WorldWideScience

Sample records for solar simulators temperature

  1. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  2. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  3. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    Science.gov (United States)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  4. Computer simulation of the optical properties of high-temperature cermet solar selective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, M. Reza [K.N. Toosi Univ. of Technology, Dept. of Mechanical Engineering, Tehran (Iran); Fathollahi, V.; Asadi, M. Khalaji [AEOI, Center for Renewable Energy Research and Applications (CRERA), Tehran (Iran)

    2005-02-01

    A computer simulation is developed to calculate the solar absorptance and thermal emittance of various configurations of cermet solar selective coatings. Special attention has been paid to those material combinations, which are commonly used in high-temperature solar thermal applications. Moreover, other material combinations such as two-, three- and four-cermet-layer structures as solar selective coatings have been theoretically analyzed by computer simulation using three distinct physical models of Ping Sheng, Maxwell-Garnett and Bruggeman. The novel case of two-cermet-layer structure with different cermet components has also been investigated. The results were optimized by allowing the program to manipulate the metal volume fraction and thickness of each layer and the results compared to choose the best possible configuration. The calculated results are within the range of 0.91-0.97 for solar absorptance and 0.02-0.07 for thermal emittance at room temperature. (Author)

  5. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    Science.gov (United States)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  6. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  7. Experimental analysis and dynamic simulation of a novel high-temperature solar cooling system

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; D’Accadia, Massimo Dentice; Ferruzzi, Gabriele; Frascogna, Sabrina; Palombo, Adolfo; Russo, Roberto; Scarpellino, Marco

    2016-01-01

    Highlights: • The paper presents an innovative high temperature solar cooling system. • The system is based on novel flat-plate evacuated solar thermal collectors. • Results of an experimental campaign in Saudi Arabia are reported. • A dynamic simulation model and a detailed economic analyses are developed. • Results show that the collector and the system as a whole exhibit excellent performance. - Abstract: This paper presents experimental and numerical analyses of a novel high-temperature solar cooling system based on innovative flat-plate evacuated solar thermal collectors (SC). This is the first solar cooling system, including a double-effect absorption chiller, which is based on non-concentrating solar thermal collectors. The aim of the paper is prove the technical and economic feasibility of the system, also presenting a comparison with a conventional technology, based on concentrating solar thermal collectors. To this scope, an experimental setup has been installed in Saudi Arabia. Here, several measurement devices are installed in order to monitor and control all the thermodynamic parameters of the system. The paper presents some of the main results of this experimental campaign, showing temperatures, powers, energies and efficiencies for a selected period. Experimental results showed that collector peak efficiency is higher than 60%, whereas daily average efficiency is around 40%. This prototypal solar cooling system has been numerically analysed, developing a dynamic simulation model aiming at predicting system performance. For a representative operating period, numerical data were compared with the experimental one, showing an excellent accuracy of the model. A similar system, equipped with Parabolic Trough solar thermal collectors (PTC) was also simulated in order to compare the novel solar collectors with such reference technology. For both systems a detailed thermo-economic model has been implemented in order to perform such comparison also

  8. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  9. High temperature solar heating and cooling systems for different Mediterranean climates: Dynamic simulation and economic assessment

    International Nuclear Information System (INIS)

    Calise, Francesco

    2012-01-01

    The paper presents a dynamic model of an innovative solar heating and cooling system (SHC) based on the coupling of Parabolic Trough Collectors (PTC) with a double-stage LiBr-H 2 O absorption chiller; auxiliary energy for both heating and cooling is supplied by a biomass-fired heater. The system layout also includes a number of additional components such as: cooling tower, pumps, heat exchangers, etc. The consumption of non-renewable energy resources is only due to the small amount of electrical energy consumed by some auxiliary device. A case study is presented, in which the SHC provides space heating and cooling and domestic hot water for a small university hall, all year long. Both the SHC system and the building were dynamically simulated in TRNSYS. In order to evaluate the performance of the investigated system in various climatic conditions, the analyses were performed for seven Mediterranean cities in Italy, Spain, Egypt, France, Greece and Turkey. The analysis was also performed for a similar SHC in which the biomass heater was replaced by a gas-fired heater, in order to evaluate the influence of biomass to the overall system economic and energetic performance. In addition, a parametric analysis was performed in order to evaluate the sensitivity of the results, when varying some of the main design and operating parameters, such as: collector field area, tank volume and set-point temperatures. The results showed that the SHC system layout investigated can be competitive for the majority of the locations analysed, although the economic profitability is higher for the hottest climates. - Highlights: → In the high temperature SHC system the auxiliary heat is provided by biomass. → The energetic performance of the system is excellent during the summer. → In the winter the system suffers of the low beam radiation incident on the PTC. → The Simple Pay Back Period is encouraging, particularly in case of public funding. → An increase of the solar field

  10. Simulation of Hybrid Solar Dryer

    International Nuclear Information System (INIS)

    Yunus, Y M; Al-Kayiem, H H

    2013-01-01

    The efficient performance of a solar dryer is mainly depending on the good distribution of the thermal and flow field inside the dryer body. This paper presents simulation results of a solar dryer with a biomass burner as backup heater. The flow and thermal fields were simulated by CFD tools under different operational modes. GAMBIT software was used for the model and grid generation while FLUENT software was used to simulate the velocity and temperature distribution inside the dryer body. The CFD simulation procedure was validated by comparing the simulation results with experimental measurement. The simulation results show acceptable agreement with the experimental measurements. The simulations have shown high temperature spot with very low velocity underneath the solar absorber and this is an indication for the poor design. Many other observations have been visualized from the temperature and flow distribution which cannot be captured by experimental measurements.

  11. Application of a temperature selective storage tank solar system. Part 4. Fundamental experiment under a solar simulator; Ondo sentaku chikunetsuso no solar system eno tekiyo. 4. Solar simulator ni yoru kiso jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Endo, N; Baba, H; Okamoto, A [Kitami Institute of Technology, Hokkaido (Japan); Kamiya, Y [Kanto Gakuin University, Yokohama (Japan)

    1996-10-27

    The storage tank is classified into a mixed type and stratified type. The stratified type is judged to be more advantageous from a viewpoint of the effective energy utilization. An experiment was made using a solar simulator to put the system, consisting of a vacuum double-glass tube collector and temperature selective storage tank, to practical use. The ejection position of the storage tank at the top is superior to that at the bottom, in the 60{degree}C layer of three layers (60, 40, and 20{degree}C). The ejection position hardly varies with the shape (straight or elbow) of an ejection port. When the temperature stratified layer is formed in two layers (40 {times} 2, 20{degree}C) to three layers (60, 40, and 20{degree}C), heat can be stably stored as the flow rate is higher. The stratified storage tank is inferior to the mixed storage tank in heat collection efficiency, but the specific exergy increases. By increasing the number of heat storage layers, the result of this experiment can also be applied to the linear temperature gradient layer obtained in the practical use. As a result of the above experiment, the basic data for an automated system design during practical application was obtained. 3 refs., 15 figs.

  12. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  13. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation

    International Nuclear Information System (INIS)

    Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao

    2017-01-01

    Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  14. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT integrating with a two-stage vapor compression heat pump (VCHP were carried out. The whole system was named as compression/absorption heat transformer (CAHT. The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connection. R-134a and R-123 were refrigerants in the VCHP cycle. From the simulation, the total cycle coefficient (COP of the solar-CAHT was 0.71 compared with 0.49 of the normal solar-AHT. From the experiment, the total cycle COPs of the solar-CAHT and the solar-AHT were 0.62 and 0.39, respectively. The experimental results were lower than those of the simulated models due to the oversize of the experimental compressor. The annual expense of the solar-CAHT was found to be 5113 USD which was lower than 5418 USD of the solar-AHT. So it could be concluded that the modified unit was beneficial than the normal unit in terms of energy efficiency and economic expense.

  15. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  16. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  17. A Solar Sailcraft Simulation Application

    Science.gov (United States)

    Celeda, Tomáš

    2013-01-01

    An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…

  18. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  19. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  20. Accessing the band alignment in high efficiency Cu(In,Ga)(Se,S)2 (CIGSSe) solar cells with an InxSy:Na buffer based on temperature dependent measurements and simulations

    Science.gov (United States)

    Schoneberg, Johannes; Ohland, Jörg; Eraerds, Patrick; Dalibor, Thomas; Parisi, Jürgen; Richter, Michael

    2018-04-01

    We present a one-dimensional simulation model for high efficiency Cu(In,Ga)(Se,S)2 solar cells with a novel band alignment at the hetero-junction. The simulation study is based on new findings about the doping concentration of the InxSy:Na buffer and i-ZnO layers as well as comprehensive solar cell characterization by means of capacitance, current voltage, and external quantum efficiency measurements. The simulation results show good agreement with the experimental data over a broad temperature range, suggesting the simulation model with an interface-near region (INR) of approximately 100 nm around the buffer/absorber interface that is of great importance for the solar cell performance. The INR exhibits an inhomogeneous doping and defect density profile as well as interface traps at the i-layer/buffer and buffer/absorber interfaces. These crucial parameters could be accessed via their opposing behavior on the simulative reconstruction of different measurement characteristics. In this work, we emphasize the necessity to reconstruct the results of a set of experimental methods by means of simulation to find the most appropriate model for the solar cell. Lowly doped buffer and intrinsic window layers in combination with a high space charge at the front of the absorber lead to a novel band alignment in the simulated band structure of the solar cell. The presented insights may guide the strategy of further solar cell optimization including (alkali-) post deposition treatments.

  1. Mathematical models for photovoltaic solar panel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br

    2008-07-01

    A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)

  2. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  3. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  4. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  5. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  6. Modeling and simulation of photovoltaic solar panel

    International Nuclear Information System (INIS)

    Belarbi, M.; Haddouche, K.; Midoun, A.

    2006-01-01

    In this article, we present a new approach for estimating the model parameters of a photovoltaic solar panel according to the irradiance and temperature. The parameters of the one diode model are given from the knowledge of three operating points: short-circuit, open circuit, and maximum power. In the first step, the adopted approach concerns the resolution of the system of equations constituting the three operating points to write all the model parameters according to series resistance. Secondly, we make an iterative resolution at the optimal operating point by using the Newton-Raphson method to calculate the series resistance value as well as the model parameters. Once the panel model is identified, we consider other equations for taking into account the irradiance and temperature effect. The simulation results show the convergence speed of the model parameters and the possibility of visualizing the electrical behaviour of the panel according to the irradiance and temperature. Let us note that a sensitivity of the algorithm at the optimal operating point was observed owing to the fact that a small variation of the optimal voltage value leads to a very great variation of the identified parameters values. With the identified model, we can develop algorithms of maximum power point tracking, and make simulations of a solar water pumping system.(Author)

  7. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  8. Simulation of Solar Energy Use in Livelihood of Buildings

    Science.gov (United States)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  9. Analyses of experimental observations of electron temperatures in the near wake of a model in a laboratory-simulated solar wind plasma

    International Nuclear Information System (INIS)

    Intriligator, D.S.; Steele, G.R.

    1985-01-01

    Laboratory experiments have been performed that show the effect on the electron temperature of inserting a spherical conducting model, larger than the Debye length, into a free-streaming high-energy (1 kv) unmagnetized hydrogen plasma. These experiments are the first electron temperature experiments conducted at energies and compositions directly relevant to solar wind and astrophysical plasma phenomena. The incident plasma parameters were held constant. A large number of axial profiles of the electron temperature ratios T/sub e//sub in// T/sub e//sub out/ behind the model downstream in the model wake are presented. A rigorous statistical approach is used in the analysis of the electron temperature ratio data in both our experimental laboratory data and in our reanalysis of the published data of others. The following new results ae obtained: (1) In energetic plasma flow there is no overall temperature enhancement in the near wake since the best fit to the T/sub e//sub i/n/ T/sub e//sub out/ data is a horizontal straight line having a mean value of 1.05; (2) No statistically significant electron temperature enhancement peaks or depressions exist in the near-wake region behind a model at zero potential in a high-energy plasma even at distances less than or equal to Ma, where M is the acoustic Mach number and a is the model radius. This implies a ''filling in'' of electrons in the wake region which may be due to the higher mobility of these energetic electrons. This mechanism may permit the solar wind electrons to significantly contribute to the maintenance of the nightside ionosphere at Venus

  10. Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain

    Directory of Open Access Journals (Sweden)

    Silva Joao Pinelo

    2017-01-01

    A countrywide analysis shows that E-W orientation accounts for the highest overall street length with 37%. The second most frequent orientation is N-S (29%, the best performer. NW-SE and NE-SW both have frequencies of only 17%. Preference for a street grid with N-S, NW-SE, and NE-SW orientation would improve the thermal performance of streets and provide a continuous network of a comfortable pedestrian environment. We simulate two future scenarios based on avoiding new E-W streets, or not. We measure their potential reduction in thermal gain and conclude that a simple policy could reduce solar exposition in 40%.

  11. Designing solar thermal experiments based on simulation

    International Nuclear Information System (INIS)

    Huleihil, Mahmoud; Mazor, Gedalya

    2013-01-01

    In this study three different models to describe the temperature distribution inside a cylindrical solid body subjected to high solar irradiation were examined, beginning with the simpler approach, which is the single dimension lump system (time), progressing through the two-dimensional distributed system approach (time and vertical direction), and ending with the three-dimensional distributed system approach with azimuthally symmetry (time, vertical direction, and radial direction). The three models were introduced and solved analytically and numerically. The importance of the models and their solution was addressed. The simulations based on them might be considered as a powerful tool in designing experiments, as they make it possible to estimate the different effects of the parameters involved in these models

  12. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  13. Simulation prototyping of an experimental solar house

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, A.; Baur, S. [Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1401 Pine Street, Rolla, MO 65409 (United States); Grantham, K. [Department of Engineering Management, Missouri University of Science and Technology, 600 W. 14th Street, Rolla, MO 65409 (United States)

    2010-06-15

    This paper presents a comparative analysis between an energy simulation model and an actual solar home. The case study used was the Team Missouri's 2009 Solar Decathlon entry. The home was evaluated using the predicted data developed with the use of Energy-10 Version 1.8. The software simulates the energy use performance of building strategies ranging from building envelope and system efficiency options. The performance data used was collected during the 2009 Solar Decathlon competition. Results comparing energy efficient strategies, consumption and generation are explored with future implications discussed. (authors)

  14. A Practical Guide To Solar Array Simulation And PCDU Test

    Science.gov (United States)

    Schmitz, Noah; Carroll, Greg; Clegg, Russell

    2011-10-01

    Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.

  15. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  16. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  17. Solar panel acceptance testing using a pulsed solar simulator

    Science.gov (United States)

    Hershey, T. L.

    1977-01-01

    Utilizing specific parameters as area of an individual cell, number in series and parallel, and established coefficient of current and voltage temperature dependence, a solar array irradiated with one solar constant at AMO and at ambient temperature can be characterized by a current-voltage curve for different intensities, temperatures, and even different configurations. Calibration techniques include: uniformity in area, depth and time, absolute and transfer irradiance standards, dynamic and functional check out procedures. Typical data are given for individual cell (2x2 cm) to complete flat solar array (5x5 feet) with 2660 cells and on cylindrical test items with up to 10,000 cells. The time and energy saving of such testing techniques are emphasized.

  18. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  19. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  20. Solar radiation and street temperature as function of street orientation. An analysis of the status quo and simulation of future scenarios towards sustainability in Bahrain

    Science.gov (United States)

    Silva, Joao Pinelo

    2017-11-01

    This paper discusses the contribution of street orientation towards the development of a comfortable microclimate for pedestrians in Bahrain. Increasing walkability is a global agenda to address issues such as a) transportation, b) energy consumption, c) health, and d) air pollution, all of which are topics of the sustainability agenda. Thermal comfort is one of the pre-requisites for walkability. In warm climates, this is a challenging goal. Street design is paramount for pedestrian comfort in warm climates. The roles of street orientation and aspect ratio are of particular importance as they determine the intake of solar radiation into the urban canyon. We investigate the state of affairs in Bahrain, by measuring the frequency with which the street orientations E-W, N-S, NE-SW, and NW-SE, currently occur. Research suggests that the street orientation E-W presents the lesser performance for mitigating the effects of heat gain. The ideal grid orientation would, therefore, be N-S, and NE-SW - NW-SE, avoiding street segments with E-W orientation. A countrywide analysis shows that E-W orientation accounts for the highest overall street length with 37%. The second most frequent orientation is N-S (29%), the best performer. NW-SE and NE-SW both have frequencies of only 17%. Preference for a street grid with N-S, NW-SE, and NE-SW orientation would improve the thermal performance of streets and provide a continuous network of a comfortable pedestrian environment. We simulate two future scenarios based on avoiding new E-W streets, or not. We measure their potential reduction in thermal gain and conclude that a simple policy could reduce solar exposition in 40%.

  1. Laboratory Facility for Simulating Solar Wind Sails

    International Nuclear Information System (INIS)

    Funaki, Ikkoh; Ueno, Kazuma; Oshio, Yuya; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-01-01

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10 19 m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  2. Simulation, design and thermal analysis of a solar Stirling engine using MATLAB

    International Nuclear Information System (INIS)

    Shazly, J.H.; Hafez, A.Z.; El Shenawy, E.T.; Eteiba, M.B.

    2014-01-01

    Highlights: • Modeling and simulation for a prototype of the solar-powered Stirling engine. • The solar-powered Stirling engine working at the low temperature range. • Estimating output power from the solar Stirling engine using Matlab program. • Solar radiation simulation program presents a solar radiation data using MATLAB. - Abstract: This paper presents the modeling and simulation for a prototype of the solar-powered Stirling engine working at the low temperature range. A mathematical model for the thermal analysis of the solar-powered low temperature Stirling engine with heat transfer is developed using Matlab program. The model takes into consideration the effect of the absorber temperature on the thermal analysis like as radiation and convection heat transfer between the absorber and the working fluid as well as radiation and convection heat transfer between the lower temperature plate and the working fluid. Hence, the present analysis provides a theoretical guidance for designing and operating of the solar-powered low temperature Stirling engine system, as well as estimating output power from the solar Stirling engine using Matlab program. This study attempts to demonstrate the potential of the low temperature Stirling engine as an option for the prime movers for Photovoltaic tracking systems. The heat source temperature is 40–60 °C as the temperature available from the sun directly

  3. Potential of solar-simulator-pumped alexandrite lasers

    Science.gov (United States)

    Deyoung, Russell J.

    1990-01-01

    An attempt was made to pump an alexandrite laser rod using a Tamarak solar simulator and also a tungsten-halogen lamp. A very low optical laser cavity was used to achieve the threshold minimum pumping-power requirement. Lasing was not achieved. The laser threshold optical-power requirement was calculated to be approximately 626 W/sq cm for a gain length of 7.6 cm, whereas the Tamarak simulator produces 1150 W/sq cm over a gain length of 3.3 cm, which is less than the 1442 W/sq cm required to reach laser threshold. The rod was optically pulsed with 200 msec pulses, which allowed the alexandrite rod to operate at near room temperature. The optical intensity-gain-length product to achieve laser threshold should be approximately 35,244 solar constants-cm. In the present setup, this product was 28,111 solar constants-cm.

  4. Kinetic instabilities in the solar wind driven by temperature anisotropies

    Science.gov (United States)

    Yoon, Peter H.

    2017-12-01

    The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author's own work.

  5. A Study on a Solar Simulator for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-Jun Lee

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSC are emerging low-cost, simple alternatives to conventional solar cells. While there has been considerable study on improving the efficiency of DSSCs, there has not been sufficient research on a photovoltaic power conditioning system adaptable to DSSCs or on a solar simulator for DSSCs. When DSSCs are commercialized in the near future, the DSSC modules must be connected to an adaptable power conditioning system in order to manage the energy produced and provide a suitable interface to the load. In the process of developing a power conditioning system, a solar simulator with the characteristics of DSSCs is essential to show the performance of the maximum power point tracking. In this paper, a virtual DSSC is designed and simulated in PSIM. Irradiation factors, temperature and shadow effects are considered in dynamic link library block in PSIM which is linked to the external C routine. A 100 W converter is built to show the performance of a DSSC as the solar simulator controlled by a digital signal processor.

  6. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations

    Science.gov (United States)

    Gan, Quan; Du, Jian; Fomichev, Victor I.; Ward, William E.; Beagley, Stephen R.; Zhang, Shaodong; Yue, Jia

    2017-04-01

    A recent 31 year simulation (1979-2010) by extended Canadian Middle Atmosphere Model (eCMAM30) and the 14 year (2002-2015) observation by the Thermosphere Ionosphere Mesosphere and Dynamics/Sounding of the Atmosphere using Broadband Emssion Radiometry (TIMED/SABER) are utilized to investigate the temperature response to the 11 year solar cycle on the mesosphere. Overall, the zonal mean responses tend to increase with height, and the amplitudes are on the order of 1-2 K/100 solar flux unit (1 sfu = 10-22 W m-2 Hz-1) below 80 km and 2-4 K/100 sfu in the mesopause region (80-100 km) from the eCMAM30, comparatively weaker than those from the SABER except in the midlatitude lower mesosphere. A pretty good consistence takes place at around 75-80 km with a response of 1.5 K/100 sfu within 10°S/N. Also, a symmetric pattern of the responses about the equator agrees reasonably well between the two. It is noteworthy that the eCMAM30 displays an alternate structure with the upper stratospheric cooling and the lower mesospheric warming at midlatitudes of the winter hemisphere, in favor of the long-term Rayleigh lidar observation reported by the previous studies. Through diagnosing multiple dynamical parameters, it is manifested that this localized feature is induced by the anomalous residual circulation as a consequence of the wave-mean flow interaction during the solar maximum year.

  7. Numerical Simulation of a Solar Domestic Hot Water System

    International Nuclear Information System (INIS)

    Mongibello, L; Graditi, G; Bianco, N; Di Somma, M; Naso, V

    2014-01-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed

  8. Numerical Simulation of a Solar Domestic Hot Water System

    Science.gov (United States)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  9. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  10. The Effects of Solar Irradience and Ambient Temperature on Solar ...

    African Journals Online (AJOL)

    Solar energy is abundant. It is however low grade energy and cannot be easily used in the form it occurs for work. Converting solar energy directly to electricity, using solar photovoltaic (PV) modules is however a low efficiency process. Optimizing this conversion, especially in the face of the high cost of solar panels, is thus ...

  11. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  12. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  13. Temperature dependence of organic solar cell parameters

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Matthias; Mueller, Klaus; Philip, Shine; Paloumpa, Ioanna; Henkel, Karsten; Schmeisser, Dieter [Brandenburgische Technische Universitaet Cottbus (Germany). Angewandte Physik - Sensorik

    2009-07-01

    The influence of an annealing step on the parameters of bulk heterojunction organic solar cells is investigated. In order to fabricate the solar cells we use glass coated with ITO (indium-tin oxide) as a substrate on which the active layer consisting of P3HT and PCBM is spincoated. Al-electrodes are evaporated on top of the active layer. We use PEDOT:PSS as buffer layer. Each sample is annealed at different temperatures for a short time. Between every temperature step the I-V characteristic of the cell is measured. The following parameters are derived afterwards: FF, I{sub sc} (density), V{sub oc}. Also the efficiency is estimated. The results show a maximum cell efficiency for drying at 100 C for 20sec. A further important step for preparation is the drying procedure of the PEDOT:PSS layer. Here an improvement of about 50% in cell efficiency is measured after drying at 50 C for 5 days under inert gas atmosphere.

  14. Empirical solar/stellar cycle simulations

    Directory of Open Access Journals (Sweden)

    Santos Ângela R. G.

    2015-01-01

    Full Text Available As a result of the magnetic cycle, the properties of the solar oscillations vary periodically. With the recent discovery of manifestations of activity cycles in the seismic data of other stars, the understanding of the different contributions to such variations becomes even more important. With this in mind, we built an empirical parameterised model able to reproduce the properties of the sunspot cycle. The resulting simulations can be used to estimate the magnetic-induced frequency shifts.

  15. Optimum selection of solar collectors for a solar-driven ejector air conditioning system by experimental and simulation study

    International Nuclear Information System (INIS)

    Zhang Wei; Ma Xiaoli; Omer, S.A.; Riffat, S.B.

    2012-01-01

    Highlights: ► Three solar collectors have been compared to drive ejector air conditioning system. ► A simulation program was constructed to study the effect parameters. ► The outdoor test were conducted to validate the solar collector modeling. ► Simulation program was found to predict solar collector performance accurately. ► The optimal design of solar collector system was carried out. - Abstract: In this paper, three different solar collectors are selected to drive the solar ejector air conditioning system for Mediterranean climate. The performance of the three selected solar collector are evaluated by computer simulation and lab test. Computer model is incorporated with a set of heat balance equations being able to analyze heat transfer process occurring in separate regions of the collector. It is found simulation and test has a good agreement. By the analysis of the computer simulation and test result, the solar ejector cooling system using the evacuated tube collector with selective surface and high performance heat pipe can be most economical when operated at the optimum generating temperature of the ejector cooling machine.

  16. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  17. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  18. Solar wind velocity and temperature in the outer heliosphere

    Science.gov (United States)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  19. Full PIC simulations of solar radio emission

    Science.gov (United States)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  20. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  1. Simulation experiments and solar wind sputtering

    International Nuclear Information System (INIS)

    Griffith, J.E.; Papanastassiou, D.A.; Russell, W.A.; Tombrello, T.A.; Weller, R.A.

    1978-01-01

    In order to isolate the role played by solar wind sputtering from other lunar surface phenomena a number of simulation experiments were performed, including isotope abundance measurements of Ca sputtered from terrestrial fluorite and plagioclase by 50-keV and 130-keV 14 N beams, measurement of the energy distribution of U atoms sputtered with 80-keV 40 Ar, and measurement of the fraction of sputtered U atoms which stick on the surfaces used to collect these atoms. 10 references

  2. Spectral mismatch and solar simulator quality factor in advanced LED solar simulators

    Science.gov (United States)

    Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten

    2017-08-01

    Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.

  3. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.; Yang, P.E.; Lin, Y.P.; Lin, B.Y.; Chen, H.J.; Lai, R.C.; Cheng, J.S.

    2011-01-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well

  4. Solar Simulation Laboratory Description and Manual.

    Science.gov (United States)

    1985-06-01

    2000 was sent back to Cyborg Corp. three times over a five month period for repairs. The solar lab is presently using a loaner from Cyborg Corp. The IBM...PC/XT is connected to the ISAAC 2000 by a RS232 connection. All programs were written in advanced basic ("BASICA"). BASICA was used because Cyborg ...2067 CH/P Temperature.Control Bath TechnicalManual, November. 1980. A 30. Cyborg Corporation, Version 1.2, IS..AC.....Co..mpiut.er.liz e.d Data

  5. Analysis of Operating Temperature of the Polycrystalline Solar Cell

    Directory of Open Access Journals (Sweden)

    Vladimír GÁLL

    2017-12-01

    Full Text Available This work deals with the solar cells with orientation on the calculation of operating temperature of the polycrystalline solar cell, which is under actual load. Operating conditions have a significant effect on the efficiency of solar cells. In the summer with increasing temperature, the efficiency decreases. In the winter, efficiency and output voltage are rising. The operating temperature is determined by intensity of solar radiation, the types of materials used by construction and operating condition. The aim of this work was simplify of the calculation of operating temperature of solar cells. The result of this work is a derived equation that allows a more accurate and faster calculation this temperature with using Matlab software.

  6. A novel design for a cheap high temperature solar collector: The rotating solar boiler

    NARCIS (Netherlands)

    Luijtelaer, van J.P.H.; Kroon, M.C.

    2009-01-01

    In this work a novel type of high temperature solar collector is designed: the rotating solar boiler. This rotating solar boiler consists of two concentric tubes. The inner tube, called absorber, absorbs sunlight and boils water. The outer transparent tube, called cover, is filled with air. The

  7. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  8. Solar air heating system: design and dynamic simulation

    Science.gov (United States)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  9. Simulation of a single basin solar still

    International Nuclear Information System (INIS)

    Ammari, D. H.

    1998-01-01

    A simulation of a simple solar powered water desalination still is attempted in order to investigate its performance and assess the productivity of potable water in different regions in Jordan representing the Rift Valley, high mountains and plateau, and desert. The potable water productivity and unit efficiency were estimated per day, month and year of hourly operation. The results obtained have indicated that maximum annual daily average output of potable water is achieved in Aqaba at the south end of the Rift Valley and at a rate of 5.425 kg/m 2 , and a minimum output in Ghor Safi at the centre of the Rift Valley with a rate of 4.550 kg/m 2 . Wadi Dhulail in the eastern desert and Amman in the mountains and plateau region come second and third, respectively, in regards to annual daily average yield of potable water. The still's performance is evaluated in terms of the overall efficiency that has reached as high as 60% in June and as low as 40% in december with the still in Aqaba claiming the best performance.Furthermore, correlations approximating the still's daily output at the various locations based on daily solar radiation levels are proposed. (Author). 13 refs., 10 figs

  10. Non-uniform Solar Temperature Field on Large Aperture, Fully ...

    Indian Academy of Sciences (India)

    states for the telescope structure during its operation process, and the .... 4.1 Finite element model (FEM) in solar thermal analysis. Figure 4 ... ysis established in ANSYS, MATLAB and FORTRAN; it was built with specific ... Simulation element.

