外温度低时蒸发器易结霜、系统性能降低的缺点.本文在课题组前期研究的基础上,针对一种新型的太阳能—空气双热源复合热泵系统,采用分布参数法建立了系统的数学模型.利用数学模拟的方法对单一空气源热泵系统和太阳能—空气双热源复合热泵系统在三种不同工况下的制热量和COP进行了模拟,并对模拟结果进行了对比分析.%The problems such as the easily frosting of the evaporator and the poor system performance in low outdoor temperature can be effectively solved with the solar-air dual-source heat pump technology. In this paper, based on the previous working of the research group, the steady distributed parameter method has been adopted to establish the mathematical model of a new solar-air dual-source heat pump system. The system performance of the single air source heat pump system and the solar-air dual-source heat pump system in three operation conditions have been studied with the mathematical simulation method, and the simulated results have been analyzed.

  17. Molecular beam epitaxy of InP single junction and InP/In0.53Ga0.47As monolithically integrated tandem solar cells using solid phosphorous source material

    International Nuclear Information System (INIS)

    Delaney, A.; Chin, K.; Street, S.; Newman, F.; Aguilar, L.; Ignatiev, A.; Monier, C.; Velela, M.; Freundlich, A.

    1998-01-01

    This work reports the first InP solar cells, InP/In 0.53 Ga 0.47 As tandem solar cells and InP tunnel junctions to be grown using a solid phosphorous source cracker cell in a molecular beam epitaxy system. High p-type doping achieved with this system allowed for the development of InP tunnel junctions. These junctions which allow for improved current matching in subsequent monolithically integrated tandem devices also do not absorb photons which can be utilized in the InGaAs structure. Photocurrent spectral responses compared favorably to devices previously grown in a chemical beam epitaxy system. High resolution x-ray scans demonstrated good lattice matching between constituent parts of the tandem cell. AM0 efficiencies of both InP and InP/InGaAs tandem cells are reported

  18. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  19. Assessment of greenhouse gas emissions from the full energy chain of solar and wind power and other energy sources. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    An international Advisory Group Meeting on Assessment of Greenhouse Gas Emission from the Full Energy Chain of Solar and Wind Power was convened by the IAEA at its Headquarters in Vienna, 21-24 October, 1996. The meeting was attended by 12 experts from 9 countries and two international organizations, and including one consultant to the Agency. The objectives of the workshop were: to define and to analyze the solar and wind power chains in terms of emissions of greenhouse gases from the whole energy chain, i.e., during a plant's operation, and from the construction of the plant to the plant's decommissioning and waste storage; to evaluate existing assessments of full-energy-chain emissions of greenhouse gases from the wind and solar power chains and, where possible, compare these results with such emissions from nuclear power and other energy chains

  20. Assessment of greenhouse gas emissions from the full energy chain of solar and wind power and other energy sources. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    An international Advisory Group Meeting on Assessment of Greenhouse Gas Emission from the Full Energy Chain of Solar and Wind Power was convened by the IAEA at its Headquarters in Vienna, 21-24 October, 1996. The meeting was attended by 12 experts from 9 countries and two international organizations, and including one consultant to the Agency. The objectives of the workshop were: to define and to analyze the solar and wind power chains in terms of emissions of greenhouse gases from the whole energy chain, i.e., during a plant`s operation, and from the construction of the plant to the plant`s decommissioning and waste storage; to evaluate existing assessments of full-energy-chain emissions of greenhouse gases from the wind and solar power chains and, where possible, compare these results with such emissions from nuclear power and other energy chains. Refs, figs, tabs.

  1. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  2. Solar-assisted ground-source heat pump system design and case study%太阳能辅助地埋管地源热泵系统设计及实例分析

    Institute of Scientific and Technical Information of China (English)

    季永明; 端木琳; 李祥立

    2017-01-01

    Presents an improved method to determine the solar collector area of the solar-assisted ground-source heat pump system based on the heat balance method.For a commercial building in Dalian,proposes the design scheme of a solar-assisted ground-source heat pump system.Simulates the operating parameters of the system by TRNSYS,and the results show that,on the basis of ensuring the heating capacity of the building,the system guarantees the average temperature of the thermal storage soil which contains the ground heat exchanger periodic and consistent change,and the COP of the heat pump is improved significantly compared with that of the system without solar collectors in winter.%基于热平衡法提出了确定太阳能辅助地埋管地源热泵系统中太阳能集热器面积的方法.针对大连地区一公共建筑,提出了太阳能辅助地埋管地源热泵系统设计方案.采用TRNSYS软件对该系统运行参数进行了仿真模拟,结果显示,在保证建筑供热量的基础上,系统能长期保证热泵源侧换热器所在蓄热土壤平均温度呈周期性一致变化,且冬季热泵机组COP较无集热器工况显著提高.

  3. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  4. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  5. Solar Systems

    Science.gov (United States)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  6. Solar Water Heater

    Science.gov (United States)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  7. Solar radiophysics

    International Nuclear Information System (INIS)

    McLean, D.J.; Labrum, N.R.

    1985-01-01

    This book treats all aspects of solar radioastronomy at metre wavelengths, particularly work carried out on the Australian radioheliograph at Culgoora, with which most of the authors have been associated in one way or another. After an introductory section on historical aspects, the solar atmosphere, solar flares, and coronal radio emission, the book deals with instrumentation, theory, and details of observations and interpretations of the various aspects of metrewave solar radioastronomy, including burst types, solar storms, and the quiet sun. (U.K.)

  8. Solar engineering 1995: Proceedings. Volume 1

    International Nuclear Information System (INIS)

    Stine, W.B.; Tanaka, Tadayoshi; Claridge, D.E.

    1995-01-01

    This is Volume 1 of the papers presented at the 1995 ASME/JSME/JSES International Solar Energy Conference. The topics of the papers include wind energy, heat pump performance, ground source and solar chemical heat pumps, analysis of measured building energy data, thermal storage, system modeling of buildings, evaluation of the Federal Building energy Efficiency program, sustainable projects, bioconversion, solar chemistry, solar detoxification innovative concepts and industrial applications, solar thermal power systems, DISH/engine power systems, power towers, solar thermal power advanced development, and solar thermal process heating and cooling

  9. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  10. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  11. Determination of Solar Irradiation in Urban Areas with an Open Source GIS Model: Application on the Example of the Rožna dolina in Ljubljana, Slovenia

    Directory of Open Access Journals (Sweden)

    Alen Mangafić

    2017-10-01

    Full Text Available The determination of solar irradiation is crucial when planning the installation of solar systems. There are different GIS models for determining solar irradiation, which differ from each other in terms of input data, hardware requirements, performance, reliability and suitability, depending on the specificity of the study area and the nature of the study. Because of their diversity, urban areas pose a greater challenge for the estimation of the potential of the received solar energy. In the article we offered a methodology for determining the irradiation of urban area roofs using the GRASS GIS model r.sun, which makes the computation with high resolution spatial, atmospheric and meteorological data. The used input data is freely available for the entire territory of Slovenia. The proposed methodological approach was tested in the area of the town quarter Rožna dolina with the northern part of Vič. The area is very diverse according to the typology of the built objects, the land cover and altitude differences.

