Simulation Application for Optimization of Solar Collector Array
Igor Shesho*,; Done Tashevsk
2014-01-01
Solar systems offer a comparatively low output density , so increasing the output always means a corresponding increase in the size of the collector area. Thus collector arrays are occasionally constructed (i.e. with different azimuth angles and/or slopes, which be imposed by the location and structure available to mount the collector. In this paper is developed simulation application for optimization for the solar collector array position and number of collectors in regard of...
Simulation Application for Optimization of Solar Collector Array
Igor Shesho*,
2014-01-01
Full Text Available Solar systems offer a comparatively low output density , so increasing the output always means a corresponding increase in the size of the collector area. Thus collector arrays are occasionally constructed (i.e. with different azimuth angles and/or slopes, which be imposed by the location and structure available to mount the collector. In this paper is developed simulation application for optimization for the solar collector array position and number of collectors in regard of maximum annual energy gain and thermal efficiency. It is analyzed solar collector array which has parallel and serial connected solar collectors with different tilt, orientation and thermal characteristics. Measurements are performed for determine the thermal performance of the system. Using the programming language INSEL it is developed simulation program for the analyzed system where optimization is done through parametric runs in the simulation program. Accent is given on the SE orientated collectors regarding their tilt and number, comparing two solutions-scenarios and the current system set situation of the in means of efficiency and total annual energy gain. The first scenario envisages a change of angle from 35 to 25 solar panels on the SE orientation, while the second scenario envisages retaining the existing angle of 35 and adding additional solar collector. Scenario 1 accounts for more than 13% energy gain on annual basis while Scenario 2 has 2% bigger thermal efficiency.
Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model
Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung
2017-08-01
This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
Simulation and Optimization of n-Type PERL Silicon Solar Cell Structure
William R. Taube
2011-01-01
Full Text Available Optimization of structure and process parameters of PERL (Passivated Emitter Rear Locally Diffused silicon solar cell using SILVACO software package has been carried out. PERL single junction silicon solar cells are reported by researchers to have high efficiency (~ 20-25 % and are promising for further improvement. Optimization is based on process and device simulation in SILVACO software package and integrating a Response Surface Methodology for optimal solution. Optimization of texture dimensions and ARC is followed by process parameters optimization for the emitter and base for best performance solar cell. A solar cell of efficiency 24 % is demonstrated by the simulation.
Simulation and Optimization of Silicon Solar Cell Back Surface Field
Souad TOBBECHE
2015-11-01
Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565
Tandem polymer solar cells: simulation and optimization through a multiscale scheme
Fanan Wei
2017-01-01
Full Text Available In this paper, polymer solar cells with a tandem structure were investigated and optimized using a multiscale simulation scheme. In the proposed multiscale simulation, multiple aspects – optical calculation, mesoscale simulation, device scale simulation and optimal power conversion efficiency searching modules – were studied together to give an optimal result. Through the simulation work, dependencies of device performance on the tandem structures were clarified by tuning the thickness, donor/acceptor weight ratio as well as the donor–acceptor distribution in both active layers of the two sub-cells. Finally, employing searching algorithms, we optimized the power conversion efficiency of the tandem polymer solar cells and located the optimal device structure parameters. With the proposed multiscale simulation strategy, poly(3-hexylthiophene/phenyl-C61-butyric acid methyl ester and (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta[2,1-b;3,4-b]dithiophene-alt-4,7-(2,1,3-benzothiadiazole]/phenyl-C61-butyric acid methyl ester based tandem solar cells were simulated and optimized as an example. Two configurations with different sub-cell sequences in the tandem photovoltaic device were tested and compared. The comparison of the simulation results between the two configurations demonstrated that the balance between the two sub-cells is of critical importance for tandem organic photovoltaics to achieve high performance. Consistency between the optimization results and the reported experimental results proved the effectiveness of the proposed simulation scheme.
Tandem polymer solar cells: simulation and optimization through a multiscale scheme.
Wei, Fanan; Yao, Ligang; Lan, Fei; Li, Guangyong; Liu, Lianqing
2017-01-01
In this paper, polymer solar cells with a tandem structure were investigated and optimized using a multiscale simulation scheme. In the proposed multiscale simulation, multiple aspects - optical calculation, mesoscale simulation, device scale simulation and optimal power conversion efficiency searching modules - were studied together to give an optimal result. Through the simulation work, dependencies of device performance on the tandem structures were clarified by tuning the thickness, donor/acceptor weight ratio as well as the donor-acceptor distribution in both active layers of the two sub-cells. Finally, employing searching algorithms, we optimized the power conversion efficiency of the tandem polymer solar cells and located the optimal device structure parameters. With the proposed multiscale simulation strategy, poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester and (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)])/phenyl-C61-butyric acid methyl ester based tandem solar cells were simulated and optimized as an example. Two configurations with different sub-cell sequences in the tandem photovoltaic device were tested and compared. The comparison of the simulation results between the two configurations demonstrated that the balance between the two sub-cells is of critical importance for tandem organic photovoltaics to achieve high performance. Consistency between the optimization results and the reported experimental results proved the effectiveness of the proposed simulation scheme.
Tandem polymer solar cells: simulation and optimization through a multiscale scheme
Wei, Fanan; Yao, Ligang; Lan, Fei
2017-01-01
In this paper, polymer solar cells with a tandem structure were investigated and optimized using a multiscale simulation scheme. In the proposed multiscale simulation, multiple aspects – optical calculation, mesoscale simulation, device scale simulation and optimal power conversion efficiency searching modules – were studied together to give an optimal result. Through the simulation work, dependencies of device performance on the tandem structures were clarified by tuning the thickness, donor/acceptor weight ratio as well as the donor–acceptor distribution in both active layers of the two sub-cells. Finally, employing searching algorithms, we optimized the power conversion efficiency of the tandem polymer solar cells and located the optimal device structure parameters. With the proposed multiscale simulation strategy, poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester and (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)])/phenyl-C61-butyric acid methyl ester based tandem solar cells were simulated and optimized as an example. Two configurations with different sub-cell sequences in the tandem photovoltaic device were tested and compared. The comparison of the simulation results between the two configurations demonstrated that the balance between the two sub-cells is of critical importance for tandem organic photovoltaics to achieve high performance. Consistency between the optimization results and the reported experimental results proved the effectiveness of the proposed simulation scheme. PMID:28144571
OPTIMIZATION OF A SOLAR SIMULATOR FOR PLANETARY-PHOTOCHEMICAL STUDIES
Es-sebbar, Et-touhami; Bénilan, Yves; Fray, Nicolas; Cottin, Hervé; Jolly, Antoine; Gazeau, Marie-Claire, E-mail: ettouhamiessbbar@gmail.com [Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR 7583, CNRS, Université Paris Est Créteil and Université Paris Diderot, Institute Pierre Simon Laplace, 61 Avenue du Général De Gaulle, F-94010 Créteil Cedex (France)
2015-06-22
Low-temperature microwave-powered plasma based on hydrogen and hydrogen with noble gas mixtures are widely used as a continuous vacuum ultraviolet (VUV) source in laboratory experiments carried out to mimic the photochemistry in astrophysical environments. In this work, we present a study dedicated to optimizing such sources in terms of mono-chromaticity at Lyα (H(Lyα) line at 121.6 nm ∼ 10.2 eV) and high spectral irradiance. We report the influence on the emission spectrum of a wide range of experimental conditions including gas composition (pure H{sub 2}, pure He, and H{sub 2}/He mixture), gas pressure, flow rates, and microwave power. The absolute spectral irradiance delivered by this VUV light source has been measured. With a microwave input power of 100 W, the best conditions for producing a quasi-monochromatic source are a 1% H{sub 2}/He gas mixture at a total pressure of 5 mbar and a flow rate of 2 sccm. By changing the microwave input power from 30 to 120 W, H(Lyα) increases by more than one order of magnitude. A comparison between the current measurements and the solar VUV spectral irradiance is reported over 115–170 nm.