  11. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  12. Solar wind temperature observations in the outer heliosphere

    Science.gov (United States)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.

  13. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    2015-03-12

    Mar 12, 2015 ... addition, the concentration of carbon dioxide over Malawi within the same period as temperature and solar radiation data ... plant diseases and pests which may have adverse effects ... object that absorbs and emits radiation).

  14. Pressure and temperature development in solar heating system during stagnation

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Chen, Ziqian

    2010-01-01

    of the pipes of the solar collector loop. During the investigation the pre-pressure of the expansion vessel and system filling pressure was changed. The investigations showed that a large pressurised expansion vessel will protect the collector loop from critically high temperatures as long as the solar......This paper presents an investigation of stagnation in solar collectors and the effects it will have on the collector loop. At a laboratory test stand at the Technical University of Denmark, a pressurized solar collector loop was designed to test different numbers of collectors and different designs...

  15. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  16. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  17. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  18. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  19. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  20. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    Science.gov (United States)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  1. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  2. Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model

    International Nuclear Information System (INIS)

    Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli

    2017-01-01

    Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of

  3. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  4. Magnetohydrodynamic (MHD) simulation of solar prominence formation

    International Nuclear Information System (INIS)

    Bao, J.

    1987-01-01

    Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode

  5. Temperature coefficients for GaInP/GaAs/GaInNAsSb solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aho, Arto; Isoaho, Riku; Tukiainen, Antti; Polojärvi, Ville; Aho, Timo; Raappana, Marianna; Guina, Mircea [Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-09-28

    We report the temperature coefficients for MBE-grown GaInP/GaAs/GaInNAsSb multijunction solar cells and the corresponding single junction sub-cells. Temperature-dependent current-voltage measurements were carried out using a solar simulator equipped with a 1000 W Xenon lamp and a three-band AM1.5D simulator. The triple-junction cell exhibited an efficiency of 31% at AM1.5G illumination and an efficiency of 37–39% at 70x real sun concentration. The external quantum efficiency was also measured at different temperatures. The temperature coefficients up to 80°C, for the open circuit voltage, the short circuit current density, and the conversion efficiency were determined to be −7.5 mV/°C, 0.040 mA/cm{sup 2}/°C, and −0.09%/°C, respectively.

  6. Comprehensive Solar Sail Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar sails as a propulsive device have several potential applications: providing access to previously inaccessible orbits, longer mission times, and increased...

  7. Hardened Solar Array High Temperature Adhesive.

    Science.gov (United States)

    1981-04-01

    SHERWOOO. D SASIU.IS F3361S-0-C-201S UNCLASSI ED 1AC-SCG-IOOIIR AFVAL-TR-OL-201? NLm,,hinii EhhhEE11I1 AFWAL-TR-81- 2017 i : HARDENED SOLAR ARRAY D HIGH...Tg and as a consequence forms a film on the container and also precipitates as tacky waxlike particles, rather than the desired flocullated

  8. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  9. Environmental simulation testing of solar cell contamination by hydrazine

    Science.gov (United States)

    Moore, W. W., Jr.

    1972-01-01

    Test results for thermal vacuum and radiation environment simulation of hydrazine contamination are discussed. Solar cell performance degradation, measured by short circuit current, is presented in correlation with the variations used in environmental parameters.

  10. High temperature solar energy absorbing surfaces

    Science.gov (United States)

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  11. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  12. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  13. Infrared investigation of the temperature structure of the solar atmosphere

    International Nuclear Information System (INIS)

    Allen, R.G.

    1978-01-01

    Narrow-band continuum limb darkening observations of the sun were taken with the Infrared Spectrometer and the West Auxiliary of the McMath Solar Telescope during the first half of 1974. The infrared limb darkening measures were used with a few absolute intensity and limb darkening measures of other investigators to develop a series of empirical solar models. The temperatures in most of the solar models were adjusted until the predictions of the model atmosphere program matched the observational measures as well as possible. Limb darkening residuals were calculated by subtracting the observational measures of the limb darkening from the limb darkening measures that were computed from the program. Experiments with several models indicated that a steep temperature gradient was needed to fit the observations at short wavelengths while a rather low temperature gradient was needed at long wavelengths. Non-LTE effects and errors in the H - opacity were ruled out as possible sources of this discrepancy. An excellent fit to the observations was ultimately achieved with a two-component LTE solar model. The hot component of this model represents the half of the solar surface that is above the median temperature at each depth; while the cool component represents the half of the solar surface that is below the median temperature. Most of the observations are fitted to within the expected errors by this model. Discrepancies below 4500 A are probably due to line blanketing. The splitting between the hot and cool components of the model is consistent with current estimates of the rms intensity fluctuations in the solar atmosphere. The model also resembles several theoretical two-component models that have recently appeared in the literature

  14. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  15. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  16. Martian Electron Temperatures in the Sub Solar Region.

    Science.gov (United States)

    Fowler, C. M.; Peterson, W. K.; Andersson, L.; Thiemann, E.; Mayyasi, M.; Yelle, R. V.; Benna, M.; Espley, J. R.

    2017-12-01

    Observations from Viking, and MAVEN have shown that the observed ionospheric electron temperatures are systematically higher than those predicted by many models. Because electron temperature is a balance between heating, cooling, and heat transport, we systematically compare the magnitude of electron heating from photoelectrons, electron cooling and heat transport, as a function of altitude within 30 degrees of the sub solar point. MAVEN observations of electron temperature and density, EUV irradiance, neutral and ion composition are used to evaluate terms in the heat equation following the framework of Matta et al. (Icarus, 2014, doi:10.1016/j.icarus.2013.09.006). Our analysis is restricted to inbound orbits where the magnetic field is within 30 degrees of horizontal. MAVEN sampled the sub solar region in May 2015 and again in May 2017, in near northern spring equinoctial conditions. Solar activity was higher and the spacecraft sampled altitudes down to 120 km in 2015, compared to 160 km in 2017. We find that between 160 and 200 km the Maven electron temperatures are in thermal equilibrium, in the sub solar region, on field lines inclined less than 30 degrees to the horizontal. Above 200km the data suggest that heating from other sources, such as wave heating are significant. Below 160 km some of the discrepancy comes from measurement limitations. This is because the MAVEN instrument cannot resolve the lowest electron temperatures, and because some cooling rates scale as the difference between the electron and neutral temperatures.

  17. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    Science.gov (United States)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  18. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  19. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    International Nuclear Information System (INIS)

    Meyer, Fred W.; Harris, Peter R.; Taylor, C.N.; Meyer, Harry M. III; Barghouty, N.; Adams, J. Jr.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  20. Solar activity influence on air temperature regimes in caves

    Science.gov (United States)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  1. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  2. Solar collectors and heat pump: Market review and preliminary simulation results

    International Nuclear Information System (INIS)

    Tepe, Rainer; Roennelid, Mats

    2002-01-01

    Heating systems that combine solar collectors and a heat pump available on the market in Sweden have been studied. A majority of the systems found combine the solar collectors with a ground source heat pump. The technology for combining the collectors and the heat pump does however vary considerably. In the most simple systems, the collectors heat the return water from the heat pump, i.e. the collectors are used for raising the temperature in the boreholes for the heat pump. In the advanced systems, the solar heat is used for tap water, space heating and for raising the temperature of the heat pump's evaporator. There exist only very few comparative evaluations of the contributions from solar collectors in heat pump systems, and there is a need for finding the potential for this technique. In the present study, results are reported from preliminary simulations of solar collectors and ground source heat pumps installed in one-family houses. Simulations are made for two heating loads: 8,650 and 16,500 kWh/year resp., and a hot water load of 3,000 kWh/year. The study shows that: the temperature of the borehole decreases when solar collectors are not used (about 1.2 deg C in three years): 8 m 2 glazed solar collectors used for hot water production can reduce the electricity consumption with up to 13%, with best results in the house with low heating load: 50 m 2 unglazed solar collectors coupled to the evaporator or the borehole can give reductions of up to 14%, largest reduction in the house with high heating load, where the heat extraction from the borehole is large: the unglazed collectors have the highest economic potential, and can be cost effective for houses with high heating load: the simulations do not include a thorough system optimization, better results can be expected from continued optimization work

  3. Absorption solar cooling systems using optimal driving temperatures

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Ventas, Rubén; Vereda, Ciro; López, Ricardo

    2015-01-01

    The optimum instantaneous driving temperature of a solar cooling facility is determined along a day. The chillers compared use single effect cycles working with NH 3 /LiNO 3 , either conventional or hybridised by incorporating a low pressure booster compressor. Their performances are compared with a H 2 O/LiBr single effect absorption chiller as part of the same solar system. The results of a detailed thermodynamic cycle for the absorption chillers allow synthesizing them in a modified characteristic temperature difference model. The day accumulated solar cold production is determined using this optimum temperature during two sunny days in mid-July and mid-September, located in Madrid, Spain. The work shows the influences of operational variables and a striking result: selection of a time-constant temperature during all the day does not necessarily imply a substantial loss, being the temperature chosen a key parameter. The results indicate that the NH 3 /LiNO 3 option with no boosting offers a smaller production above-zero Celsius degrees temperatures, but does not require higher hot water driving temperatures than H 2 O/LiBr. The boosted cycle offers superior performance. Some operational details are discussed. - Highlights: • Instantaneous optimum driving temperature t g,op for solar cooling in Madrid. • 3 absorption cycles tested: H 2 O/LiBr and NH 3 /LiNO 3 single effect and hybrid. • The t g,op of the hybrid cycle is 16 °C lower than both single effect cycles. • The best fixed driving temperature can reach almost the same behaviour than t g,op

  4. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  5. Effects of electrons on the solar wind proton temperature anisotropy

    International Nuclear Information System (INIS)

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H.

    2014-01-01

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  6. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  7. Reduced annealing temperatures in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.

    1981-01-01

    Cells irradiated to a fluence of 5x10,000,000,000,000/square cm showed short circuit current on annealing at 200 C, with complete annealing occurring at 275 C. Cells irradiated to 100,000,000,000,000/square cm showed a reduction in annealing temperature from the usual 500 to 300 C. Annealing kinetic studies yield an activation energy of (1.5 + or - 2) eV for the low fluence, low temperature anneal. Comparison with activation energies previously obtained indicate that the presently obtained activation energy is consistent with the presence of either the divacancy or the carbon interstitial carbon substitutional pair, a result which agrees with the conclusion based on defect behavior in boron-doped silicon.

  8. Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications

    International Nuclear Information System (INIS)

    Sakurai, Atsushi; Tanikawa, Hiroya; Yamada, Makoto

    2014-01-01

    The purpose of this study is to computationally design a wide-angle cermet-based solar selective absorber for high temperature applications by using a characteristic matrix method and a genetic algorithm. The present study investigates a solar selective absorber with tungsten–silica (W–SiO 2 ) cermet. Multilayer structures of 1, 2, 3, and 4 layers and a wide range of metal volume fractions are optimized. The predicted radiative properties show good solar performance, i.e., thermal emittances, especially beyond 2 μm, are quite low, in contrast, solar absorptance levels are successfully high with wide angular range, so that solar photons are effectively absorbed and infrared radiative heat loss can be decreased. -- Highlights: • Electromagnetic simulation of radiative properties by characteristic matrix method. • Optimization for multilayered W–SiO 2 cermet-based absorber by a Genetic Algorithm. • We propose a successfully high solar performance of solar selective absorber

  9. 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver

    International Nuclear Information System (INIS)

    Xiang Haijun; Wang Yiping; Zhu Li; Han Xinyue; Sun Yong; Zhao Zhengjian

    2012-01-01

    Highlights: ► Establishment of a three-dimensional numerical simulation model of a cylindrical liquid immersion solar receiver. ► Determination of model parameters and validation of the model by using the real-collected data. ► Optimization of liquid flow rate and fin’s structure for better heat transfer performance. - Abstract: Liquid immersion cooling for a cylindrical solar receiver in a dish concentrator photovoltaic system has been experimentally verified to be a promising method of removing surplus heat from densely packed solar cells. In the present study, a three-dimensional (3D) numerical simulation model of the prototype was established for better understanding the mechanism of the direct-contact heat transfer process. With the selection of standard k–ε turbulent model, the detailed simulation results of velocity field and temperature characteristics were obtained. The heat transfer performance of two structural modules (bare module and finned module) under actual weather conditions was simulated. It was found that the predicted temperature distribution of the two structural modules at the axial and lateral direction was in good agreement with the experimental data. Based on the validated simulation model, the influence of liquid flow rate and module geometric parameters on the cell temperature was then investigated. The simulated results indicated that the cell module with fin height of 4 mm and fin number of 11 has the best heat transfer performance and will be used in further works.

  10. The influence of annealing temperature and time on the efficiency of pentacene: PTCDI organic solar cells

    Directory of Open Access Journals (Sweden)

    Mehmet Biber

    Full Text Available In this study, fabrication of a polycyclic aromatic hydrocarbon/Perylene Tetracarboxylic Di-Imide (PTCDI, donor/acceptor solar cells are presented using physical vapour deposition technique in a 1000 class glove box. An ITO/PEDOT:PSS/Pentacene/PTCDI/Al (ITO = Indium Tin Oxide and PEDOT:PSS = poly(3,4-ethylenedioxythiophene polystyrene sulfonate solar cell has been obtained and the power conversion efficiency, PCE (η of about 0.33% has been obtained under simulated solar illumination of 300 W/m2. Furthermore, the effects of annealing temperatures (at 100 and 150 °C and of annealing (at 100 °C times for 5 and 10 min. on the power conversion efficiency, η of the solar cells have also been investigated. In general, it has been seen that the thermal annealing deteriorated the characteristics parameters of Pentacene/PTCDI solar cell such that both fill factor, FF and η decreased after annealing and with increase of annealing time. Atomic force microscopy (AFM images showed that the phase segregation and grain size increased and the surface roughness of Pentacene film decreased and these effects reduced the η value. The η values of the solar cell have been determined as 0.33%, 0.12% and 0.06% for pre-annealing, annealing at 100 and 150 °C, respectively. Keywords: Organic solar cells, PTCDI, Pentacene, Annealing

  11. Radiative magnetohydrodynamic simulations of solar pores

    NARCIS (Netherlands)

    Cameron, R.; Schuessler, M.; Vögler, A.; Zakharov, V.

    2007-01-01

    Context. Solar pores represent a class of magnetic structures intermediate between small-scale magnetic flux concentrations in intergranular lanes and fully developed sunspots with penumbrae. Aims. We study the structure, energetics, and internal dynamics of pore-like magnetic structures by means of

  12. Numerical simulation model of multijunction solar cell

    NARCIS (Netherlands)

    Babar, M.; Al-Ammar, E.A.; Malik, N.H.

    2012-01-01

    Multi-junction solar cells play an important and significant role in the Concentrated Photovoltaic (CPV) Systems. Recent developments in Concentrated Photovoltaic concerning high power production and cost effective- ness along with better efficiency are due to the advancements in multi-junction

  13. Standard Specification for Solar Simulation for Terrestrial Photovoltaic Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification provides means for classifying solar simulators intended for indoor testing of photovoltaic devices (solar cells or modules), according to their spectral match to a reference spectral irradiance, non-uniformity of spatial irradiance, and temporal instability of irradiance. 1.2 Testing of photovoltaic devices may require the use of solar simulators. Test Methods that require specific classification of simulators as defined in this specification include Test Methods E948, E1036, and E1362. 1.3 This standard is applicable to both pulsed and steady state simulators and includes recommended test requirements used for classifying such simulators. 1.4 A solar simulator usually consists of three major components: (1) light source(s) and associated power supply; (2) any optics and filters required to modify the output beam to meet the classification requirements in Section 4; and (3) the necessary controls to operate the simulator, adjust irradiance, etc. 1.5 A light source that does not mee...

  14. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  15. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, Victor [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, Mexico, Apdo. Postal 51 y 216, 72000 (Mexico); Raulin, Jean-Pierre [CRAAM, Universidade Presbiteriana Mackenzie, Sao Paulo, SP 01302-907 (Brazil); Lara, Alejandro [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico 04510 (Mexico)

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.

  16. A solar simulator-pumped atomic iodine laser

    Science.gov (United States)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  17. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  18. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  19. Temperature simulations for the SPIRAL ISOL target

    International Nuclear Information System (INIS)

    Maunoury, L.; Bajeat, O.; Lichtenthaler, R.; Villari, A.C.C.

    2001-01-01

    Simulations of the power deposition and target temperature distributions in the SPIRAL ISOL target are presented. These simulations consider different heavy-ion beams with intensities corresponding to 2 and 6 kW on a carbon target. A new solutions, which corresponds to the splitting of the production target into two parts, where the first is cooled and the second is heated, allows keeping the overall size of the target ensemble relatively small. An extrapolation of the considered target geometry to primary beam intensities up to 1 MW is also presented. (authors)

  20. Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory

    Science.gov (United States)

    Hernández, L.; González, A.; Salas, G.; Santillán, A.

    2007-08-01

    Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.

  1. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4

    Science.gov (United States)

    Peck, E. D.; Randall, C. E.; Harvey, V. L.; Marsh, D. R.

    2015-06-01

    The Whole Atmosphere Community Climate Model version 4 (WACCM4) is used to quantify solar cycle impacts, including both irradiance and particle precipitation, on the middle atmosphere. Results are compared to previous work using WACCM version 3 (WACCM3) to estimate the sensitivity of simulated solar cycle effects to model modifications. The residual circulation in WACCM4 is stronger than in WACCM3, leading to larger solar cycle effects from energetic particle precipitation; this impacts polar stratospheric odd nitrogen and ozone, as well as polar mesospheric temperatures. The cold pole problem, which is present in both versions, is exacerbated in WACCM4, leading to more ozone loss in the Antarctic stratosphere. Relative to WACCM3, a westerly shift in the WACCM4 zonal winds in the tropical stratosphere and mesosphere, and a strengthening and poleward shift of the Antarctic polar night jet, are attributed to inclusion of the QBO and changes in the gravity wave parameterization in WACCM4. Solar cycle effects in WACCM3 and WACCM4 are qualitatively similar. However, the EPP-induced increase from solar minimum to solar maximum in polar stratospheric NOy is about twice as large in WACCM4 as in WACCM3; correspondingly, maximum increases in polar O3 loss from solar min to solar max are more than twice as large in WACCM4. This does not cause large differences in the WACCM3 versus WACCM4 solar cycle responses in temperature and wind. Overall, these results provide a framework for future studies using WACCM to analyze the impacts of the solar cycle on the middle atmosphere.

  2. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    Science.gov (United States)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  3. Design and Analysis of Solar Smartflower Simulation by Solidwork Program

    Science.gov (United States)

    Mulyana, Tatang; Sebayang, Darwin; Fajrina, Fildzah; Raihan; Faizal, M.

    2018-03-01

    The potential of solar energy that is so large in Indonesia can be a driving force for the use of renewable energy as a solution for energy needs. Government with the community can utilize and optimize this technology to increase the electrification ratio up to 100% in all corners of Indonesia. Because of its modular and practical nature, making this technology easy to apply. One of the latest imported products that have started to be offered and sold in Indonesia but not yet widely used for solar power generation is the kind of smartflower. Before using the product, it is of course very important and immediately to undertake an in-depth study of the utilization, use, maintenance, repair, component supply and fabrication. The best way to know the above is through a review of the design and simulation. To meet this need, this paper presents a solar-smartflower design and then simulated using the facilities available in the solidwork program. Solid simulation express is a tool that serves to create power simulation of a design part modelling. With the simulation is very helpful at all to reduce errors in making design. Accurate or not a design created is also influenced by several other factors such as material objects, the silent part of the part, and the load given. The simulation is static simulation and body battery drop test, and based on the results of this simulation is known that the design results have been very satisfactory.

  4. Modeling and simulation of InGaN/GaN quantum dots solar cell

    International Nuclear Information System (INIS)

    Aissat, A.; Benyettou, F.; Vilcot, J. P.

    2016-01-01

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In 0.25 Ga 0.75 N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In 0.25 Ga 0.75 N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  5. Modeling and simulation of InGaN/GaN quantum dots solar cell

    Science.gov (United States)

    Aissat, A.; Benyettou, F.; Vilcot, J. P.

    2016-07-01

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In0.25Ga0.75N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In0.25Ga0.75N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  6. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  7. Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink

    International Nuclear Information System (INIS)

    Kıyan, Metin; Bingöl, Ekin; Melikoğlu, Mehmet; Albostan, Ayhan

    2013-01-01

    Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes

  8. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  9. Electron temperature anisotropy constraints in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Marsch, E.; Fazakerley, A.; Scime, E. E.

    2008-01-01

    Roč. 113, A3 /2008/ (2008), A03103/1-A03103/10 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420602 Grant - others:EU(XE) ESA-PECS project No. 98024 Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind electrons * temperature anisotropy * radial Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.147, year: 2008

  10. Design and Simulation of InGaN p-n Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    A. Mesrane

    2015-01-01

    Full Text Available The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In0.622Ga0.378N (Eg = 1.39 eV solar cell is the optimal structure found. It exhibits, under normalized conditions (AM1.5G, 0.1 W/cm2, and 300 K, the following electrical parameters: Jsc=32.6791 mA/cm2, Voc=0.94091 volts, FF = 86.2343%, and η=26.5056%. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In0.622Ga0.378N solar cell efficiency was inversely proportional with the temperature.

  11. The relationship between ionospheric temperature, electron density and solar activity

    International Nuclear Information System (INIS)

    McDonald, J.N.; Williams, P.J.S.

    1980-01-01

    In studying the F-region of the ionosphere several authors have concluded that the difference between the electron temperature Tsub(e) and the ion temperature Tsub(i) is related to the electron density N. It was later noted that solar activity (S) was involved and an empirical relationship of the following form was established: Tsub(e)-Tsub(i) = A-BN+CS. The present paper extends this work using day-time data over a four year period. The results are given and discussed. A modified form of the empirical relation is proposed. (U.K.)

  12. Modeling of Solar Radiation Management: A Comparison of Simulations Using Reduced Solar Constant and Stratospheric Sulphate Aerosols

    Science.gov (United States)

    Bala, G.; Kalidindi, S.; Modak, A.; Caldeira, K.

    2014-12-01

    Several climate modelling studies in the past have used reduction in solar constant to simulate the climatic effects of Solar Radiation Management (SRM) geoengineering. This is most likely valid only for space-based mirrors/reflectors but not for SRM methods that rely on stratospheric aerosols. In this study, we use a climate model to evaluate the differences in climate response to SRM by uniform solar constant reduction and stratospheric aerosols. The experiments are designed such that global mean warming from a doubling of atmospheric CO2 concentration (2xCO2) is nearly cancelled in each case. In such a scenario, the residual climate effects are similar when important surface and tropospheric climate variables such as temperature and precipitation are considered. However, there are significant differences in stratospheric temperature response and diffuse and direct radiation reaching the surface. A difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods, with warming in the aerosol scheme and a slight cooling for sunshades. While the global mean surface diffuse radiation increases by ~23% and direct radiation decreases by about 9% in the case of aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 8%) and NPP (~3%) relative to 2xCO2, indicating the negligible effect of the fractional changes in direct/diffuse radiation on the overall plant productivity. Based on our modelling study, we conclude that the climate states produced by a

  13. Numerical simulation of solar-assisted multi-effect distillation (SMED) desalination systems

    KAUST Repository

    Kim, Youngdeuk

    2013-01-01

    We present a simulation model for the transient behavior of solar-assisted seawater desalination plant that employs the evacuated-tube collectors in conjunction with a multieffect distillation plant of nominal water production capacity of 16m3/day. This configuration has been selected due to merits in terms of environment-friendliness and energy efficiency. The solar-assisted multi-effect distillation system comprises 849 m2 of evacuated-tube collectors, 280 m3 water storage tanks, auxiliary heater, and six effects and a condenser. The present analysis employs a baseline configuration, namely; (i) the local solar insolation input (Jeddah, Saudi Arabia), (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a heating water demand, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from the solar tank drops below the set point. It is observed that the annual collector efficiency and solar fraction decrease from 57.3 to 54.8% and from 49.4 to 36.7%, respectively, with an increase in the heating water temperature from 80 to 90 °C. The overall water production rate and the performance ratio increase slightly from 0.18 to 0.21 kg/s and from 4.11 to 4.13, respectively. © 2013 Desalination Publications.

  14. Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2018-04-01

    The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs

  15. Retrieval of temperature and pressure using broadband solar occultation: SOFIE approach and results

    Directory of Open Access Journals (Sweden)

    B. T. Marshall

    2011-05-01

    Full Text Available Measurement of atmospheric temperature as a function of pressure, T(P, is key to understanding many atmospheric processes and a prerequisite for retrieving gas mixing ratios and other parameters from solar occultation measurements. This paper gives a brief overview of the solar occultation measurement technique followed by a detailed discussion of the mechanisms that make the measurement sensitive to temperature. Methods for retrieving T(P using both broadband transmittance and refraction are discussed. Investigations using measurements of broadband transmittance in two CO2 absorption bands (the 4.3 and 2.7 μm bands and refractive bending are then presented. These investigations include sensitivity studies, simulated retrieval studies, and examples from SOFIE.

  16. Contribution of solar radiation to decadal temperature variability over land.

    Science.gov (United States)

    Wang, Kaicun; Dickinson, Robert E

    2013-09-10

    Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

  17. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors

    International Nuclear Information System (INIS)

    Li, H.; Dai, Y.J.; Köhler, M.; Wang, R.Z.

    2013-01-01

    Highlights: ► A solar desiccant cooling/heating system is simulation studied. ► The mean deviation is about 10.5% for temperature and 9.6% for humidity ratio. ► The 51.7% of humidity load and 76% of the total cooling can be handled. ► About 49.0% of heating load can be handled by solar energy. ► An optimization of solar air collector has been investigated. - Abstract: To increase the fraction of solar energy might be used in supplying energy for the operation of a building, a solar desiccant cooling and heating system was modeled in Simulink. First, base case performance models were programmed according to the configuration of the installed solar desiccant system and verified by the experimental data. Then, the year-round performance about the system was simulated. Last, design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. Comparison between numerical and experimental results shows good agreement. During the simulation, the humidity load for 63 days (51.7%) can be totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% can be handled by solar energy. Based on optimized results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage

  18. Accurate characterization of OPVs: Device masking and different solar simulators

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Carlé, Jon Eggert; Søndergaard, Roar R.

    2013-01-01

    One of the prime objects of organic solar cell research has been to improve the power conversion efficiency. Unfortunately, the accurate determination of this property is not straight forward and has led to the recommendation that record devices be tested and certified at a few accredited...... laboratories following rigorous ASTM and IEC standards. This work tries to address some of the issues confronting the standard laboratory in this regard. Solar simulator lamps are investigated for their light field homogeneity and direct versus diffuse components, as well as the correct device area...

  19. Simulation of perovskite solar cells with inorganic hole transporting materials

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liu, Yiming

    2015-01-01

    Device modeling organolead halide perovskite solar cells with planar architecture based on inorganic hole transporting materials (HTMs) were performed. A thorough understanding of the role of the inorganic HTMs and the effect of band offset between HTM/absorber layers is indispensable for further...... improvement in power conversion efficiency (PCE). Here, we investigated the effect of band offset between inorganic HTM/absorber layers. The solar cell simulation program adopted in this work is named wxAMPS, an updated version of the AMPS tool (Analysis of Microelectronic and Photonic Structure)....

  20. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  1. 3D Solar Null Point Reconnection MHD Simulations

    Science.gov (United States)

    Baumann, G.; Galsgaard, K.; Nordlund, Å.

    2013-06-01

    Numerical MHD simulations of 3D reconnection events in the solar corona have improved enormously over the last few years, not only in resolution, but also in their complexity, enabling more and more realistic modeling. Various ways to obtain the initial magnetic field, different forms of solar atmospheric models as well as diverse driving speeds and patterns have been employed. This study considers differences between simulations with stratified and non-stratified solar atmospheres, addresses the influence of the driving speed on the plasma flow and energetics, and provides quantitative formulas for mapping electric fields and dissipation levels obtained in numerical simulations to the corresponding solar quantities. The simulations start out from a potential magnetic field containing a null-point, obtained from a Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) magnetogram magnetogram extrapolation approximately 8 hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to - although simpler than - horizontal motions observed by SOHO during the period preceding the flare. The general behavior is nearly independent of the driving speed, and is also very similar in stratified and non-stratified models, provided only that the boundary motions are slow enough. The boundary motions cause a build-up of current sheets, mainly in the fan-plane of the magnetic null-point, but do not result in a flare-like energy release. The additional free energy required for the flare could have been partly present in non-potential form at the initial state, with subsequent additions from magnetic flux emergence or from components of the boundary motion that were not represented by the idealized driving pattern.