  12. The efficiency analysis on solar energy auxiliary soil source heat pump heating in cold region%严寒地区太阳能辅助土壤源热泵供热经济性分析

    Institute of Scientific and Technical Information of China (English)

    王杨洋

    2016-01-01

    To solve the suction and discharge heat imbalance problems in soil source heat pump system long running in cold region,this paper put forward the solar assisted soil source heat pump system,and compared the efficiency of this plan with traditional central heating system,pointed out that the solar assisted soil source heat pump system in service life cycle had good energy conservation and environmental protection benefits.%为解决严寒地区土壤源热泵系统长期运行出现吸排热量失衡的问题,提出了太阳能辅助土壤源热泵系统方案,并将该方案与传统集中供热系统方案的经济性作了对比,指出太阳能辅助土壤源热泵系统在使用寿命周期内具有良好的节能环保效益。

  13. 太阳能与地源热泵联合温室大棚系统的设计%System design of solar greenhouses combined with ground source heat pump

    Institute of Scientific and Technical Information of China (English)

    苏伟; 穆青; 董继先; 王彬权

    2015-01-01

    Greenhouse is an irreplaceable technology in modern agriculture, but it was easily affected by weather. The combination of solar energy-ground source heat pump system can make full use of the complementary advantages of both of them.It confirmed the stable operation of greenhouses all year round.Therefore, a solar greenhouse com-bined with ground source heat pump system and the PLC control circuit of the system were designed, and the brief a-nalysis on the feasibility was carried out.It also provides certain reference and suggestion about subsequent applica-tion of the greenhouses combined with solar energy and ground source heat pump system.%温室大棚是现代农业中不可替代的技术,但其受天气影响比较大,采用太阳能—地源热泵联合系统作业的方式,可充分利用二者的优势,使得温室大棚一年四季稳定运行。为此,设计了太阳能与地源热泵联合温室大棚系统及该系统的PLC控制回路,并对其可行性进行了简要分析,可为后续太阳能—地源热泵联合系统在温室大棚中的应用提供参考。

  14. Discussion of the Integrate Designs between Solar Energy Water Heating System and Air-source Heat Pump%空气源热泵与太阳能热水系统集成设计探讨

    Institute of Scientific and Technical Information of China (English)

    王伟; 南晓红; 马俊; 李飞

    2011-01-01

    对不同地区应用的几种不同形式空气源热泵辅助型太阳能热水系统设计方案进行介绍探讨,并以其为基础提出一种新的空气源热泵与太阳能热水系统集成的多功能系统设计方案。总结了不同地区、不同形式空气源热泵辅助型太阳能热水系统的设计方案、特点及新集成系统运行模式等,为我国不同地区应用此类系统时选择具体设计方案提供参考。%In this paper,different designs of the solar energy water heating system aided by air-source heat pump(SEWH-ASHP) are introduced and discussed,then a new integrate design between solar energy water heating system and air-source heat pump is given.Characters of different designs of the solar energy water heating system aided by air-source heat pump in different area are summed and the operational modes of the integrate system are analysed,which would be a useful reference to chose for designing and using the system of SEWH-ASHP and integrate system in different areas in China.

  15. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  16. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  17. The sun as hot water source. Answers to questions on the solar water heater; Le soleil source d'eau chaude. Les reponses a vos questions sur le chauffe-eau solaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This guide answers to the main questions concerning a water heating system for domestic use. It aims to help the people who want to buy a solar water heater, to better estimate the advantages and the limits, in providing information on the operating and the use. (A.L.B.)

  18. Solar and Hydrogen

    International Nuclear Information System (INIS)

    Kadirgan, F.; Beyhan, S.; Oezenler, S.

    2006-01-01

    It has been widely accepted that the only sustainable and environmentally friendly energy is the solar energy and hydrogen energy, which can meet the increasing energy demand in the future. Solar Energy may be used either for solar thermal or for solar electricity conversion. Solar thermal collectors represent a wide-spread type of system for the conversion of solar energy. Radiation, convection and conduction are strongly coupled energy transport mechanisms in solar collector systems. The economic viability of lower temperature applications of solar energy may be improved by increasing the quantity of usable energy delivered per unit area of collector. This can be achieved by the use of selective black coatings which have a high degree of solar absorption, maintaining high energy input to the solar system while simultaneously suppressing the emission of thermal infrared radiation. Photovoltaic solar cells and modules are produced for: (1) large scale power generation, most commonly when modules are incorporated as part of a building (building integrated photovoltaic s) but also in centralised power stations, (2) supplying power to villages and towns in developing countries that are not connected to the supply grid, e.g. for lighting and water pumping systems, (3) supplying power in remote locations, e.g. for communications or weather monitoring equipment, (4) supplying power for satellites and space vehicles, (5) supplying power for consumer products, e.g. calculators, clocks, toys and night lights. In hydrogen energy systems, Proton exchange membrane (PEMFC) fuel cells are promising candidates for applications ranging from portable power sources (battery replacement applications) to power sources for future electric vehicles because of their safety, elimination of fuel processor system, thus, simple device fabrication and low cost. Although major steps forward have been achieved in terms of PEMFC design since the onset of research in this area, further

  19. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

    DEFF Research Database (Denmark)

    Jradi, M.; Veje, C.; Jørgensen, B. N.

    2017-01-01

    and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis......, Denmark, in addition to charging the soil storage medium in summer months when excess electric power is generated. The stored heat is discharged in December and January to provide the space heating and domestic hot water demands of the residential project without the utilization of an external heating...... losses and the surrounding soil temperature variation throughout the year. It was found that the overall system heating coefficient of performance is around 4.76, where the reported energetic efficiency is 5.88% for the standalone PV system, 19.1% for the combined PV-ASHP system, and 22...

  20. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak...... statistically to zero, indicating that the associated high‐speed streams have a high chance to miss the Earth. Similar, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret...

  1. An Analysis of the Use of Energy Audits, Solar Panels, and Wind Turbines to Reduce Energy Consumption from Non Renewable Energy Sources

    Science.gov (United States)

    2015-04-15

    a need to reduce water consumption whenever possible. Congress issued the initial guidelines for flow control in various plumbing products via the...Base • Florida Solar Energy Center ( Cocoa , FL) • Houston County Solid Waste Disposal Facility (Kathleen, GA) Certification CDEP interns each... PRODUCTS · COMPIOP AGG $ 2,000,000 POUCY ~rg: LOC $ ~"’~"~ ~~~INGlE UMIT s All’f AUTO BODILY INJURY (Por pononj $ ........ ~~,~~ BODILY INJURY (Por

  2. Photurgen: The open source software for the analysis and design of hybrid solar wind energy systems in the Caribbean region: A brief introduction to its development policy

    Directory of Open Access Journals (Sweden)

    Daren Watson

    2017-11-01

    Full Text Available Hybrid Renewable Energy Systems (HRES use multiple renewable resources such as hydro, solar and wind collaboratively to produce energy that can meet a defined load demand continuously. Their combination can lead to the improvement in the systems efficiency and overall reliability. However, the level of penetration of HRES in the Caribbean region is less than its expected potential. The constraints generated by their complexity and the costly access to useful energy planning tools is a limitation to their implementation. Therefore, in collaboration with the Alternative Energy Research Group, UWI Mona, we develop a free Linear Optimization software, Photurgen, for the design and analysis of hybrid solar-wind systems within the Caribbean region. Solar-wind hybrid systems are simulated based on historic climatological resources and instantaneous load consumption data, providing the user with graphics and advice for their optimal configuration. This paper introduces the first version of Photurgen and its associated development policies. This tool is one simple solution to be applied to increase the rate of autonomous and grid-tied households within the region, with Jamaica being its experimental location.

  3. Investigation of Relationship between High-energy X-Ray Sources and Photospheric and Helioseismic Impacts of X1.8 Solar Flare of 2012 October 23

    Energy Technology Data Exchange (ETDEWEB)

    Sharykin, I. N.; Zimovets, I. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Kosovichev, A. G.; Sadykov, V. M. [New Jersey Institute of Technology, Newark, NJ (United States); Myshyakov, I. I., E-mail: ivan.sharykin@phystech.edu [Institute of Solar-Terrestrial Research (ISTP) of the Russian Academy of Sciences, Siberian Branch, Irkutsk (Russian Federation)

    2017-07-01

    The X-class solar flare of 2012 October 23 generated continuum photospheric emission and a strong helioseismic wave (“sunquake”) that points to an intensive energy release in the dense part of the solar atmosphere. We study properties of the energy release with high temporal and spatial resolutions, using photospheric data from the Helioseismic Magnetic Imager (HMI) on board Solar Dynamics Observatory , and hard X-ray observations made by RHESSI . For this analysis we use level-1 HMI data (filtergrams), obtained by scanning the Fe i line (6731 Å) with the time cadence of ∼3.6 s and spatial resolution of ∼0.″5 per pixel. It is found that the photospheric disturbances caused by the flare spatially coincide with the region of hard X-ray emission but are delayed by ≲4 s. This delay is consistent with predictions of the flare hydrodynamics RADYN models. However, the models fail to explain the magnitude of variations observed by the HMI. The data indicate that the photospheric impact and helioseismic wave might be caused by the electron energy flux, which is substantially higher than that in the current flare radiative hydrodynamic models.