Optimization of a Solar Simulator for Planetary-photochemical Studies
Es-sebbar, Et-touhami; Bénilan, Yves; Fray, Nicolas; Cottin, Hervé; Jolly, Antoine; Gazeau, Marie-Claire
2015-06-01
Low-temperature microwave-powered plasma based on hydrogen and hydrogen with noble gas mixtures are widely used as a continuous vacuum ultraviolet (VUV) source in laboratory experiments carried out to mimic the photochemistry in astrophysical environments. In this work, we present a study dedicated to optimizing such sources in terms of mono-chromaticity at Lyα (H(Lyα) line at 121.6 nm ˜ 10.2 eV) and high spectral irradiance. We report the influence on the emission spectrum of a wide range of experimental conditions including gas composition (pure H2, pure He, and H2/He mixture), gas pressure, flow rates, and microwave power. The absolute spectral irradiance delivered by this VUV light source has been measured. With a microwave input power of 100 W, the best conditions for producing a quasi-monochromatic source are a 1% H2/He gas mixture at a total pressure of 5 mbar and a flow rate of 2 sccm. By changing the microwave input power from 30 to 120 W, H(Lyα) increases by more than one order of magnitude. A comparison between the current measurements and the solar VUV spectral irradiance is reported over 115-170 nm.
1981-01-01
Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.
Lu, Meijun; Das, Ujjwal; Bowden, Stuart; Hegedus, Steven; Birmire, Robert
2009-06-09
In this paper, two-dimensional (2D) simulation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells is presented using Sentaurus Device, a software package of Synopsys TCAD. A model is established incorporating a distribution of trap states of amorphous-silicon material and thermionic emission across the amorphous-silicon / crystalline-silicon heterointerface. The 2D nature of IBC-SHJ device is evaluated and current density-voltage (J-V) curves are generated. Optimization of IBC-SHJ solar cells is then discussed through simulation. It is shown that the open circuit voltage (VOC) and short circuit current density (JSC) of IBC-SHJ solar cells increase with decreasing front surface recombination velocity. The JSC improves further with the increase of relative coverage of p-type emitter contacts, which is explained by the simulated and measured position dependent laser beam induced current (LBIC) line scan. The S-shaped J-V curves with low fill factor (FF) observed in experiments are also simulated, and three methods to improve FF by modifying the intrinsic a-Si buffer layer are suggested: (i) decreased thickness, (ii) increased conductivity, and (iii) reduced band gap. With all these optimizations, an efficiency of 26% for IBC-SHJ solar cells is potentially achievable.
Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities
Sharma, Dev
2013-01-01
Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities Conventional air-conditioners need high grade energy i.e. electricity, which in India, is primarily produced from fossil fuels. In spite of several emission restraints exercised by many countries under Kyoto protocol, energy consumption and pollution levels are higher than ever. Therefore, an assessment from the ecological point of view needs to be implemented as the greenhouse gases effect remains a threa...
Analysis and design optimization of organic dye sensitized solar cell based on simulation
Pala, Jay; Mordiya, Meet; Virpariya, Dhruv; Dangodara, Ankita; Gandha, Pinal; Savaliya, Chirag R.; Joseph, Joyce; Shiyani, Tulshi; Dhruv, Davit; Markna, J. H.
2017-05-01
In the present communication, simulation of multilayers organic dye-sensitized based solar cells (DSSC) was performed because of its tremendous application in different solar energy harvesting devices and their relatively high efficiency as well as cost effectiveness.J-V and I-V curves ofmultilayer organic dye sensitized solar cell with combination of different dyes were simulated to study the performance in the vicinity of efficiency. On the basis of above parameters, optimum design and operating parameters were derived from the simulation based analysis. It had been jointly shown that a systematic variation of different dye material and its thicknessare highly useful in achieving optimum efficiency of energy harvesting devices.
Simultaneous optimization and simulation of a-Si(1-x)C(x) layers on n-type silicon solar cells
Vesaghi, MA; Asadi, K
2005-01-01
We have applied Rosenbrock's optimization algorithm to obtain the optimized efficiency of a solar cell and its structural parameters. To obtain these parameters. we have developed a computer pro-ram for simultaneous optimization and simulation of the solar cell. We have used experimental data on the
Simultaneous optimization and simulation of a-Si(1-x)C(x) layers on n-type silicon solar cells
Vesaghi, MA; Asadi, K
2005-01-01
We have applied Rosenbrock's optimization algorithm to obtain the optimized efficiency of a solar cell and its structural parameters. To obtain these parameters. we have developed a computer pro-ram for simultaneous optimization and simulation of the solar cell. We have used experimental data on the
Integrated solar energy system optimization
Young, S. K.
1982-11-01
The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.
Ruei-Tang Chen
2013-01-01
Full Text Available A diffusive solar cell window comprises a diffusion plate with TiO2 nanoparticles sandwiched between two glass layers. It is a simple, inexpensive, easy-to-made, and highly reliable transparent solar energy module. To improve its power generation efficiency as well as maintain indoor natural lighting, we examined the scattering mechanism in the diffusion plate with TiO2 nanoparticles within a diffusive solar cell window by Mie scattering simulations. In this work, a multiwavelength ASAP ray tracing model for a diffusive solar cell window with acceptable accuracy was developed to investigate the influence of the diffusion plate design parameter, mainly concentration of a diffusion plate with determined particle size distribution, on power generation efficiency and color shift of transmitted sun light. A concept of “effective average radius” was proposed to account for the equivalent scattering effect of a size distribution of quasispherical particles. Simulation results demonstrated that both the transmitted light and its correlated color temperature decreased as the concentration increased for a large-size diffusive solar cell window. However, there existed a maximum power generation efficiency at around 160 ppm concentration. The optimal design for a large-size diffusion plate inside a diffusive solar cell window by taking indoor lighting into account was suggested based on the simulation results.
Hao Li
2016-12-01
Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.
Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber
Pavlović Saša R.
2016-01-01
Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.
Kaddour, A.; Benyoucef, B.
Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.
NUMERICAL SIMULATION AND OPTIMIZATION OF PERFORMANCES OF A SOLAR CELL BASED ON CdTe
A. M. Ferouani
2015-07-01
Full Text Available This article has as an aim the study and the simulation of the photovoltaic cells containing CdTe materials, contributing to the development of renewable energies, and able to feed from the houses, the shelters as well as photovoltaic stations… etc. CdTe is a semiconductor having a structure of bands with an indirect gap of a value of 1,5 eV at ambient temperature what means that photon wavelength of approximately 1200 nm will be able to generate an electron-hole pair. One speaks about photogeneration. We will lay the stress, initially, on the essential design features of a photovoltaic module (the open-circuit tension, the short-circuit current, the fill factor, and the output of the cell, our results was simulated with the SCAPS computer code in one dimension which uses electrical characteristics DC and AC of the thin layers heterojunctions. The results obtained after optimization are: VCO = 0.632V, Jsc = 39.1 mA/cm2, FF=82.98 % and the output energy of conversion is 18.26%.Optimization is made according to the temperature and the wavelength.
Rezaei, Davood; Farajzadeh Khosroshahi, Samaneh; Sadegh Falahat, Mohammad [Zanjan University (Iran, Islamic Republic of)], email: d_rezaei@znu.ac.ir, email: ronas_66@yahoo.com, email: Safalahat@yahoo.com
2011-07-01
In order to minimize the energy consumption of a building it is important to achieve optimum solar energy. The aim of this paper is to introduce the use of computer modeling in the early stages of design to optimize solar radiation received and energy disposal in an architectural design. Computer modeling was performed on 2 different projects located in Los Angeles, USA, using ECOTECT software. Changes were made to the designs following analysis of the modeling results and a subsequent analysis was carried out on the optimized designs. Results showed that the computer simulation allows the designer to set the analysis criteria and improve the energy performance of a building before it is constructed; moreover, it can be used for a wide range of optimization levels. This study pointed out that computer simulation should be performed in the design stage to optimize a building's energy performance.
Aniruddha Singh Kushwaha
2014-01-01
Full Text Available We have conducted numerical simulation of p-GaN/In0.12Ga0.88N/n-GaN, p-i-n double heterojunction solar cell. The doping density, individual layer thickness, and contact pattern of the device are investigated under solar irradiance of AM1.5 for optimized performance of solar cell. The optimized solar cell characteristic parameters for cell area of 1 × 1 mm2 are open circuit voltage of 2.26 V, short circuit current density of 3.31 mA/cm2, fill factor of 84.6%, and efficiency of 6.43% with interdigitated grid pattern.