  2. The Survival and Resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to Simulated Outer Space Solar Radiation.

    Science.gov (United States)

    Leuko, S; Domingos, C; Parpart, A; Reitz, G; Rettberg, P

    2015-11-01

    Solar radiation is among the most prominent stress factors organisms face during space travel and possibly on other planets. Our analysis of three different halophilic archaea, namely Halobacterium salinarum NRC-1, Halococcus morrhuae, and Halococcus hamelinensis, which were exposed to simulated solar radiation in either dried or liquid state, showed tremendous differences in tolerance and survivability. We found that Hcc. hamelinensis is not able to withstand high fluences of simulated solar radiation compared to the other tested organisms. These results can be correlated to significant differences in genomic integrity following exposure, as visualized by random amplified polymorphic DNA (RAPD)-PCR. In contrast to the other two tested strains, Hcc. hamelinensis accumulates compatible solutes such as trehalose for osmoprotection. The addition of 100 mM trehalose to the growth medium of Hcc. hamelinensis improved its survivability following exposure. Exposure of cells in liquid at different temperatures suggests that Hbt. salinarum NRC-1 is actively repairing cellular and DNA damage during exposure, whereas Hcc. morrhuae exhibits no difference in survival. For Hcc. morrhuae, the high resistance against simulated solar radiation may be explained with the formation of cell clusters. Our experiments showed that these clusters shield cells on the inside against simulated solar radiation, which results in better survival rates at higher fluences when compared to Hbt. salinarum NRC-1 and Hcc. hamelinensis. Overall, this study shows that some halophilic archaea are highly resistant to simulated solar radiation and that they are of high astrobiological significance. Halophiles-Solar radiation-Stress resistance-Survival.

  3. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 years after volcanic eruption, while the solar signal and the different

  4. Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2013-11-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780-1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2-3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8-15 yr after volcanic eruption, while the solar signal and the different

  5. Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Taherian, H.; Rezania, A.; Sadeghi, S.; Ganji, D.D.

    2011-01-01

    This work studies the dynamic simulation of thermosyphon solar water heater collector considering the weather conditions of a city in north of Iran. The simulation was done for clear and partly cloudy days. The useful energy, the efficiency diagrams, the inlet and the outlet of collector, center of the absorber and center of the glass cover temperatures, were obtained. The simulation results were then compared with the experimental results in fall and showed a good agreement.

  6. Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study

    Science.gov (United States)

    Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.

    2017-12-01

    A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere

  7. A Pedestrian Approach to Indoor Temperature Distribution Prediction of a Passive Solar Energy Efficient House

    Directory of Open Access Journals (Sweden)

    Golden Makaka

    2015-01-01

    Full Text Available With the increase in energy consumption by buildings in keeping the indoor environment within the comfort levels and the ever increase of energy price there is need to design buildings that require minimal energy to keep the indoor environment within the comfort levels. There is need to predict the indoor temperature during the design stage. In this paper a statistical indoor temperature prediction model was developed. A passive solar house was constructed; thermal behaviour was simulated using ECOTECT and DOE computer software. The thermal behaviour of the house was monitored for a year. The indoor temperature was observed to be in the comfort level for 85% of the total time monitored. The simulation results were compared with the measured results and those from the prediction model. The statistical prediction model was found to agree (95% with the measured results. Simulation results were observed to agree (96% with the statistical prediction model. Modeled indoor temperature was most sensitive to the outdoor temperatures variations. The daily mean peak ones were found to be more pronounced in summer (5% than in winter (4%. The developed model can be used to predict the instantaneous indoor temperature for a specific house design.

  8. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    Science.gov (United States)

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  9. TRNSYS coupled with previs for simulation and sizing of solar water heating system: University Campus as case study

    International Nuclear Information System (INIS)

    Dkiouak, R.; Ahachad, M.

    2006-01-01

    A solar plant for hot-water production was investigated by the dynamic simulation code TRNSYS coupled with PREVIS code. Typical daily university campus consumption for a 240 students was considered. The hot-water demand temperature (45 degree centigrade) is controlled by a conventional fuel auxiliary heater and a tempering valve. The fluids circulate by pumps activated by electricity. Annual energy performance, in terms of solar fraction, was calculated for Tangier.(Author)

  10. Solar cooling. Dynamic computer simulations and parameter variations; Solare Kuehlung. Dynamische Rechnersimulationen und Parametervariationen

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Mario; Lohmann, Sandra [Fachhochschule Duesseldorf (Germany). E2 - Erneuerbare Energien und Energieeffizienz

    2011-05-15

    The research project 'Solar cooling in the Hardware-in-the-Loop-Test' is funded by the BMBF and deals with the modeling of a pilot plant for solar cooling with the 17.5 kW absorption chiller of Yazaki in the simulation environment of MATLAB/ Simulink with the toolboxes Stateflow and CARNOT. Dynamic simulations and parameter variations according to the work-efficient methodology of design of experiments are used to select meaningful system configurations, control strategies and dimensioning of the components. The results of these simulations will be presented and a view of the use of acquired knowledge for the planned laboratory field tests on a hardware-in-the-loop test stand will be given. (orig.)

  11. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  12. Numerical simulation of a heat pump assisted regenerative solar still with PCM heat storage for cold climates of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Shakir Yessen

    2017-01-01

    Full Text Available A numerical model has been proposed in this work for predicting the energy performances of the heat pump assisted regenerative solar still with phase changing material heat storage under Kazakhstan climates. The numerical model is based on energy and mass balance. A new regenerative heat pump configuration with phase changing material heat storage is proposed to improve the performance. A comparison of results has been made between the conventional solar still and heat pump assisted regenerative solar still with phase changing material. The numerical simulation was performed for wide range of ambient temperatures between -30 and 30°C with wide range of solar intensities between 100 and 900 W/m2. The numerical simulation results showed that heat pump assisted regenerative solar still is more energy efficient and produce better yield when compared to the conventional simple solar still. The influences of solar intensity, ambient temperature, different phase changing materials, heat pump operating temperatures are discussed. The predicted values were found to be in good agreement with experimental results reported in literature.

  13. Simulation of closed loop controlled boost converter for solar installation

    Directory of Open Access Journals (Sweden)

    Kalirasu Athimulam

    2010-01-01

    Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high stepup and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper digital simulation of closed loop controlled boost converter for solar installation is presented. Circuit models for open loop and closed loop controlled systems are developed using the blocks of simulink. The simulation results are compared with the theoretical results. This converter has advantages like improved power factor, fast response and reduced hardware. .

  14. Solar-simulator-pumped atomic iodine laser kinetics

    Science.gov (United States)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  15. Design and construction of a low cost solar simulator

    International Nuclear Information System (INIS)

    Supranto; Daud, W.R.W.; Sopian, K.; Othman, M.Y.; Yatim, B.

    2000-01-01

    A solar simulator has been designed and constructed for indoor testing for solar collectors. The simulator consists of 45 halogen lamps. Each lamp has a rated power of a 300 watts. The lamps in ten rows where each row consists of 4 to 5 lamps. The lamps occupied area 6 m 2 . Dimmers are used to control the amount of lamp intensities. The spacing between the lamps and the collector is about 150 cm. The intensities of the lamps are measured using a pyranometer. The intensity contours or mappings for minimum and maximum average pyranometer readings about 280 to 640 W/m 2 are produced, with errors are about of 3.16 % to 4.5 %. (Author)

  16. Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Crowley, T.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography

    1996-07-01

    Two simulations have been carried out with a global coupled ocean-atmosphere circulation model to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability induces a similar pattern of surface temperature change as the increase of greenhouse gases, i.e. an increase of the land-sea contrast. However, the solarinduced warming pattern over the ocean during northern hemispheric summer is more centered over the northern hemisphere subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. Finally, the magnitude of the estimated solar warming during the 20th century is not sufficient to explain the observed warming. The recent observed 30-year trends are inconsistent with the solar forcing simulation at an estimated 90% significance level. Also, the observed trend pattern agrees better with the greenhouse warming pattern. (orig.)

  17. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  18. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    Science.gov (United States)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  19. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.

    2012-06-01

    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  20. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  1. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  2. The relationship between incoming solar radiation and daily air temperature

    International Nuclear Information System (INIS)

    Kpeglo, Daniel Kwasi

    2013-07-01

    Solar radiation is the ultimate source of energy for the planet. To predict the values of temperature and instant solar radiation when equipment are not readily available from obtained equations, a good knowledge and understanding of the disposition and distribution of solar radiation is a requirement for modelling earth’s weather and climate change variables. A pyranometer (CM3) in series with a PHYWE amplifier and a voltmeter were experimentally set-up and used to study the amount of solar radiation received at the Physics Department of the University of Ghana during the day. The temperature of the study area as well as the Relative Humidity was also recorded. Data was collected over a period of one month (from 2nd to 24th April, 2012). Days for which rain was recorded were ignored because rain could damage the pyranometer. The data obtained by the set-up were therefore used to compare with data obtained by a wireless weather station (Davis Vintage Pro). The data from these separate set-ups indicated that a perfect correlation existed between the solar radiation and temperature of the place. The data obtained by the experimental set-up was split into two separate sessions as morning and evening sessions. It was observed that the experimental set-up had a good correlation with that of the weather station on a particular day 11th April, 2012. The various Regression Coefficient (R"2) values for morning session were respectively R"2 = 0.96 and R"2 = 0.95 with their respective equations as I_W =136.22T_W - 40623 and I_p = 2.3198T_p - 678.14. The evening session also had good Regression Coefficient values of R"2 = 0.81 and R"2 = 0.97 with equations of 2.1098T_p - 625 and I_W = 161.31T_w - 4876.9. Similar analysis of the data from the separate set-ups gave a better correlation for that of the experimental set-up than that of the wireless station. The range of values of Regression Coefficient (R"2) for the experimental set-up was between 0.82 − 0.99 for the morning

  3. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  4. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  5. A solar simulator-pumped gas laser for the direct conversion of solar energy

    Science.gov (United States)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  6. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  7. Investigation of the simulation for the solar DHW system by TRNSYS; TRNSYS ni yoru kaihogata tank wo mochiita solar kyuto system no simulation chosa

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, M; Noguchi, T [Japan Quality Assurance Organization, Tokyo (Japan); Okumiya, M [Nagoya University, Nagoya (Japan)

    1997-11-25

    With an objective of establishing a method for evaluating performance of a photovoltaic hot water supply system, a discussion was given on utilization of the simulation program, TRANSYS. The discussion was addressed on a photovoltaic hot water supply system of forcible circulation type using commercially available open-type heat storage tanks. An experiment was performed as an indoor test using an artificial solar light source. The TRANSYS makes available a type 04 which handles each node as a complete mixture by fixing and dividing the heat storage tank, and a type 38 which expresses heat transfer between temperature layers by means of piston flow as a heat transfer coefficient. Both types were subjected to calculation. The result of the discussion may be summarized as follows: both types provided values close to the experimental values of quantity of heat derived by utilizing solar heat; however, with the type 04, heat transfer cannot be modeled if the system is left still with temperature difference in the heat storage tank being large; and with the type 38, modeling is possible when the system is left still with temperature difference in the heat storage tank being large, but temperature gradient is difficult to be modeled during heat collection and when hot water is supplied. 1 ref., 7 figs., 5 tabs.

  8. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  9. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  10. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  11. Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors

    Directory of Open Access Journals (Sweden)

    Annamaria Buonomano

    2016-06-01

    Full Text Available This paper presents numerical and experimental analyses aimed at evaluating the technical and economic feasibility of photovoltaic/thermal (PVT collectors. An experimental setup was purposely designed and constructed in order to compare the electrical performance of a PVT solar field with the one achieved by an identical solar field consisting of conventional photovoltaic (PV panels. The experimental analysis also aims at evaluating the potential advantages of PVT vs. PV in terms of enhancement of electrical efficiency and thermal energy production. The installed experimental set-up includes four flat polycrystalline silicon PV panels and four flat unglazed polycrystalline silicon PVT collectors. The total electrical power and area of the solar field are 2 kWe and 13 m2, respectively. The experimental set-up is currently installed at the company AV Project Ltd., located in Avellino (Italy. This study also analyzes the system from a numerical point of view, including a thermo-economic dynamic simulation model for the design and the assessment of energy performance and economic profitability of the solar systems consisting of glazed PVT and PV collectors. The experimental setup was modelled and partly simulated in TRNSYS environment. The simulation model was useful to analyze efficiencies and temperatures reached by such solar technologies, by taking into account the reference technology of PVTs (consisting of glazed collectors as well as to compare the numerical data obtained by dynamic simulations with the gathered experimental results for the PV technology. The numerical analysis shows that the PVT global efficiency is about 26%. Conversely, from the experimental point of view, the average thermal efficiency of PVT collectors is around 13% and the electrical efficiencies of both technologies are almost coincident and equal to 15%.

  12. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    Science.gov (United States)

    Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R. J.

    2007-10-01

    Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic application employing hydrogen lines. Aims: To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical structure of the solar atmosphere and on hydrogen line formation, in particular Hα. Methods: We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Results: Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements

  13. Design optimization of a multi-temperature solar thermal heating system for an industrial process

    International Nuclear Information System (INIS)

    Allouhi, A.; Agrouaz, Y.; Benzakour Amine, Mohammed; Rehman, S.; Buker, M.S.; Kousksou, T.; Jamil, A.; Benbassou, A.

    2017-01-01

    Highlights: •Integration of solar thermal energy into an industrial activity is presented. •Hot water is required at four temperatures and load profiles. •Design optimization based on the LCC method is introduced. •Annual performance of centralized system is discussed. •Sensitivity analysis based on economic variables is investigated. -- Abstract: Presently, great challenges are being faced by the industrial sector in terms of energy management and environmental protection. Utilization of solar energy to meet a portion of heat demand in various industries constitutes tremendous economic opportunities for developing countries such as Morocco. Therefore, this paper introduces an optimization procedure and simulation of a centralized solar heating system providing hot water to four processes with different temperature levels and load profiles. As a case study, a Casablanca based Moroccan milk processing company is evaluated and the life cycle cost method is practiced to select the optimal size of the main design parameters for decision-making. It was found that 400 m 2 of evacuated tube collectors tilted at an angle of 30° and connected to a 2000 l storage tank can lead to a maximum life cycle saving cost of 179 kUSD for a total annual heat demand of 528.23 MWh. In this optimal configuration, the overall annual solar fraction is found to be 41% and the payback period of 12.27 years attained. The system has the potential to reduce around 77.23 tons of CO 2 equivalents of greenhouse gas emissions annually. The economic competitiveness of the solar thermal heating plant can be considerably improved with higher inflation rates and lower initial investments.

  14. Conception and simulation of an improved solar refrigeration unit

    International Nuclear Information System (INIS)

    Chaouachi, B.; Gabsi, S.

    2006-01-01

    If the solar energy possesses the advantage to be c lean , free and new able, this last is probably, considered like an adapted potential solution, that answers in even time at a economic preoccupation and ecological problems. Among the main done currently research is the use of free source to make operate system of refrigeration. following a bibliographic study on the absorption cycles, the utilized couples absorbents-refrigerating fluids and the capture of the solar energy, an unit refrigeration using an improved solar absorption cycle of ammonia has been conceived and studied. The simulation results in permanent regime concerned the determination of the variation of the performance criteria mainly according to the operatives kept for this study. The obtained results showed, that the improved mono pressure absorption cycle of ammonia is suitable well for the cold production by means of the solar energy and that with a simple plate collector we can reach a power, of the order of 900 watts sufficient for domestic use.(Author)

  15. Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project

    Science.gov (United States)

    Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.

    2014-01-01

    NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.

  16. Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2016-12-01

    Full Text Available We present the analysis of annual average OH* temperatures in the mesopause region derived from measurements of the Ground-based Infrared P-branch Spectrometer (GRIPS at Wuppertal (51° N, 7° E in the time interval 1988 to 2015. The new study uses a temperature time series which is 7 years longer than that used for the latest analysis regarding the long-term dynamics. This additional observation time leads to a change in characterisation of the observed long-term dynamics. We perform a multiple linear regression using the solar radio flux F10.7 cm (11-year cycle of solar activity and time to describe the temperature evolution. The analysis leads to a linear trend of (−0.089 ± 0.055 K year−1 and a sensitivity to the solar activity of (4.2 ± 0.9 K (100 SFU−1 (r2 of fit 0.6. However, one linear trend in combination with the 11-year solar cycle is not sufficient to explain all observed long-term dynamics. In fact, we find a clear trend break in the temperature time series in the middle of 2008. Before this break point there is an explicit negative linear trend of (−0.24 ± 0.07 K year−1, and after 2008 the linear trend turns positive with a value of (0.64 ± 0.33 K year−1. This apparent trend break can also be described using a long periodic oscillation. One possibility is to use the 22-year solar cycle that describes the reversal of the solar magnetic field (Hale cycle. A multiple linear regression using the solar radio flux and the solar polar magnetic field as parameters leads to the regression coefficients Csolar = (5.0 ± 0.7 K (100 SFU−1 and Chale = (1.8 ±  0.5 K (100 µT−1 (r2 = 0.71. The second way of describing the OH* temperature time series is to use the solar radio flux and an oscillation. A least-square fit leads to a sensitivity to the solar activity of (4.1 ± 0.8 K (100 SFU−1, a period P  =  (24.8 ± 3.3 years, and

  17. Numerical Simulation of a Mechanically Stacked GaAs/Ge Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Enayat Taghavi Moghaddam

    2017-06-01

    Full Text Available In this paper, GaAs and Ge solar cells have been studied and simulated separately and the inner characteristics of each have been calculated including the energy band structure, the internal field, carrier density distribution in the equilibrium condition (dark condition and the voltage-current curve in the sun exposure with the output power of each one. Finally, the output power of these two mechanically stacked cells is achieved. Drift-diffusion model have been used for simulation that solved with numerically method and Gummel algorithm. In this simulation, the final cells exposed to sun light in a standard AM 1.5 G conditions and temperatures are 300° K. The efficiency of the proposed structure is 9.47%. The analytical results are compared with results of numerical simulations and the accuracy of the method used is shown.

  18. Design of a solar updraft tower power plant for pakistan and its simulation in transys

    International Nuclear Information System (INIS)

    Khan, T.; Chaudhry, I.A.; Rehman, A.

    2014-01-01

    Solar updraft tower is a distinct and novel combination of three old concepts that are green house effect, chimney effect and wind turbine. It can be employed, with almost negligible maintenance cost, in electricity generation. Given the different climatic and economical conditions for different places, every region demands a specific design. As solar chimney power plant is a relatively new technology, much effort has not been done in evaluating the performances of the various plants. In this context, a solar updraft tower has been designed for the conditions of Pakistan (Lahore) and is simulated in TRNSYS to analyze the plant performance through different seasons and time of the year. The study reveals important results about the factors involved in determining the final output power produced. It is observed that the solar irradiance plays a more significant role in power generation than ambient temperature. The more the capacity of a plant to produce power, the more economical it would be. TRNSYS based program is presumed to be a handy mode of examining solar chimney power plants. (author)

  19. ALFVÉN WAVES IN SIMULATIONS OF SOLAR PHOTOSPHERIC VORTICES

    Energy Technology Data Exchange (ETDEWEB)

    Shelyag, S.; Cally, P. S. [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Reid, A.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2013-10-10

    Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit 'tornado'-like behavior or a 'bath-tub' effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

  20. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  1. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  2. Cesium lead iodide solar cells controlled by annealing temperature.

    Science.gov (United States)

    Kim, Yu Geun; Kim, Tae-Yoon; Oh, Jeong Hyeon; Choi, Kyoung Soon; Kim, Youn-Jea; Kim, Soo Young

    2017-02-22

    An inorganic lead halide perovskite film, CsPbI 3 , used as an absorber in perovskite solar cells (PSCs) was optimized by controlling the annealing temperature and the layer thickness. The CsPbI 3 layer was synthesized by one-step coating of CsI mixed with PbI 2 and a HI additive in N,N-dimethylformamide. The annealing temperature of the CsPbI 3 film was varied from 80 to 120 °C for different durations and the thickness was controlled by changing the spin-coating rpm. After annealing the CsPbI 3 layer at 100 °C under dark conditions for 10 min, a black phase of CsPbI 3 was formed and the band gap was 1.69 eV. Most of the yellow spots disappeared, the surface coverage was almost 100%, and the rms roughness was minimized to 3.03 nm after annealing at 100 °C. The power conversion efficiency (PCE) of the CsPbI 3 based PSC annealed at 100 °C was 4.88%. This high PCE value is attributed to the low yellow phase ratio, high surface coverage, low rms roughness, lower charge transport resistance, and lower charge accumulation. The loss ratio of the PCE of the CH 3 NH 3 PbI x Cl 3-x and CsPbI 3 based PSCs after keeping in air was 47 and 26%, respectively, indicating that the stability of the CsPbI 3 based PSC is better than that of the CH 3 NH 3 PbI x Cl 3-x based PSC. From these results, it is evident that CsPbI 3 is a potential candidate for solar cell applications.

  3. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis

    International Nuclear Information System (INIS)

    Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.

    2016-01-01

    Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take

  4. ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, NO. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Fang, Fang [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States); McIntosh, Scott W.; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  5. On the Observation and Simulation of Solar Coronal Twin Jets

    Science.gov (United States)

    Liu, Jiajia; Fang, Fang; Wang, Yuming; McIntosh, Scott W.; Fan, Yuhong; Zhang, Quanhao

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  6. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  7. Investigations of Solar Prominence Dynamics Using Laboratory Simulations

    International Nuclear Information System (INIS)

    Bellan, Paul M.

    2008-01-01

    Laboratory experiments simulating many of the dynamical features of solar coronal loops have been carried out. These experiments manifest collimation, kinking, jet flows, and S-shapes. Diagnostics include high-speed photography and x-ray detectors. Two loops having opposite or the same magnetic helicity polarities have been merged and it is found that counter-helicity merging provides much greater x-ray emission. A non-MHD particle orbit instability has been discovered whereby ions going in the opposite direction of the current flow direction can be ejected from a magnetic flux tube.

  8. Performance predictions for solar-chemical convertors by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Luttmer, J.D.; Trachtenberg, I.

    1985-08-01

    A computer model which simulates the operation of Texas Instruments solar-chemical convertor (SCC) was developed. The model allows optimization of SCC processes, material, and configuration by facilitating decisions on tradeoffs among ease of manufacturing, power conversion efficiency, and cost effectiveness. The model includes various algorithms which define the electrical, electrochemical, and resistance parameters and which describ the operation of the discrete components of the SCC. Results of the model which depict the effect of material and geometric changes on various parameters are presented. The computer-calculated operation is compared with experimentall observed hydrobromic acid electrolysis rates.

  9. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  10. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  11. Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavallari, Nicholas, E-mail: nicholas.cavallari@imem.cnr.it [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a, 43124 Parma (Italy); Pattini, Francesco; Rampino, Stefano; Annoni, Filippo [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Barozzi, Mario [FBK—CMM—Micro Nano Facility, Via Sommarive 18, 38123 Trento (Italy); Bronzoni, Matteo; Gilioli, Edmondo; Gombia, Enos [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Maragliano, Carlo [Solar Bankers LLC, Phoenix, AZ (United States); Mazzer, Massimo [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Pepponi, Giancarlo [FBK—CMM—Micro Nano Facility, Via Sommarive 18, 38123 Trento (Italy); Spaggiari, Giulia; Fornari, Roberto [IMEM-CNR, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a, 43124 Parma (Italy)

    2017-08-01

    Highlights: • AZO and CIGS were deposited by Low-Temperature Pulsed Electron Deposition (LT-PED). • CIGS/AZO contacts with ohmic behavior and resistance of 1.07 Ω cm{sup 2} were fabricated. • LT-PED deposition of AZO and CIGS prevents formation of Ga{sub 2}O{sub 3} interlayer. • CIGS-based bifacial solar cells with AZO back contact were realized. • Front PV efficiency of 9.3% and equivalent bifacial efficiency of 11.6% were achieved. - Abstract: We report on the fabrication and characterization of Cu(In,Ga)Se{sub 2} (CIGS)-based thin film bifacial solar cells using Al-doped ZnO (AZO) as cost-effective and non-toxic transparent back contact. We show that, by depositing both CIGS and AZO by Low Temperature Pulsed Electron Deposition at a maximum temperature of 250 °C, a good ohmic contact is formed between the two layers and good quality solar cells can be fabricated as a result. Photovoltaic efficiencies as high as 9.3% (front illumination), 5.1% (backside illumination) and 11.6% (bifacial illumination) have been obtained so far. These values are remarkably higher than those previously reported in the literature. We demonstrate that this improvement is ascribed to the low-temperature deposition process that avoids the formation of Ga{sub 2}O{sub 3} at the CIGS/AZO interface and favours the formation of a low-resistivity contact in agreement with device simulations.

  12. Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas

    International Nuclear Information System (INIS)

    Jing, Li; Gang, Pei; Jie, Ji

    2010-01-01

    The presented low temperature solar thermal electric generation system mainly consists of compound parabolic concentrators (CPC) and the Organic Rankine Cycle (ORC) working with HCFC-123. A novel design is proposed to reduce heat transfer irreversibility between conduction oil and HCFC-123 in the heat exchangers while maintaining the stability of electricity output. Mathematical formulations are developed to study the heat transfer and energy conversion processes and the numerical simulation is carried out based on distributed parameters. Annual performances of the proposed system in different areas of Canberra, Singapore, Bombay, Lhasa, Sacramento and Berlin are simulated. The influences of the collector tilt angle adjustment, the connection between the heat exchangers and the CPC collectors, and the ORC evaporation temperature on the system performance are investigated. The results indicate that the three factors have a major impact on the annual electricity output and should be the key points of optimization. And the optimized system shows that: (1) The annual received direct irradiance can be significantly increased by two or three times optimal adjustments even when the CPC concentration ratio is smaller than 3.0. (2) Compared with the traditional single-stage collectors, two-stage collectors connected with the heat exchangers by two thermal oil cycles can improve the collector efficiency by 8.1-20.9% in the simultaneous processes of heat collection and power generation. (3) On the use of the market available collectors the optimal ORC evaporation temperatures in most of the simulated areas are around 120 C. (author)

  13. High Temperature InGaN-based Solar Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — An efficient generation of solar power in a space environment is an enduring challenging for all NASA missions. The current available solar cells, however, suffer...

  14. COMPORTAMIENTO DE LA TEMPERATURA DEL FLUJO DE AIRE EN UN ABSORBEDOR SOLAR BEHAVIOR OF THE TEMPERATURE OF THE FLOW OF AIR IN A SOLAR ABSORBER

    Directory of Open Access Journals (Sweden)

    GERARDO C CIFUENTES

    2009-12-01

    Full Text Available El presente trabajo evalúa el comportamiento de la temperatura del flujo de aire en un colector solar de lecho de rocas, mediante un modelo matemático que simula las temperaturas del flujo de aire a la entrada y salida del colector. El modelo relaciona la geometría, la radiación incidente en el colector y las constantes propias del colector determinadas experimentalmente. Para el análisis se realizaron tres pruebas en las que se midieron las temperaturas del ambiente, de entrada y salida en el colector y la radiación solar incidente.The present work evaluates the behavior of the temperature of the flow of air in a solar collector of channel of rocks, by means of a mathematical model that simulates the temperatures from the flow of air to the entrance and exit of the collector. The pattern relates the geometry, the incident radiation in the collector and the constants own collector determined experimentally. For the analysis they were carried out three tests in those that the temperatures of the atmosphere were measured, of entrance and exit in the collector and the solar incident radiation.

  15. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  16. On the aliasing of the solar cycle in the lower stratospheric tropical temperature

    Science.gov (United States)

    Kuchar, Ales; Ball, William T.; Rozanov, Eugene V.; Stenke, Andrea; Revell, Laura; Miksovsky, Jiri; Pisoft, Petr; Peter, Thomas

    2017-09-01

    The double-peaked response of the tropical stratospheric temperature profile to the 11 year solar cycle (SC) has been well documented. However, there are concerns about the origin of the lower peak due to potential aliasing with volcanic eruptions or the El Niño-Southern Oscillation (ENSO) detected using multiple linear regression analysis. We confirm the aliasing using the results of the chemistry-climate model (CCM) SOCOLv3 obtained in the framework of the International Global Atmospheric Chemisty/Stratosphere-troposphere Processes And their Role in Climate Chemistry-Climate Model Initiative phase 1. We further show that even without major volcanic eruptions included in transient simulations, the lower stratospheric response exhibits a residual peak when historical sea surface temperatures (SSTs)/sea ice coverage (SIC) are used. Only the use of climatological SSTs/SICs in addition to background stratospheric aerosols removes volcanic and ENSO signals and results in an almost complete disappearance of the modeled solar signal in the lower stratospheric temperature. We demonstrate that the choice of temporal subperiod considered for the regression analysis has a large impact on the estimated profile signal in the lower stratosphere: at least 45 consecutive years are needed to avoid the large aliasing effect of SC maxima with volcanic eruptions in 1982 and 1991 in historical simulations, reanalyses, and observations. The application of volcanic forcing compiled for phase 6 of the Coupled Model Intercomparison Project (CMIP6) in the CCM SOCOLv3 reduces the warming overestimation in the tropical lower stratosphere and the volcanic aliasing of the temperature response to the SC, although it does not eliminate it completely.