  4. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  5. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  6. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  7. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  8. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  9. The Design And Development Of Solar Maize Dryer With Subsidiary ...

    African Journals Online (AJOL)

    A solar Dryer with a subsidiary heating source for drying maize seed is designed and constructed. The dryer is made up a solar collector (heat source), the drying chamber (Product storage), and a subsidiary heating source (local oil). The plant when put in operation by expositing it to the solar rays, is capable of attaining a ...

  10. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  11. The Design of Hot Water Supply System of Solar Energy and Air Source Heat Pump%太阳能+空气源热泵的热水供应系统设计

    Institute of Scientific and Technical Information of China (English)

    卢春萍

    2015-01-01

    太阳能集中热水系统受到天气的影响难以全天候运行,需要设置辅助加热装置。以广州市宾馆热水供应为例,对太阳能空气源热泵的热水系统进行设计,包括空气源热泵热水机组选型计算、太阳能集热管面积计算、储热水箱的确定、集热循环水泵的确定。%Influenced by weather condition,it is difficult to run for hot water supply system of solar en-ergy all the time,and the auxiliary heating device need setting.Taking hot water supply in a hotel of Guangzhou city as an example in this paper,the heat pump system of solar energy and air source was designed,including the calculation of equipment selection of the air source heat pump, the calculation of the collector area,the determination of the heat storage tank,and the determina-tion of the circulating pump of the heat collection.

  12. Experimental Research on Multi-source Solar Energy and Air Source Heat Pump System with Serpentine Tube Energy Storage Exchangers%蓄能型蛇形管太阳能——空气源复合热泵系统实验研究

    Institute of Scientific and Technical Information of China (English)

    陈杨华; 彭辉; 郭文帅; 李钰; 陈非凡

    2013-01-01

    蛇形管蓄能型太阳能——空气源复合热泵系统结合了空气源热泵技术、太阳能利用技术和蓄能技术三者的优点,是一种高效新型的热泵系统.在搭建好实验台后,通过实验分析了该系统在常规空气源热泵供热模式、蓄冷模式、取冷模式、蓄能热泵供热模式、边蓄热边供热模式下的性能特性.实验结果证明蓄能型蛇形管太阳能——空气源复合热泵系统运行高效、安全、稳定可靠.%Multi-source solar energy and air source heat pump system with serpentine tube energy storage exchanges combine the advantages of air source heat pump, solar energy utilization technology and energy storage technology. It is a new high-efficiency heat pump system. After setting up experimental station, the performance characteristics of the system is analysed when conventional air source heat pump heating mode, cold storage mode, cold release mode, heating mode using heat storage, heat storage and heat release using solar heat pump mode is operated. Experimental results show that the system is efficient, safe, stable and reliable.

  13. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  14. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  15. Solar Energy in the Home. Revised.

    Science.gov (United States)

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site…

  16. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: goniopolarimetric properties and radio source locations

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Cecconi, B.; Krupařová, Oksana

    2014-01-01

    Roč. 289, č. 12 (2014), s. 4633-4652 ISSN 0038-0938 R&D Projects: GA ČR GP13-37174P; GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : plasma radiation * solar radio emissions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0601-z

  17. Coupled solar still, solar heater

    Energy Technology Data Exchange (ETDEWEB)

    Davison, R R; Harris, W B; Moor, D H; Delyannis, A; Delyannis, E [eds.

    1976-01-01

    Computer simulation of combinations of solar stills and solar heaters indicates the probable economic advantage of such an arrangement in many locations if the size of the heater is optimized relative to that of the still. Experience with various low cost solar heaters is discussed.

  18. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  19. Theoretical modelling of solar dish concentrator

    International Nuclear Information System (INIS)

    Yaaseen Rafeeu; Mohd Zainal Abidin Abdul Kadir; Senan Mohamed Abdulla; Nor Mariah Adam

    2009-01-01

    Full text: Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher conversion efficiency with reliable and affordable supply of electricity to the public. The proposed approach is using different size and depth of solar dish concentrators to improve solar fraction using the aluminium foil as reflector. In this paper, different measurement of solar concentrators is investigated and aims to aims to introducing an improved methodology for solar fraction on incoming solar energy in wet climate. (author)

  20. Villa Design and Solar Energy Utilization

    OpenAIRE

    Olofsson, Martin

    2013-01-01

    This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the real estate that I have drawn for the thesis work. Solar energy is a renewable source of energy from the Sun's light. Energy can be used to produce both heat and electricity through solar collectors and solar cells. Some of the benefits of solar energy is that it is completely free to extract, environmentally friendly and virtually maintenance-free. Disadvantages are that th...

  1. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Chen Deming; Xu Gang

    2007-01-01

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  2. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    investigating organic solar cell technology. In spring 2011, Nanotechnology launches a new section wholly dedicated to the coverage of new and stimulating research into energy sources based on nanoscale science and technology. There is at present considerable concern over how to fuel the planet in a sustainable manner with the increasingly energy-thirsty human population. Yet the Earth receives more solar energy in one hour than the world population consumes in one year [8]. No wonder research into photovoltaics and ways of increasing the efficiency with which this energy can be harnessed continues to hold so much fascination. References [1] Levin I and White C E 1949 J. Chem. Phys. 18 417 [2] Chirvase D, Parisi J, Hummelen J C and Dyakonov V 2004 Nanotechnology 15 1317 [3] Kwong C Y, Choy W C H, Djurišić A B, Chui P C, Cheng K W and Chan W K 2004 Nanotechnology 15 1156 [4] Krebs F C, Thomann Y, Thomann R and Andreasen J W 2008 Nanotechnology 19 424013 [5] Zeng T-W, Lin Y-Y, Lo H-H, Chen C-W, Chen C-H, Liou S-C, Huang H-Y and Su W-F 2006 Nanotechnology 17 5387 [6] Dissanayake D M N M, Hatton R A, Lutz T, Curry R J and Silva S R P 2009 Nanotechnology 20 245202 [7] Nicholson P G and Castro F A 2010 Nanotechnology 21 492001 [8] http://www.solarenergyworld.org/solar-energy-facts/

  3. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  4. Operation strategy of solar-ground source heat pump systems%太阳能-地源热泵联合供能系统运行策略研究

    Institute of Scientific and Technical Information of China (English)

    王恩宇; 贺芳; 齐承英

    2012-01-01

    根据天津地区的气候条件,建立了太阳能-地源热泵多热源供热系统模型.利用TRNSYS软件对该系统进行了模拟研究,分析了系统用能情况及运行过程中地温的变化,着重对运行策略进行了研究.基于系统的性能系数选定的控制策略为:集热器出口与水箱出口温差大于15℃时启动集热,当温差小于2℃时停止集热;水箱出口温度高于50℃时启动储热,土壤进出口水温差不足5℃时停止储热.%Establishes a solar-ground source heat pump system model according to the climatic conditions in Tianjin. Carries out a simulation study of the system based on TRNSYS program, analyses the energy consumption of the system and the ground temperature change, and studies the operation strategy with emphasis. Selects an appropriate operation strategy based on the coefficient of performance (COP) of system, i. e. to turn on the solar collection pump as the temperature difference between collector outlet and tank outlet is higher than 15 ℃, and to turn off the pump until it is less than 2 ℃ , and to turn on the solar storage pump when tank outlet temperature is higher than 50 ℃ , and to turn off it until the temperature difference between inlet and outlet of the borehole heat exchanger is less than 5 ℃.