Aniruddha Singh Kushwaha; Pramila Mahala; Chenna Dhanavantri
2014-01-01
We have conducted numerical simulation of p-GaN/In0.12Ga0.88N/n-GaN, p-i-n double heterojunction solar cell. The doping density, individual layer thickness, and contact pattern of the device are investigated under solar irradiance of AM1.5 for optimized performance of solar cell. The optimized solar cell characteristic parameters for cell area of 1 × 1 mm2 are open circuit voltage of 2.26 V, short circuit current density of 3.31 mA/cm2, fill factor of 84.6%, and efficiency of 6.43% with inte...
Zhang, Wei; Chen, Chen; Jia, Rui; Janssen, G. J. M.; Zhang, Dai-Sheng; Xing, Zhao; Bronsveld, P. C. P.; Weeber, A. W.; Jin, Zhi; Liu, Xin-Yu
2013-07-01
In interdigitated back contact (IBC) solar cells, the metal-electrode coverage on a p-type emitter is optimized by a PC2D simulation. The result shows that the variation of the metal coverage ratio (MCR) will affect both the surface passivation and the electrode-contact properties for the p-type emitter in IBC solar cells. We find that when Rc ranges from 0.08 to 0.16Ω·cm2, the MCR is optimized with a value of 25% and 33%, resulting in a highest energy-conversion efficiency. The dependences of both Voc and fill factor on MCR are simulated in order to explore the mechanism of the IBC solar cells.
Kohler, Susanna
2017-02-01
Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
SEMICONDUCTOR DEVICES: Optimization of grid design for solar cells
Wen, Liu; Yueqiang, Li; Jianjun, Chen; Yanling, Chen; Xiaodong, Wang; Fuhua, Yang
2010-01-01
By theoretical simulation of two grid patterns that are often used in concentrator solar cells, we give a detailed and comprehensive analysis of the influence of the metal grid dimension and various losses directly associated with it during optimization of grid design. Furthermore, we also perform the simulation under different concentrator factors, making the optimization of the front contact grid for solar cells complete.
Handbook of simulation optimization
Fu, Michael C
2014-01-01
The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science,...
Mallmann, Ana Paula
2011-01-15
Photovoltaic solar energy is the direct conversion of solar energy into electricity and it has low impact to the environment during electric energy production. The main device of this technology is the solar cell and silicon is the substrate most used. The solar cells are electrically connected and encapsulated in order to form the photovoltaic module. The aims of this thesis are to optimize, develop and to analyse n{sup +}np{sup +} solar cells processed in n type Si-PV-FZ and with aluminum rear emitter formed in belt furnace. The optimization of solar cells by simulation is an important step before the device development. The software PC-1D and another program developed using Visual Basic language were used. Considering a metal grid formed by evaporation technique in vacuum ambient an efficiency of 16.8 % may be achieved. With screen printed grid, 15.8 % efficient solar cells were obtained. From the simulation results it was found that the screen printing metallization may become more viable than evaporation technique because there is low difference in the efficiency and the screen printing is a simpler technique. The experimental optimization of silicon wafers texture process resulted in reflectance of 12 %. This value is typical for monocrystalline silicon with textured surface. Experimental optimization of phosphorus front surface field shows a sheet resistance of (36 {+-} 4) {omega}/ for this region. This region was formed in a thermal step in a conventional furnace with POCl{sub 3}. It was found that after the phosphorus diffusion occurred gettering to specific temperature and time. It was verified that the minority carrier lifetime in the final of processing is similar to the initial value. The influence of steps sequence of front silver paste firing and rear diffusion/firing aluminium paste, of surface passivation and the influence of dry air flow during the aluminium paste diffusion/firing, of aluminium paste diffusion/firing temperature and of belt speed
Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng
2015-07-15
In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.
Simulate a ‘Sun’ for Solar Research : A Literature Review of Solar Simulator Technology
Wang, Wujun; Laumert, Björn
2014-01-01
The solar simulator is the key facility for indoor research of solar PV cells, solar heat collectors, space craft and CSP systems. This paper classifies the four types of solar simulators based on their characteristics and their design objects: space solar simulator, standard PV cell testing solar simulator, collector testing solar simulator and high-flux solar simulator. The review of solar simulator developments is mainly based on the developments of light sources and optical concentrators....
Terascale Optimal PDE Simulations
David Keyes
2009-07-28
The Terascale Optimal PDE Solvers (TOPS) Integrated Software Infrastructure Center (ISIC) was created to develop and implement algorithms and support scientific investigations performed by DOE-sponsored researchers. These simulations often involve the solution of partial differential equations (PDEs) on terascale computers. The TOPS Center researched, developed and deployed an integrated toolkit of open-source, optimal complexity solvers for the nonlinear partial differential equations that arise in many DOE application areas, including fusion, accelerator design, global climate change and reactive chemistry. The algorithms created as part of this project were also designed to reduce current computational bottlenecks by orders of magnitude on terascale computers, enabling scientific simulation on a scale heretofore impossible.
Experimental testing method for solar light simulator with an attached evacuated solar collector
Mahmoud Shatat, Saffa Riffat, Francis Agyenim
2013-01-01
Full Text Available This paper describes a novel solar simulator of high solar irradiation. It consists of an array of 30 halogen lamps of 400W each, covering a gross area of 2.32 m2. A standardized empirical method for solar simulator testing facility based on an experimental performance is presented. A uniform geometrical configuration design for a solar simulator was evaluated by its illuminance distribution to optimize the maximum source-to-target transfer efficiency of irradiative power. Experimental tests were carried out for various distances from the simulator surface. It was determined that the optimal distance between the light surface simulator and the solar collector is about 23 cm at different solar irradiance. The unevenness of solar radiation values were investigated at different points under the simulator facility and the maximum unevenness error percentage was found to be about 9.1%, which is well within the allowable limits of 15% set by British Standards for testing a solar simulator . The performance of an evacuated solar collector with an aperture area of 1.73 m2 to simulate solar insolation during March in the Middle East region was investigated and it was proved that the efficiency of the solar collector was closely correlated with the efficiency data provided by the manufacturer. The design of such a solar light simulator associated with the development of a standardized test procedure can be utilized as a reliable and efficient experimental platform to investigate various solar collectors and materials.
Chung, H; Jung, K-Y; Tee, X T; Bermel, P
2014-05-05
Amorphous silicon/crystalline silicon (a-Si/c-Si) micromorph tandem cells, with best confirmed efficiency of 12.3%, have yet to fully approach their theoretical performance limits. In this work, we consider a strategy for improving the light trapping and charge collection of a-Si/c-Si micromorph tandem cells using random texturing with adjustable short-range correlations and long-range periodicity. In order to consider the full-spectrum absorption of a-Si and c-Si, a novel dispersion model known as a quadratic complex rational function (QCRF) is applied to photovoltaic materials (e.g., a-Si, c-Si and silver). It has the advantage of accurately modeling experimental semiconductor dielectric values over the entire relevant solar bandwidth from 300-1000 nm in a single simulation. This wide-band dispersion model is then used to model a silicon tandem cell stack (ITO/a-Si:H/c-Si:H/silver), as two parameters are varied: maximum texturing height h and correlation parameter f. Even without any other light trapping methods, our front texturing method demonstrates 12.37% stabilized cell efficiency and 12.79 mA/cm² in a 2 μm-thick active layer.
A Solar Sailcraft Simulation Application
Celeda, Tomáš
2013-01-01
An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…
A Solar Sailcraft Simulation Application
Celeda, Tomáš
2013-01-01
An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…
Design optimization of solar cooker
Mirdha, U.S.; Dhariwal, S.R. [Department of Physics, Jai Narain Vyas University, Jodhpur 342 005 (India)
2008-03-15
Various designs of solar cookers have been theoretically investigated with a view to optimize their performance. Starting from a conventional box type cooker, various combinations of booster mirrors have been studied to arrive at a final design, aimed at providing a cooker, which can be fixed on a south facing window (for countries of northern hemisphere, mainly situated near the tropic of Cancer). This cooker, with a rear window opening, may provide higher cooking temperature for a fairly large duration of the day. Two or three changes in positions of the side booster mirrors, without moving the cooker as a whole has been proposed. The new design has been experimentally implemented and compared with a conventional box type solar cooker. Besides the convenience of a rear window opening, the cooker provides temperatures sufficiently high to enable cooking two meals a day. (author)
Optimization of dish solar collectors
Jaffe, L. D.