  17. Two-fluid Numerical Simulations of Solar Spicules

    Energy Technology Data Exchange (ETDEWEB)

    Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep; Wójcik, Darek [Group of Astrophysics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, Abhishek Kumar; Dwivedi, Bhola N., E-mail: blazejkuzma1@gmail.com [Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005 (India)

    2017-11-10

    We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.

  18. Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct

    Directory of Open Access Journals (Sweden)

    Sanjeev Jakhar

    2016-06-01

    Full Text Available Earth air heat exchanger (EAHE systems are insufficient to meet the thermal comfort requirements in winter conditions. The low heating potential of such systems can be improved by integrating the system with solar air heating duct (SAHD. The aim of this paper is to present a model to estimate the heating potential for EAHE system with and without SAHD. The model is generated using TRNSYS 17 simulation tool and validated against experimental investigation on an experimental set-up in Ajmer, India. The experiment was done during the winter season, where the system was evaluated for different inlet flow velocities, length and depth of buried pipe. From the experimentation, it was observed that the depth of 3.7 m is sufficient for pipe burial and the 34 m length of pipe is sufficient to get optimum EAHE outlet temperature. It is also observed that increase in flow velocity results in drop in EAHE outlet temperature, while room temperature is found to increase for higher velocities (5 m/s. The COP of the system also increased up to 6.304 when assisted with solar air heating duct. The results obtained from the experiment data are in good agreement with simulated results within the variation of up to 7.9%.

  19. Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.

  20. Experimental and simulation studies on a single pass, double duct solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Mechanical Engineering, Kumasi (Ghana); Rajakaruna, H. [De Montfort Univ., School of Engineering and Technology, Leicester (United Kingdom)

    2003-05-01

    A mathematical model of a single pass, double duct solar air heater (SPDDSAH) is described. The model provides a design tool capable of predicting: incident solar radiation, heat transfer coefficients, mean air flow rates, mean air temperature and relative humidity at the exit. Results from the simulation are presented and compared with experimental ones obtained on a full scale air heater and a small scale laboratory one. Reasonable agreement between the predicted and measured values is demonstrated. Predicted results from a parametric study are also presented. It is shown that significant improvement in the SPDDSAH performance can be obtained with an appropriate choice of the collector parameters and the top to bottom channel depth ratio of the two ducts. The air mass flow rate is shown to be the dominant factor in determining the overall efficiency of the heater. (Author)

  1. Properties and Photocatalytic Activity of β-Ga2O3 Nanorods under Simulated Solar Irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhen Wang

    2015-01-01

    Full Text Available β-Ga2O3 nanorods are prepared by hydrothermal method and characterized by X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectra. The results reveal that high crystallinity, monoclinic phase of β-Ga2O3 nanorods were prepared with a diameter of about 60 nm and length of 500 nm. Photoluminescence study indicates that the β-Ga2O3 nanorods exhibit a broad blue light emission at room temperature. The β-Ga2O3 nanorods displayed high photocatalytic activity under simulated solar irradiation; after 2 h irradiation, over 95% of methylene blue solution and over 90% of methyl orange solution were decolorized. Since this process does not require additional hydrogen peroxide and uses solar light, it can be developed as an economically feasible and environmentally friendly method to treat dye effluent.

  2. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  3. Understanding the tropical warm temperature bias simulated by climate models

    Science.gov (United States)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  4. Solid State Large Area Pulsed Solar Simulator for 3-, 4- and 6-Junction Solar Cell Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I was successful in delivering a complete prototype of the proposed innovation, an LED-based, solid state, large area, pulsed, solar simulator (ssLAPSS)....

  5. Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo; Stańczyk, Kamil

    2016-01-01

    Highlights: • A mathematical model of a Latent Heat Storage system was developed. • Energy and exergy analysis of the storage system were carried out. • A solar powered ORC unit coupled with the Latent Heat Storage was studied. • The dynamic performance of the overall plant was simulated with TRNSYS. - Abstract: Solar energy is one of the most promising renewable energy sources, but is intermittent by its nature. The study of efficient thermal heat storage technologies is of fundamental importance for the development of solar power systems. This work focuses on a robust mathematical model of a Latent Heat Storage (LHS) system constituted by a storage tank containing Phase Change Material spheres. The model, developed in EES environment, provides the time-dependent temperature profiles for the PCM and the heat transfer fluid flowing in the storage tank, and the energy and exergy stored as well. A case study on the application of the LHS technology is also presented. The operation of a solar power plant associated with a latent heat thermal storage and an ORC unit is simulated under dynamic (time-varying) solar radiation conditions with the software TRNSYS. The performance of the proposed plant is simulated over a one week period, and the results show that the system is able to provide power in 78.5% of the time, with weekly averaged efficiencies of 13.4% for the ORC unit, and of 3.9% for the whole plant (from solar radiation to net power delivered by the ORC expander).

  6. Optimal Design for the Diffusion Plate with Nanoparticles in a Diffusive Solar Cell Window by Mie Scattering Simulation

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Chen

    2013-01-01

    Full Text Available A diffusive solar cell window comprises a diffusion plate with TiO2 nanoparticles sandwiched between two glass layers. It is a simple, inexpensive, easy-to-made, and highly reliable transparent solar energy module. To improve its power generation efficiency as well as maintain indoor natural lighting, we examined the scattering mechanism in the diffusion plate with TiO2 nanoparticles within a diffusive solar cell window by Mie scattering simulations. In this work, a multiwavelength ASAP ray tracing model for a diffusive solar cell window with acceptable accuracy was developed to investigate the influence of the diffusion plate design parameter, mainly concentration of a diffusion plate with determined particle size distribution, on power generation efficiency and color shift of transmitted sun light. A concept of “effective average radius” was proposed to account for the equivalent scattering effect of a size distribution of quasispherical particles. Simulation results demonstrated that both the transmitted light and its correlated color temperature decreased as the concentration increased for a large-size diffusive solar cell window. However, there existed a maximum power generation efficiency at around 160 ppm concentration. The optimal design for a large-size diffusion plate inside a diffusive solar cell window by taking indoor lighting into account was suggested based on the simulation results.

  7. Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle

    International Nuclear Information System (INIS)

    He, Ya-Ling; Mei, Dan-Hua; Tao, Wen-Quan; Yang, Wei-Wei; Liu, Huai-Liang

    2012-01-01

    Highlights: ► A parabolic trough solar power generation system with ORC is numerically simulated. ► The effects of key parameters on collector field and system performance are studied. ► Collector heat loss increases with small absorber and glass tube interlayer pressure. ► Heat collecting efficiency increases with initial increase of absorber HTO flow rate. ► Recommended thermal storage system volumes are different in year four typical days. -- Abstract: A model for a typical parabolic trough solar thermal power generation system with Organic Rankine Cycle (PT-SEGS–ORC) was built within the transient energy simulation package TRNSYS, which is formed by integrating several submodels for the trough collector system, the single-tank thermal storage system, the auxiliary power system and the heat-electricity conversion system. With this model, the effects of several key parameters, including the interlayer pressure between the absorber tube and the glass tube (p inter ), the flow rate of high temperature oil in the absorber tube (v), solar radiation intensity (I dn ) and incidence angle (θ), on the performance of the parabolic trough collector field based on the meteorological data of Xi’an city were examined. The study shows that the heat loss of the solar collector (q loss ) increases sharply with the increase in p inter at beginning and then reaches to an approximately constant value. The variation of heat collecting efficiency (η hc ) with v is quite similar to the variation of q loss with p inter . However, I dn and θ exhibit opposite effect on η hc . In addition, it is found that the optimal volume of the thermal storage system is sensitively dependent on the solar radiation intensity. The optimal volumes are 100, 150, 50, and 0 m 3 for spring equinox, summer solstice, autumnal equinox and winter solstice, respectively.

  8. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    Science.gov (United States)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  9. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Udagawa, M [Kogakuin University, Tokyo (Japan); Matsumoto, T [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  10. Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-04-01

    Full Text Available Recently, the use of hybrid systems using multiple heat sources in buildings to ensure a stable energy supply and improve the system performance has gained attention. Among them, a heat pump system using both solar and ground heat was developed and various system configurations have been introduced. However, establishing a suitable design method for the solar-assisted ground heat pump (SAGHP system including a thermal storage tank is complicated and there are few quantitative studies on the detailed system configurations. Therefore, this study developed three SAGHP system design methods considering the design factors focused on the thermal storage tank. Using dynamic energy simulation code (TRNSYS 17, individual performance analysis models were developed and long-term quantitative analysis was carried out to suggest optimum design and operation methods. As a result, it was found that SYSTEM 2 which is a hybrid system with heat storage tank for only a solar system showed the highest average heat source temperature of 14.81 °C, which is about 11 °C higher than minimum temperature in SYSTEM 3. Furthermore, the best coefficient of performance (COP values of heat pump and system were 5.23 and 4.32 in SYSYEM 2, using high and stable solar heat from a thermal storage tank. Moreover, this paper considered five different geographical and climatic locations and the SAGHP system worked efficiently in having high solar radiation and cool climate zones and the system COP was 4.51 in the case of Winnipeg (Canada where the highest heating demand is required.

  11. Solar radio emissions: 2D full PIC simulations

    Science.gov (United States)

    Pierre, H.; Sgattoni, A.; Briand, C.; Amiranoff, F.; Riconda, C.

    2016-12-01

    Solar radio emissions are electromagnetic waves observed at the local plasma frequency and/or at twice the plasma frequency. To describe their origin a multi-stage model has been proposed by Ginzburg & Zhelezniakov (1958) and further developed by several authors, which consider a succession of non-linear three-wave interaction processes. Electron beams accelerated by solar flares travel in the interplanetary plasma and provide the free energy for the development of plasma instabilities. The model describes how part of the free energy of these beams can be transformed in a succession of plasma waves and eventually into electromagnetic waves. Following the work of Thurgood & Tsiklauri (2015) we performed several 2D Particle In Cell simulations. The simulations follow the entire set of processes from the electron beam propagation in the background plasma to the generation of the electromagnetic waves in particular the 2ωp emission, including the excitation of the low frequency waves. As suggested by Thurgood & Tsiklauri (2015) it is possible to identify regimes where the radiation emission can be directly linked to the electron beams. Our attention was devoted to estimate the conversion efficiency from electron kinetic energy to the em energy, and the growth rate of the several processes which can be identified. We studied the emission angles of the 2ωpradiation and compared them with the theoretical predictions of Willes et. al. (1995). We also show the role played by some numerical parameters i.e. the size and shape of the simulation box. This work is the first step to prepare laser-plasma experiments. V. L. Ginzburg, V. V. Zhelezniakov On the Possible Mechanisms of Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma) Soviet Astronomy, Vol. 2, p.653 (1958) J. O. Thurgood and D. Tsiklauri Self-consistent particle-in-cell simulations of funda- mental and harmonic plasma radio emission mechanisms. Astronomy & Astrophysics 584, A83 (2015). A. Willes, P

  12. Temperature and color management of silicon solar cells for building integrated photovoltaic

    Science.gov (United States)

    Amara, Mohamed; Mandorlo, Fabien; Couderc, Romain; Gerenton, Félix; Lemiti, Mustapha

    2018-01-01

    Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  13. Effect of High-Temperature Annealing on Ion-Implanted Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyunpil Boo

    2012-01-01

    Full Text Available P-type and n-type wafers were implanted with phosphorus and boron, respectively, for emitter formation and were annealed subsequently at 950∼1050∘C for 30∼90 min for activation. Boron emitters were activated at 1000∘C or higher, while phosphorus emitters were activated at 950∘C. QSSPC measurements show that the implied Voc of boron emitters increases about 15 mV and the J01 decreases by deep junction annealing even after the activation due to the reduced recombination in the emitter. However, for phosphorus emitters the implied Voc decreases from 622 mV to 560 mV and the J01 increases with deep junction annealing. This is due to the abrupt decrease in the bulk lifetime of the p-type wafer itself from 178 μs to 14 μs. PC1D simulation based on these results shows that, for p-type implanted solar cells, increasing the annealing temperature and time abruptly decreases the efficiency (Δηabs=−1.3%, while, for n-type implanted solar cells, deep junction annealing increases the efficiency and Voc, especially (Δηabs=+0.4% for backside emitter solar cells.

  14. Temperature and color management of silicon solar cells for building integrated photovoltaic

    Directory of Open Access Journals (Sweden)

    Amara Mohamed

    2018-01-01

    Full Text Available Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  15. Correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, C.H.

    1981-01-15

    A general expression has been derived to enable calculation of the calibration error resulting from simulator-solar AMX spectral mismatch and from reference cell-test cell spectral mismatch. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  16. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vicidomini, Maria; Scarpellino, Marco

    2015-01-01

    Highlights: • A novel small scale solar power plant was designed and simulated. • The system is based on evacuated solar thermal collectors and an ORC system. • An average electric efficiency of 10% was found for the ORC. • The efficiency of solar collectors was found to be high in summer (>50%). • Pay-back periods lower than 5 years were estimated, in case of public funding. - Abstract: This paper presents a dynamic simulation model of a novel prototype of a 6 kW e solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m 2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the

  17. Modeling and simulation of InGaN/GaN quantum dots solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Aissat, A., E-mail: sakre23@yahoo.fr [LATSI Laboratory, Faculty of Technology, University of Blida 1 (Algeria); LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Benyettou, F. [LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Vilcot, J. P. [Institute of Electronics, Micro-Electronics and Nanotechnologies,UMR CNRS 8520, Université des Sciences et Technologies de Lille1, Avenue Poincaré, CS 60069, 59652 Villeneuve d’Ascq (France)

    2016-07-25

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In{sub 0.25}Ga{sub 0.75}N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In{sub 0.25}Ga{sub 0.75}N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  18. Low-temperature plasma modelling and simulation

    NARCIS (Netherlands)

    Dijk, van J.

    2011-01-01

    Since its inception in the beginning of the twentieth century, low-temperature plasma science has become a major ¿eld of science. Low-temperature plasma sources and gas discharges are found in domestic, industrial, atmospheric and extra-terrestrial settings. Examples of domestic discharges are those

  19. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  20. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    Science.gov (United States)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  1. Numerical model of simulation for solar collector of water heating; Modelo de simulaco numerica para colector solar de aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A. C. G. C.; Dutra, J. C. C.; Henriquez, J. R.; Michalewicz, J. S.

    2008-07-01

    Before being installed a solar heater, It must be tested, numerical or experimentally to get his characteristic equation, which is the efficiency curve, plotted as a function on the temperature of entry and solar incident radiation on the collector. In this work was developed a tool for numerical simulation of heating water flat-plate solar collectors. This tool has been developed from a mathematical model which is composed of a system of equations. In the model are included equations of balance energy for the collector, equation of the first law, the law of cooling equation of Newton, convective heat transfer coefficient correlations, equations for calculating the solar incident radiation, and one equation that calculates of the water flow due to the siphon effect. The solution of the equations system was obtained by the multidimensional version of the Newton-Raphson method. the model was validated with experimental data from literature. The results shows, that it is a very interesting tool to simulate efficiency curve of the solar collector. (Author)

  2. Comparison of solar photospheric bright points between Sunrise observations and MHD simulations

    Science.gov (United States)

    Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.

    2014-08-01

    Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the

  3. Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes.

    Science.gov (United States)

    Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene

    2017-07-01

    The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.

  4. Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM

    International Nuclear Information System (INIS)

    Luo, Zigeng; Huang, Zhaowen; Xie, Ning; Gao, Xuenong; Xu, Tao; Fang, Yutang; Zhang, Zhengguo

    2017-01-01

    Highlights: • A passive cooling PV-PCM system was developed. • Form-stable paraffin/EG composite PCM with high thermal conductivity was utilized. • Numerical simulation on the temperature of PV-PCM panel was carried out. • Effects of density were studied under the given weather conditions. - Abstract: Performance of photovoltaic (PV) panels is greatly affected by its operating temperature. And traditional active and passive cooling methods usually suffer from the disadvantages of external energy consumption, uneven temperature distribution and low thermal conductivity of phase change materials (PCMs). In this work, a PV-PCM system was developed to control the temperature of a PV panel by applying high thermal conductive form-stable paraffin (ZDJN-28)/EG composite PCM. The temperature, output voltage and power of a conventional PV panel and the PV-PCM panel were measured and compared. A numerical simulation model established by CFD software FLUENT was used to simulate the temperature change process of the PV-PCM panel with different material densities under the same conditions as experiment. The experiment results showed that compared with the temperature of the conventional PV panel, the temperature of the PV-PCM panel is kept below 50 °C for 200 min extended by 146 min with output power averagely increased by 7.28% in heating process. Simulated temperatures were in good agreement with experimental temperatures and indicated that the higher the density of the PCM is, the better the temperature management performance the PV panel could achieve. Besides, the PCM with density of 900 kg/m 3 was found sufficient to achieve a good temperature management performance when the average ambient temperature below 25 °C with the highest solar irradiation of 901 w/m 2 . In summary, this work is of great importance in the design of a PV-PCM system for temperature management of PV panels.

  5. Thermal analysis of electric power generation with solar collectors at how low temperature; Analisis termico de plantas de generacion de energia electrica con la integraacion de colectores solares trabajando a bajas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Monne, C.; Salina, P.; Leithner, R.; Aronis, N.

    2004-07-01

    The main focus of this article is how low temperature heat sources can be used for electric power generation. The paper will focus on solar energy in particular. The article shows simulation of five different cycles, with solar energy integration, by means ENBIPRO program (ENergie-BIlanz-PROgramm), that at the moment it is being developed by Institut Warme und Brennstofftechnik, Technische Universitat Braunschweig (Germany). (Author)

  6. AXAF-I Low Intensity-Low Temperature (LILT) Testing of the Development Verification Test (DVT) Solar Panel

    Science.gov (United States)

    Alexander, Doug; Edge, Ted; Willowby, Doug

    1998-01-01

    The planned orbit of the AXAF-I spacecraft will subject the spacecraft to both short, less than 30 minutes for solar and less than 2 hours for lunar, and long earth eclipses and lunar eclipses with combined conjunctive duration of up to 3 to 4 hours. Lack of proper Electrical Power System (EPS) conditioning prior to eclipse may cause loss of mission. To avoid this problem, for short eclipses, it is necessary to off-point the solar array prior to or at the beginning of the eclipse to reduce the battery state of charge (SOC). This yields less overcharge during the high charge currents at sun entry. For long lunar eclipses, solar array pointing and load scheduling must be tailored for the profile of the eclipse. The battery SOC, loads, and solar array current-voltage (I-V) must be known or predictable to maintain the bus voltage within acceptable range. To address engineering concerns about the electrical performance of the AXAF-I solar array under Low Intensity and Low Temperature (LILT) conditions, Marshall Space Flight Center (MSFC) engineers undertook special testing of the AXAF-I Development Verification Test (DVT) solar panel in September-November 1997. In the test the DVT test panel was installed in a thermal vacuum chamber with a large view window with a mechanical "flapper door". The DVT test panel was "flash" tested with a Large Area Pulse Solar Simulator (LAPSS) at various fractional sun intensities and panel (solar cell) temperatures. The testing was unique with regards to the large size of the test article and type of testing performed. The test setup, results, and lessons learned from the testing will be presented.

  7. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  8. Modelling and simulation of a solar cooler based on physical adsorption; Modelagem e simulacao de um refrigerador solar por adsorcao fisica

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gerson

    1994-12-31

    This study describes the construction of a simple mathematical model its validation through the simulation in transient state of a real cycle performed by a solar refrigerator based on physical adsorption using an activated carbon/methanol pair. The deviation from experimental results was 4% for the cycled mass of methanol, 2.2 % for maximum collector average temperature, and 3 x 10{sup -3} for the theoretical cycle coefficient of performance. Additional simulations of the same cycle inputting values representing different types and larger amounts of activated carbon showed the possibility of increasing the cycled methanol mass up to about 150%. (author) 26 refs., 16 figs., 9 tabs.

  9. Modelling and simulation of a solar cooler based on physical adsorption; Modelagem e simulacao de um refrigerador solar por adsorcao fisica

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gerson

    1993-12-31

    This study describes the construction of a simple mathematical model its validation through the simulation in transient state of a real cycle performed by a solar refrigerator based on physical adsorption using an activated carbon/methanol pair. The deviation from experimental results was 4% for the cycled mass of methanol, 2.2 % for maximum collector average temperature, and 3 x 10{sup -3} for the theoretical cycle coefficient of performance. Additional simulations of the same cycle inputting values representing different types and larger amounts of activated carbon showed the possibility of increasing the cycled methanol mass up to about 150%. (author) 26 refs., 16 figs., 9 tabs.

  10. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  11. Solar variations and their influence on trends in upper stratospheric ozone and temperature

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    1990-10-01

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidal variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period

  12. An IBM PC-based math model for space station solar array simulation

    Science.gov (United States)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  13. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  14. Simulation study of a capillary film solar still coupled with a conventional solar still in south Algeria

    International Nuclear Information System (INIS)

    Zerrouki, Moussa; Settou, Noureddine; Marif, Yacine; Belhadj, Mohmed Mustapha

    2014-01-01

    Highlights: • Coupling in series a capillary film solar still and a conventional solar still. • Combined heat and mass transfer analyses in solar distillation systems. • Design parameters of the system are optimized by simulation program. - Abstract: This work presents a numerical simulation of capillary film solar still (distiller) coupled in series with another conventional solar still. Different transfer phenomena of heat and mass are considered to evaluate the daily distillate production. The study takes into account the quality of brackish water with moderate salinity in Adrar city (south of Algeria). The performance of the system is evaluated and compared with that of conventional solar still under the same meteorological conditions. A numerical simulation is carried out to appreciate the developed model and to optimize the relationship between both distillers collecting surfaces. The obtained results show that the system daily production is at 54–83% higher than that of the conventional one. In addition, some parameters influences are studied to define the optimal operating conditions for the present system. For the first solar still, the inclination angle and surfaces ratio have a significant effect on distillate production. Brine flow rate and wind speed have slight effect on still production

  15. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  16. Numerical simulations of sheared magnetic lines at the solar null line

    Science.gov (United States)

    Kuźma, B.; Murawski, K.; Solov'ev, A.

    2015-05-01

    Aims: We perform numerical simulations of sheared magnetic lines at the magnetic null line configuration of two magnetic arcades that are settled in a gravitationally stratified and magnetically confined solar corona. Methods: We developed a general analytical model of a 2.5D solar atmospheric structure. As a particular application of this model, we adopted it for the curved magnetic field lines with an inverted Y shape that compose the null line above two magnetic arcades, which are embedded in the solar atmosphere that is specified by the realistic temperature distribution. The physical system is described by 2.5D magnetohydrodynamic equations that are numerically solved by the FLASH code. Results: The magnetic field line shearing, implemented about 200 km below the transition region, results in Alfvén and magnetoacoustic waves that are able to penetrate solar coronal regions above the magnetic null line. As a result of the coupling of these waves, partial reflection from the transition region and scattering from inhomogeneous regions the Alfvén waves experience fast attenuation on time scales comparable to their wave periods, and the physical system relaxes in time. The attenuation time grows with the large amplitude and characteristic growing time of the shearing. Conclusions: By having chosen a different magnetic flux function, the analytical model we devised can be adopted to derive equilibrium conditions for a diversity of 2.5D magnetic structures in the solar atmosphere. Movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  17. On the influence of total solar irradiance on global land temperature

    International Nuclear Information System (INIS)

    Varonov, Albert; Shopov, Yavor

    2014-01-01

    Using statistical analysis, correlation between the variations of the total solar irradiance and of the annual-mean land temperatures was found. An unknown time lag between both data sets was expected to be present due to the complexity of the Earth’s climate system leading to a delayed response to changes in influencing factors. We found the best correlation with coefficient over 90% for a 14-year shift of the annual mean land temperature record ahead with data until 1970, while the same comparison with data until 2006 yields 61% correlation. These results show substantially higher influence of total solar irradiance on global land temperatures until 1970. The decline of this influence during the last 40 years could be attributed to the increasing concentration of anthropogenic greenhouse gases in the Earth’s atmosphere. Key words: total solar irradiance, solar variations, solar forcing, climate change

  18. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  19. Numerical simulation of wind loads on solar panels

    Science.gov (United States)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  20. Numerical simulation of solar-assisted multi-effect distillation (SMED) desalination systems

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Myat, Aung; Ng, K. C.

    2013-01-01

    demand, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from the solar tank drops below the set point. It is observed that the annual collector efficiency and solar fraction decrease from 57.3 to 54.8% and from 49

  1. Modeling of Operating Temperature Performance of Triple Junction Solar Cells Using Silvaco's ATLAS

    National Research Council Canada - National Science Library

    Sanders, Michael H

    2007-01-01

    .... Building upon prior thesis work at the Naval Postgraduate School, this thesis utilizes Silvaco's ATLAS software as a tool to simulate the performance of a typical InGaP/GaAs/Ge multi-junction solar...

  2. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Abuelma'atti, Muhammad Taher; Khan, Muhammad Haroon

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  3. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  4. Using simulation to validate and optimize the design of a hybrid solar-GCHP system

    Energy Technology Data Exchange (ETDEWEB)

    Kummert, M.; Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Roy, M. [Martin Roy and Associates, Deux-Montagnes, PQ (Canada)

    2006-07-01

    A redevelopment project that involves the sustainable construction of 3 buildings with 187 affordable and environmentally sound housing units in a Montreal community was discussed. The HVAC system was part of the integrated design process that focused on reducing greenhouse gas emissions, potable water use, the production of waste water and the production of solid waste through retrofitting, reuse and waste diversion. Design options were limited by pre-existing equipment and funding opportunities. The design was also influenced by the building's management structure whereby financial benefits from the energy savings go to a non-profit, community-run utility company that will re-invest in new phases of the project. The project involved the installation of a hybrid solar geothermal heat pump system. The design was different from the usual approach because the solar thermal system was sized to provide domestic hot water but not to compensate the annual imbalance in the ground loads. It was noted that the average temperature in the ground will decrease with time, due to the imbalance. This presentation provided the results of detailed TRNSYS simulations that validated and optimized the design of the hybrid ground-coupled heating plant including solar thermal collectors in the 3 multi-unit buildings. The TRNSYS simulation used building loads that were calculated in an earlier stage of the design process with DOE-2. A global heat exchange coefficient for radiators and floor heating was estimated in order to use realistic temperature levels. An analysis of the long-term system performance of this unique design showed that on a yearly basis, 33 per cent of the total heating load can come from renewable energy sources. 18 refs., 2 tabs., 13 figs.

  5. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  6. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  7. Proof-of-Concept Testing of the Passive Cooling System (T-CLIP™) for Solar Thermal Applications at an Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Quintana, Donald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Vigil, Gabrielle M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Perraglio, Martin Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Farley, Cory Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Tafoya, Jose I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Martinez, Adam L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology

    2015-11-30

    The Applied Engineering and Technology-1 group (AET-1) at Los Alamos National Laboratory (LANL) conducted the proof-of-concept tests of SolarSPOT LLC’s solar thermal Temperature- Clipper, or T-CLIP™ under controlled thermal conditions using a thermal conditioning unit (TCU) and a custom made environmental chamber. The passive T-CLIP™ is a plumbing apparatus that attaches to a solar thermal collector to limit working fluid temperature and to prevent overheating, since overheating may lead to various accident scenarios. The goal of the current research was to evaluate the ability of the T-CLIP™ to control the working fluid temperature by using its passive cooling mechanism (i.e. thermosiphon, or natural circulation) in a small-scale solar thermal system. The assembled environmental chamber that is thermally controlled with the TCU allows one to simulate the various possible weather conditions, which the solar system will encounter. The performance of the T-CLIP™ was tested at two different target temperatures: 1) room temperature (70 °F) and 2) an elevated temperature (130 °F). The current test campaign demonstrated that the T-CLIP™ was able to prevent overheating by thermosiphon induced cooling in a small-scale solar thermal system. This is an important safety feature in situations where the pump is turned off due to malfunction or power outages.

  8. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  9. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  10. Solar photo catalytic treatment of simulated dyestuff effluents

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Antoniadis, A.; Poulios, I.; Kiridies, I.; Malato, S.

    2003-07-01

    The photo catalytic organic content reduction of two selected synthetic wastewater from the textile dyeing industry, by the use heterogeneous and homogeneous photo catalytic methods under solar irradiation, has been studied at a pilot plant scale at the Plataforma Solar de Almeria. the effect of two different TiO{sub 2} modifications with oxidants such as H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8}, on the decolorisation and the organic content reduction (DOC) of the wastewater was examined. the TiO{sub 2}/H{sub 2}O{sub 2} system seems to be more efficient in comparison to the synergetic action which appears when using persulfate and TiO{sub 2} in these specific wastewaters. By an accumulation energy of 50 KJ L''-1 the synergetic effect of TiO{sub 2} P-25 with H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} leads to a 70% and 57% DOC reduction, respectively, in the case of cotton synthetic wastewater, while the decolorisation was almost complete. The photo catalytic decolorisation, as well as the DOC reduction in the case of naylon simulated wastewater is a slower process and by an accumulation energy of 50 KJ L''-1 leads to 54% mineralization in both cases. The Photo-Fenton process in both cases was more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation of energy of 50 KJ L''-1 leads to 90% reduction of the organic content. (Author) 13 refs.