  5. Cross-field gradients: general concept, importance of multi-spacecraft measurements and study at 1 AU of the source intensity gradient for E > 30 keV solar event electrons

    Directory of Open Access Journals (Sweden)

    P. A. Chaizy

    Full Text Available Three main physical processes (and associated properties are currently used to describe the flux and anisotropy time profiles of solar energetic par- ticle events, called SEP profiles. They are (1 the particle scattering (due to magnetic waves, (2 the particle focusing (due to the decrease of the amplitude of the interplanetary magnetic field (IMF with the radial distance to the Sun and (3 the finite injection profile at the source. If their features change from one field line to another, i.e. if there is a cross IMF gradient (CFG, then the shape of the SEP profiles will depend, at onset time, on the relative position of the spacecraft to the IMF and might vary significantly on small distance scale (e.g. 106 km. One type of CFG is studied here. It is called intensity CFG and considers variations, at the solar surface, only of the intensity of the event. It is shown here that drops of about two orders of magnitude over distances of ~104 km at the Sun (1° of angular distance can influence dramatically the SEP profiles at 1 AU. This CFG can lead to either an under or overestimation of both the parallel mean free path and of the injection parameters by factor up to, at least, ~2-3 and 18, respectively. Multi-spacecraft analysis can be used to identify CFG. Three basic requirements are proposed to identify, from the observation, the type of the CFG being measured.

    Key words: Solar physics, astrophysics, and astronomy (energetic particles; flares and mass ejections - Space plasma physics (transport processes

  6. Solar History An Introduction

    CERN Document Server

    Vita-Finzi, Claudio

    2013-01-01

    Beyond the four centuries of sunspot observation and the five decades during which artificial satellites have monitored the Sun – that is to say for 99.99999% of the Sun’s existence – our knowledge of solar history depends largely on analogy with kindred main sequence stars, on the outcome of various kinds of modelling, and on indirect measures of solar activity. They include the analysis of lunar rocks and meteorites for evidence of solar flares and other components of the solar cosmic-ray (SCR) flux, and the measurement of cosmogenic isotopes in wood, stratified ice and marine sediments to evaluate changes in the galactic cosmic-ray (GCR) flux and thus infer changes in the sheltering magnetic fields of the solar wind. In addition, shifts in the global atmospheric circulation which appear to result from cyclic fluctuations in solar irradiance have left their mark in river sediments and in the isotopic composition of cave deposits. In this volume the results these sources have already produced have bee...

  7. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  8. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources

    Directory of Open Access Journals (Sweden)

    Domenico Scardigno

    2016-06-01

    Full Text Available This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article “A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources” (Scardigno et al., 2015 [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.

  9. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  10. Study on Energy-saving Solar Air-source Heat Pump Multifunctional Machine%节能型太阳能空气源热泵多功能机研究

    Institute of Scientific and Technical Information of China (English)

    王天舒

    2018-01-01

    随着科技的进步和经济的发展,节能和环保问题使得人们越来越重视清洁能源的利用,太阳能有其独特的优越性但是受限于太阳因素.而热泵技术作为节能型制冷供热热水技术与太阳能结合具有良好的性能.本文主要介绍了节能型太阳能空气源热泵多功能机的工作原理、应用领域.%With the progress of science and technology and development of economy, people pay more and more attention to the utilization of clean energy due to the problems of energy saving and environmental protection. Heat pump technology, as an energy saving refrigeration and heating hot water technology combined with solar energy, has good performance. This paper introduces the working principle and application field of energy-saving solar air-source heat pump multifunctional machine.

  11. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  12. 太阳能-土壤源热泵复合系统优化与性能分析%System Optimization and Performance Analysis of Solar Energy and Ground-source Heat Pump Hybrid System

    Institute of Scientific and Technical Information of China (English)

    丁力勤

    2016-01-01

    本文利用瞬时系统模拟软件(Trnsys)搭建了常规土壤源热泵系统及太阳能-土壤源热泵并联复合式系统的模型,并根据不同集热器单位面积流量和水箱体积等参数进行了模拟计算。结果表明,土壤源热泵系统性能系数达3.6~3.8,具有明显的节能优势。%The models of ground-source heat pump system and the solar energy and ground-source heat pump shunt-wound hybrid system have been built by transient system (Trnsys) simulation software, and the simulation calculation has been processed according to the flow rate per unit area and water tank volume for different collectors. According to the simulation results, the coefficient of performance of the ground-source heat pump system is 3.6~3.8, and the system has advantages on energy saving.

  13. 太阳能——地源热泵耦合系统在某办公楼中的应用%Application of solar energy ground source heat pump coupling system in an office building

    Institute of Scientific and Technical Information of China (English)

    陈杰; 贾瑞远

    2017-01-01

    the winter heating by using solar energy,ground source heat pump coupling system,both energy conservation and environmental protection and can further improve the utilization rate of energy and no pollution to the environment.The office building in 50000m2 as an example to analyze the energy saving of the system,environmental protection and economy.%利用太阳能一一地源热泵耦合系统进行冬季供暖,既节能环保又能进一步提高能源的利用率且对环境无污染.本文以50000m2的办公建筑为例分析了该系统的节能、环保及经济性.

  14. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  15. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  16. Flexible Solar Cells

    Science.gov (United States)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  17. MULTI-HEAT SOURCE SOLAR HEAT PUMP HEAT SUPPLY SYSTEM AND PERFORMANCE SIMULATION%复合热源太阳能热泵供热系统及其性能模拟

    Institute of Scientific and Technical Information of China (English)

    杨磊; 张小松

    2011-01-01

    提出了一种复合热源太阳能热泵供热系统,通过阀门切换,可根据不同的天气状况改变运行模式,以空气和太阳辐射作为热源制取供暖用水.针对所设计的lOkw供热系统,建立了系统的数学模型,对热泵串联集热器(SC+HP)及集热器串联热泵(HP+SC)两种运行模式下的循环性能进行了计算机模拟分析,并计算了系统的全年运行状况.从模拟结果可以看出,在模拟进水温度区间内,HP+SC模式下热泵COP较高,最高比SC+HP模式高2.58%;而SC+HP模式集热器热性能较好,总热效率更高,最高比HP+SC模式高2.62%.%A compound solar heat pump heat supply system was presented. The system can make heating water from air source and solar radiation by valve switching, based on different weather conditions. A numerical model for a l0kW heating utilizing was established. The circulation performances of solar collector with heat pump( SC + HP) and heat pump with solar collector( Hp + SC) operation modes were simulated. The all year round operation status was also caculated.The results have shown that the COP of HP + SC mode is at most 2.58 % higher than SC + HP mode in simulation water temperature range. But the latter has a better collector thermal performance and overall thermal efficiency is at most 2.62 % higher than the former.