1983-01-01
Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high. Previously announced in STAR as N83-19224
PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR
M. Norhafana
2015-11-01
Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation
曹阳; 黄越辉; 袁越; 王敏; 李鹏; 郭思琪
2015-01-01
中国风能和太阳能产业发展迅猛，由于其规划和建设周期短，开发过程中与地区电源、电网规划脱节，导致“弃风”、“弃光”现象严重。该文综合考虑区域资源特性，提出基于时序仿真的风光容量配比分层优化算法。内层建立省级电网年度风电、光伏接纳能力优化模型，采用分支定界法优化系统全年运行方式，最大化提升电网的节能减排效益，使规划结果更加符合电力系统实际运行。外层以内层模型的电网节能减排效益作为适应度函数，建立风光配比优化模型。采用细菌觅食算法结合粒子群算法求解风光最佳配比，提高计算效率和求解精度。以某省级电网为例进行研究，计算结果验证了提出的模型合理、算法可行。该方法可为地区风电和光伏建设、实际电力系统调度以及政府相关政策的制定提供指导。%With increasing wind and solar penetration into power systems, curtailment has become a particular concern in regional power networks in China. This is largely because the electricity generated by renewable sources cannot be fully consumed due to limited peak load regulation ability of local thermal units and transmission capacity is insufficient to deliver the power to load central afar. A stratified optimization algorithm which is took into account of regional wind solar energy resources was proposed to optimize the proportion of wind and solar capacity on the system based on time sequence simulations. An optimization model for assessing annual wind and solar accommodating capacity in a provincial power system was developed in inner tier. The branch and bound method was applied to optimize annual operation of the power system and thus maximize the environmental benefits and ensure the planning results conforming to actual system operations. An optimization model for evaluating the proportion of wind and solar was developed using the
Passive-solar simulation analysis
1982-12-05
A passive solar heating component (TANKWALL) was developed. TANKWALL is a fiberglass water wall, selective surfaced, solar absorption, thermal storage tank. Testing of the thermal performance of TANKWALL was performed which included a series of room and instrumentation calibration tests and several comparison experiments where TANKWALL was operated side-by-side with other passive solar configurations. Relevant effective heat transfer values (solar absorptance, capacitance, conductance) were derived using a thermal network computer model and data from the above experiments. Then using these heat transfer values, three hour-by-hour computer simulations were run for a proto-typical passive solar house using various solar systems and standard hourly weather data. The subject house had a Building Load Coefficient of 8899.2 Btu/H, a vertical south facing 200 sq. ft. collector, and a Load/Collector Ratio of 44.5. It was found that the TANKWALL with selective surface performs significantly better in the Dayton, Ohio area than either the painted 12 inch Trombe wall or the painted TANKWALL with R-4.5 night insulation.
Trial Production and Evaluation of Solar Cells Optimized for Solar Spectrum in Mars Atmosphere
Toyota, Hiroyuki; Shimada, Takanobu; Takahashi, Yu; Oyama, Akira; Washio, Hidetoshi
2014-08-01
We describe the production and evaluation of a prototype of an inverted metamorphic triple-junction (IMM3J) solar cell optimized for the solar spectrum on the surface of Mars. High-efficiency, flexible, lightweight solar panels containing IMM3J solar cells are promising power sources for Mars surface explorers such as rovers, landers, and airplanes. The intensity of sunlight at the Martian surface substantially decreases at wavelengths shorter than 700 nm because of absorption and scattering by the atmosphere. This decreases the output current of the InGaP top cells in state-of-the-art IMM3J solar cells, and thus decreases the overall output current. Therefore, solar cells for Mars surface explorers need to be optimized for the solar spectrum at the Martian surface. We modified IMM3J solar cells in two ways to increase the output power. We increased the thickness of the InGaP top cell to increase the light absorption, which increased the output current of the entire cell. We also increased the band gap energy of the InGaAs bottom cell by trimming the surplus current, in order to increase the output voltage. In the simulated Martian solar spectrum, the performance of the prototype solar cells was higher than that of IMM3J solar cells designed for the AM0 spectrum.
Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum
Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert
2007-01-01
This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.
Pozzebon, Felipe Barin
2009-02-15
The potential of solar water heating systems through solar energy in Brazil is excellent due to the climatic features of the country. The performance of these systems is highly influenced also by the materials used to build it and by the dimension of its equipment and components. In face of global warming, solar energy gains more attention, since it is one of the renewable energy that will be largely used to replace some of the existing polluting types of energy. This paper presents the improvement of a software that conducts simulations of water heating systems using solar energy in thermosyphon regime or forced circulation. TermoSim, as it is called, was initiated at the Solar Labs, and is in its version 3.0. The current version is capable of simulating 6 different arrangements' possibilities combined with auxiliary energy: systems with solar collectors with auxiliary energy with gas, electric energy, internal electric energy, electric energy in series with the consumption line, and no auxiliary energy. The software is a tool to aid studies and analysis of solar heating systems, it has a friendly interface that is easy to comprehend and results are simple to use. Besides that, this version also allows simulations that consider heat losses at night, situation in which a reverse circulation can occur and mean efficiency loss, depending on the simulated system type. There were many simulations with the mathematical models used and comparisons were made with the climatic data of the city of Caxias do Sul, in Rio Grande do Sul state, in Brazil, determining the system with the most efficient configuration for the simulated water consume profile. The paper is finalized with simple economic analyses with the intention of foreseeing the time for payback on the investment, taking into account the current prices for electrical energy in the simulated area and the possible monthly economy provided with the use of a solar energy heating system. (author)
Thermoeconomic Analysis and Multiobjective Optimization of a Solar Desalination Plant
Hamid Mokhtari
2014-01-01
Full Text Available A solar desalination plant consisting of solar parabolic collectors, steam generators, and MED unit was simulated technoeconomically and optimized using multiobjective genetic algorithm. A simulation code was developed using MATLAB language programming. Indirect steam generation using different thermal oils including THERMINOL VP1, THERMINOL66, and THERMINOL59 was also investigated. Objective function consisted of 17 essential parameters such as diameter of heat collector element, collector width, steam generator pinch, approach temperatures, and MED number of effects. Simulation results showed that THERMINOL VP1 had superior properties and produced more desalinated water than other heat transfer fluids. Performance of the plant was analyzed on four characteristic days of the year to show that multiobjective optimization technique can be used to obtain an optimized solution, in which the product flow rate increased, while total investment and O&M costs decreased compared to the base case.
Optimal control of sun tracking solar concentrators
Hughes, R. O.
1979-01-01
Application of the modern control theory to derive an optimal sun tracking control for a point focusing solar concentrator is presented. A standard tracking problem converted to regulator problem using a sun rate input achieves an almost zero steady state tracking error with the optimal control formulation. However, these control techniques are costly because optimal type algorithms require large computing systems, thus they will be used mainly as comparison standards for other types of control algorithms and help in their development.
Optimizing Methods in Simulation
1981-08-01
exploited by Kiefer and Wolfowitz -; (1959). Wald (1943) used the criterion of D-optimality - in some other context and was so named by Kiefer and...of discrepency between the observed and expected value A is obtained in terms of mean squared errors ( MSE ). i Consider the model, E(Ylx) = a + ex and...V(YIX) = 0 2 Let L < x < U, be the interval of possible x values. The MSE (x) is the mean squared error of x as obtained from y. Let w(x) be a weight
Optimization methods and silicon solar cell numerical models
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
Simulating solar power plant variability :
Lave, Matthew Samuel; Ellis, Abraham; Stein, Joshua.
2013-06-01
It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.
Design of optimal cyclers using solar sails
2002-01-01
Approved for public release; distribution in unlimited. Ongoing interest in establishing a base on Mars has spurred a need for regular and repeated visits to the red planet using a cycling shuttle to transport supplies, equipment and to retrieve surface samples. This thesis presents an approach to designing an optimal heliocentric cycling orbit, or cycler, using solar sa ils. Results show that solar sails can be used to significantly reduce s VÃ at Mars and Earth. For example, using a rea...