  11. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, Avery J.; Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  12. Temperature dependence of dose rate laser simulation adequacy

    International Nuclear Information System (INIS)

    Skorobogatov, P.K.; Nikiforov, A.Y.; Demidov, A.A.

    1999-01-01

    2-D numerical modeling was carried out to analyze the temperature dependence of dose rate laser simulation adequacy in application to p-n junction ionising current. Experimental validation was performed using test structure in the temperature range of 0 to 100 deg.C. (authors)

  13. Investigation of room-temperature wafer bonded GaInP/GaAs/InGaAsP triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wen-xian; Dai, Pan; Ji, Lian; Tan, Ming; Wu, Yuan-yuan [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Uchida, Shiro [Department of Mechanical Science and Engineering Faculty of Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016 (Japan); Lu, Shu-long, E-mail: sllu2008@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2016-12-15

    Highlights: • High quality InGaAsP material with a bandgap of 1.0 eV was grown by MBE. • Room-temperature wafer-bonded GaInP/GaAs/InGaAsP SCs were fabricated. • An efficiency of 30.3% of wafer-bonded triple-junction SCs was obtained. - Abstract: We report on the fabrication of III–V compound semiconductor multi-junction solar cells using the room-temperature wafer bonding technique. GaInP/GaAs dual-junction solar cells on GaAs substrate and InGaAsP single junction solar cell on InP substrate were separately grown by all-solid state molecular beam epitaxy (MBE). The two cells were then bonded to a triple-junction solar cell at room-temperature. A conversion efficiency of 30.3% of GaInP/GaAs/InGaAsP wafer-bonded solar cell was obtained at 1-sun condition under the AM1.5G solar simulator. The result suggests that the room-temperature wafer bonding technique and MBE technique have a great potential to improve the performance of multi-junction solar cell.

  14. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    International Nuclear Information System (INIS)

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  15. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility

    International Nuclear Information System (INIS)

    Li Zhigang; Tang Dawei; Du Jinglong; Li Tie

    2011-01-01

    Uniform heater temperature and high optical-thermal efficiency are crucial for the reliable and economical operation of a Solar Dish/Stirling engine facility. The Monte-Carlo ray-tracing method is utilized to predict the radiation flux distributions of the concentrator-receiver system. The ray-tracing method is first validated by experiment, then the radiation flux profiles on the solar receiver surface for faceted real concentrator and ideal paraboloidal concentrator, irradiated by Xe-arc lamps and real sun, for different aperture positions and receiver shapes are analyzed, respectively. The resulted radiation flux profiles are subsequently transferred to a CFD code as boundary conditions to numerically simulate the fluid flow and conjugate heat transfer in the receiver cavity by coupling the radiation, natural convection and heat conduction together, and the CFD method is also validated through experiment. The results indicate that a faceted concentrator in combination with a solar simulator composed of 12 Xe-arc lamps is advantageous to drive the solar Stirling engine for all-weather indoor tests. Based on the simulation results, a solar receiver-Stirling heater configuration is designed to achieve a considerably uniform temperature distribution on the heater head tubes while maintaining a high efficiency of 60.7%. - Highlights: → Radiation flux in Dish/Stirling system is analyzed by validated ray-tracing method. → Temperature field on the solar receiver is analyzed by a validated CFD method. → Effects of Xe-arc lamp solar simulator and faceted real concentrator are analyzed. → Effects of different receiver positions and receiver shapes are investigated. → A Stirling heater configuration is presented with uniform temperature field.

  16. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H; Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  17. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  18. Voyager observations of solar wind proton temperature - 1-10 AU

    Science.gov (United States)

    Gazis, P. R.; Lazarus, A. J.

    1982-01-01

    Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.

  19. Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region

    International Nuclear Information System (INIS)

    Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa

    2014-01-01

    Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%

  20. Contribution to the modeling and simulation of solar power tower plants using energy analysis

    International Nuclear Information System (INIS)

    Benammar, S.; Khellaf, A.; Mohammedi, K.

    2014-01-01

    Highlights: • The solar tower power plant system (STPP) is divided into four main subsystems. • The energy balance of each subsystem has been developed. • A general nonlinear mathematical model of the studied system (STPP) has been presented. • Using numerical optimization methods, the nonlinear mathematical model has been solved. • The obtained results are presented and analyzed. - Abstract: In this paper, a mathematical model based on energy analysis, has been developed for modeling and simulation of solar tower power plants (STPP) performances without energy storage. The STPP system has been divided into four main subsystems: the heliostat field subsystem, the cavity receiver subsystem (tower), the steam generation subsystem and the power cycle subsystem (Rankine cycle). Thermal and thermodynamic models of main subsystems have been developed. A general nonlinear mathematical model of the studied system (STPP) has been presented and solved using numerical optimization methods. The obtained results are presented and analyzed. The effects of the receiver surface temperature and the receiver surface area on the cavity receiver efficiency and the steam mass flow have been investigated. The effects of other parameters, such as the incident heat flux, the absorbed energy and the heat losses from the receiver are also studied. The analysis of these results shows the existence of an optimal receiver efficiency value for each steam mass flow, receiver surface temperature and receiver surface area

  1. RADIATION MODEL FOR PREDICTING TEMPERATURE EVOLUTION IN SOLAR COOKER

    Directory of Open Access Journals (Sweden)

    FARID CHEJNE

    2011-01-01

    Full Text Available Un modelo matemático que describe y simula el comportamiento térmico de una estufa solar fue desarrollado en base en la analogía de resistencias aléctricas. El modelo matemático incluye los tres diferentes mecanismos de transferencia de calor entre las diferentes superfi cies de la cocina solar y su entorno. El modelo matemático se utilizó para predecir la generación de entropía y de su efi ciencia; tambien, fue utilizado para evaluar los parametros de diseño de una estufa solar tipo caja. Los datos experimentales y teóricos fueron comparados satisfactoriamente.

  2. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  3. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  4. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  5. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  6. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    Science.gov (United States)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  7. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  8. Performance evaluation of two solar stills of different geometries: Tubular versus triangular: Experimental study, numerical simulation, and second law analysis

    DEFF Research Database (Denmark)

    Rahbar, Nader; Asadi, Amin; Fotouhi-Bafghi, Ehsan

    2018-01-01

    In this study, two types of solar stills, triangular and tubular one, have been experimentally tested under a real weather condition. Following the same procedure, the experiments were carried out over seven typical winter days and the effects of solar radiation and ambient temperature on water...... are the main reasons to have a better water production in the tubular still. Furthermore, the cost of water production by the triangular solar still was found to be lower due to its lower manufacturing cost compare to that of tubular one. Based on the experimental results, two new correlations have been...... productivity and total efficiency of the stills has been experimentally investigated. Furthuremore, to understand the detail structures of the air flow inside the enclosures, the fluid flow has been numerically simulated using computational fluid dynamics. Having the details of the fluid flow, the values...

  9. Simulation of phase change drywalls in a passive solar building

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; O' Callaghan, P.W. [School of the Built Environment, The Applied Energy and Environmental Engineering Group, Nottingham Trent University, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2006-06-15

    Integration of phase change materials (PCMs) into building fabrics is considered to be one of the potential and effective ways of minimizing energy consumption and CO{sub 2} emissions in the building sector. In order to assess the thermal effectiveness of this concept, composite PCM drywall samples (i.e. randomly-mixed and laminated PCM drywalls) have been evaluated in a model passive solar building. For a broader assessment, effects of three phase change zones (narrow, intermediate and wide) of the PCM sample were considered. The results showed that the laminated PCM sample with a narrow phase change zone was capable of increasing the minimum room temperature by about 17% more than the randomly-mixed type. Even though there was some display of non-isothermal phase change process, the laminated system proved to be thermally more effective in terms of evolution and utilization of latent heat. Further heat transfer enhancement process is however required towards the development of the laminated system. [Author].

  10. Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver

    International Nuclear Information System (INIS)

    Wei, Min; Fan, Yilin; Luo, Lingai; Flamant, Gilles

    2015-01-01

    High temperature solar receiver is a core component of solar thermal power plants. However, non-uniform solar irradiation on the receiver walls and flow maldistribution of heat transfer fluid inside the tubes may cause the excessive peak temperature, consequently leading to the reduced lifetime. This paper presents an original CFD (computational fluid dynamics)-based evolutionary algorithm to determine the optimal fluid distribution in a tubular solar receiver for the minimization of its peak temperature. A pressurized-air solar receiver comprising of 45 parallel tubes subjected to a Gaussian-shape net heat flux absorbed by the receiver is used for study. Two optimality criteria are used for the algorithm: identical outlet fluid temperatures and identical temperatures on the centerline of the heated surface. The influences of different filling materials and thermal contact resistances on the optimal fluid distribution and on the peak temperature reduction are also evaluated and discussed. Results show that the fluid distribution optimization using the algorithm could minimize the peak temperature of the receiver under the optimality criterion of identical temperatures on the centerline. Different shapes of optimal fluid distribution are determined for various filling materials. Cheap material with low thermal conductivity can also meet the peak temperature threshold through optimizing the fluid distribution. - Highlights: • A 3D pressurized-air solar receiver based on the tube-in-matrix concept is studied. • An original evolutionary algorithm is developed for fluid distribution optimization. • A new optimality criterion is proposed for minimizing the receiver peak temperature. • Different optimal fluid distributions are determined for various filling materials. • Filling material with high thermal conductivity is more favorable in practical use.

  11. Simulating the temperature noise in fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    Characteristics of temperature noise at various modes of coolant flow in fast reactor fuel assemblies (FA) and for different points of sensor installation are investigated. Stationary mode of coolant flow and mode with a partial overlapping of FA through cross section, resulting in local temperature increase and sodium boiling, are considered. Numerical simulation permits to evaluate time characteristicsof temperature noise and to formulate requirements for dynamic characteristics of the sensors, and also to clarify the dependence of coolant distribution parameters on the sensor location and peculiarities of stationary temperature profile

  12. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  13. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  14. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian

    2006-01-01

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  15. Solar assisted conditioning of residences with floor heating and ceiling cooling: review and simulation results

    OpenAIRE

    Egrican, Nilufer; Korkmaz, Adnan

    2015-01-01

    Solar or solar assisted heating and cooling systems are becoming widespread to reduce CO2 emissions. Efficient radiant space heating and cooling systems can be used to decrease the energy bills and improve occupant thermal comfort in buildings. This study uses the TRNSYS program, for the modeling and simulation of solar assisted radiant heating and cooling of a building with the domestic hot water supply, to examine the effects of various parameters on energy consumption. Calculations are per...

  16. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  17. Organic solar cells theory, experiment, and device simulation

    CERN Document Server

    Tress, Wolfgang

    2014-01-01

    This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on

  18. A study on the performance enhancement of low-temperature solar applications : Daylighting and Adsorption Desalination System

    International Nuclear Information System (INIS)

    Kim, Yeong Min

    2011-02-01

    Thermal applications of solar energy are categorized by low, medium and high temperature. The present study has explored two major applications of solar energy widely researched and practiced these days. Of these, one deals with the utilization of solar energy for lighting in buildings, which is responsible for a great portion of electricity consumption, especially, for office and public buildings. Rapid improvements in lighting technology harnessing solar energy (daylight) have greatly contributed to radically reduce its consumption levels - and thereby reduce CO 2 emissions and cost. The other case considered here for solar utilization is so-called solar desalination using adsorbents (silica gels). This technology utilizes a silica gel adsorbent (desiccant) as a medium between an evaporator and a condenser to reject and facilitate latent heat of vaporization. Vapour is adsorbed and desorbed between evaporation and condensation phases. 1. Daylighting simulation A lighting upgrade is an obvious step toward improving a building's energy consumption, which could be easily assessed by using computer simulations. The present study has carried out a series of computer simulations for a lightless space as well as an actual classroom (in Jeju National University) when sun pipe systems are installed. They were first modeled by ECOTECT before RADIANCE was called in to conduct lighting analysis. Simulations were performed for equinoxes and solstices when the sun is at its highest altitude, i.e. at noon (12 PM). A lightless space and classroom of the same dimensions revealed the effectiveness of sun pipe systems to improve indoor lighting conditions throughout the year. 2. Development of adsorption desalination system utilizing silica-gel Some major components of an adsorption desalination system were designed and fabricated to assess its desalination efficiency when packs of silica-gel were used at different operating conditions. The amount of fresh water yield was studied

  19. A study on the performance enhancement of low-temperature solar applications : Daylighting and Adsorption Desalination System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Min

    2011-02-15

    Thermal applications of solar energy are categorized by low, medium and high temperature. The present study has explored two major applications of solar energy widely researched and practiced these days. Of these, one deals with the utilization of solar energy for lighting in buildings, which is responsible for a great portion of electricity consumption, especially, for office and public buildings. Rapid improvements in lighting technology harnessing solar energy (daylight) have greatly contributed to radically reduce its consumption levels - and thereby reduce CO{sub 2} emissions and cost. The other case considered here for solar utilization is so-called solar desalination using adsorbents (silica gels). This technology utilizes a silica gel adsorbent (desiccant) as a medium between an evaporator and a condenser to reject and facilitate latent heat of vaporization. Vapour is adsorbed and desorbed between evaporation and condensation phases. 1. Daylighting simulation A lighting upgrade is an obvious step toward improving a building's energy consumption, which could be easily assessed by using computer simulations. The present study has carried out a series of computer simulations for a lightless space as well as an actual classroom (in Jeju National University) when sun pipe systems are installed. They were first modeled by ECOTECT before RADIANCE was called in to conduct lighting analysis. Simulations were performed for equinoxes and solstices when the sun is at its highest altitude, i.e. at noon (12 PM). A lightless space and classroom of the same dimensions revealed the effectiveness of sun pipe systems to improve indoor lighting conditions throughout the year. 2. Development of adsorption desalination system utilizing silica-gel Some major components of an adsorption desalination system were designed and fabricated to assess its desalination efficiency when packs of silica-gel were used at different operating conditions. The amount of fresh water yield was

  20. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  1. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    Directory of Open Access Journals (Sweden)

    Przenzak Estera

    2016-01-01

    Full Text Available This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30% is not satisfactory but possibility of improvements exist.

  2. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    Science.gov (United States)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  3. Dynamic modeling of a solar ORC with compound parabolic collectors: Annual production and comparison with steady-state simulation

    International Nuclear Information System (INIS)

    Baccioli, A.; Antonelli, M.; Desideri, U.

    2017-01-01

    Highlights: • A small scale solar ORC was investigated during a year-long simulation. • The system was operated without a thermal storage. • High flexibility thanks to a sliding-velocity control and volumetric expander. • Influence of ORC and solar field parameters considered. • Strong influence of concentration factor and system inertia. - Abstract: In this paper the dynamic behavior of a small low-concentration solar plant with static Compound Parabolic Collectors (CPC) and an ORC power unit with rotary volumetric expander has been analyzed. The plant has been simulated in transient conditions for a year-long operation and for three different sites respectively located in northern, central and southern Italy, in order to evaluate the influence of the latitude on the production. Hourly discretized data for solar radiation and for ambient temperature have been used. The adoption of a sliding-velocity control strategy, has allowed to operate without any storage system with a solar multiple (S.M.) of 1, reducing the amplitude of the solar field and simplifying the control system. Different collectors tilt angles and concentration factors, as well as thermodynamic parameters of the cycle have been tested, to evaluate the optimal working conditions for each locality. Results highlighted that specific production increased with the concentration ratio, and with the decrease of latitude. The comparison with the steady-state analysis showed that this type of control strategy is suited for those configurations having a smaller number of collectors, since the thermal inertia of the solar field is not recovered at all during the plant shut-down phase.

  4. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Byers, Jeff M. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-02-20

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  5. Mathematical and computational modeling simulation of solar drying Systems

    Science.gov (United States)

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  6. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    Science.gov (United States)

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  7. Method to Simulate and Optimize the Operating Conditions of a Solar-Fuel Heat Supply System

    International Nuclear Information System (INIS)

    Anarbaev, A.; Zakhidov, R.

    2011-01-01

    The problem of how to determine the optimal parameters for the solar part of a plant with respect to boiler equipment efficiency is examined. The most efficient condensing boilers are chosen for simulation. (authors)

  8. Temperature-dependent errors in nuclear lattice simulations

    International Nuclear Information System (INIS)

    Lee, Dean; Thomson, Richard

    2007-01-01

    We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local 'well-tempered' lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems

  9. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying the effects of fluctuations in regenerator matrix temperatures on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the balance equations for mass, energy...... and accurately calculated. Simulation results have been compared to experimental data for a 9 kW Stirling engine and reasonable agreement has been found over a wide range of operating conditions using Helium or Nitrogen as working gas. Simulation results indicate that fluctuations in the regenerator matrix...... temperatures have significant impact on the regenerator loss, the engine power output, and the cycle efficiency....

  10. Observed and simulated temperature extremes during the recent warming hiatus

    International Nuclear Information System (INIS)

    Sillmann, Jana; Donat, Markus G; Fyfe, John C; Zwiers, Francis W

    2014-01-01

    The discrepancy between recent observed and simulated trends in global mean surface temperature has provoked a debate about possible causes and implications for future climate change projections. However, little has been said in this discussion about observed and simulated trends in global temperature extremes. Here we assess trend patterns in temperature extremes and evaluate the consistency between observed and simulated temperature extremes over the past four decades (1971–2010) in comparison to the recent 15 years (1996–2010). We consider the coldest night and warmest day in a year in the observational dataset HadEX2 and in the current generation of global climate models (CMIP5). In general, the observed trends fall within the simulated range of trends, with better consistency for the longer period. Spatial trend patterns differ for the warm and cold extremes, with the warm extremes showing continuous positive trends across the globe and the cold extremes exhibiting a coherent cooling pattern across the Northern Hemisphere mid-latitudes that has emerged in the recent 15 years and is not reproduced by the models. This regional inconsistency between models and observations might be a key to understanding the recent hiatus in global mean temperature warming. (letters)

  11. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  12. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    Science.gov (United States)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been

  13. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    Science.gov (United States)

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-09-10

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  14. New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using

    International Nuclear Information System (INIS)

    Tolabi, H.B.; Ayob, S.M.

    2014-01-01

    In this paper, a novel approach based on simulated annealing algorithm as a meta-heuristic method is implemented in MATLAB software to estimate the monthly average daily global solar radiation on a horizontal surface for six different climate cities of Iran. A search method based on genetic algorithm is applied to accelerate problem solving. Results show that simulated annealing based on genetic algorithm search is a suitable method to find the global solar radiation. (author)

  15. Numerical Simulations of Granular Physics in the Solar System

    Science.gov (United States)

    Ballouz, Ronald

    2017-08-01

    Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our

  16. NUMERICAL SIMULATION OF SOLAR MICROFLARES IN A CANOPY-TYPE MAGNETIC CONFIGURATION

    International Nuclear Information System (INIS)

    Jiang, R.-L.; Fang, C.; Chen, P.-F.

    2012-01-01

    Microflares are small activities in the solar low atmosphere; some are in the low corona while others are in the chromosphere. Observations show that some of the microflares are triggered by magnetic reconnection between the emerging flux and a pre-existing background magnetic field. We perform 2.5-dimensional, compressible, resistive magnetohydrodynamic simulations of the magnetic reconnection with gravity considered. The background magnetic field is a canopy-type configuration that is rooted at the boundary of the solar supergranule. By changing the bottom boundary conditions in the simulation, a new magnetic flux emerges at the center of the supergranule and reconnects with the canopy-type magnetic field. We successfully simulate the coronal and chromospheric microflares whose current sheets are located at the corona and the chromosphere, respectively. The microflare with a coronal origin has a larger size and a higher temperature enhancement than the microflare with a chromospheric origin. In the microflares with coronal origins, we also found a hot jet (∼1.8 × 10 6 K), which is probably related to the observational extreme ultraviolet or soft X-ray jets, and a cold jet (∼10 4 K), which is similar to the observational Hα/Ca surges. However, there is only a Hα/Ca bright point in the microflares that have chromospheric origins. The study of parameter dependence shows that the size and strength of the emerging magnetic flux are the key parameters that determine the height of the reconnection location, and they further determine the different observational features of the microflares.

  17. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  18. Search for the sources of the solar wind in the 9.1 cm brightness temperature

    International Nuclear Information System (INIS)

    George, R.G.

    1975-01-01

    The sources of solar wind streams have been the object of intensive research for many years, but the various ideas of where and how streams originate on the sun are still incomplete and contradictory. The present study is an attempt to find the solar wind sources by mathematically approximating the 9.1 cm brightness temperature which would be expected at the foot of spacecraft-measured solar wind streams and by then comparing it with actual radio brightness temperature measurements. Several significant results were found from an analysis of the correlation results. Most plasma emanating from the sun was found to come from high solar latitudes and to deviate significantly from the normally expected east-west path in the low corona. Magnetic channelng causes correlation studies to fail when the sun's magnetic configuration is unstable. The travel time of the plasma from the sun's 9.1 cm emission level to the earth is often more than a month

  19. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  20. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  1. Solar cell contact pull strength as a function of pull-test temperature

    Science.gov (United States)

    Yasui, R. K.; Berman, P. A.

    1972-01-01

    Four types of solar cell contacts were given pull-strength tests at temperatures between -173 and +165 C. Contacts tested were: (1) solder-coated titanium-silver contacts on n-p cells, (2) palladium-containing titanium-silver contacts on n-p cells, (3) titanium-silver contacts on 0.2-mm-thick n-p cells, and (4) solder-coated electroless-nickel-plated contacts on p-n cells. Maximum pull strength was demonstrated at temperatures significantly below the air mass zero cell equilibrium temperature of +60 C. At the lowest temperatures, the chief failure mechanism was silicon fracture along crystallographic planes; at the highest temperatures, it was loss of solder strength. In the intermediate temperatures, many failure mechanisms operated. Pull-strength tests give a good indication of the suitability of solar cell contact systems for space use. Procedures used to maximize the validity of the results are described.

  2. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  3. Solar radiative heating of fiber-optic cables used to monitor temperatures in water

    Science.gov (United States)

    Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.

    2010-08-01

    In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.

  4. Temperature field simulation of complex structures in fire environment

    International Nuclear Information System (INIS)

    Li Weifen; Hao Zhiming; Li Minghai

    2010-01-01

    In this paper, the typical model of the system of dangerous goods - steel - wood composite structure including components of explosives is used as the research object. Using MARC program, the temperature field of the structure in the fire environment is simulated. Radiation, conduction and convection heat transfer within the gap of the structure are taken into account, contact heat transfer is also considered. The phenomenon of thermal decomposition of wood in high temperature is deal with by equivalent method. The results show that the temperature of the explosives is not high in the fire environment. The timber inside the composite structure has played a very good insulation effect of explosives.

  5. The effect of low energy protons on silicon solar cells with simulated coverglass cracks

    Science.gov (United States)

    Gasner, S.; Anspaugh, B.; Francis, R.; Marvin, D.

    1991-01-01

    Results of a series of low-energy proton (LEP) tests are presented. The purpose of the tests was to investigate the effect of low-energy protons on the electrical performance of solar cells with simulated cracked covers. The results of the tests were then related to the space environment. A matrix of LEP tests was set up using solar cells with simulated cracks to determine the effect on electrical performance as a function of fluence, energy, crack width, coverglass adhesive shielding, crack location, and solar cell size. The results of the test were, for the most part, logical, and consistent.

  6. The Trends In Temperature And Solar Irradiance For Zaria, North

    African Journals Online (AJOL)

    Dogara et al.

    ... when the temperature rises, the alcohol expands past the index, which stays in position; so that at the end of the day, the minimum temperature corresponds to the upper or right side of the index (Landis, 2009). Figure 2: A Typical Outdoor Minima-Maxima Thermometer. Principle of Operation. The ideal gas law states that.

  7. Simulation of space radiation effects on polyimide film materials for high temperature applications. Final report

    International Nuclear Information System (INIS)

    Fogdall, L.B.; Cannaday, S.S.

    1977-11-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics

  8. Simulation of solar radiative transfer in cumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  9. performance simulation of a natural circulation solar air

    African Journals Online (AJOL)

    User

    in a single glazed flat plate natural circulation solar a prepared in modules .... Nigerian Journal of Technology, used instead of ... boundary associated with the melting the phase ...... Mathematical Modeling of the Thin Layer Drying of Sweet ...

  10. Impact of different solar penetration depths on climate simulations

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2015-01-01

    the effect of the SWAD on the simulation of the vertical temperature profile is largely linear.

  11. Designing and Simulation of a Two-Axis Solar Tracking System by Exact Relations of Solar Angles

    Directory of Open Access Journals (Sweden)

    Faezeh Esmaili Ranjbar

    2013-01-01

    Full Text Available In this study, a system has been designed and simulated to track sunlight, which identifies sun location based on the exact relations of solar angles and without any optical sensor. In fact the relations which have been used in this study are far more accurate compared to similar cases, because of using the "equation of time" and reducing the tracking time of every 15 minutes. In this system, an economical micro-controller has been used to generate the necessary orders to control system and two stepper motors for powering solar array. By adding a real-time clock IC (RTC to angle differentiation circuit, dynamic plane has improved.

  12. Preliminary temperature Accelerated Life Test (ALT) on III-V commercial concentrator triple-junction solar cells

    OpenAIRE

    Espinet González, Pilar; Algora del Valle, Carlos; Orlando Carrillo, Vincenzo; Nuñez Mendoza, Neftali; Vázquez López, Manuel; Bautista Villares, Jesus; Xiugang, He; Barrutia Poncela, Laura; Rey-Stolle Prado, Ignacio; Araki, Kenji

    2012-01-01

    A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three e...

  13. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  14. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  15. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Pedro Júnior, M.J.; Sentelhas, P.C.; Moraes, A.V.C.; Villela, O.V.

    1995-01-01

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm -2 , day -1 . The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author) [pt

  16. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency

    International Nuclear Information System (INIS)

    Du Hui-Jing; Wang Wei-Chao; Gu Yi-Fan

    2017-01-01

    According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J sc of 32.47 mA/cm 2 . The small series resistance of the all-perovskite solar cell also benefits the high J sc . The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. (paper)

  17. In-the-loop simulation of electronic automatic temperature control systems: HVAC modeling

    Energy Technology Data Exchange (ETDEWEB)

    Domschke, R.; Matthes, M. [Visteon Deutschland GmbH, Kerpen (Germany)

    2006-07-01

    The Electronic Automatic Temperature Control (EATC) ensures the occupant comfort and provides safety features like rapid defrost and demist protection. Doing this, the EATC controller provides a direct interface to the end consumer and has a considerable impact on customer satisfaction. The In-the-loop (IL) simulation process is an integral part of Visteons model-based development process. It helps to design and calibrate the EATC controller. It consists of several IL simulation techniques like Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL). In this article, we will focus on MIL/SIL Simulations. MIL/SIL allows simulation of the EATC controller in a virtual vehicle environment from the early states of and throughout the development process. This ensures a rapid, high quality and robust development process. The MIL/SIL model contains a thermal vehicle model, a heating, ventilation and air conditioning (HVAC) unit model and a model of the EATC controller itself. The thermal vehicle model simulates transient temperature and humidity conditions in the passenger compartment of a vehicle, settings from the controller, heat fluxes through the vehicle shell and windows, solar load and several further boundary conditions. Whereas the thermal vehicle model of a specific vehicle can be adapted from a default data base, one has to pay special attention to the HVAC unit model. Visteon has developed a special, physically based HVAC unit model to be adapted and implemented into the MIL/SIL simulation. This HVAC model enables a straightforward implementation of different HVAC architectures into the MIL/SIL simulation. Moreover, changes in the HVAC settings (i.e. different blower/scroll assemblies) can be assessed and the influence on passenger comfort can be quantified. Examples of the MIL/SIL simulation demonstrate the benefits of this approach. Results are discussed and a further outlook provided. (orig.)

  18. A feedforward IMC structure for controlling the charging temperature of a TES system of a solar cooker

    International Nuclear Information System (INIS)

    Mawire, A.; McPherson, M.