  18. Test and Analysis of Solar Energy-ground Source Heat Pump Complex Systems%太阳能-地源热泵复合系统的实验研究

    Institute of Scientific and Technical Information of China (English)

    侯静; 荆有印; 王静; 杨鹏

    2012-01-01

    The ground-source heat pump, a trend in the future, is a high efficiency system that uses the renewable geothermal. But in northern China, the heat load is the major way. In this, the heat that underground pipe absorbs in winter is more than the heat discharged by underground pipe in summer. After long-time running, the heat pump system will destroy the soil temperature field. This article describes a complex heat pump system of solar-ground source. And this article, through experiment, will prove that the solar assisted system can effectively restore soil temperature increase the coefficient of performance and achieve long-term stable operation of heat pump system.%地源热泵是利用可再生能源地热能的一种高效热泵系统,是未来发展的趋势。但在我国北方地区,大部分以热负荷为主,冬季地下埋管的取热量高于夏季的释热量,长期运行会破坏土壤温度场。介绍了太阳能一地源热泵复合系统,通过实验验证了太阳能辅助系统能够有效恢复土壤温度,提高系统性能系数,可以实现热泵长期稳定的运行。

  19. Photo and thermochemical evolution of astrophysical ice analogues as a source for soluble and insoluble organic materials in Solar system minor bodies

    Science.gov (United States)

    de Marcellus, Pierre; Fresneau, Aurelien; Brunetto, Rosario; Danger, Gregoire; Duvernay, Fabrice; Meinert, Cornelia; Meierhenrich, Uwe J.; Borondics, Ferenc; Chiavassa, Thierry; Le Sergeant d'Hendecourt, Louis

    2017-01-01

    Soluble and insoluble organic matter (IOM) is a key feature of primitive carbonaceous chondrites. We observe the formation of organic materials in the photothermochemical treatment of astrophysical ices in the laboratory. Starting from a low vacuum ultraviolet (VUV) irradiation dose on templates of astrophysical ices at 77 K, we obtain first a totally soluble form of organic matter at room temperature. Once this organic residue is formed, irradiating it further in vacuum results in the production of a thin altered dark crust on top of the initial soluble one. The whole residue is studied here by non-destructive methods inducing no alteration of samples, visible microscopy and mid-infrared (micro-)spectroscopy. After water extraction of the soluble part, an insoluble fraction remains on the sample holder which provides a largely different infrared spectrum when compared to the one of the soluble sample. Therefore, from the same VUV and thermal processing of initial simple ices, we produce first a soluble material from which a much larger irradiation dose leads to an insoluble one. Interestingly, this insoluble fraction shows some spectral similarities with natural samples of IOM extracted from two meteorites (Tagish Lake and Murchison), selected as examples of primitive materials. It suggests that the organic molecular diversity observed in meteorites may partly originate from the photo and thermal processing of interstellar/circum-stellar ices at the final stages of molecular cloud evolution towards the build-up of our Solar system.

  20. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  1. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  2. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  3. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  4. Fiscal 1998 achievement report on regional consortium research and development project. Venture business raising type regional consortium - small business creating base type (Development of mobile hybrid power source system using wind and solar energies); 1998 nendo kahanshiki furyoku taiyoko hybrid dengen system no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Regarding new energy power sources such as solar cells and small wind power systems (1-3kW), research and development is conducted for a new hybrid system featuring 'mobile, package type, no construction cost.' In the research, 4-12m telescopic wind turbine supporting poles are manufactured for two types of wind turbines respectively generating 1.5kW and 2.5kW. A slide type mechanism is employed for solar cell deployment, which enables on-site deployment. Each solar panel accommodates 24 solar cells, and one is installed on top of a container to serve as control room. A control system is developed for this hybrid power source system, which receives power from a wind power turbine and solar cells and supplies power to three kinds of power sources. For the stable supply of power to the loads, 24V/1500Ah batteries are provided. Each power charging controller and protecting device are found to operate smoothly in a verification test, which means the goal of the development endeavors has been achieved. (NEDO)

  5. Community Solar Value Project

    Energy Technology Data Exchange (ETDEWEB)

    Powers, John T [Extensible Energy; Cliburn, Jill [Cliburn and Associates

    2017-11-30

    The Community Solar Value Project (CSVP) is designed to assist electric utilities in designing better community solar programs. Better programs seek new sources of value to promote “win-win” solutions between utilities and their customers. The CSVP focused on five “challenge areas” in identifying new sources of value: - Strategic solar design for community solar projects (including technology choices, siting, orientation, and related issues) - Market research and targeted marketing approaches (for program design and for customer recruitment) - Procurement and financing (for establishing best practices that can bring economies of scale and economies of expertise) - Integration of “companion measures” (such as storage and demand-response options that can benefit customer and utility net load shapes) - Pricing in program design (including best practices for integration of identified value in program prices or credits) The CSVP directly engaged the Sacramento Municipal Utility District (SMUD), the Public Service Company of New Mexico (PNM), and more than a dozen other utilities to develop improved community solar program designs. The outcomes include a plan at SMUD for over 100 MW or more of community and shared solar and support for new or expanded programs at 15 other utilities so far. Resulting best-practice solutions have not only informed program applications, but also have generated discussion among experts and industry associations about the new opportunities and challenges CSVP has brought forth. In these ways, the CSVP has impacted community solar programs and DER plans, competitive innovations and policies nationwide. The CSVP team has been led by Extensible Energy under John Powers, President and CEO. Jill Cliburn, of Santa Fe, NM-based Cliburn and Associates, has served as Principal Investigator. The team also benefitted from expertise from Navigant, Olivine Inc. and Millennium Energy, LLC, in addition to the collaborative and cost

  6. Solar action: solar hot water in The Netherlands

    International Nuclear Information System (INIS)

    Van de Water, Adrie

    2001-01-01

    This paper focuses on the use of solar hot water systems in the Netherlands, and reports on the Dutch Solar Domestic Hot Water System agreement signed in 1999 and set up to enhance the development of the market for solar domestic hot water (SDHW) systems and their application as a sustainable energy source. The Dutch Thermal Solar Energy Programme's objectives and goals, the subsidy schemes for thermal solar energy administered by Senter - an agency of the Ministry of Economic Affairs (MEA), and the project-based and individual approaches to boosting the sales of SDHW systems are examined. Large system sales, the targeting of consumers via a national campaign, and national publicity using the slogan 'Sustainable energy. Goes without saying' commissioned by the MEA are discussed along with the support shown by the Dutch power distribution companies for SDHW systems, marketing aspects, and the outlook for sales of SDHW systems

  7. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  8. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  9. Solar energy. Inexhaustible, clean, profitable

    International Nuclear Information System (INIS)

    Colombo, S.

    2001-01-01

    The growth of US dollar together with the crisis of euro are producing a strong increase in the cost of traditional energy sources: oil and natural gas. Therefore, it is the ideal situation for boosting the alternative energy sources, above all the solar energy which is the most promising [it

  10. Solar Newsletter | Solar Research | NREL

    Science.gov (United States)

    more about work by this consortium, which crosses national laboratories, on new materials and designs information on NREL's research and development of solar technologies. To receive new issues by email prize, focused on solar energy technologies, and will release the prize rules and open registration

  11. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  12. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  13. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    Solar MHD is an important tool for understanding many solar phenomena. It also plays a crucial role in explaining the behaviour of more general cosmical magnetic fields and plasmas, since the Sun provides a natural laboratory in which such behaviour may be studied. While terrestrial experiments are invaluable in demonstrating general plasma properties, conclusions from them cannot be applied uncritically to solar plasmas and have in the past given rise to misconceptions about solar magnetic field behaviour. Important differences between a laboratory plasma on Earth and the Sun include the nature of boundary conditions, the energy balance, the effect of gravity and the size of the magnetic Reynolds number (generally of order unity on the Earth and very much larger on the Sun). The overall structure of the book is as follows. It begins with two introductory chapters on solar observations and the MHD equations. Then the fundamentals of MHD are developed in chapters on magnetostatics, waves, shocks, and instabilities. Finally, the theory is applied to the solar phenomena of atmospheric heating, sunspots, dynamos, flares, prominences, and the solar wind. (Auth.)

  14. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  15. Microcontroller Based Solar Charge Controller for Power Application

    OpenAIRE

    Mr. Vikas Khare

    2012-01-01

    Photovoltaic cell converts solar energy directly into electricity. This paper describes a design of microcontroller based solar charge controller for power application.[2] The work of the Paper is to charge a 12 volt battery by using a 50 watt solar panel with maximum power. This circuit regulates the charging of battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reached a preset value.[1] The microprocessor based charge ...

  16. Solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Hullmann, H; Schmidt, B [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Industrialisierung des Bauens

    1976-01-01

    The utilisation possibilities of solar energy for the energy supplying of buildings are becoming increasingly more significant. Solar research at the moment aims predominantly with a high level of efficiency and therefore making accessible a significant range of applications for solar technology. Parallel to this are attempts to effect the saving of energy, be it in the demand for energy-saving constructions or in the increasing development and application of rational energy utilisation by technologists. The most important point of these activities at the moment, is still technological methods.