Optimization methods and silicon solar cell numerical models
Girardini, K.
1986-01-01
The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.
Strategies in tower solar power plant optimization
RAMOS, A.; RAMOS, F.
2012-01-01
A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of...
Deng, Jie; Tian, Zhiyong; Fan, Jianhua
2016-01-01
with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established......A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...
Optimization of a solar cooling system with interior energy storage
Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)
2010-07-15
This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)
Numerical simulations of the solar atmosphere
Leenaarts, J.
2007-01-01
In this thesis several aspects of the solar atmosphere are investigated using numerical simulations. Simulations and observations of reversed solar granulation are compared. It is concluded that reversed granulation is a hydrodynamical process and is a consequence of convection reversal. Images are
Strategies in tower solar power plant optimization
Ramos, A.; Ramos, F.
2012-09-01
A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.
Strategies in tower solar power plant optimization
Ramos, A
2012-01-01
A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.
基于太阳辐射模拟的外遮阳优化设计%Design optimization of external sunshade based on solar radiation simulation
杨晓龙
2014-01-01
To solve the problem on external sunshade design under the situation of complex configuration and orientation,solar radiation simula-tion is used to analyze the shelter effect of different types of external sunshade. The facades whose shelter effect is poor with fixed external sun-shade turn to use adjustable external sunshade,making the balance between energy saving rate and economy.%为解决在这种复杂建筑体型和朝向条件下的外遮阳优化，通过夏季太阳辐射量模拟分析了不同遮阳形式的遮阳效果，指出选择固定外遮阳效果不佳的立面采用可调节外遮阳，达到了节能率和经济性兼顾的效果。
Optimal concentration and temperatures of solar thermal power plants
2012-01-01
Using simple, finite-time, thermodynamic models of solar thermal power plants, the existence of an optimal solar receiver temperature has previously been demonstrated in literature. Scant attention has been paid, however, to the presence of an optimal level of solar concentration at which the conversion of incident sunlight to electricity (solar-to-electric efficiency) is maximized. This paper addresses that gap. The paper evaluates the impact, on the design of Rankine-cycle solar-trough and ...
Optimization and performance of Space Station Freedom solar cells
Khemthong, S.; Hansen, N.; Bower, M.
1991-01-01
High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported.
Comprehensive Solar Sail Simulation Project
National Aeronautics and Space Administration — Solar sails as a propulsive device have several potential applications: providing access to previously inaccessible orbits, longer mission times, and increased...
Zalewski, L.
1996-11-27
The objective of this work is the analysis of a passive solar component: the composite solar wall, a building component, which includes an insulating panel located behind the massive wall. This panel has two vents located at the top and at the bottom, which allow the air to circulate from the room to the layer in contact with the back of the massive wall, where it is heated, and then back to the room. The solar energy is transferred to the building by conduction through the massive wall, and then by convection using a thermosyphon phenomenon. The monitoring of 2 solar houses in Verdun-Thierville (Meuse, France) has clearly shown, control issues of the air layer. The wall must be operated as autonomously as possible, to not be a constraint for the occupants and to get an optimization of the energy gains. To solve these problems, a composite solar wall prototype was erected in a test cell at Cadarache and tested in real operating conditions. This allows to use a more complete instrumentation, to have access more easily to the sensors and to study various configurations. The first experiments revealed an inverse thermosyphon phenomenon. To avoid this effect, two systems were designed, tested at Cadarache and then implemented in the walls at Verdun. (author) 77 refs.
Simulation Prototyping of an Experimental Solar House
Anna Osborne
2010-06-01
Full Text Available This paper presents a comparative analysis between an energy simulation model and an actual solar home. The case study used was the Team Missouri’s 2009 Solar Decathlon entry. The home was evaluated using the predicted data developed with the use of Energy-10 Version 1.8. The software simulates the energy use performance of building strategies ranging from building envelope and system efficiency options. The performance data used was collected during the 2009 Solar Decathlon competition. Results comparing energy efficient strategies, consumption and generation are explored with future implications discussed.
Optimizing Event-Driven Simulations
De Michele, Cristiano
2010-01-01
Event-driven molecular dynamics is a valuable tool in condensed and soft matter physics when particles can be modeled as hard objects or more generally if their interaction potential can be modeled in a stepwise fashion. Hard spheres model has been indeed widely used both for computational and theoretical description of physical systems. Recently further developments of computational techniques allow simulations of hard rigid objects of generic shape. In present paper we will present some optimizations for event-driven simulations that offered significant speedup over previous methods. In particular we will describe a generalization of well known linked list method and an improvement on nearest neighbor lists method recently proposed by us.
MODELLING, SIMULATING AND OPTIMIZING BOILERS
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...
Theory and Simulations of Solar System Plasmas
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
An LED Solar Simulator for Student Labs
González, Manuel I.
2017-01-01
Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen…
Simulation-based optimization parametric optimization techniques and reinforcement learning
Gosavi, Abhijit
2003-01-01
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...
Optimal Design of a Secondary Optical Element for a Noncoplanar Two-Reflector Solar Concentrator
Yi-Cheng Chen
2015-01-01
Full Text Available This paper presents the results of a parametric design process used to achieve an optimal secondary optical element (SOE in a noncoplanar solar concentrator composed of two reflectors. The noncoplanar solar concentrator comprises a primary parabolic mirror (M1 and a secondary hyperbolic mirror (M2. The optical performance (i.e., acceptance angle, optical efficiency, and irradiance distribution of concentrators with various SOEs was compared using ray-tracing simulation. The parametric design process for the SOE was divided into two phases, and an optimal SOE was obtained. The sensitivity to assembly errors of the solar concentrator when using the optimal SOE was studied and the findings are discussed.
Control Optimization of Solar Thermally Driven Chillers
Antoine Dalibard
2016-10-01
Full Text Available Many installed solar thermally driven cooling systems suffer from high auxiliary electric energy consumption which makes them not more efficient than conventional compression cooling systems. A main reason for this is the use of non-efficient controls with constant set points that do not allow a chiller power modulation at partial-load and therefore lead to unnecessary high power consumption of the parasitics. The aims of this paper are to present a method to control efficiently solar thermally driven chillers, to demonstrate experimentally its applicability and to quantify the benefits. It has been shown that the cooling capacity of a diffusion absorption chiller can be modulated very effectively by adjusting both the temperature and the flow rate of the cooling water. With the developed approach and the use of optimization algorithms, both the temperature and the flow rate can be controlled simultaneously in a way that the cooling load is matched and the electricity consumption is minimized. Depending on the weather and operating conditions, electricity savings between 20% and 60% can be achieved compared to other tested control approaches. The highest savings are obtained when the chiller is operated at partial load. The presented method is not restricted to solar cooling systems and can also be applied to other conventional heating ventilation and air conditioning (HVAC systems.
Future Directions in Simulating Solar Geoengineering
Kravitz, Benjamin S.; Robock, Alan; Boucher, Olivier
2014-08-05
Solar geoengineering is a proposed set of technologies to temporarily alleviate some of the consequences of anthropogenic greenhouse gas emissions. The Geoengineering Model Intercomparison Project (GeoMIP) created a framework of geoengineering simulations in climate models that have been performed by modeling centers throughout the world (B. Kravitz et al., The Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Science Letters, 12(2), 162-167, doi:10.1002/asl.316, 2011). These experiments use state-of-the-art climate models to simulate solar geoengineering via uniform solar reduction, creation of stratospheric sulfate aerosol layers, or injecting sea spray into the marine boundary layer. GeoMIP has been quite successful in its mission of revealing robust features and key uncertainties of the modeled effects of solar geoengineering.