    2008-01-01

    A feedforward internal model control (IMC) structure for controlling and maintaining the outlet charging temperature of a thermal energy storage (TES) system of a solar cooker is presented. The TES system consists of a packed pebble bed in thermal contact with a heat transfer oil contained in a storage tank. An electrical hot plate simulates the collector/concentrator which heats up the oil circulating in a hollow copper spiral coil thus charging the storage. A model for the collector/concentrator system is developed to enable simulation of the feedforward IMC structure. Using a Simulink block model, the simulation results reveal that a feedforward IMC structure performs better than a feedforward structure. The feedforward IMC structure is tested experimentally and the performance of the control structure is acceptable within a few degrees of the set temperatures. Experimental results are also compared with the simulation results. The simulated responses are found to relate closely to the experimental ones and any discrepancies between the two are discussed. Furthermore, the feedforward IMC structure is also compared experimentally with a combined feedforward and PID feedback structure. Results of the comparison indicate that the feedforward IMC structure performs better than the combined feedforward and PID feedback structure. The thermal profile of the storage during the charging experiment with the feedforward IMC structure is also presented and the results obtained from the storage profile indicate that the storage tank is thermally stratified

  19. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Hueseyin; Ozkaymak, Mehmet [Zonguldak Karaelmas University, Technical Education Faculty, 78200 Karabuk (Turkey); Binark, A. Korhan [Marmara University, Technical Education Faculty, 34722 Kuyubasi-Istanbul (Turkey)

    2006-04-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na{sub 2}CO{sub 3}) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond. (author)

  20. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation

    International Nuclear Information System (INIS)

    Kurt, Hueseyin; Ozkaymak, Mehmet; Binark, A. Korhan

    2006-01-01

    The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na 2 CO 3 ) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond

  1. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM

    International Nuclear Information System (INIS)

    Reyes, A.; Henríquez-Vargas, L.; Aravena, R.; Sepúlveda, F.

    2015-01-01

    Highlights: • Enhancement of paraffin wax thermal conductivity using soft drink can stripes. • Thermal analysis and simulations results agree well with experimental data. • Increase in accumulator thermal efficiencies through addition of external aluminum stripes. • Proposed accumulator allows up to 13,000 kJ of energy storage. - Abstract: Soft drink cans filled with paraffin wax mixed with 7.5% aluminum stripes, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Promising results obtained in a prototype heat exchanger encouraged the construction of this unit 6 times bigger. We experimentally evaluated and model a heat exchanger for solar energy accumulation, composed by 300 disposable soft drink cans filled with a total of 59.25 kg of paraffin wax mixed with 7.5% aluminum stripes. The effect of adding 2.75 kg of aluminum fins for enhancing heat transfer from the outer surface of the cans to the circulant air was experimentally analyzed. In sunny days, the wax melted completely in about 4 h. The accumulated energy in form of latent heat (about 13,000 kJ) allowed to increase the temperature of 0.040 kg/s of circulant air in at least 20 °C during a period of 2.5 h. For an air mass rate of 0.018 kg/s the period was extended practically to 5 h. The accumulator thermal analysis was presented and a subsequent numerical simulation with Matlab was performed to compare with the experimental results obtaining good agreement specially for higher air mass flow rates. The low cost accumulator presented is of simple construction and will allow extended use of solar energy for applications such as drying processes or household calefaction system.

  2. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  3. Effect of annealing temperature on the thermal stress and dislocation density of mc-Si ingot grown by DS process for solar cell application

    Science.gov (United States)

    Sanmugavel, S.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    90% of the solar industries are using crystalline silicon. Cost wise the multi-crystalline silicon solar cells are better compared to mono crystalline silicon. But because of the presence of grain boundaries, dislocations and impurities, the efficiency of the multi-crystalline silicon solar cells is lower than that of mono crystalline silicon solar cells. By reducing the defect and dislocation we can achieve high conversion efficiency. The velocity of dislocation motion increases with stress. By annealing the grown ingot at proper temperature we can decrease the stress and dislocation. Our simulation results show that the value of stress and dislocation density is decreased by annealing the grown ingot at 1400K and the input parameters can be implemented in real system to grow a better mc-Si ingot for energy harvesting applications.

  4. Effect of solar radiation and temperature on grain number definition in maize

    International Nuclear Information System (INIS)

    Didonet, A.D.; Rodrigues, O.; Mario, J.L.; Ide, F.

    2002-01-01

    The objective of this experiment was to study the effect of solar radiation and temperature regime between emergence and silking on the crop development rate and the number of grain per growing rate unit of the crop, and the relationships of such parameters with the grain yield of corn hybrids. The experiments were carried out in the years 1994/95 to 1996/97, using the commercial hybrids C-901, XL-560, and XL-678 in 1994/95 and the hybrids C-901, XL-212, and XL-370 in the remaining years. The treatments consisted of sowing dates from September to December, in 1994/95, and from August to December, in 1995/96 and 1996/97. High dry matter accumulation was observed when there was high incidence of solar radiation during the period between emergence and flowering. However, as the mean air temperature exerts effect on the duration of that period, the growth rate during such period was more associated to temperature than to solar radiation. The effect of the temperature was inversely proportional to the number of grains per unit of growing rate in this period, possibly due to the longer time for solar radiation interception. As a result of the association between temperature and radiation, the photothermal coefficient was positively associated with the grain yield. (author) [pt

  5. Evaluation of two MM5-PBL parameterization for solar radiation and temperature estimation in the South-Eastern area of the Iberian Peninsula

    International Nuclear Information System (INIS)

    Ruiz-Arias, J.A.; Pozo-Vasquez, D.; Sanchez-Sanchez, N.; Hayas-Barru, A.; Tovar-Pescador, J.; Montavez, J.P.

    2008-01-01

    We study the relative performance of two different MM5-PBL parametrizations (Blackadar and MRF) simulating hourly values of solar irradiance and temperature in the south-eastern part of the Iberian Peninsula. The evaluation was carried out throughout the different season of the year 2005 and for three different sky conditions: clear-sky, broken-clouds and overcast conditions. Two integrations, one per PBL parameterization, were carried out for every sky condition and season of the year and results were compared with observational data. Overall, the MM5 model, both using the Blackadar or MRF PBL parameterization, revealed to be a valid tool to estimate hourly values of solar radiation and temperature over the study area. The influence of the PBL parameterization on the model estimates was found to be more important for the solar radiation than for the temperature and highly dependent on the season and sky conditions. Particularly, a detailed analysis revealed that, during broken-clouds conditions, the ability of the model to reproduce hourly changes in the solar radiation strongly depends upon the selected PBL parameterization. Additionally, it was found that solar radiation RMSE values are about one order of magnitude higher during broken-clouds and overcast conditions compared to clear-sky conditions. For the temperature, the two PBL parameterizations provide very similar estimates. Only under overcast conditions and during the autumn, the MRF provides significantly better estimates.

  6. Simulation Results: Optimization of Contact Ratio for Interdigitated Back-Contact Solar Cells

    Directory of Open Access Journals (Sweden)

    Vinay Budhraja

    2017-01-01

    Full Text Available In the fabrication of interdigitated back contact (IBC solar cells, it is very important to choose the right size of contact to achieve the maximum efficiency. Line contacts and point contacts are the two possibilities, which are being chosen for IBC structure. It is expected that the point contacts would give better results because of the reduced recombination rate. In this work, we are simulating the effect of contact size on the performance of IBC solar cells. Simulations were done in three dimension using Quokka, which numerically solves the charge carrier transport. Our simulation results show that around 10% of contact ratio is able to achieve optimum cell efficiency.

  7. Simulation of oat development cycle by photoperiod and temperature

    Directory of Open Access Journals (Sweden)

    Rubia D. Mantai

    Full Text Available ABSTRACT The simulation of oat development cycle can be used in the planning of agricultural practices. The aim of the study was to simulate and validate the duration of oat development cycle by photoperiod, temperature and coefficients of development of wheat for use in the WE-Streck model, considering different doses of N-fertilizer and systems of succession of high and low C/N ratio. The study was conducted in 2015 in a randomized block design with four replicates in a 4 x 2 factorial scheme, corresponding to N rates (0, 30, 60 and 120 kg ha-1 and oat cultivars (Barbarasul and Brisasul, respectively, in the soybean/oat and maize/oat systems. The duration of the stages from emergence to anthesis and from anthesis to maturation of oats was simulated in the WE-Streck model. The minimum, optimum and maximum temperatures that effectively simulate the oat development cycle were 4, 22 and 30 °C from emergence to anthesis and 15, 25 and 35 °C from anthesis to maturation, respectively. The intermediate-cycle oat development was efficiently simulated by the WE-Streck model using coefficients developed for wheat, with vegetative and reproductive cycles estimated at 89 and 43 days, respectively.

  8. STUDY AND NUMERICAL SIMULATION OF SOLAR SYSTEM FOR AIR HEATING

    Directory of Open Access Journals (Sweden)

    M. Ghodbane

    2016-01-01

    Full Text Available The use of solar energy in sunny countries, is an effective outil for compensate the lack in the energy, their benefits are not related only to its economic benefits but especially for the environmental protection, so we must find solutions to the problems of pollution. This work is a theoretical study of a solar flat plate collector ; air is used as the heat transfer fluid. In this study, we established in first step the calculation of solar radiation in various sites in Algeria (Adrar, El Oued, Bechar, Biskra and Tamanrasset. The second step is the parameters influence study of the sites and climate on the performance of our collector. The results obtained are encouraging for the use of this type in the heating in the winter, also it can be used in different kinds of drying.

  9. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  10. Time-dependent fracture of materials at elevated temperature for solar thermal power systems

    International Nuclear Information System (INIS)

    Gupta, G.D.

    1979-01-01

    Various Solar Thermal Power Systems are briefly described. The components of solar power systems in which time-dependent fracture problems become important are identified. Typical materials of interest, temperature ranges, and stress states are developed; and the number of cycles during the design life of these systems are indicated. The ASME Code procedures used by designers to predict the life of these components are briefly described. Some of the major problems associated with the use of these ASME procedures in the design of solar components are indicated. Finally, a number of test and development needs are identified which would enable the designers to predict the life of the solar power system components with a reasonable degree of confidence

  11. Experimental simulations of sulfide formation in the solar nebula.

    Science.gov (United States)

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  12. Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters

    Science.gov (United States)

    Kumar, S.; Singh, A.; Dhar, A.

    2017-08-01

    The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.

  13. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  14. Shield or not to Shield: Effects of Solar Radiation on Water Temperature Sensor Accuracy

    Directory of Open Access Journals (Sweden)

    Robert L. Wilby

    2013-10-01

    Full Text Available Temperature sensors are potentially susceptible to errors due to heating by solar radiation. Although this is well known for air temperature (Ta, significance to continuous water temperature (Tw monitoring is relatively untested. This paper assesses radiative errors by comparing measurements of exposed and shielded Tinytag sensors under indirect and direct solar radiation, and in laboratory experiments under controlled, artificial light. In shallow, still-water and under direct solar radiation, measurement discrepancies between exposed and shielded sensors averaged 0.4 °C but can reach 1.6 °C. Around 0.3 °C of this inconsistency is explained by variance in measurement accuracy between sensors; the remainder is attributed to solar radiation. Discrepancies were found to increase with light intensity, but to attain Tw differences in excess of 0.5 °C requires direct, bright solar radiation (>400 W m−2 in the total spectrum. Under laboratory conditions, radiative errors are an order of magnitude lower when thermistors are placed in flowing water (even at velocities as low as 0.1 m s−1. Radiative errors were also modest relative to the discrepancy between different thermistor manufacturers. Based on these controlled experiments, a set of guidelines are recommended for deploying thermistor arrays in water bodies.

  15. Finite element modelling and simulation of free convection heat transfer in solar oven

    Energy Technology Data Exchange (ETDEWEB)

    Sobamowo, M.G.; Ogunmola, B.Y.; Ayerin A.M. [Department of Mechanical Engineering, University of Lagos, Akoka, Lagos (Nigeria)

    2013-07-01

    The use of solar energy for baking, heating or drying represents a sustainable way of solar energy applications with negligible negative effects. Solar oven is an alternative to conventional oven that rely heavily on coal and wood or Electric oven that uses the power from the National grid of which the end users have little or no control. Since the Solar oven uses no fuel and it costs nothing to run, it uses are widely promoted especially in situations where minimum fuel consumption or fire risks are considered highly important. As useful as the Solar Oven proved, it major setback in the area of applications has been its future sustainability. For the use of Solar Oven/Cookers to be sustained in the future, the design and development of solar oven must rely on sound analytical tools. Therefore, this work focused on the design and development of the solar oven. To test the performance of the Small Solar Oven a 5000cm3 beaker of water was put into the Oven and the temperature of the water was found to reach 810C after about 3hrs under an average ambient temperature of 300C. On no load test, the oven reached a maximum temperature of 112oC in 6hrs. In order to carry out the parametric studies and improve the performance of the Solar Oven, Mathematical models were developed and solved by using Characteristics-Based Split (CBS) Finite Element Method. The Model results were compared with the Experimental results and a good agreement was found between the two results.

  16. Simulating the moderating effect of a lake on downwind temperatures

    Science.gov (United States)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  17. Simulation of temperature distribution in tumor Photothermal treatment

    Science.gov (United States)

    Zhang, Xiyang; Qiu, Shaoping; Wu, Shulian; Li, Zhifang; Li, Hui

    2018-02-01

    The light transmission in biological tissue and the optical properties of biological tissue are important research contents of biomedical photonics. It is of great theoretical and practical significance in medical diagnosis and light therapy of disease. In this paper, the temperature feedback-controller was presented for monitoring photothermal treatment in realtime. Two-dimensional Monte Carlo (MC) and diffuse approximation were compared and analyzed. The results demonstrated that diffuse approximation using extrapolated boundary conditions by finite element method is a good approximation to MC simulation. Then in order to minimize thermal damage, real-time temperature monitoring was appraised by proportional-integral-differential (PID) controller in the process of photothermal treatment.

  18. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  19. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  20. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  1. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    Science.gov (United States)

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Intermediate band solar cell simulation use InAs quantum dot in GaAs

    International Nuclear Information System (INIS)

    Hendra P, I. B.; Rahayu, F.; Sahdan, M. F.; Darma, Y.

    2015-01-01

    Intermediate band solar cell (IBSC) has become a new approach in increasing solar cell efficiency significantly. One way to create intermediate band is by proposing quantum dots (QD) technology. One of the important aspects in utilizing IBSC is the absorption of light. In this work we simulated the influence of QD arrangement in order to increase absorption coefficient and solar cell efficiency. We also simulated the influence of QD size to capture a wider light spectrum. We present a simple calculation method with low computing power demand. Results show that the increasing in quantum dot size can increase in capturing wider spectrum of light. Arrangement InAs QD in bulk material GaAs can capture wider spectrum of light and increase the absorption coefficient. The arrangement InAs QD 2 nm in GaAs bulk can increase solar cell efficiency up to 49.68%

  3. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  4. Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea

    International Nuclear Information System (INIS)

    Shim, K.M.; Kim, Y.S.; Lee, D.B.; Kang, K.K.; So, K.H.

    2012-01-01

    Accuracy of daily solar radiation estimated from a Mountain Microclimate Simulation Model (MT-CLIM) was assessed for seven observation sites with complex topography in Uiseong County. The coefficient of determination () between the observed and the estimated daily solar radiation was 0.52 for 7 sites for the study period from 1 August to 30 September 2009. Overall, the MT-CLIM overestimated the solar radiation with root mean square error (RMSE) of which is about 25% of the mean daily solar radiation () for the study period. Considering that the pyranometer's tolerance is of standard sensor, the RMSE of MT-CLIM was too large to accept for a direct application for agricultural sector. The reliability of solar radiation estimated by MT-CLIM must be improved by considering additional ways such as using a topography correction coefficient

  5. Spectral Monte Carlo simulation of collimated solar irradiation transfer in a water-filled prismatic louver.

    Science.gov (United States)

    Cai, Yaomin; Guo, Zhixiong

    2018-04-20

    The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

  6. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  7. Degradation of unglazed rough graphite-aluminium solar absorber surfaces in simulated acid and neutral rain

    International Nuclear Information System (INIS)

    Konttinen, P.; Lund, P.D.; Salo, T.

    2005-01-01

    Degradation mechanisms of unglazed solar absorber surfaces based on aluminium substrate were studied. Rough graphite-aluminium surfaces were total-immersion subjected to aerated and de-aerated simulated neutral and acid rain. Test conditions were based on calculated absorber stagnation temperature and global rain acidity measurements. Changes in optical properties, elemental composition and sample mass were examined by spectrometry, energy dispersive X-ray spectrometry and thermogravimetry, respectively. The absorbers exhibited almost no degradation at pH value of 3.5. At pH 5.5 alumina on the surface hydrated significantly degrading the optical properties of the surfaces severely in most cases. Therefore these absorber surfaces can not be recommended to be used in non-glazed applications if they are exposed to rain with pH exceeding ∼ 3.5-4.5. The total-immersion test needs to be developed further as the test results exhibited poor temperature and time dependency thus preventing accurate service lifetime estimates. Still, these tests were useful in determining favourable and non-favourable operating conditions for the absorber surfaces based on aluminium substrate. (author)

  8. Modelling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells

    NARCIS (Netherlands)

    Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.

    2010-01-01

    In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of

  9. The Solar Cycle Variation of Coronal Temperature and Density During Cycle 21-22

    Science.gov (United States)

    1994-06-15

    We notice that a dramatic change in the intensity ratio implies a small change in temperature and therefore the precise calibration of each...The higher temperature material of these zones tends to lie over regions where magnetograph observations indicate a change in polarity of weak large...SPIE, 331,442, 1982. 7. Altrock, LC., Clmate Impact of Solar Variability Greenbelt, MD, NASA Conf. Publ. 3086, p. 287, 1990. 8. Fisher, LRL., McCabe, M

  10. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  11. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  12. Comparative sensitivity of six scleractinian corals to temperature and solar radiation

    Science.gov (United States)

    Scleractinian corals were subjected to six combinations of temperature and solar radiation regimes to evaluate their effects on coral bleaching, survival, and tissue surface area changes during and after an exposure period. A recirculating coral exposure system was coupled to a ...

  13. Prediction and experimental validation of stagnation temperature attained by a solar cooker of hot box type

    Energy Technology Data Exchange (ETDEWEB)

    Narasimha Rao, A. V; Srikrishna, D. V. N [Warangal (India)

    2000-07-01

    A hot box type solar cooker, having double glass covers and a plane mirror reflector, is tested for stagnation temperature. A computer code is developed based on the analytical model proposed by Vaishya et. al. The global and beam components of solar radiation measured at Warangal are made use to predict the stagnation temperature of the cooker. The observed values of stagnation temperature at Warangal are compared with those of predicted values. A good agreement of the measured and observed values of the stagnation temperature is observed during the afternoon period. The lag in the observed values during the forenoon may be due to thermal inertia of the cooker. [Spanish] Se probo una estufa solar de tipo caja caliente con cubiertas dobles de vidrio y un espejo reflector plano para medir la temperatura de estancamiento. Se desarrollo un codigo de computacion basado en el modelo analitico propuesto por Vaishya et. al. Los componentes de la radiacion solar globales y de rayo medidos en Warangal se usan para predecir la temperatura de estancamiento de la estufa. Los valores observados de la temperatura de estancamiento en Warangal se comparan con los valores predichos. Se aprecia una buena concidencia de los valores medidos y observados de la temperatura de estancamiento durante el periodo de la tarde. El retraso de los valores observados durante la manana puede ser debido a la inercia termica de la estufa.

  14. Correlation of growth with solar radiation and air temperature on potted miniature rose

    International Nuclear Information System (INIS)

    Yu, W.; Arai, K.; Kato, K.; Imaida, K.; Nishimura, N.; Li, L.; Fukui, H.

    2006-01-01

    To establish systematic year-round production of potted miniature rose, rose growth and environmental factors such as solar radiation and air temperature were investigated for one year and the relationships of growth to these factors were analyzed. The period from the start to end of cultivation was longer in order of summer, spring and autumn cultivation. Leaf area, fresh weight of leaf and plant, leaf number and plant height as response variables were analyzed to explain the relation to environmental factors as explanatory variables using multiple linear regression analysis. The cumulative daily mean solar radiation, cumulative daytime and nighttime temperature within explanatory variables were significant main explanatory variables. Rose growth factors; leaf area, fresh weight of leaf and plant, leaf number and plant height showed close correlation with three environmental factors, respectively. Rose growth factors demonstrated significant multiple linear regressions using three environmental factors, and the parameters in multiple linear regression equations were also significant. Therefore, we demonstrated that the rose growth could be predicted using cumulative daily mean solar radiation, cumulative daytime and nighttime temperature and could be controlled by changing solar radiation and temperature

  15. The electron temperature and anisotropy in the solar wind. Comparison of the core and halo populations

    Czech Academy of Sciences Publication Activity Database

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.

    2016-01-01

    Roč. 291, č. 7 (2016), s. 2165-2179 ISSN 0038-0938 Institutional support: RVO:68378289 Keywords : solar wind * electron velocity distributions * temperature anisotropy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.682, year: 2016 http://link.springer.com/article/10.1007/s11207-016-0961-7

  16. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    Czech Academy of Sciences Publication Activity Database

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Štěpán; Maksimovic, M.; Trávníček, Pavel M.

    2016-01-01

    Roč. 291, č. 7 (2016), s. 2165-2179 ISSN 0038-0938 R&D Projects: GA ČR GA15-17490S Institutional support: RVO:67985815 Keywords : solar wind * electron velocity distributions * temperature anisotropy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.682, year: 2016

  17. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  18. Efficient Perovskite Solar Cells over a Broad Temperature Window : The Role of the Charge Carrier Extraction

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Fang, Hong-Hua; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2017-01-01

    The mechanism behind the temperature dependence of the device performance in hybrid perovskite solar cells (HPSCs) is investigated systematically. The power conversion efficiency (PCE) of the reference cell using [60] PCBM as electron extraction layer (EEL) drops significantly from 11.9% at 295 K to

  19. Very low temperature rise laser annealing of radiation-damaged solar cells in orbit

    International Nuclear Information System (INIS)

    Poulek, V.

    1988-01-01

    Solar cells of all space objects are damaged by radiation in orbit. This damage, however, can be removed by laser annealing. A new in-orbit laser regeneration system for both body- and spin-stabilized space objects is proposed. For successful annealing of solar cells damaged by 10 years' radiation dose in orbit it is necessary for the temperature rise in the incidence point of the laser beam to reach about 400 0 C. By continuous regeneration, however, between two annealing cycles the solar cells are hit by about two orders of magnitude lower radiation dose. This makes it possible to carry out the regeneration at a temperature rise well under 1 0 C! If an optimal laser regeneration system is used, such low temperature rise laser annealing of radiation-damaged solar cells is possible. A semiconductor GaAlAs diode laser with output power up to 10 mW CW was used for annealing. Some results of the very low temperature rise annealing experiment are given in this paper. (author)

  20. Thermal performance of a Stirling engine powered by a solar simulator

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit; Çınar, Can; Solmaz, Hamit; Özgören, Yasar Önder; Uyumaz, Ahmet

    2015-01-01

    In this study, the performance of a beta type Stirling engine which works at relatively lower temperatures was investigated using 400 W and 1000 W halogen lamps as a heat source and helium as the working fluid. The working fluid was charged into the engine block and the pressure of the working fluid was ranged from 1 to 5 bars with 1 bar increments. The halogen lamps were placed into a cavity adjacent to the hot end of the displacer cylinder, which is made of aluminum alloy. In the experiments conducted with 400 W halogen lamp, the temperature of the cavity was 623 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 37.08 W, 1.68 Nm and 9.27%, at 5 bar charge pressure. For the 1000 W halogen lamp, the temperature of the cavity was determined to be 873 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 127.17 W, 3.4 Nm and 12.85%, at the same charge pressure. The experimental thermal efficiencies of the engine were also compared with thermodynamic nodal analysis. - Highlights: • The performance of a beta type Stirling engine was investigated. • 400 and 1000 W halogen lamps were used as a solar simulator in the experiments. • Cavity temperature was measured 623 and 873 K for 400 and 1000 W lamps. • 1000 W halogen lamp provided better engine performance and thermal efficiency. • Experimental results of efficiency were compared with nodal analysis results

  1. Simulation optimizing of n-type HIT solar cells with AFORS-HET

    Science.gov (United States)

    Yao, Yao; Xiao, Shaoqing; Zhang, Xiumei; Gu, Xiaofeng

    2017-07-01

    This paper presents a study of heterojunction with intrinsic thin layer (HIT) solar cells based on n-type silicon substrates by a simulation software AFORS-HET. We have studied the influence of thickness, band gap of intrinsic layer and defect densities of every interface. Details in mechanisms are elaborated as well. The results show that the optimized efficiency reaches more than 23% which may give proper suggestions to practical preparation for HIT solar cells industry.

  2. Modeling and simulation of a solar power source at 3kW for a clean energy without pollution

    Directory of Open Access Journals (Sweden)

    Louzazni M.

    2014-04-01

    Full Text Available The air pollution was much worse, and it became necessary to replace the fossil energy sources by the renewable energies. The causes are related to reserves that can be exhausted, to pollution and their impacts on the environment. Production of toxic gases from the combustion of coal for the effect of increasing the temperature of the earth. Solar energy is a clean and inexhaustible excellent alternative. We propose a modeling and simulation of a solar system consists of a photovoltaic generator (PVG, a boost chopper, to supply a telecommunications relay station (BTS, According to the load characteristics (I = 60A, V = 48V DC (3 kW. A stage adaptation composed of this chopper controlled by a PWM controller (Pulse Width Modulation is used to control the optimal operating point (MPPT and optimize system performance using Matlab / Simulink.

  3. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  4. Clay-brick firing in a high-temperature solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Villeda-Munoz, G. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico)]. E-mail: gvilledam@ipn.mx; Castaneda-Miranda, A. [Computation & amp; Mechatronic Studies Division, Universidad Politecnica de Queretaro, Queretaro (Mexico)]. E-mail: acastaneda@upq.edu.mx; Pless, R.C. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico)]. E-mail: rpless@ipn.mx; Vega-Duran, J.T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico); Pineda-Pinon, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, Unidad Queretaro, Queretaro (Mexico)]. E-mail: jpinedap@ipn.mx

    2011-10-15

    The firing process for clay-brick production in traditional kilns generates atmospheric pollution when industrial and domestic scrap is used as fuel. An alternative is presented here, using the solar energy for clay-brick firing. We are developing a system for clay-brick firing to reach temperatures between 900 degrees Celsius and 1050 degrees Celsius; these temperatures are sufficiently high to fire bricks or similar ceramic products. The present paper describes the design and characterization of the components of a solar furnace for clay-brick firing with inner chamber dimensions of 0.48 * 0.61 * 0.64 m. To convey the sunlight to the firing chamber, a heliostat with nine 1 * 1 m mirrors is used to send the rays of the sun to an off-axis parabolic concentrator that focuses the light on the entrance of the firing chamber. The heliostat has a solar-tracking system which makes primary and secondary adjustments to assure that the reflected solar radiation always arrives at the concentrator. The firing chamber contains a prismatic cavity that absorbs the solar radiation to generate the heat which is needed for baking the bricks inside the firing chamber. [Spanish] El proceso de coccion para la produccion de tabiques de arcilla en hornos tradicionales genera contaminacion atmosferica cuando los desechos industriales y domesticos se usan como combustibles. Aqui se presenta una alternativa, utilizando la energia solar para la coccion de tabiques de arcilla. Estamos desarrollando un sistema para la coccion de tabiques de arcilla para alcanzar temperaturas entre 900 grados centigradosy 1050 grados centigrados; estas temperaturas son suficientemente altas para cocer tabiques o productos ceramicos similares. El presente articulo describe el diseno y caracterizacion de los componentes de un horno solar para la coccion de tabiques de arcilla con una camara con dimensiones internas de 0.48 * 0.61 *× 0.64 m. Para dirigir los rayos solares a la camara de coccion, un heliostato

  5. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    Science.gov (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  6. Engineering and erection of a 300kW high-flux solar simulator

    Science.gov (United States)

    Wieghardt, Kai; Laaber, Dmitrij; Hilger, Patrick; Dohmen, Volkmar; Funken, Karl-Heinz; Hoffschmidt, Bernhard

    2017-06-01

    German Aerospace Center (DLR) is currently constructing a new high-flux solar simulator synlight which shall be commissioned in late 2016. The new facility will provide three separately operated experimental spaces with expected radiant powers of about 300kW / 240kW / 240kW respectively. synlight was presented to the public for the first time at SolarPACES 2015 [1]. Its engineering and erection is running according to plan. The current presentation reports about the engineering and the ongoing erection of the novel facility, and gives an outlook on its new level of possibilities for solar testing and qualification.