  17. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  18. A Single-Phase Current Source Solar Inverter with Constant Instantaneous Power, Improved Reliability, and Reduced-Size DC-Link Filter

    Science.gov (United States)

    Bush, Craig R.

    This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

  19. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  20. Ice photochemistry as a source of amino acids and other organic molecules in meteorites, and implications for the origin of life and the search for life in the Solar System

    Science.gov (United States)

    Bernstein, Max

    2005-01-01

    The tons of extraterrestrial organic material that come to the Earth every day probably helped to made the Earth habitable, and possibly played a role in the origin of life. At the astrochemistry lab (http://www.astrochem.orq) we investigate the formation and distribution of organic molecules in space and consider the impact such molecules may have on the habitability of planets and the search for life in the Solar System. The organic compounds in meteorites include amino acids, aromatics of various sorts including purine and pyrimidine bases, and fatty acids that form bi-layer vesicles. The origin of many of these species remains mysterious, but in recent years we and others have performed experiments that suggest low temperature radiation chemistry could account for the presence and deuterium enrichment of many of these molecules. . I will present our laboratory experiments that show the viability of low temperature radiation chemistry as a source of organic molecules such as;amino acids (Nature, 2002, 416, 401-403), amphiphiles (Astrobiology, 2003, 2, 371, Proc. Nat. Acad. Sci. 2001, 98, 815), quinones (Science, 1999, 283, 1135) and other functionalized aromatic compounds (Meteoritics, 2001, 36, 351 ; Astrophysical Journal., 2003, 582, L25), some of which were invoked as potential biomarkers in the Alan Hills 84001 Martian meteorite. Understanding how components of proteins and DNA could form in sterile space environments is also of relevance to our search for life elsewhere in the Solar System, the great task now ahead of NASA. If we find evidence of Life elsewhere in the Solar System it will probably be in form of chemical biomarkers, quintessentially biological molecules that indicate the presence of micro-organisms. While most people think of molecules such as amino acids, and nucleo-bases as good candidate biomarkers, these molecules are produced non-biotically in space and are expected to be present on the surface of other planets even in the absence of

  1. Solar power's rise and promise

    OpenAIRE

    Pernia, Ernesto M.; Generoso, Maria Janela M.

    2015-01-01

    Time was when solar energy was facilely dismissed as impractical, inefficient, and pricey. In recent years, however, innovations in technology, regulation, and financing have resulted in remarkable efficiency improvements and price reductions, thereby reversing the skepticism about this renewable energy (RE) source. In this paper, we explore how this has happened, to what extent photovoltaic solar technology has been accepted around the world, and what might be its potential for inclusive gre...

  2. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  3. Solar chulha

    Energy Technology Data Exchange (ETDEWEB)

    Jadhao, P. H. [Department of Physics J.D. Institute of Engg. & Tech. Yavatmal (India); Patrikar, S. R. [Department of Physics VNIT, Nagpur (India)

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  4. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  5. Solar Energy

    Science.gov (United States)

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  6. Solar Pump

    Science.gov (United States)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  7. Introduction to the study of solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Touchais, M

    1979-01-01

    The conversion of solar energy to meet the world's energy requirements by means of solar technology is discussed as preface to an introductory course in solar technology. The significance of the energy crisis of 1973 to the development of alternative sources of energy, primarily solar, is considered, and the amount of recoverable solar energy incident on the earth is estimated to be able to supply the world's energy demand. The various means of solar energy conversion, including thermal, chemical in the form of hydrogen or methane, and direct or thermal electrical, are examined, and areas of these technologies requiring further experimental investigation are indicated. Solar technology is presented as the science of the artificial applications of solar energy, with mention of its associated disciplines, and the deficiencies of the solar technology developed prior to the energy crisis are exposed. Goals for contemporary instruction in solar technology are then derived, the introductory course is outlined, and bibliographic references are presented. Differences between the sources of solar and traditional energies are also discussed.

  8. Employment impacts of solar energy in Turkey

    International Nuclear Information System (INIS)

    Cetin, Muejgan; Egrican, Niluefer

    2011-01-01

    Solar energy is considered a key source for the future, not only for Turkey, also for all of the world. Therefore the development and usage of solar energy technologies are increasingly becoming vital for sustainable economic development. The main objective of this study is investigating the employment effects of solar energy industry in Turkey. Some independent reports and studies, which analyze the economic and employment impacts of solar energy industry in the world have been reviewed. A wide range of methods have been used in those studies in order to calculate and to predict the employment effects. Using the capacity targets of the photovoltaic (PV) and concentrated solar power (CSP) plants in the solar Roadmap of Turkey, the prediction of the direct and indirect employment impacts to Turkey's economy is possible. As a result, solar energy in Turkey would be the primary source of energy demand and would have a big employment effects on the economics. That can only be achieved with the support of governmental feed-in tariff policies of solar energy and by increasing research-development funds. - Highlights: → The objective of the study, is investigating employment effects of solar energy. → Using the capacity targets of the PV and CSP plants in solar roadmap of Turkey. → Direct employment has been calculated by constructing of the solar power plant. → If multiplier effect is accepted as 2, total employment will be doubled. → Validity of the figures depends on the government's policies.

  9. Solar Schematic

    Science.gov (United States)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  10. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  11. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  12. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  13. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  14. Solar vision 2025 : beyond market competitiveness

    International Nuclear Information System (INIS)

    2010-12-01

    Canada's reputation as an energy superpower is based on its abundant traditional energy resources. The Canadian Solar Industries Association (CanSIA) has presented a vision of Canada's future solar energy industry. Rising demands for energy, along with the high cost of replacing Canada's aging generation facilities may provide an opportunity for the development of renewable energy sources and a more diversified energy system. The vision focused on creating high quality energy solutions while reducing the high cost of solar energy equipment. Studies have suggested that the solar photovoltaic energy will be market competitive by 2020. By 2025, it is hoped that the solar industry will support more than 35,000 jobs in the economy, and displace 15 to 31 million tonnes of greenhouse gas (GHG) emissions per year. The economic benefits of solar energy were outlined, and new technologies were presented. The export potential of solar energy was discussed. 26 refs., 4 tabs., 40 figs.

  15. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  16. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  17. Solar energy. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Benseman, R.

    1977-10-15

    The potential for solar space heating and solar water heating in New Zealand is discussed. Available solar energy in New Zealand is indicated, and the economics of solar space and water heating is considered. (WHK)

  18. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  19. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  20. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  1. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  2. Outgassing tests on iras solar panel samples

    Science.gov (United States)

    Premat, G.; Zwaal, A.; Pennings, N. H.

    1980-01-01

    Several outgassing tests were carried out on representative solar panel samples in order to determine the extent of contamination that could be expected from this source. The materials for the construction of the solar panels were selected as a result of contamination obtained in micro volatile condensable materials tests.

  3. Teaching Children to Value Solar Energy

    Science.gov (United States)

    Hugerat, Muhamad; Saker, Salem; Odeh, Saeed; Agbaria, Adnan

    2011-01-01

    In this educational initiative, we suggest to build a real model of solar village inside the school, which uses only solar energy. These educational initiatives emphasize the importance of energy for a technological society and the advantage of alternative energy sources. In this scientific educational initiative, the pupils in three elementary…

  4. Performance test for a solar water heater

    Science.gov (United States)

    1979-01-01

    Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.