Differential Rotation in Solar Convective Dynamo Simulations
Fan, Yuhong
2015-01-01
We carry out a magneto-hydrodynamic (MHD) simulation of convective dynamo in the rotating solar convective envelope driven by the solar radiative diffusive heat flux. The simulation is similar to that reported in Fan & Fang (2014) but with further reduced viscosity and magnetic diffusion. The resulting convective dynamo produces a large scale mean field that exhibits similar irregular cyclic behavior and polarity reversals, and self-consistently maintains a solar-like differential rotation. The main driver for the solar-like differential rotation (with faster rotating equator) is a net outward transport of angular momentum away from the rotation axis by the Reynolds stress, and we found that this transport is enhanced with reduced viscosity and magnetic diffusion.
Differential rotation in solar convective dynamo simulations
Fan, Yuhong; Fang, Fang
2016-10-01
We carry out a magneto-hydrodynamic (MHD) simulation of convective dynamo in the rotating solar convective envelope driven by the solar radiative diffusive heat flux. The simulation is similar to that reported in Fan and Fang (2014) but with further reduced viscosity and magnetic diffusion. The resulting convective dynamo produces a large scale mean field that exhibits similar irregular cyclic behavior and polarity reversals, and self-consistently maintains a solar-like differential rotation. The main driver for the solar-like differential rotation (with faster rotating equator) is a net outward transport of angular momentum away from the rotation axis by the Reynolds stress, and we found that this transport is enhanced with reduced viscosity and magnetic diffusion.
Global Solar Dynamo Models: Simulations and Predictions
Mausumi Dikpati; Peter A. Gilman
2008-03-01
Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for prediction of solar cycle timing and amplitude.We first define flux-transport dynamos and demonstrate how they work. The essential added ingredient in this class of models is meridional circulation, which governs the dynamo period and also plays a crucial role in determining the Sun’s memory about its past magnetic fields.We show that flux-transport dynamo models can explain many key features of solar cycles. Then we show that a predictive tool can be built from this class of dynamo that can be used to predict mean solar cycle features by assimilating magnetic field data from previous cycles.
Simulations of optimized anguilliform swimming.
Kern, Stefan; Koumoutsakos, Petros
2006-12-01
The hydrodynamics of anguilliform swimming motions was investigated using three-dimensional simulations of the fluid flow past a self-propelled body. The motion of the body is not specified a priori, but is instead obtained through an evolutionary algorithm used to optimize the swimming efficiency and the burst swimming speed. The results of the present simulations support the hypothesis that anguilliform swimmers modify their kinematics according to different objectives and provide a quantitative analysis of the swimming motion and the forces experienced by the body. The kinematics of burst swimming is characterized by the large amplitude of the tail undulations while the anterior part of the body remains straight. In contrast, during efficient swimming behavior significant lateral undulation occurs along the entire length of the body. In turn, during burst swimming, the majority of the thrust is generated at the tail, whereas in the efficient swimming mode, in addition to the tail, the middle of the body contributes significantly to the thrust. The burst swimming velocity is 42% higher and the propulsive efficiency is 15% lower than the respective values during efficient swimming. The wake, for both swimming modes, consists largely of a double row of vortex rings with an axis aligned with the swimming direction. The vortex rings are responsible for producing lateral jets of fluid, which has been documented in prior experimental studies. We note that the primary wake vortices are qualitatively similar in both swimming modes except that the wake vortex rings are stronger and relatively more elongated in the fast swimming mode. The present results provide quantitative information of three-dimensional fluid-body interactions that may complement related experimental studies. In addition they enable a detailed quantitative analysis, which may be difficult to obtain experimentally, of the different swimming modes linking the kinematics of the motion with the forces
Systematic optimization of quantum junction colloidal quantum dot solar cells
Liu, Huan
2012-01-01
The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.
Global optimization framework for solar building design
Silva, N.; Alves, N.; Pascoal-Faria, P.
2017-07-01
The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.
姜冰一; 郑建邦; 孙肖芬; 王春峰
2011-01-01
针对CuPc-PTCDA有机小分子太阳电池,根据光学干涉效应和扩散理论,建立了非相干光吸收模型和激子传输模型,利用Matlab软件模拟了限制有机光伏效率的光吸收和激子扩散过程,模拟了不同激子扩散长度下CuPc层内激子浓度分布,由此得到了光电流密度和外量子效率与CuPc层膜厚的关系;模拟得到了外量子效率与PTCDA、CuPc各层膜厚的关系,进而优化有机层的结构,以此达到了提高器件光伏效率的目的。%A model of the incoherent optical absorption and exciton transport was established based on the optical interference effect and diffusion theory for CuPe/PTCDA organic small molecules solar cells. The optical absorption and exeiton diffusion process which limit the photovoltaic efficiency were simulated by Matlab software and the exciton distribution in CuPc layer with different exciton diffusion length were simulated. The relations of the optical current and external quantum efficiency with the thickness of CuPc layer were obtained. And the relations of the external quantum efficiency with the thickness of PTCDA layer were simulated. By optimizing the structure of organic active layer, the photovoltaic efficiency of solar cells is improved.
Optimal reliability design method for remote solar systems
Suwapaet, Nuchida
A unique optimal reliability design algorithm is developed for remote communication systems. The algorithm deals with either minimizing an unavailability of the system within a fixed cost or minimizing the cost of the system with an unavailability constraint. The unavailability of the system is a function of three possible failure occurrences: individual component breakdown, solar energy deficiency (loss of load probability), and satellite/radio transmission loss. The three mathematical models of component failure, solar power failure, transmission failure are combined and formulated as a nonlinear programming optimization problem with binary decision variables, such as number and type (or size) of photovoltaic modules, batteries, radios, antennas, and controllers. Three possible failures are identified and integrated in computer algorithm to generate the parameters for the optimization algorithm. The optimization algorithm is implemented with a branch-and-bound technique solution in MS Excel Solver. The algorithm is applied to a case study design for an actual system that will be set up in remote mountainous areas of Peru. The automated algorithm is verified with independent calculations. The optimal results from minimizing the unavailability of the system with the cost constraint case and minimizing the total cost of the system with the unavailability constraint case are consistent with each other. The tradeoff feature in the algorithm allows designers to observe results of 'what-if' scenarios of relaxing constraint bounds, thus obtaining the most benefit from the optimization process. An example of this approach applied to an existing communication system in the Andes shows dramatic improvement in reliability for little increase in cost. The algorithm is a real design tool, unlike other existing simulation design tools. The algorithm should be useful for other stochastic systems where component reliability, random supply and demand, and communication are
Optimization of the emitter region and the metal grid of a concentrator silicon solar cell
Xing Yupeng; Han Peide; Fan Yujie; Wang Shuai; Liang Peng; Ye Zhou; Hu Shaoxu
2013-01-01
The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are illustrated.The optimizations are done under 1 sun,100 suns and 200 suns using the 2D numerical simulation tool TCAD software.The optimum finger spacing and its range decrease with the increase in sheet resistance and concentration ratio.The processes of the diffusion and oxidization in the manufacture flow of the silicon solar cells were simulated to get a series of typical emitter dopant profiles to optimize.The efficiency of the solar cell under 100 suns and 200 suns increased with the decrease in diffusion temperature and the increase in oxidation temperature and time when the diffusion temperature is lower than or equal to 865 ℃.The effect of sheet resistance of the emitter on series resistance and the conversion efficiency of the solar cell under concentration was discussed.
Topology optimization for improving the performance of solar cells
Gupta, D.K.; Langelaar, M.; Keulen, F. van; Barink, M.
2014-01-01
This work introduces the application of Topology Optimization (TO) to design optimal front metallization patterns for solar cells and increase their power output. A challenging aspect of the solar cell electrode design problem is the strong nonlinear relation between the active layer current and the
Optimization of a solar-assisted drying system for drying bananas
Smitabhindu, R. [Department of Industrial Engineering, Kasetsart University, Bangkok 10900 (Thailand); Janjai, S. [Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Chankong, V. [Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH (United States)
2008-07-15
This paper presents a mathematical model for optimal design of a solar-assisted drying system for drying bananas. The optimization model consists of a simulation model of a solar-assisted drying system combined with an economic model. The simulation model is composed of two systems of differential equations: one for the collector and other for the drying cabinet. These systems of the differential equation were solved using the finite difference method. Values of the model parameters were determined experimentally. A computer program in FORTRAN was developed to simulate the performance of the drying system. The model was validated by comparing the simulation results with the experimental results and they were in good agreement. This simulation model was used for the optimization of the solar-assisted drying system. An economic model was formulated to calculate the annual drying cost. The optimization problem was defined as the optimization of the geometry and operational parameters of the drying system so as to minimize the drying cost per unit of dried product. Currently used collector area and the air recycle factor were considered as the parameters for basic mode of operation of the drying system. The adaptive pattern search technique was adopted to find the optimum values of the solar collector area and the recycle factor. The optimum values of the collector area and the recycle factor were found to be 26 m{sup 2} and 90%, respectively. The computer program developed in this study can be used to optimize similar drying systems. (author)
Paper Moon: Simulating a Total Solar Eclipse
Madden, Sean P.; Downing, James P.; Comstock, Jocelyne M.