  7. Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Bellot Rubio, Luis R. [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3040, E-18080 Granada (Spain); De la Cruz Rodríguez, Jaime, E-mail: ada@astro.uio.no [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup –1} and expands at a horizontal speed of 4 km s{sup –1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup –1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log τ = –2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection

  8. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  9. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  10. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  11. Design and simulation of a geothermal–solar combined chimney power plant

    International Nuclear Information System (INIS)

    Cao, Fei; Li, Huashan; Ma, Qiuming; Zhao, Liang

    2014-01-01

    Highlights: • A geothermal–solar chimney power plant (GSCPP) is designed and analyzed. • Three different models, viz. full solar model, full geothermal model and geothermal–solar mode are compared. • Power generation under GSM is larger than the sum of FSM and FGM. • GSCPP can effectively solve the continuous operation problem of the SCPP. - Abstract: The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity

  12. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  13. Thrust calculation of electric solar wind sail by particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Kento [Kyoto Univ. (Japan). Dept. of Electrical Engineering; Kojima, Hirotsugu; Yamakawa, Hiroshi [Kyoto Univ. (Japan). Research Inst. for Sustainable Humanosphere; Muranaka, Takanobu [Chukyo Univ., Nagoya (Japan). Dept. of Electrical Engineering

    2016-07-01

    In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full threedimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

  14. Thrust calculation of electric solar wind sail by particle-in-cell simulation

    International Nuclear Information System (INIS)

    Hoshi, Kento; Kojima, Hirotsugu; Yamakawa, Hiroshi; Muranaka, Takanobu

    2016-01-01

    In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full threedimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

  15. Tea shoot production in relation to rainfall, solar radiation, and temperature in Pagilaran tea estate, Batang

    International Nuclear Information System (INIS)

    Yudono, P.

    2000-01-01

    Tea shoot production pattern in PT Pagilaran tea estate, Batang, is studied in relation to rainfall, solar radiation, and temperature. Pagilaran tea estate is located at 700-1,500 m above the sea level, with temperature of 15-30 deg. C and rainfall ranging from 4,500 mm to 7,000 mm per year. However, the area is also characterized by two up to three dry months for every three years. Monthly data of rainfall, solar radiation, and temperature were collected and were related to tea shoot production using correlation and regression analysis. The results indicated that there was no significant different pattern of tea shoot production form the three estate units (Kayulandak, Pagilaran, and Andongsili). Monthly shoots production increases during October up to December, and then goes down in January up to February. It fluctuated at a lesser degree in the upper units (Kayulandak and Andongsili) which might be attributed to better soil moisture available in the area. They are right below a forests area which understandably serves as rainfall catchment area and maintains soil moisture of the area below in a better condition. Weak to moderate correlation was obtained when monthly tea shoot production was correlated to amount of rainfall (r = -0.3771), days of rainfall (r = -0.3512), maximum temperature (r = -0.3502), minimum temperature (r = -0.2786), and solar radiation (r=0.6607) of the same month. On regressing monthly tea shoot production to those variables, rainfall and duration of solar radiation turned out to be the two significant factors through the following equation y = 759.5616-0.1802 xi-1 + 0.1057 xi-2 + 0.5239 zi-1 (R at the power of 2 = 0.3398), where y = tea shoots production, x=amount of monthly rainfall, z=duration of solar radiation, and i refer to month [in

  16. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  17. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  18. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  19. Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate.

    Science.gov (United States)

    Batchu, Sudha Rani; Panditi, Venkata R; O'Shea, Kevin E; Gardinali, Piero R

    2014-02-01

    Roxithromycin, erythromycin, ciprofloxacin and sulfamethoxazole are frequently detected antibiotics in environmental waters. Direct and indirect photolysis of these problematic antibiotics were investigated in pure and natural waters (fresh and salt water) under irradiation of different light sources. Fundamental photolysis parameters such as molar absorption coefficient, quantum yield and first order rate constants are reported and discussed. The antibiotics are degraded fastest under ultraviolet 254 nm, followed by 350 nm and simulated solar radiation. The composition of the matrix (pH, dissolved organic content, chloride ion concentration) played a significant role in the observed photodegradation. Under simulated solar radiation, ciprofloxacin and sulfamethoxazole degrade relatively quickly with half-lives of 0.5 and 1.5h, respectively. However, roxithromycin and erythromycin, macrolides are persistent (half-life: 2.4-10 days) under solar simulation. The transformation products (15) of the targeted antibiotics produced under irradiation experiments were identified using high resolution mass spectrometry and degradation pathways were proposed. © 2013.

  20. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation

    International Nuclear Information System (INIS)

    Azzouzi, Ghania; Chegaar, Mohamed

    2011-01-01

    The impurity photovoltaic effect (IPV) has mostly been studied in various semiconductors such as silicon, silicon carbide and GaAs in order to increase infrared absorption and hence cell efficiency. In this work, sulphur is used as the IPV effect impurity incorporated in silicon solar cells. For our simulation we use the numerical device simulator (SCAPS). We calculate the solar cell performances (short circuit current density J sc , open circuit voltage V oc , conversion efficiency η and quantum efficiency QE). We study the influence of light trapping and certain impurity parameters like impurity concentration and position in the gap on the solar cell performances. Simulation results for IPV effect on silicon doped with sulphur show an improvement of the short circuit current and the efficiency for sulphur energy levels located far from the middle of the band gap especially at E c -E t =0.18 eV.

  1. Particle acceleration in solar flares: observations versus numerical simulations

    International Nuclear Information System (INIS)

    Benz, A O; Grigis, P C; Battaglia, M

    2006-01-01

    Solar flares are generally agreed to be impulsive releases of magnetic energy. Reconnection in dilute plasma is the suggested trigger for the coronal phenomenon. It releases up to 10 26 J, accelerates up to 10 38 electrons and ions and must involve a volume that greatly exceeds the current sheet dimension. The Ramaty High-Energy Solar Spectroscopic Imager satellite can image a source in the corona that appears to contain the acceleration region and can separate it from other x-ray emissions. The new observations constrain the acceleration process by a quantitative relation between spectral index and flux. We present recent observational results and compare them with theoretical modelling by a stochastic process assuming transit-time damping of fast-mode waves, escape and replenishment. The observations can only be fitted if additional assumptions on trapping by an electric potential and possibly other processes such as isotropization and magnetic trapping are made

  2. Numerical simulation of the performance and economical study of three cookers: solar, hybrid (solar and natural gas) and a LPG (Liquefied Petroleum Gases) cooker for one typical year in Fortaleza-Brazil; Simulacao numerica da performance e estudo da viabilidade economica de tres tipos de fogoes: solar, hibrido (solar e gas natural) e a GLP (Gas Liquefeito do Petroleo) para um ano em Fortaleza

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Eugenia Vieira da; Santana, Lana Ludmila Pinheiro [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Lab. de Energia Solar e Gas Natural (LESGN); Schwarzer, Klemens [Universidade de Ciencias Aplicadas de Aachen (Germany). Solar Institute Juelich; Miller, Francisco Mateus [PETROBRAS, Rio de Janeiro, RJ (Brazil); Baratelli Junior, Fernando [PETROBRAS, Rio de Janeiro, RJ (Brazil). Gerencia de Gas e Energia

    2004-07-01

    Alternative energy sources can represent viable economical solutions for the energy supply problems and also minimize damages to the environment. This research paper presents an economical and technical study of three different types of cookers: a solar cooker, a hybrid cooker and a conventional LPG cooker, through simulation for one typical year in Fortaleza. The solar cooker used in the experiments is composed of two pots, an oven, a tank of storage and 2m{sup 2} of solar collector area. The hybrid cooker has the same structure of the solar one with an additional natural gas burner, and the LPG stove can be easily found in the market. To find the value of the necessary energy to make food in a solar cooker, the amount of solar radiation was measured, as well as the sensible and latent efficiencies of the used stove. In the hybrid, it was considered that the natural gas is used only in the periods of the day when the amount of solar energy is not enough to heat the system up to the desired temperature. The results show an economical and technical comparison of the three different types of cookers. (author)

  3. Design of DSP-based high-power digital solar array simulator

    Science.gov (United States)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  4. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    Science.gov (United States)

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  5. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    Science.gov (United States)

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  6. Low temperature processed planar heterojunction perovskite solar cells employing silver nanowires as top electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianhua; Li, Fushan, E-mail: fushanli@hotmail.com; Yang, Kaiyu; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-04-30

    Graphical abstract: - Highlights: • All solution processed perovskite solar cells were realized with Ag nanowires. • ZnO nanoparticles were used as electron transport layer. • The solar cells showed a photovoltaic behavior with efficiency of 9.21%. • Device performance showed negligible difference between forward and reverse scan. - Abstract: In this paper, we reported a low temperature processed planar heterojunction perovskite solar cell employing silver nanowires as the top electrode and ZnO nanoparticles as the electron transport layer. The CH{sub 3}NH{sub 3}PbI{sub 3} perovskite was grown as the light absorber via two-step spin-coating technique. The as-fabricated perovskite solar cell exhibited the highest power conversion efficiency of 9.21% with short circuit current density of 19.75 mA cm{sup −2}, open circuit voltage of 1.02, and fill factor value of 0.457. The solar cell's performance showed negligible difference between the forward and reverse bias scan. This work paves a way for realizing low cost solution processable solar cells.

  7. Numerical simulation of solar cells besed CZTS buffer layer

    African Journals Online (AJOL)

    2017-05-01

    May 1, 2017 ... 2016, 9(2), 1001-1011. 1002. 1. INTRODUCTION. The interest of the quaternary kësterite Cu2ZnSnS4 (CZTS) for solar cells based on four main factors. First, the band gap of the ... originalty and the novelty of this work lies essecialy on the calculation of the the gap energy Eg. (CZTS) and the electron affinity ...

  8. Maximization of primary energy savings of solar heating and cooling systems by transient simulations and computer design of experiments

    International Nuclear Information System (INIS)

    Calise, F.; Palombo, A.; Vanoli, L.

    2010-01-01

    In this paper, the simulation of the performance of solar-assisted heating and cooling systems is analyzed. Three different plant layouts are considered: (i) the first one consists of evacuated solar collectors and a single-stage LiBr-H 2 O absorption chiller; here in order to integrate the system in case of insufficient solar radiation, an electric water-cooled chiller is activated; (ii) configuration of the secondly considered system is similar to the first one, but the absorption chiller and the solar collector area are sized for balancing about 30% of the building cooling load only; (iii) the layout of the thirdly considered system differs from the first one since the auxiliary electric chiller is replaced by a gas-fired heater. Such system configurations also include: circulation pumps, storage tanks, feedback controllers, mixers, diverters and on/off hysteresis controllers. All such devices are modelled for maximizing the system energy efficiency. In order to simulate the systems' performance for dynamic heating/cooling loads, a single-lumped capacitance building is also modelled and implemented in the computer code. A cost model is also developed in order to calculate the systems' operating and capital costs. All the models and the relative simulations are carried out by TRNSYS. A design of experiment procedure is also included. By such tool the effects of the system operating parameters' variation on the relative energy efficiency are analyzed. In addition, the set of synthesis/design variables maximizing the system's energetic performance can be also identified. The annual primary energy saving is chosen as the optimization objective function, whereas collector slope, pump flows, set-point temperatures and tank volume are selected as optimizing system design variables. A case study was developed for an office building located in South Italy. Here, the energetic and the economic analysis for all the three considered system layouts are carried out. The

  9. Applications of AMPS-1D for solar cell simulation

    Science.gov (United States)

    Zhu, Hong; Kalkan, Ali Kaan; Hou, Jingya; Fonash, Stephen J.

    1999-03-01

    The AMPS-1D PC computer program is now used by over 70 groups world-wide for detector and solar cell analysis. It has proved to be a very powerful tool in understanding device operation and physics for single crystal, poly-crystalline and amorphous structures. For example, AMPS-1D has been successful in explaining the "red kink" [1] and the "transient effect" in CdS/CIGS poly-crystalline solar cells. It has been used to show that thin film poly-Si structures, with reasonable light trapping, are capable of competitive solar cell conversion efficiencies. In the case of a-Si:H structures, it has been used, for example, to settle the discrepancies in bandgap measurement, to predict the effective QE>1 phenomenon later seen in these materials [2], to determine the relative roles of interface and bulk properties, and to point the direction toward 16% triple junction structures. In general AMPS-1D is used for cell and detector design, material parameter sensitivity studies, and parameter extraction. Recently we have shown that it can be used to determine optimum structure and light and voltage biasing conditions in the material parameter extraction function. Information on AMPS can be found at www.psu.edu/dept/AMPS/amps_web/AMPS.html and at other web sites set up by user groups.

  10. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  11. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  12. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A

  13. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network

    Directory of Open Access Journals (Sweden)

    F Nadi

    2017-05-01

    Full Text Available Introduction The significant of solar energy as a renewable energy source, clean and without damage to the environment, for the production of electricity and heat is of great importance. Furthermore, due to the oil crisis as well as reducing the cost of home heating by 70%, solar energy in the past two decades has been a favorite of many researchers. Solar collectors are devices for collecting solar radiant energy through which this energy is converted into heat and then heat is transferred to a fluid (usually air or water. Therefore, a key component in performance improvement of solar heating system is a solar collector optimization under different testing conditions. However, estimation of output parameters under different testing conditions is costly, time consuming and mostly impossible. As a result, smart use of neural networks as well as CFD (computational fluid dynamics to predict the properties with which desired output would have been acquired is valuable. To the best of our knowledge, there are no any studies that compare experimental results with CFD and ANN. Materials and Methods A corrugated galvanized iron sheet of 2 m length, 1 m wide and 0.5 mm in thickness was used as an absorber plate for absorbing the incident solar radiation (Fig. 1 and 2. Corrugations in absorber were caused turbulent air and improved heat transfer coefficient. Computational fluid dynamics K-ε turbulence model was used for simulation. The following assumptions are made in the analysis. (1 Air is a continuous medium and incompressible. (2 The flow is steady and possesses have turbulent flow characteristics, due to the high velocity of flow. (3 The thermal-physical properties of the absorber sheet and the absorber tube are constant with respect to the operating temperature. (4 The bottom side of the absorber tube and the absorber plate are assumed to be adiabatic. Artificial neural network In this research a one-hidden-layer feed-forward network based on the

  14. Salmonids, stream temperatures, and solar loading--modeling the shade provided to the Klamath River by vegetation and geomorphology

    Science.gov (United States)

    Forney, William M.; Soulard, Christopher E.; Chickadel, C. Christopher

    2013-01-01

    The U.S. Geological Survey is studying approaches to characterize the thermal regulation of water and the dynamics of cold water refugia. High temperatures have physiological impacts on anadromous fish species. Factors affecting the presence, variability, and quality of thermal refugia are known, such as riverine and watershed processes, hyporheic flows, deep pools and bathymetric factors, thermal stratification of reservoirs, and other broader climatic considerations. This research develops a conceptual model and methodological techniques to quantify the change in solar insolation load to the Klamath River caused by riparian and floodplain vegetation, the morphology of the river, and the orientation and topographic characteristics of its watersheds. Using multiple scales of input data from digital elevation models and airborne light detection and ranging (LiDAR) derivatives, different analysis methods yielded three different model results. These models are correlated with thermal infrared imagery for ground-truth information at the focal confluence with the Scott River. Results from nonparametric correlation tests, geostatistical cross-covariograms, and cross-correlograms indicate that statistical relationships between the insolation models and the thermal infrared imagery exist and are significant. Furthermore, the use of geostatistics provides insights to the spatial structure of the relationships that would not be apparent otherwise. To incorporate a more complete representation of the temperature dynamics in the river system, other variables including the factors mentioned above, and their influence on solar loading, are discussed. With similar datasets, these methods could be applied to any river in the United States—especially those listed as temperature impaired under Section 303(d) of the Clean Water Act—or international riverine systems. Considering the importance of thermal refugia for aquatic species, these methods can help investigate opportunities

  15. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    Science.gov (United States)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  16. Solar engineering 1994

    International Nuclear Information System (INIS)

    Klett, D.E.; Hogan, R.E.; Tanaka, Tadayoshi

    1994-01-01

    This volume of 83 papers constitutes the Proceedings of the 1994 International Solar Energy Conference held March 27--30, 1994 in San Francisco, California. The Conference was jointly sponsored by the Solar Energy Division of the American Society of Mechanical Engineers, The Japan Society of Mechanical Engineers and the Japan Solar Energy Society. This is the fourth cooperation between ASME, JSME and JSES in cosponsoring the International Solar Energy Conference. The papers cover a wide range of solar technologies from low temperature solar ponds and desalinization to high temperature concentrators for space applications and central receivers for terrestrial power generation. Other topics covered include solar detoxification of hazardous waste, dish Stirling systems, solar cooling, photovoltaics, building energy analysis and conservation, simulation, and testing and measurement techniques. All papers were indexed separately for the data base

  17. Characterization of microcrystalline I-layer for solar cells prepared in low temperature - plastic compatible process

    KAUST Repository

    Sliz, Rafal

    2012-06-01

    Microcrystalline silicon (mc-Si) lms deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) process constitute an important material for manufacturing low-cost, large-area thin-lm devices, such as solar cells or thin-lm transistors. Although the deposition of electronic-grade mc-Si using the PECVD process is now well established, the high substrate temperature required (~400°C) does not lend itself to electronic devices with exible form factors fabricated on low-cost plastic substrates. In this study, we rst investigated an intrinsic mc-Si layer deposited at plastic-compatible substrate temperatures (~150°C) by characterising the properties of the lm and then evaluated its applicability to p-i-n solar cells though device characterisation. When the performance of the solar cell was correlated with lm properties, it was found that, although it compared unfavourably with mc-Si deposited at higher temperatures, it remained a very promising option. Nonetheless, further development is required to increase the overall eciency of mc-Si exible solar cells.

  18. New cermet coatings for mid-temperature applications for solar concentrated combine heat and power system

    OpenAIRE

    Wäckelgård, Ewa; Bartali, Ruben; Gerosa, Riccardo; Laidani, Nadhira; Mattsson, Andreas; Micheli, Victor; Rivolta, Barbara

    2014-01-01

    New cermet (ceramic-metal) composite coatings have been developed for solar absorbers in a solar concentrating system for combined heat and power operating in a mid-temperature range between 250 to 350 degrees C. The coatings were applied on stainless steel substrates. Two types of cermet with expected good duration properties were chosen: Nb-TiO2 and W-SiO2. The basic layer-structure concept consisted of four sub-layers, counted from the substrate: molybdenum infrared reflector, high metal c...

  19. Fluid selection for a low-temperature solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Tchanche, Bertrand Fankam; Papadakis, George; Lambrinos, Gregory; Frangoudakis, Antonios

    2009-01-01

    Theoretical performances as well as thermodynamic and environmental properties of few fluids have been comparatively assessed for use in low-temperature solar organic Rankine cycle systems. Efficiencies, volume flow rate, mass flow rate, pressure ratio, toxicity, flammability, ODP and GWP were used for comparison. Of 20 fluids investigated, R134a appears as the most suitable for small scale solar applications. R152a, R600a, R600 and R290 offer attractive performances but need safety precautions, owing to their flammability.

  20. Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-04-01

    Full Text Available In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT:PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.

  1. Dynamic Simulation over Long Time Periods with 100% Solar Generation.

    Energy Technology Data Exchange (ETDEWEB)

    Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.

  2. Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings

    International Nuclear Information System (INIS)

    Mark, U.; Tevini, M.

    1997-01-01

    The effects of solar UV-B radiation, in combination with elevated temperature (4 °C) and CO 2 (680 μL L -1 ) concentration, on sunflower and maize seedlings were studied from May to August in 1991 at the research station Quinta de São Pedro in Portugal (38.7°N). The ambient solar radiation of Portugal was reduced to levels of Central European latitudes by using the ozone filter technique. This radiation served as control, while the ambient solar radiation of Portugal was to simulate intense UV-B treatment (+30%). All plants were grown up to 18 days in 4 climate controlled growth chambers simulating a daily course of temperature with T max = 28 °C or 32 °C, resp., and ambient CO 2 concentrations (340 μL L -1 ); in one chamber the CO 2 concentration was twice as high (680 μL L-1). Under intense UV-B and at 28 °C (T max ) all growth parameters (height, leaf area, fresh and dry weight, stem elongation rate, relative growth rate) of sunflower and maize seedlings were reduced down to 35% as compared to controls. An increase in growing temperature by 4 °C, alone or in combination with doubled CO 2 , compensated or even overcompensated the UV-B effect so that the treated plants were comparable to controls. Chlorophyll content, on a leaf area basis, increased under intense UV-B radiation. This increase was compensated by lower leaf areas, resulting in comparable chlorophyll contents. Similar to growth, also the net photosynthetic rates of sunflower and maize seedlings were reduced down to 29% by intense UV-B calculated on a chlorophyll basis. This reduction was compensated by an increased temperature. Doubling of CO 2 concentration had effects only on sunflower seedlings in which the photosynthetic rates were higher than in the controls. Dark respiration rates of the seedlings were not influenced by any experimental condition. Transpiration and water use efficiency (wue) were not influenced by intense UV-B. Higher temperatures led to higher transpiration rates and

  3. The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia

    International Nuclear Information System (INIS)

    Pantic, Lana S.; Pavlović, Tomislav M.; Milosavljević, Dragana D.; Radonjic, Ivana S.; Radovic, Miodrag K.; Sazhko, Galina

    2016-01-01

    Five different models for calculating solar module temperature, output power and efficiency for sunny days with different solar radiation intensities and ambient temperatures are assessed in this paper. Thereafter, modeled values are compared to the experimentally obtained values for the horizontal solar module in Nis, Serbia. The criterion for determining the best model was based on the statistical analysis and the agreement between the calculated and the experimental values. The calculated values of solar module temperature are in good agreement with the experimentally obtained ones, with some variations over and under the measured values. The best agreement between calculated and experimentally obtained values was for summer months with high solar radiation intensity. The nonlinear model for calculating the output power is much better than the linear model and at the same time predicts better the total electrical energy generated by the solar module during the day. The nonlinear model for calculating the solar module efficiency predicts the efficiency higher than the STC (Standard Test Conditions) value of solar module efficiency for all conditions, while the linear model predicts the solar module efficiency very well. This paper provides a simple and efficient guideline to estimate relevant parameters of a monocrystalline silicon solar module under the moderate-continental climate conditions. - Highlights: • Linear model for solar module temperature gives accurate predictions for August. • The nonlinear model better predicts the solar module power than the linear model. • For calculating solar module power for Nis we propose the nonlinear model. • For calculating solar model efficiency for Nis we propose adoption of linear model. • The adopted models can be used for calculations throughout the year.

  4. Test reference year generation from meteorological and simulated solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. de; Bilbao, J. [University of Valladolid (Spain). Dept. of Applied Physics

    2005-06-01

    In this paper, a new method for generating test reference year (TRY) from the measured meteorological variables is proposed. Hourly recorded data of air temperature, relative humidity and wind velocity for two stations, Valladolid and Madrid (Spain) were selected to develop the method and a TRY was obtained. Monthly average solar radiation values were calculated taking into account the temperature and solar radiation correlations. Four different methodologies were used to evaluate hourly global solar radiation from hourly weather data of temperature and, as a consequence, four different TRYs with common data sets of temperature, relative humidity and wind velocity were generated for Valladolid and Madrid (Spain) stations. In order to evaluate the four different methodologies, TRYs data were compared with long-term measured data series using statistical estimators such as average, standard deviation, root mean square error (rmse) and mean bias error (mbe). Festa and Ratto and the TAG model, from Aguiar and Collares-Pereira, respectively, turned out to be the best methods for generating hourly solar irradiation data. The best performance was shown by the TRY0 year which was based on the solar radiation models mentioned above. The results show that the best reference year for each site varies with the season and the characteristics of the station. (author)

  5. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing

    Directory of Open Access Journals (Sweden)

    A. Hind

    2012-08-01

    Full Text Available The statistical framework of Part 1 (Sundberg et al., 2012, for comparing ensemble simulation surface temperature output with temperature proxy and instrumental records, is implemented in a pseudo-proxy experiment. A set of previously published millennial forced simulations (Max Planck Institute – COSMOS, including both "low" and "high" solar radiative forcing histories together with other important forcings, was used to define "true" target temperatures as well as pseudo-proxy and pseudo-instrumental series. In a global land-only experiment, using annual mean temperatures at a 30-yr time resolution with realistic proxy noise levels, it was found that the low and high solar full-forcing simulations could be distinguished. In an additional experiment, where pseudo-proxies were created to reflect a current set of proxy locations and noise levels, the low and high solar forcing simulations could only be distinguished when the latter served as targets. To improve detectability of the low solar simulations, increasing the signal-to-noise ratio in local temperature proxies was more efficient than increasing the spatial coverage of the proxy network. The experiences gained here will be of guidance when these methods are applied to real proxy and instrumental data, for example when the aim is to distinguish which of the alternative solar forcing histories is most compatible with the observed/reconstructed climate.

  6. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  7. Simulation of transcontinental wind and solar PV generation time series

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Maule, Petr; Hahmann, Andrea N.

    2018-01-01

    to the technical characteristics of individual installations spread across large regions. The proposed methodology is validated using actual power data in Europe and can be applied to represent intermittent generation in network development plans, reliability and market studies, as well as operational guidelines.......The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales...

  8. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  9. Simulation of the outdoor energy efficiency of an autonomous solar kit based on meteorological data for a site in Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Bouzaki, Mohammed Moustafa, E-mail: bouzaki-physique1@yahoo.fr; Chadel, Meriem [University of Tlemcen URMER, 13000 (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Benyoucef, Boumediene [University of Tlemcen URMER, 13000 (Algeria); Petit, Pierre; Aillerie, Michel, E-mail: aillerie@metz.supelec.fr [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France)

    2016-07-25

    This contribution analyzes the energy provided by a solar kit dedicated to autonomous usage and installed in Central Europe (Longitude 6.10°; Latitude 49.21° and Altitude 160 m) by using the simulation software PVSYST. We focused the analysis on the effect of temperature and solar irradiation on the I-V characteristic of a commercial PV panel. We also consider in this study the influence of charging and discharging the battery on the generator efficiency. Meteorological data are integrated into the simulation software. As expected, the solar kit provides an energy varying all along the year with a minimum in December. In the proposed approach, we consider this minimum as the lowest acceptable energy level to satisfy the use. Thus for the other months, a lost in the available renewable energy exists if no storage system is associated.

  10. Temperature Field Simulation of Powder Sintering Process with ANSYS

    Science.gov (United States)

    He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying

    2018-03-01

    Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.

  11. Topics in the numerical simulation of high temperature flows

    International Nuclear Information System (INIS)

    Cheret, R.; Dautray, R.; Desgraz, J.C.; Mercier, B.; Meurant, G.; Ovadia, J.; Sitt, B.

    1984-06-01

    In the fields of inertial confinement fusion, astrophysics, detonation, or other high energy phenomena, one has to deal with multifluid flows involving high temperatures, high speeds and strong shocks initiated e.g. by chemical reactions or even by thermonuclear reactions. The simulation of multifluid flows is reviewed: first are Lagrangian methods which have been successfully applied in the past. Then we describe our experience with newer adaptive mesh methods, originally designed to increase the accuracy of Lagrangian methods. Finally, some facts about Eulerian methods are recalled, with emphasis on the EAD scheme which has been recently extended to the elasto-plastic case. High temperature flows is then considered, described by the equations of radiation hydrodynamics. We show how conservation of energy can be preserved while solving the radiative transfer equation via the Monte Carlo method. For detonation, some models, introduced to describe the initiation of detonation in heterogeneous explosives. Finally we say a few words about instability of these flows

  12. Numerical simulation of realistic high-temperature superconductors

    International Nuclear Information System (INIS)

    1997-01-01

    One of the main obstacles in the development of practical high-temperature superconducting (HTS) materials is dissipation, caused by the motion of magnetic flux quanta called vortices. Numerical simulations provide a promising new approach for studying these vortices. By exploiting the extraordinary memory and speed of massively parallel computers, researchers can obtain the extremely fine temporal and spatial resolution needed to model complex vortex behavior. The results may help identify new mechanisms to increase the current-capability capabilities and to predict the performance characteristics of HTS materials intended for industrial applications

  13. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  14. Decreased solar radiation and increased temperature combine to facilitate fouling by marine non-indigenous species.

    Science.gov (United States)

    Kim, Tae Won; Micheli, Fiorenza

    2013-01-01

    Studies of the effects of climate changes on marine biofouling have mainly focused on the effects of temperature increase, but a decrease in the level of solar radiation could also influence the establishment and persistence of fouling species. To test if decreased solar radiation and/or increased temperature influenced marine fouling communities, solar radiation, and temperature were manipulated by deploying shading devices in the intertidal zone of a central California estuary. Non-indigenous species (NIS) recruiting to artificial substrata had greater coverage under the shading treatments than under transparent plates, indicating that low radiation facilitates recruitment and growth of NIS. In contrast, the coverage of NIS underneath warmer black plates was higher than that on white plates. Furthermore, spatial comparisons of recruitment showed that NIS had a tendency to grow better in the warmer region of the estuary whereas native species showed the opposing trend. The results suggest that both lower radiation and higher temperature may facilitate the spread of marine NIS.

  15. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    International Nuclear Information System (INIS)

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-01-01

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  16. Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations

    Science.gov (United States)

    Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.

    2017-12-01

    We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.