  5. Biomass and Solar Technologies Lauded | News | NREL

    Science.gov (United States)

    4 » Biomass and Solar Technologies Lauded News Release: Biomass and Solar Technologies Lauded July security and reduce our reliance on foreign sources of oil." The Enzymatic Hydrolysis of Biomass Cellulose to Sugars technology is expected to allow a wide range of biomass resources to be used to produce

  6. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  7. Organoruthenium Complexes for Solar Energy Harvesting

    NARCIS (Netherlands)

    Wadman, S.H.|info:eu-repo/dai/nl/304834084

    2008-01-01

    One of the greatest challenges of this time is providing the world with the energy it needs to sustain human kind's current standard of living. Solar energy is the most abundant and ubiquitous renewable energy source available, and as such it holds great promises. Traditionally, the field of solar

  8. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  9. Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location

  10. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  11. Ayres' bifurcated solar model

    International Nuclear Information System (INIS)

    Kalkofen, W.

    1985-01-01

    The assumptions of Ayres' model of the upper solar atmosphere are examined. It is found that the bistable character of his model is postulated - through the assumptions concerning the opacity sources and the effect of mechanical waves, which are allowed to destroy the CO molecules but not to heat the gas. The neglect of cooling by metal lines is based on their reduced local cooling rate, but it ignores the increased depth over which this cooling occurs. Thus, the bifurcated model of the upper solar atmosphere consists of two models, one cold at the temperature minimum, with a kinetic temperature of 2900 K, and the other hot, with a temperature of 4900 K. 8 references

  12. Equations for solar tracking.

    Science.gov (United States)

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  13. Tomorrow's solar world

    International Nuclear Information System (INIS)

    Leitch, Meg.

    1996-01-01

    The largest privately funded solar power installation in the world is at the Florida Walt Disney World. It is the Universe of Energy exhibit at the Experimental Prototype Community of the World. The Universe of Energy shows the development and exploitation of energy sources and how energy is used and includes a recreation of the primeval world from which coal and oil deposits were formed. Visitors travel through two giant theatres in electrically powered cars. Most of the ride system is powered by a solar cell array on the roof of the building. The array is composed of 2,200 modules each made up of 36 cells and can generate 70kW of DC power which is fed through an inverter to convert it to AC. (UK)

  14. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  15. Proceedings of the Canadian Solar Industries Association Solar Forum 2005 : sunny days ahead : a forum on solar energy for government officials

    International Nuclear Information System (INIS)

    2006-01-01

    Solar energy is the fastest growing energy source in the world. Government involvement is critical in the deployment of solar energy. This forum focused on the application of solar energy in government facilities. The forum was divided into 3 sessions: (1) solar technologies and markets; (2) government initiatives that support solar energy; and (3) the use of solar energy on government facilities in Canada. The current state of solar technologies and products in Canada was reviewed. Solar thermal markets were discussed with reference to passive solar energy and photovoltaic applications. On-site solar generation for federal facilities was discussed, and various federal initiatives were reviewed. Issues concerning Ontario's standard offer contract program were discussed. Government users and buyers of solar products spoke of their experiences in using solar energy and the challenges that were faced. The role that solar energy can play in reducing government costs was discussed, as well as the impact of solar energy on the environment. Opportunities and barriers to the use of solar energy in Canada were explored. The conference featured 14 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. Sistema Solar

    OpenAIRE

    Federación de Asociaciones de Astronomía Cielo de Comellas

    2011-01-01

    Lección sobre el Sistema Solar. Curso de Astronomía Básica, segunda edición, impartido por los miembros de la Federación de Asociaciones de Astronomía Cielo de Comellas. Casa de la Ciencia, sábados, del 24 de septiembre al 22 de octubre de 2011

  17. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  18. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  19. Solar Neutrinos

    Indian Academy of Sciences (India)

    7,81. The Chlorine experiment, located in the Homestake Gold Mine in Lead, South Dakota, was the first solar neutrino experiment to be set up. A tank of. 105 gallons of perchloroethylene in which the electron neu- trino reacts with chlorine to ...

  20. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  1. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  2. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  3. Low cost solar dryer for fish

    African Journals Online (AJOL)

    Administrator

    Department of Electrical and Other Energy Sources, College of Agricultural Engineering and Technology, DBSKKV, ... The average solar energy ranged between 450 - 500 ..... classification and selection of dryers, In Handbook of industrial.

  4. Automation of solar plants

    Energy Technology Data Exchange (ETDEWEB)

    Yebra, L.J.; Romero, M.; Martinez, D.; Valverde, A. [CIEMAT - Plataforma Solar de Almeria, Tabernas (Spain); Berenguel, M. [Almeria Univ. (Spain). Departamento de Lenguajes y Computacion

    2004-07-01

    This work overviews some of the main activities and research lines that are being carried out within the scope of the specific collaboration agreement between the Plataforma Solar de Almeria-CIEMAT (PSA-CIEMAT) and the Automatic Control, Electronics and Robotics research group of the Universidad de Almeria (TEP197) titled ''Development of control systems and tools for thermosolar plants'' and the projects financed by the MCYT DPI2001-2380-C02-02 and DPI2002-04375-C03. The research is directed by the need of improving the efficiency of the process through which the energy provided by the sun is totally or partially used as energy source, as far as diminishing the costs associated to the operation and maintenance of the installations that use this energy source. The final objective is to develop different automatic control systems and techniques aimed at improving the competitiveness of solar plants. The paper summarizes different objectives and automatic control approaches that are being implemented in different facilities at the PSA-CIEMAT: central receiver systems and solar furnace. For each one of these facilities, a systematic procedure is being followed, composed of several steps: (i) development of dynamic models using the newest modeling technologies (both for simulation and control purposes), (ii) development of fully automated data acquisition and control systems including software tools facilitating the analysis of data and the application of knowledge to the controlled plants and (iii) synthesis of advanced controllers using techniques successfully used in the process industry and development of new and optimized control algorithms for solar plants. These aspects are summarized in this work. (orig.)

  5. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    Science.gov (United States)

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  6. Proposal to Establish an International Solar Research Institute

    International Nuclear Information System (INIS)

    Broda, E.

    1974-01-01

    This report was written by E. Broda and it is about a proposal to establish an international solar research institute. Broda emphasizes solar energy as the most important energy source alternatively to nuclear energy and he points out the advantages of solar energy over nuclear energy. This report was written for a symposium for science and peace in February 1974. (nowak)

  7. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  8. An Experimentalist's Overview of Solar Neutrinos

    Science.gov (United States)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  9. An Experimentalist's Overview of Solar Neutrinos

    International Nuclear Information System (INIS)

    Oser, Scott M

    2012-01-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  10. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  11. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  12. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  13. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  14. A comparison of solar wind streams and coronal structure near solar minimum

    Science.gov (United States)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  15. Development of a Greek solar map based on solar model estimations

    Science.gov (United States)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  16. Solar and nuclear power are partners

    International Nuclear Information System (INIS)

    Rossin, A.D.

    1985-01-01

    This chapter attempts to refute the claim made by solar energy proponents that the continued reliance on electric grids with coal-fired and nuclear plants hinders the development of solar energy sources. It is proposed that solar and nuclear power do not compete with one another, no energy source can do the job alone, and the future of solar energy is brightest only if nuclear power succeeds. Since electric utilities have to generate almost twice as much energy during the day than at night, solar energy could be used to decrease the amount of electric power the nuclear power plants must supply at peak periods. It is argued that the key to solving future energy demands is diversity in the forms of energy supply

  17. Terawatt solar photovoltaics roadblocks and opportunities

    CERN Document Server

    Tao, Meng

    2014-01-01

    Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

  18. The turbulent cascade and proton heating in the solar wind during solar minimum

    International Nuclear Information System (INIS)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-01-01

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  19. Hearing of the Swiss Solar Energy Society (SSES). The ombudsman for solar heating systems as a quality assurance element

    International Nuclear Information System (INIS)

    Brugger-Mariani, G.

    1999-01-01

    Following an invitation issued by the Swiss Solar Energy Society (SSES),14 solar energy specialists hold a hearing on quality assurance for solar heating systems. Anticipating the introduction of taxes in favour of renewable energy sources and the expected rapid solar market development, the delegates discussed about the creation of a neutral ombudsman office for unsatisfied clients of the solar industry. Clearly, the solar heating system market can only expand if system quality is in accordance with the clients' expectations. The needed know-how may be found since several years in well presented reference books. However, at the moment, not all industry people follow these instructions yet [de

  20. performance Analysis of Different Energy Absorbing Plates on Solar Stills

    OpenAIRE

    H.N. Panchal; P.K. Shah

    2011-01-01

    Solar distillation mimics nature’s hydrologic water cycle by purify water through evaporation as well as condensation. It is one of the most basic purification systems available today to get high quality of drinking water and can remove non-volatile contamination from almost any water source. Solar still is a one kind of solar distillation system in which brackish or impure water converted into drinkable water. Here, three solar stills have developed by locally available materials. The first ...

  1. A Charge Controller Design For Solar Power System

    OpenAIRE

    Nandar Oo; Kyaw Soe Lwin; Hla Myo Tun

    2015-01-01

    This paper presents the solar charge controller circuit for controlling the overcharging and discharging from solar panel. This circuit regulates the charging of the battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reaches a preset voltage. This circuit is low voltages disconnect circuit. A charge controller circuit can increase battery life by preventing over-charging which can cause loss of electrolyte. The flow chart...

  2. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  3. Solar charge controller in solar street light

    OpenAIRE

    Dong, Haibo

    2014-01-01

    Recently, with the rapid development of scientific technology, the conventional energy cannot meet the requirement of human beings. People are looking for the utilization of renew energy. Solar en-ergy as a new clean energy has attract the eyes of people. The applications of solar energy are popular to human society. Solar street light is a good example. This thesis will focus on a deeper research of the popular and ubiquitous solar street light in China. However, solar charge controll...

  4. Solar Training Network and Solar Ready Vets

    Energy Technology Data Exchange (ETDEWEB)

    Dalstrom, Tenley Ann

    2016-09-14

    In 2016, the White House announced the Solar Ready Vets program, funded under DOE's SunShot initiative would be administered by The Solar Foundation to connect transitioning military personnel to solar training and employment as they separate from service. This presentation is geared to informing and recruiting employer partners for the Solar Ready Vets program, and the Solar Training Network. It describes the programs, and the benefits to employers that choose to connect to the programs.

  5. Concentrating solar power: a sustainable and renewable way to get energy from solar light

    International Nuclear Information System (INIS)

    Montecchi, Marco

    2015-01-01

    Solar light irradiating the Earth is a great sustainable and renewable power source. In concentrating solar power plants, mirrors are used to redirect the solar light toward a small area where a receiver captures and converts it into thermal-energy which can be stored. ENEA has been developing the parabolic-trough Italian technology, as well as several facilities for the component characterization. The paper reports on some of those which are purely optical instruments [it

  6. Solar club

    CERN Multimedia

    Solar club

    2013-01-01

    SOLAR CLUB Le  CERN-Solar-Club souhaite une  très bonne année 2013 à tous les Cernois et Cernoises, et remercie encore une fois  tous ceux et celles qui, fin octobre, par leur vote, nous ont permis de finir dans les 5 premiers du concours "Conforama Solidaire" et ainsi financer nôtre projet "énergie solaire et eau potable pour Kilela Balanda" en République Démocratique du Congo (voir : http://www.confo.ch/solidarite/?lang=fr). Nous vous annoncons également notre Assemblée Générale Annuelle jeudi 21 février à 18 h 00 Salle C, 1er étage, Bât. 61 Vous êtes les bienvenus si vous souhaitez en savoir un peu plus sur les énergies renouvelables.

  7. Fisica solare

    CERN Document Server

    Degl’Innocenti, Egidio Landi

    2008-01-01

    Il volume è un'introduzione alla Fisica Solare che si propone lo scopo di illustrare alla persona che intende avvicinarsi a questa disciplina (studenti, dottori di ricerca, ricercatori) i meccanismi fisici che stanno alla base della complessa fenomenologia osservata sulla stella a noi più vicina. Il volume non ha la pretesa di essere esauriente (basta pensare che la fisica solare spazia su un gran numero di discipline, quali la Fisica Nucleare, la Termodinamica, L'Elettrodinamica, la Fisica Atomica e Molecolare, la Spettoscopia in tutte le bande dello spettro elettromagnetico, la Magnetoidrodinamica, la Fisica del Plasma, lo sviluppo di nuova strumentazione, l'Ottica, ecc.). Piuttosto, sono stati scelti un numero di argomenti di rilevanza fondamentale nello studio presente del Sole (soprattutto nei riguardi delle osservazioni da terra con grandi telescopi) e su tali argomenti si è cercato di dare una panoramica generale, inclusiva dell'evoluzione storica, senza scendere in soverchi dettagli. Siccome la Fis...

  8. Solar reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, J

    1983-01-15

    The reflector in the form of part of a cylindrical surface delimited by two envelopes is installed on a platform which can move on an inclined curvilinear path. The angle of inclination of the path depends on the latitude of the locality. The reflected rays are focused on the tubular absorber. One of the axes of the platform is linked to a brake controlled by a sensor for intensity of solar radiation. The sensor is a pipe filled with liquid with high value of the temperature expansion coefficient, for example alcohol. The pipe is insulated from one side and is accessible to the solar rays from the opposite. One end of the pipe is equipped with a bending end or piston. In order to expand the fluid in the sensor, the pipe acts on the brake, and the reflector is installed in a position corresponding to the maximum radiation intensity.

  9. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  10. Solar pulsations

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1980-01-01

    Oscillations of the surface of the sun, with periods between 5 and 160 min, have been observed by several spectroscopic techniques, and preliminary interpretations have been offered. The 5-min oscillations are global, nonradial, acoustic standing waves in the subsurface zone. Internal differential rotation speeds have been deduced from the Doppler splitting of these waves. Oscillations with longer periods have been reported, but need confirmation. The longest periods offer a tool for investigating the solar interior

  11. Solar Chameleons

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  12. Solar chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Zioutas, Konstantin

    2010-01-01

    We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  13. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  14. Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  15. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  16. Chaos in the Solar System

    Science.gov (United States)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  17. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  18. Turbulent Transport in a Three-dimensional Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy); Bruno, R., E-mail: shiota@isee.nagoya-u.ac.jp [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-01

    Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.

  19. Solar solution

    International Nuclear Information System (INIS)

    Shi Zhengrong

    2009-01-01

    China is facing enormous energy challenges. Everyone seems to know that we need to increase our energy supply by the equivalent of one power plant per week to support China's economic growth, which is allowing millions of people to enjoy better standards of living. Much less is known of the extent to which China has taken steps to mitigate the impact of that growing energy demand through incentives for greater efficiency and renewable energy. Policies include: Cutting energy intensity - 20 per cent between 2005 and 2010, saving five times as much CO 2 as the EU's goals. Cutting major pollutants by 10 per cent by 2010. Setting one of the world's most aggressive renewable energy standards: 15 per cent of national energy from renewables by 2020. Setting targets of 300 megawatts of installed solar by 2010, and 1.8 gigawatts by 2020, in the 2007 National Development and Reform Commission Renewable Energy Development Plan. Dedicating $180 billion for renewable energy by 2020. Imposing energy efficiency targets for the top 1,000 companies, a measure with greater carbon savings potential than most Western initiatives. Establishing building energy codes in all regions and extensive efficiency standards for appliances, which will be particularly important as China continues to grow. Targeting new buildings in major cities like Beijing, Shanghai and Chongqing, to achieve 65 per cent greater energy efficiency than local codes require. Closing thousands of older, smaller, dirtier power plants by 2010. China understands the economic development potential in clean energy technologies. Even the noted journalist Thomas Friedman has remarked that 'China is going green in a big way,' using domestic demand for cleaner energy to build low-cost, scalable green technologies. Suntech Power Holdings - now the world's largest solar photovoltaic (PV) module manufacturer, with operations around the globe - was just one of dozens of solar companies that realised the opportunity provided by

  20. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.