  17. Simulation of GRIS spectrometer response to the solar gamma-ray flare of 23 July 2002

    International Nuclear Information System (INIS)

    Trofimov, Yu A; Kotov, Yu D; Yurov, V N; Lupar, E E; Faradzhaev, R M; Glyanenko, A S

    2017-01-01

    GRIS is a prospective experiment designed to measure hard X-rays and γ-rays of solar flares in the energy range from 50 keV to 200 MeV as well as solar neutrons > 30 MeV. This study considers results of GEANT 4 simulation of GRIS detectors response to cosmic background radiation and to the solar flare SOL2002-07-23 (X4.8). It is shown that the GRIS spectrometers have enough sensitivity and energy resolution to measure redshifts of some narrow γ-rays in flare spectra, that the low energy thresholds of the detectors can be lowered considerably without a risk of counting rate saturation during high magnitude flares and that at a choice between LaBr 3 (Ce) and CeBr 3 the second one is a preferable scintillator for a hard X-ray and γ-ray spectrometer of solar flares. (paper)

  18. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  19. Solar concentrator panel and gore testing in the JPL 25-foot space simulator

    Science.gov (United States)

    Dennison, E. W.; Argoud, M. J.

    1981-01-01

    The optical imaging characteristics of parabolic solar concentrator panels (or gores) have been measured using the optical beam of the JPL 25-foot space simulator. The simulator optical beam has been characterized, and the virtual source position and size have been determined. These data were used to define the optical test geometry. The point source image size and focal length have been determined for several panels. A flux distribution of a typical solar concentrator has been estimated from these data. Aperture photographs of the panels were used to determine the magnitude and characteristics of the reflecting surface errors. This measurement technique has proven to be highly successful at determining the optical characteristics of solar concentrator panels.

  20. Measurements and Simulations on the Mechanisms of Efficiency Losses in HIT Solar Cells

    Directory of Open Access Journals (Sweden)

    Silvio Pierro

    2015-01-01

    Full Text Available We study the electrical and the optical behavior of HIT solar cell by means of measurements and optoelectrical simulations by TCAD simulations. We compare the HIT solar cell with a conventional crystalline silicon solar cell to identify the strengths and weaknesses of the HIT technology. Results highlight different mechanisms of electrical and optical efficiency losses caused by the presence of the amorphous silicon layer. The higher resistivity of the a-Si layers implies a smaller distance between the metal lines that causes a higher shadowing. The worst optical coupling between the amorphous silicon and the antireflective coating implies a slight increase of reflectivity around the 600 nm wavelength.

  1. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  2. Using Real and Simulated TNOs to Constrain the Outer Solar System

    Science.gov (United States)

    Kaib, Nathan

    2018-04-01

    Over the past 2-3 decades our understanding of the outer solar system’s history and current state has evolved dramatically. An explosion in the number of detected trans-Neptunian objects (TNOs) coupled with simultaneous advances in numerical models of orbital dynamics has driven this rapid evolution. However, successfully constraining the orbital architecture and evolution of the outer solar system requires accurately comparing simulation results with observational datasets. This process is challenging because observed datasets are influenced by orbital discovery biases as well as TNO size and albedo distributions. Meanwhile, such influences are generally absent from numerical results. Here I will review recent work I and others have undertaken using numerical simulations in concert with catalogs of observed TNOs to constrain the outer solar system’s current orbital architecture and past evolution.

  3. Development of a digital solar simulator based on full-bridge converter

    Science.gov (United States)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  4. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Science.gov (United States)

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  5. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  6. Structure of Mercury's magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schriver, D.

    2007-01-01

    Roč. 34, č. 5 (2007), L05104/1-L05104/5 ISSN 0094-8276 R&D Projects: GA ČR GA205/05/1011 Institutional research plan: CEZ:AV0Z30420517 Keywords : Global simulations * Mercury's magnetosphere * solar wind * hybrid simulations * ion drift driven rings Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007

  7. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...

  8. Photocarcinogenesis and toxicity of benzoyl peroxide in hairless mice after simulated solar radiation

    DEFF Research Database (Denmark)

    Lerche, Catharina M; Philipsen, Peter A; Poulsen, Thomas

    2010-01-01

    with UV radiation. BPO can promote skin tumorigenesis in a mouse skin chemical carcinogenesis model. As acne vulgaris is frequently localized on sun-exposed areas, we investigated whether BPO or BPO-clin accelerates photocarcinogenesis in combination with simulated solar radiation (SSR) in 12 groups of 25...

  9. Water vapour transfer in the simulated protective clothing system with exposure to intensive solar radiation

    NARCIS (Netherlands)

    Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Tochihara, Y.; Havenith, G.

    2005-01-01

    A series of experiments has been performed to study the moisture transfer in the protective clothing exposed to a high short wave (solar) radiant heat flux at a normal condition of 20 °C with 40 % RH in terms of heat stress caused by accumulated sweat in underwear. To simulate a practical situation,

  10. Topical tacrolimus in combination with simulated solar radiation does not enhance photocarcinogenesis in hairless mice

    DEFF Research Database (Denmark)

    Lerche, C.M.; Philipsen, P.A.; Poulsen, T.

    2008-01-01

    tacrolimus ointment on squamous cell carcinoma formation in hairless female C3.Cg/TifBomTac immunocompetent mice exposed to solar simulated radiation (SSR). In a first experiment, mice (n = 200) had tacrolimus applied on their dorsal skin three times weekly followed by SSR (2, 4 or 6 standard erythema doses...

  11. Analysis of the effects of simulated synergistic LEO environment on solar panels

    Science.gov (United States)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  12. Validation of the spectral mismatch correction factor using an LED-based solar simulator

    DEFF Research Database (Denmark)

    Riedel, Nicholas; Santamaria Lancia, Adrian Alejo; Thorsteinsson, Sune

    LED-based solar simulators are gaining popularity in the PV characterization field. There are several reasons for this trend, but the primary interest is often the potential of tuning the light source spectrum to a closer match to the AM 1.5G reference spectrum than traditional Xenon or metal-hal...

  13. A Fiber Bragg Grating—Bimetal Temperature Sensor for Solar Panel Inverters

    Directory of Open Access Journals (Sweden)

    Mohd Afiq Ismail

    2011-09-01

    Full Text Available This paper reports the design, characterization and implementation of a Fiber Bragg Grating (FBG-based temperature sensor for an Insulted-Gate Bipolar Transistor (IGBT in a solar panel inverter. The FBG is bonded to the higher Coefficient of Thermal Expansion (CTE side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  14. A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.

    Science.gov (United States)

    Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd

    2011-01-01

    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  15. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir

    2017-09-22

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell\\'s configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  16. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir; Daif, Ounsi El; Aï ssa, Brahim; Kivambe, Maulid; Tabet, Nouar; Seif, Johannes; Haschke, Jan; Cattin, Jean; Boccard, Mathieu; De Wolf, Stefaan; Ballif, Christophe

    2017-01-01

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell's configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  17. Analysis of influence on the solar simulator light source off-focus to the spot

    Directory of Open Access Journals (Sweden)

    Jiayu ZHANG

    2015-12-01

    Full Text Available Aiming at focusing-type solar simulator, the paper researches the relationship between the defocusing amount and the facula irradiance. With the optical system of focusing-type solar simulator as research object, simulation is conducted based on a short-arc xenon lamps and its ellipsoidal condenser. According to the xenon lamp energy distribution figure and its distribution curve flux, the luminous body is simplified to cylindrical luminous light which emits light only on the flank. Model for the simplified luminous light and its ellipsoidal condenser are established in the optical simulation software TracePro, and the impact of axial and radial deviation on the facula is simulated. The results show that light off-focus has little influence on the average of facula irradiance, but has great influence on the maximum value and the distribution of facula irradiance as well as the facula area. The result provides a theoretical reference for the design and alignment of solar simulator focusing system.

  18. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  19. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  20. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  1. Computer Simulation Studies of Ion Channels at High Temperatures

    Science.gov (United States)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  2. Research on temperature control and influence of the vacuum tubes with inserted tubes solar heater

    Science.gov (United States)

    Xiao, L. X.; He, Y. T.; Hua, J. Q.

    2017-11-01

    A novel snake-shape vacuum tube with inserted tubes solar collector is designed in this paper, the heat transfer characteristics of the collector are analyzed according to its structural characteristics, and the influence of different working temperature on thermal characteristics of the collector is studied. The solar water heater prototype consisting of 14 vacuum tubes with inserted tubes is prepared, and the hot water storage control subsystem is designed by hysteresis comparison algorithm. The heat characteristic of the prototype was experimentally studied under hot water output temperature of 40-45°C, 50-55°C and 60-65°C. The daily thermal efficiency was 64%, 50% and 46%, respectively. The experimental results are basically consistent with the theoretical analysis.

  3. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil

    2017-04-26

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid-latitude meteorological data from Busan, Korea is employed, featuring large climate variation over the course of one year. The number of module stages used by the dynamic operating scheme changes dynamically based on the inlet feed temperature of the successive modules, which results in an improvement of the water production and thermal efficiency. The simulations of the SMDCMD system are carried out to investigate the spatial and temporal variations in the feed and permeate temperatures and permeate flux. The monthly average daily water production increases from 0.37m3/day to 0.4m3/day and thermal efficiency increases from 31% to 45% when comparing systems both without and with dynamic operation in December. The water production with respect to collector area ranged from 350m2 to 550m2 and the seawater storage tank volume ranged from 16m3 to 28.8m3, and the solar fraction at various desired feed temperatures from 50°C to 80°C have been investigated in October and December.

  4. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  5. Parametric sensitivity analysis of a SOLRGT system with the indirect upgrading of low/mid-temperature solar heat

    International Nuclear Information System (INIS)

    Li, Yuan Yuan; Zhang, Na; Cai, Rui Xian

    2012-01-01

    Highlights: ► A solar-assisted methane chemically recuperated gas turbine cycle has been proposed. ► The parametric sensitivity analysis of a SOLRGT system has been carried out. ► The concept of indirect upgrading of solar heat proves to be feasible. -- Abstract: Development of novel solar–fossil fuel hybrid system is important for the efficient utilization of low temperature solar heat. A solar-assisted methane chemically recuperated gas turbine (SOLRGT) system was proposed by Zhang and co-worker, which integrated solar heat into a high efficiency power system. The low temperature solar heat is first converted into vapor latent heat provided for a reformer, and then indirectly upgraded to high-grade generated syngas chemical energy by the reformation reaction. In this paper, based on the above mentioned cycle, a parametric analysis is performed using ASPEN PLUS code to further evaluate the effect of key thermodynamics parameters on the SOLRGT performance. It can be shown that solar collector temperature, steam/air mass ratio, turbine inlet pressure, and turbine inlet temperature have significant effects on system efficiency, solar-to-electricity efficiency, fossil fuel saving ratio, specific CO 2 emission and so on. The solar collector temperature is varied between 140 and 240 °C and the maximum net solar-to-electricity efficiency and system efficiency for a given turbine inlet condition (turbine inlet temperature of 1308 °C and pressure ratio of 15) is 30.2% and 52.9%, respectively. The fossil fuel saving ratio can reach up to 21.8% and the reduction of specific CO 2 emission is also 21.8% compared to the reference system. The system performance is promising for an optimum pressure ratio at a given turbine inlet temperature.

  6. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  7. Latitudinal variation of the topside electron temperature at different levels of solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2009-01-01

    Roč. 44, č. 6 (2009), s. 693-700 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal dependence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.079, year: 2009

  8. Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    Roč. 33, č. 9 (2006), L09101/1-L09101/4 ISSN 0094-8276 R&D Projects: GA AV ČR(CZ) IAA3042403 Grant - others:ESA(XE) PECS 98024; NASA (US) NAG-10915 Institutional research plan: CEZ:AV0Z30420517 Keywords : proton temperature anisotropy * solar wind * in situ observations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.602, year: 2006

  9. Simple roll coater with variable coating and temperature control for printed polymer solar cells

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    of solution, enabling roll coating testing of new polymers where only small amounts are often available. We demonstrate the formation of >50 solar cells (each with an active area of 1 cm2) with printed metal back electrodes using as little as 0.1 mL of active layer solution. This approach outperforms spin...... coating with respect to temperature control, ink usage, speed and is directly compatible with industrial processing and upscaling....

  10. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells

    International Nuclear Information System (INIS)

    Huang, Xiaokun; Hu, Ziyang; Xu, Jie; Wang, Peng; Zhang, Jing; Zhu, Yuejin

    2017-01-01

    Highlights: • An ultrathin and discrete TiO 2 (u-TiO 2 ) was fabricated at low temperature. • High-performance perovskite solar cells based u-TiO 2 was realized. • u-TiO 2 between perovskite and FTO functions as a bridge for electron transport. • u-TiO 2 accelerates electron transfer and alleviates charge recombination. - Abstract: A compact TiO 2 (c-TiO 2 ) layer fabricated by spin coating or spray pyrolysis following a high-temperature sintering is a routine in high-performance planar heterojunction perovskite solar cells. Here, we demonstrate an effective low-temperature approach to fabricate an ultrathin and discrete TiO 2 (u-TiO 2 ) for enhancing photovoltaic performance of perovskite solar cells. Via hydrolysis of low-concentration TiCl 4 solution at 70 °C, u-TiO 2 was grown on a fluorine doped tin oxide (FTO) substrate, forming the electron selective contact with the photoactive CH 3 NH 3 PbI 3 film. The perovskite solar cell using u-TiO 2 achieves an efficiency of 13.42%, which is compared to 13.56% of the device using c-TiO 2 prepared by high-temperature sintering. Cyclic voltammetry, steady-state photoluminescence spectroscopy and electrical impedance spectroscopy were conducted to study interface engineering and charge carrier dynamics. Our results suggest that u-TiO 2 functions as a bridge for electron transport between perovskite and FTO, which accelerates electron transfer and alleviates charge recombination.

  11. Numerical Simulation and Optimization of Performances of a Solar ...

    African Journals Online (AJOL)

    This article has as an aim the study and the simulation of the photovoltaic cells containing CdTe materials, contributing to the development of renewable energies, and able to feed from the houses, the shelters as well as photovoltaic stations… etc. CdTe is a semiconductor having a structure of bands with an indirect gap of ...

  12. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  13. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    Science.gov (United States)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  14. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  15. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  16. Parametric analysis of the curved slats fixed mirror solar concentrator for medium temperature applications

    International Nuclear Information System (INIS)

    Pujol-Nadal, Ramon; Martínez-Moll, Víctor

    2014-01-01

    Highlights: • We thermally modeled the Curved Slats Fixed Mirror Solar Concentrator (CSFMSC). • A parametric analysis for three climates and two axial orientations are given. • The optimum values are determined for a range of the design parameters. • The CSFMSC has been well characterized for medium range temperature operation. - Abstract: The Curved Slats Fixed Mirror Solar Concentrator (CSFMSC) is a solar concentrator with a static reflector and a moving receiver. An optical analysis using ray-tracing tools was presented in a previous study in function of three design parameters: the number of mirrors N, the ratio of focal length and reflector width F/W, and the aperture concentration C a . However, less is known about the thermal behavior of this geometry. In this communication, the integrated thermal output of the CSFMSC has been determined in order to find the optimal values for the design parameters at a working temperature of 200 °C. The results were obtained for three different climates and two axial orientations (North–South, and East–West). The results show that CSFMSC can produce heat at 200 °C with an annual thermal efficiency of 41, 47, and 51%, dependent of the location considered (Munich, Palma de Mallorca, and Cairo). The best FMSC geometries in function of the design parameters are exhibited for medium temperature applications

  17. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    NARCIS (Netherlands)

    Leenaarts, J.|info:eu-repo/dai/nl/304837946; Carlsson, M.; Hansteen, V.; Rutten, R.J.|info:eu-repo/dai/nl/074143662

    2007-01-01

    Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and

  18. Modelling, interpolation and stochastic simulation in space and time of global solar radiation

    NARCIS (Netherlands)

    Bechini, L.; Ducco, G.; Donatelli, M.; Stein, A.

    2000-01-01

    Global solar radiation data used as daily inputs for most cropping systems and water budget models are frequently available from only a few weather stations and over short periods of time. To overcome this limitation, the Campbell–Donatelli model relates daily maximum and minimum air temperatures to

  19. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  20. Rocket photographs of fine structure and wave patterns in the solar temperature minimum

    Science.gov (United States)

    Bonnet, R. M.; Decaudin, M.; Foing, B.; Bruner, M.; Acton, L. W.; Brown, W. A.

    1982-01-01

    A new series of high resolution pictures of the sun has been obtained during the second flight of the Transition Region Camera which occurred on September 23, 1980. The qualitative analysis of the results indicates that a substantial portion of the solar surface at the temperature minimum radiates in non-magnetic regions and from features below 1 arcsec in size. Wave patterns are observed on the 160 nm temperature minimum pictures. They are absent on the Lyman alpha pictures. Their physical characteristics are compatible with those of gravitational and acoustic waves generated by exploding granules.

  1. Examination of solar simulators used for the determination of sunscreen UVA efficacy.

    Science.gov (United States)

    Sayre, Robert M; Dowdy, John C

    2010-01-01

    The U.S. FDA recently proposed both in vivo and in vitro UVA efficacy tests for sunscreen products with the lower result used to establish the sunscreen's labeled UVA protection claim. The FDA stated their rationale for dual tests was concern that the in vivo test method overemphasizes UVA-2 (320-340 nm) photoprotection. We attribute FDA's observation to the relative lack, compared to sunlight, of UVA-1 (340-400 nm) radiation in the current JCIA UVA solar simulator specification, allowing the method to generate higher UVA protection factors than sunscreens will provide in sunlight. Our work is based upon comparisons of Air Mass 1.0 sunlight to variously filtered UVA solar simulators. Sources near the JCIA UVA-2/UVA limits (8-20%) had a goodness of fit to solar UVA of only 67-79%. We propose that instead of using ratios of UVA-2 to UVA the standard should be a goodness of fit to the UVA region of an Air Mass 1 solar reference spectrum. As the spectral distribution of solar UVA varies much less than UVB, sunlight of reasonable zenith angles of < or = 60 degrees will have similar spectral shapes and approximate risk spectrum. Goodness of fit to this spectrum will produce UVA protection values predictive to those actually achieved in sunlight of different zenith angles.

  2. Low-temperature plasma simulations with the LSP PIC code

    Science.gov (United States)

    Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy

    2014-10-01

    The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  3. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  4. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  5. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    Science.gov (United States)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  6. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    Science.gov (United States)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  7. Simulation and Experimental Study on Effect of Phase Change Material Thickness to Reduce Temperature of Photovoltaic Panel

    Science.gov (United States)

    Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.

    2015-09-01

    Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.

  8. Simulation and Experimental Study on Effect of Phase Change Material Thickness to Reduce Temperature of Photovoltaic Panel

    International Nuclear Information System (INIS)

    Indartono, Y S; Prakoso, S D; Suwono, A; Zaini, I N; Fernaldi, B

    2015-01-01

    Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV. (paper)

  9. Design and dynamic simulation of a novel polygeneration system fed by vegetable oil and by solar energy

    International Nuclear Information System (INIS)

    Calise, Francesco; Palombo, Adolfo; Vanoli, Laura

    2012-01-01

    Highlights: ► A novel polygeneration system based on engines (RE) fed by rapeseed oil is investigated. ► RE are integrated with high temperature solar heating and cooling systems. ► The polygeneration system is dynamically investigated for a Mediterranean Climate. ► System performance is excellent from the energetic point of view. ► The system is economically profitable only in case of feed-in tariffs. - Abstract: In this paper the integration of vegetable oil-fed reciprocating engines with solar thermal collector is investigated, seeking to design a novel polygeneration system producing: electricity, space heating and cooling and domestic hot water, for a university building located in Naples (Italy), assumed as case study. The polygeneration system is based on the following main components: concentrating parabolic trough solar collector, double-stage LiBr–H 2 O absorption chiller and a reciprocating engine fed by vegetable oil. The engine operates at full load producing electrical energy which is in part consumed by the building lights and equipments, in part used by the system passive loads and the rest is eventually sold to the grid. In fact, the engine is grid connected in order to perform a convenient net metering. The system was designed and then simulated by means of a zero-dimensional transient simulation model, developed using the TRNSYS software. The simulation tool developed by the authors allows one to analyze the results for different time basis (minutes, days, weeks, months and years), from both energetic and economic points of view. The economic results show that the system under investigation is profitable, especially if properly funded.

  10. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, J.; Kusano, K.; Inoue, S.; Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2017-06-20

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into two groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.

  11. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    Science.gov (United States)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  12. Simulation of the charging process of the LISA test masses due to solar flares

    International Nuclear Information System (INIS)

    Vocca, H; Grimani, C; Amico, P; Bosi, L; Marchesoni, F; Punturo, M; Travasso, F; Barone, M; Stanga, R; Vetrano, F; Vicere, A

    2004-01-01

    Cosmic-ray and solar high energy particles penetrate the LISA experiment test masses. Consequently, an electric charge accumulates in the bodies of the masses, generating spurious Coulomb forces between the masses and the surrounding electrodes. This process increases the noise level of the experiment. We have estimated the amount of charge deposited per second on the LISA test masses by solar flares and primary cosmic-ray protons at solar minimum. The simulation has been carried out with the Fluka Monte Carlo program. A simplified geometry for the experiment has been considered. We have found a net charging rate of 37 ± 1 e + /s for primary protons at solar minimum between 0.1 and 1000 GeV/n. The amount of charge released by a medium-strong solar flare, like that of 16 February 1984, is 10 732 ± 30 e + /s in the energy range 0.1-10 GeV/n. This value increases or decreases by approximately one order of magnitude for strong (weak) solar flares

  13. Simulation of a high-efficiency silicon-based heterojunction solar cell

    Science.gov (United States)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  14. Simulation on the Performance of Dye Solar Cell Incorporated with TiO2 Passivation Layer

    Directory of Open Access Journals (Sweden)

    Unan Yusmaniar Oktiawati

    2016-01-01

    Full Text Available Dye Solar Cell (DSC has started to gain interest in the recent years for practical application because of its ecofriendly, low cost, and easy fabrication. However, its efficiency is still not as competitive as the conventional silicon based solar cell. One of the research efforts to improve the efficiency of DSC is to use the passivation layer in between the photoelectrode material and the conductive oxide substrate. Thus, the objective of this simulation study is to investigate the effect of passivation layer on the performance of DSC. Properties from literatures which are based on physical work were captured as the input for the simulation using process, ATHENA, and device, ATLAS, simulator. Results have shown that the addition of two-20 nm TiO2 passivation layers on DSC can enhance the efficiency by 11% as the result of less recombination, higher electron mobility, and longer electron lifetime.

  15. Simulation results of the electron-proton telescope for Solar Orbiter

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Sebastian; Steinhagen, Jan; Kulkarni, Shrinivasrao; Grunau, Jan; Paspirgilis, Rolf; Martin, Cesar; Boettcher, Stephan; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wimmer-Schweingruber, Robert F. [Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    The Electron Proton Telescope (EPT) is one of five instruments in the Energetic Particle Detector suite for Solar Orbiter. It investigates low energy electrons and protons of solar events. EPT covers an energy range from 20400 keV for electrons and 20 keV-7 MeV for protons and distinguishes electrons from protons using a magnet/foil technique with silicon detectors. There will be two EPT units, each with double-barreled telescopes, one looking sunwards/antisunwards and the other north/south. EPT is designed using the GEometry ANd Tracking (GEANT) simulation toolkit developed by CERN for Monte Carlo calculations. Here we present the details of our simulations and the simulation results with respect to energy coverage and the geometrical factor of the EPT instrument. We also look at the far-field of the EPT magnets, which is important for electromagnetic cleanliness considerations.

  16. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  17. Optimization by simulation and development of solar cells with aluminium paste rear emitter and diffusion in conveyor furnace; Otimizacao por simulacao e desenvolvimento de celulas solares com emissor posterior formado por pasta de aluminio e difusao em forno de esteira

    Energy Technology Data Exchange (ETDEWEB)

    Mallmann, Ana Paula

    2011-01-15

    Photovoltaic solar energy is the direct conversion of solar energy into electricity and it has low impact to the environment during electric energy production. The main device of this technology is the solar cell and silicon is the substrate most used. The solar cells are electrically connected and encapsulated in order to form the photovoltaic module. The aims of this thesis are to optimize, develop and to analyse n{sup +}np{sup +} solar cells processed in n type Si-PV-FZ and with aluminum rear emitter formed in belt furnace. The optimization of solar cells by simulation is an important step before the device development. The software PC-1D and another program developed using Visual Basic language were used. Considering a metal grid formed by evaporation technique in vacuum ambient an efficiency of 16.8 % may be achieved. With screen printed grid, 15.8 % efficient solar cells were obtained. From the simulation results it was found that the screen printing metallization may become more viable than evaporation technique because there is low difference in the efficiency and the screen printing is a simpler technique. The experimental optimization of silicon wafers texture process resulted in reflectance of 12 %. This value is typical for monocrystalline silicon with textured surface. Experimental optimization of phosphorus front surface field shows a sheet resistance of (36 {+-} 4) {omega}/ for this region. This region was formed in a thermal step in a conventional furnace with POCl{sub 3}. It was found that after the phosphorus diffusion occurred gettering to specific temperature and time. It was verified that the minority carrier lifetime in the final of processing is similar to the initial value. The influence of steps sequence of front silver paste firing and rear diffusion/firing aluminium paste, of surface passivation and the influence of dry air flow during the aluminium paste diffusion/firing, of aluminium paste diffusion/firing temperature and of belt speed

  18. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  19. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  20. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2012-06-01

    Full Text Available Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790 and with a dynamic tool (TRNSYS. After the analysis of the greenhouse alone, the behavior of an entire house was simulated; a flat equipped with a sunspace, recently built thanks to public contributions provided by the Umbria Region in Italy to widespread bio-climatic architecture, was used as case-study. Simulations were carried out for the examined flat, both with a steady-state tool and with a dynamic one; the contribution of the sunspace was estimated thanks to the various methods previously mentioned. Finally, the simulated data were satisfactorily compared with the real energy consumptions (natural gas for heating of the flat; the sunspace allows a reduction of winter energy demand of the flat of about 20%.

  1. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary

    Directory of Open Access Journals (Sweden)

    R. Modolo

    2006-12-01

    Full Text Available The solar wind plasma interaction with the Martian exosphere is investigated by means of 3-D multi-species hybrid simulations. The influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary is examined by comparing two simulations describing the two extreme states of the solar cycle. The hybrid formalism allows a kinetic description of each ions species and a fluid description of electrons. The ionization processes (photoionization, electron impact and charge exchange are included self-consistently in the model where the production rate is computed locally, separately for each ionization act and for each neutral species. The results of simulations are in a reasonable agreement with the observations made by Phobos 2 and Mars Global Surveyor spacecraft. The position of the bow shock and the magnetic pile-up boundary is weakly dependent of the solar EUV flux. The motional electric field creates strong asymmetries for the two plasma boundaries.

  2. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  3. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    Science.gov (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  4. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  5. Simulation of solar array slewing of Indian remote sensing satellite

    Science.gov (United States)

    Maharana, P. K.; Goel, P. S.

    The effect of flexible arrays on sun tracking for the IRS satellite is studied. Equations of motion of satellites carrying a rotating flexible appendage are developed following the Newton-Euler approach and utilizing the constrained modes of the appendage. The drive torque, detent torque and friction torque in the SADA are included in the model. Extensive simulations of the slewing motion are carried out. The phenomena of back-stepping, step-missing, step-slipping and the influences of array flexibility in the acquisition mode are observed for certain combinations of parameters.

  6. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-α line profile observations

    International Nuclear Information System (INIS)

    Argo, H.V.

    1981-01-01

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-α (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya

  7. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    Science.gov (United States)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  8. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  9. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks

    Energy Technology Data Exchange (ETDEWEB)

    Henrion, Wolfgang; Tributsch, Helmut [Department of Si-Photovoltaik and Solare Energetik, Hahn-Meitner-Institut Berlin, 14109 Berlin (Germany)

    2009-01-15

    Trees have adapted to keep leaves and barks cool in sunshine and can serve as interesting bionic model systems for radiative cooling. Silicon solar cells, on the other hand, loose up to one third of their energy efficiency due to heating in intensive sunshine. It is shown that green leaves minimize absorption of useful radiation and allow efficient infrared thermal emission. Since elevated temperatures are detrimental for tensile water flow in the Xylem tissue below barks, the optical properties of barks should also have evolved so as to avoid excessive heating. This was tested by performing optical studies with tree bark samples from representative trees. It was found that tree barks have optimized their reflection of incoming sunlight between 0.7 and 2 {mu}m. This is approximately the optical window in which solar light is transmitted and reflected by green vegetation. Simultaneously, the tree bark is highly absorbing and thus radiation emitting between 6 and 10 {mu}m. These two properties, mainly provided by tannins, create optimal conditions for radiative temperature control. In addition, tannins seem to have adopted a function as mediators for excitation energy towards photo-antioxidative activity for control of radiation damage. The results obtained are used to discuss challenges for future solar cell optimization. (author)

  10. Solar radiation data - statistical analysis and simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Mustacchi, C; Cena, V; Rocchi, M; Haghigat, F

    1984-01-01

    The activities consisted in collecting meteorological data on magnetic tape for ten european