2006-01-01
This article describes a classroom activity in which a solar eclipse is simulated and a mathematical model is developed to explain the data. Students use manipulative devices and graphing calculators to carry out the experiment and then compare their results to those collected in Koolymilka, Australia, during the 2002 eclipse.
Paper Moon: Simulating a Total Solar Eclipse
Madden, Sean P.; Downing, James P.; Comstock, Jocelyne M.
2006-01-01
This article describes a classroom activity in which a solar eclipse is simulated and a mathematical model is developed to explain the data. Students use manipulative devices and graphing calculators to carry out the experiment and then compare their results to those collected in Koolymilka, Australia, during the 2002 eclipse.
Trajectory optimization and applications using high performance solar sails
无
2011-01-01
The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits.As there is no fuel consumption,mission trajectories for solar sail spacecraft are typically optimized with respect to flight time.Several investigations focused on interstellar probe missions have been made,including optimal methods and new objective functions. Two modes of interstellar mission trajectories,namely "direct flyby" and "angular momentum reversal trajectory",are compare...
Optimization of absorption air-conditioning for solar energy applications
Perry, E. H.
1976-01-01
Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.
An LED solar simulator for student labs
González, Manuel I.
2017-05-01
Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen simulators has been performed. It is found that LED light offers lower levels of irradiance, but much better performance in terms of module output for a given irradiance.
Solar simulator for concentrator photovoltaic systems.
Domínguez, César; Antón, Ignacio; Sala, Gabriel
2008-09-15
A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.
Optimizing reversible simulation of injective functions
Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert
2012-01-01
Bennett showed that a clean reversible simulation of injective programs is possible without returning the input of a program as additional output. His method involves two computation and two uncomputation phases. This paper proposes an optimization of Bennett’s simulation that requires only half ......-coding program is further optimized by conserving the model over the text-generation phase. This paper may thus provide a newviewon developing efficient reversible simulations for a certain class of injective functions....
Optimization of a Solar Photovoltaic Applied to Greenhouses
Nakoul, Z.; Bibi-Triki, N.; Kherrous, A.; Bessenouci, M. Z.; Khelladi, S.
The global energy consumption and in our country is increasing. The bulk of world energy comes from fossil fuels, whose reserves are doomed to exhaustion and are the leading cause of pollution and global warming through the greenhouse effect. This is not the case of renewable energy that are inexhaustible and from natural phenomena. For years, unanimously, solar energy is in the first rank of renewable energies .The study of energetic aspect of a solar power plant is the best way to find the optimum of its performances. The study on land with real dimensions requires a long time and therefore is very costly, and more results are not always generalizable. To avoid these drawbacks we opted for a planned study on computer only, using the software 'Matlab' by modeling different components for a better sizing and simulating all energies to optimize profitability taking into account the cost. The result of our work applied to sites of Tlemcen and Bouzareah led us to conclude that the energy required is a determining factor in the choice of components of a PV solar power plant.
Simulated annealing algorithm for optimal capital growth
Luo, Yong; Zhu, Bo; Tang, Yong
2014-08-01
We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.
Kaplanis, S.; Kaplani, E.
2012-01-01
This paper outlines and formulates a compact and effective simulation model, which predicts the performance of single and double glaze flat-plate collector. The model uses an elaborated iterative simulation algorithm and provides the collector top losses, the glass covers temperatures, the collector absorber temperature, the collector fluid outlet temperature, the system efficiency, and the thermal gain for any operational and environmental conditions. It is a numerical approach based on simu...
A simulated annealing technique for multi-objective simulation optimization
Mahmoud H. Alrefaei; Diabat, Ali H.
2009-01-01
In this paper, we present a simulated annealing algorithm for solving multi-objective simulation optimization problems. The algorithm is based on the idea of simulated annealing with constant temperature, and uses a rule for accepting a candidate solution that depends on the individual estimated objective function values. The algorithm is shown to converge almost surely to an optimal solution. It is applied to a multi-objective inventory problem; the numerical results show that the algorithm ...
Numerical simulation of InGaN Schottky solar cell
Hamady, Sidi Ould Saad; Fressengeas, Nicolas
2016-01-01
The Indium Gallium Nitride (InGaN) III-Nitride ternary alloy has the potentiality to allow achieving high efficiency solar cells through the tuning of its band gap by changing the Indium composition. It also counts among its advantages a relatively low effective mass, high carriersâ mobility, a high absorption coefficient along with good radiation tolerance.However, the main drawback of InGaN is linked to its p-type doping, which is difficult to grow in good quality and on which ohmic contacts are difficult to realize. The Schottky solar cell is a good alternative to avoid the p-type doping of InGaN. In this report, a comprehensive numerical simulation, using mathematically rigorous optimization approach based on state-of-the-art optimization algorithms, is used to find the optimum geometrical and physical parameters that yield the best efficiency of a Schottky solar cell within the achievable device fabrication range. A 18.2% efficiency is predicted for this new InGaN solar cell design.
A. Zerga; B. Benyoucef; J.-P. Charles
1998-01-01
Single and double exponential models are confronted to determine the most adapted model for optimization of solar cells efficiency. It is shown that the single exponential model (SEM) presents some insufficiencies for efficiency optimization. The interest of the double exponential model to optimize the efficiency and to achieve an adequate simulation of the operation of solar cells is demonstrated by means of I-V characteristics plotting.
Bava, Federico; Furbo, Simon; Perers, Bengt
2015-01-01
The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...
Analysis of Surface Texturization of Solar Cells by Molecular Dynamics Simulations
Hsiao-Yen Chung
2008-01-01
Full Text Available The purpose of this paper is to develop a simple new model, based on the classic molecular dynamics simulation (MD, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. This methodology can easily propose the absorptance differences between texturing and nontexturing solar cells. To verify model feasibility, this study simulates square, pyramidal, and semicircular texturization surfaces. Simulations show that surface texturization effectively increases the absorptance of incident light for solar cells, and this paper presents optimal texturization shapes. The MD model can also be potentially used to predict the efficiency promotion in any optical reflection-absorption cases.
兵团小城镇被动式太阳房优化设计%OPTIMAL DESIGN AND SIMULATION OF PASSIVE SOLAR HOUSES IN SMALL TOWN OF CORPS
黄现宁; 姜曙光; 杨彬
2011-01-01
介绍了兵团小城镇居住建筑围护结构的构造形式、热工特性和能源利用等情况,在此基础上提出了适合兵团小城镇居住建筑的发展思路:以被动式太阳房为主体,进一步改善建筑围护结构热工特性和室内热环境.并应用Ecotect Analysis 2010软件对优化设计方案进行了模拟分析,结果表明设计工况下平均室温16.3℃以上,温度波动在4℃以内.%In this paper, the structure of envelope, thermal properties and energy of the residential buildings in small town of Corps was introduced, on this basis an idea of development for residential buildings in small town of Corps was proposed: with passive solar house as the main body, further impro-ving the building envelope thermal characteristics and indoor thermal environment. Then the software of Ecotect Analysis 2010 was used for the simulation of optimal design, and the results show that the aver-age temperature above 16. 3 ℃, the temperature fluctuations at 4 ℃ or less.
Coupled multiscale simulation and optimization in nanoelectronics
2015-01-01
Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies, and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expe...
optimal assembly line balancing using simulation techniques
user
Department of Mechanical Engineering. Addis Ababa University ..... tested as per the simulation design. Certain key ..... Industry using a Genetic Algorithm”,. International Journal of ... Optimization Models for Assembly Line. Balancing in ...
Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses
Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio
2015-09-02
The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.
Topology optimization of front metallization patterns for solar cells
Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van
2015-01-01
This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front surfa
Numerical Procedure for Optimizing Dye-Sensitized Solar Cells
Mihai Razvan Mitroi
2014-01-01
Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.
Simulation of an electrowetting solar concentration cell
Khan, Iftekhar; Rosengarten, Gary
2015-09-01
Electrowetting control of liquid lenses has emerged as a novel approach for solar tracking and concentration. Recent studies have demonstrated the concept of steering sunlight using thin electrowetting cells without the use of any bulky mechanical equipment. Effective application of this technique may facilitate designing thin and flat solar concentrators. Understanding the behavior of liquid-liquid and liquid-solid interface of the electrowetting cell through trial and error experimental processes is not efficient and is time consuming. In this paper, we present a simulation model to predict the liquid-liquid and liquid-solid interface behavior of electrowetting cell as a function of various parameters such as applied voltage, dielectric constant, cell size etc. We used Comsol Multiphysics simulations incorporating experimental data of different liquids. We have designed both two dimensional and three dimensional simulation models, which predict the shape of the liquid lenses. The model calculates the contact angle using the Young-Lippman equation and uses a moving mesh interface to solve the Navier-stokes equation with Navier slip wall boundary condition. Simulation of the electric field from the electrodes is coupled to the Young-Lippman equation. The model can also be used to determine operational characteristics of other MEMS electrowetting devices such as electrowetting display, optical switches, electronic paper, electrowetting Fresnel lens etc.
Modelling, simulating and optimizing Boilers
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2003-01-01
of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...
First Report of the Simulation Optimization Group
Rimoldi, A; Dell'Acqua, A; Froidevaux, D; Gianotti, F; Guyot, C; Hinchliffe, I; Jakobs, K; Marshall, Z; Nasati, A; Quarrie, D; Unal, G; Young, C
2008-01-01
This is the first report of the ATLAS Simulation Optimization Group, established in June of 2007. This article justifies the selected Geant4 version, physics list, and range cuts to be used by the default ATLAS simulation for initial data taking and beyond. The current status of several projects, including detector description, simulation validation, studies of additional Geant4 parameters, and cavern background, are reported.
Multiphysics simulation electromechanical system applications and optimization
Dede, Ercan M; Nomura, Tsuyoshi
2014-01-01
This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, ma
MODELLING, SIMULATING AND OPTIMIZING BOILERS
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
, and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...
Modelling, simulating and optimizing Boilers
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2003-01-01
, and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantication of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to dene parts...
MODELLING, SIMULATING AND OPTIMIZING BOILERS
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2004-01-01
on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...... size. The model has been formulated with a specied building-up of the pressure during the start-up of the plant, i.e. the steam production during start-up of the boiler is output from the model. The steam outputs together with requirements with respect to steam space load have been utilized to dene...
Performance Optimization of the ATLAS Detector Simulation
AUTHOR|(CDS)2091018
In the thesis at hand the current performance of the ATLAS detector simulation, part of the Athena framework, is analyzed and possible optimizations are examined. For this purpose the event based sampling profiler VTune Amplifier by Intel is utilized. As the most important metric to measure improvements, the total execution time of the simulation of $t\\bar{t}$ events is also considered. All efforts are focused on structural changes, which do not influence the simulation output and can be attributed to CPU specific issues, especially front end stalls and vectorization. The most promising change is the activation of profile guided optimization for Geant4, which is a critical external dependency of the simulation. Profile guided optimization gives an average improvement of $8.9\\%$ and $10.0\\%$ for the two considered cases at the cost of one additional compilation (instrumented binaries) and execution (training to obtain profiling data) at build time.
Strategies for Optimizing Organic Solar Cells
Wynands, David
2011-01-01
This work investigates organic solar cells made of small molecules. Using the material system α,ω-bis(dicyanovinylene)-sexithiophene (DCV6T) - C60 as model, the correlation between the photovoltaic active layer morphology and performance of the solar cell is studied. The chosen method for controlling the layer morphology is applying different substrate temperatures (Tsub ) during the deposition of the layer. In neat DCV6T layers, substrate heating induces higher crystallinity as is shown b...
Solar Electric Bicycle Body Modeling and Simulation
Zhikun Wang
2013-10-01
Full Text Available A new solar electric bicycle design and study were carried out on in this paper. Application of CAD technology to establish three-dimension geometric model, using the kinetic analysis on the frame and other parts for numerical simulation and static strength analysis for the vehicle model design, virtual assembly, complete frame dynamics analysis and vibration analysis, with considering other factors, first on the frame structure improvement, second on security of design calculation analysis and comparison, finally get the ideal body design.
Spectral mismatch and solar simulator quality factor in advanced LED solar simulators
Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten
2017-08-01
Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.
Vortices in simulations of solar surface convection
Moll, R; Schüssler, M
2011-01-01
We report on the occurrence of small-scale vortices in simulations of the convective solar surface. Using an eigenanalysis of the velocity gradient tensor, we find the subset of high vorticity regions in which the plasma is swirling. The swirling regions form an unsteady, tangled network of filaments in the turbulent downflow lanes. Near-surface vertical vortices are underdense and cause a local depression of the optical surface. They are potentially observable as bright points in the dark intergranular lanes. Vortex features typically exist for a few minutes, during which they are moved and twisted by the motion of the ambient plasma. The bigger vortices found in the simulations are possibly, but not necessarily, related to observations of granular-scale spiraling pathlines in "cork animations" or feature tracking.
MODELLING, SIMULATING AND OPTIMIZING BOILERS
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2004-01-01
on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... size. The model has been formulated with a specied building-up of the pressure during the start-up of the plant, i.e. the steam production during start-up of the boiler is output from the model. The steam outputs together with requirements with respect to steam space load have been utilized to dene...... of the boiler is (with an acceptable accuracy) proportional with the volume of the boiler. For the dynamic operation capability a cost function penalizing limited dynamic operation capability and vise-versa has been dened. The main idea is that it by mean of the parameters in this function is possible to t its...
Simulating Protein Conformations through Global Optimization
Mucherino, A; Pardalos, P M
2008-01-01
Many researches have been working on the protein folding problem from more than half century. Protein folding is indeed one of the major unsolved problems in science. In this work, we discuss a model for the simulation of protein conformations. This simple model is based on the idea of imposing few geometric requirements on chains of atoms representing the backbone of a protein conformation. The model leads to the formulation of a global optimization problem, whose solutions correspond to conformations satisfying the desired requirements. The global optimization problem is solved by the recently proposed Monkey Search algorithm. The simplicity of the optimization problem and the effectiveness of the used meta-heuristic search allowed the simulation of a large set of high-quality conformations. We show that, even though only few geometric requirements are imposed, some of the simulated conformation results to be similar (in terms of RMSD) to conformations real proteins actually have in nature.
Optimizing Large-Scale ODE Simulations
Mulansky, Mario
2014-01-01
We present a strategy to speed up Runge-Kutta-based ODE simulations of large systems with nearest-neighbor coupling. We identify the cache/memory bandwidth as the crucial performance bottleneck. To reduce the required bandwidth, we introduce a granularity in the simulation and identify the optimal cluster size in a performance study. This leads to a considerable performance increase and transforms the algorithm from bandwidth bound to CPU bound. By additionally employing SIMD instructions we are able to boost the efficiency even further. In the end, a total performance increase of up to a factor three is observed when using cache optimization and SIMD instructions compared to a standard implementation. All simulation codes are written in C++ and made publicly available. By using the modern C++ libraries Boost.odeint and Boost.SIMD, these optimizations can be implemented with minimal programming effort.
An optimized top contact design for solar cell concentrators
Desalvo, Gregory C.; Barnett, Allen M.
1985-01-01
A new grid optimization scheme is developed for point focus solar cell concentrators which employs a separated grid and busbar concept. Ideally, grid lines act as the primary current collectors and receive all of the current from the semiconductor region. Busbars are the secondary collectors which pick up current from the grids and carry it out of the active region of the solar cell. This separation of functions leads to a multithickness metallization design, where the busbars are made larger in cross section than the grids. This enables the busbars to carry more current per unit area of shading, which is advantageous under high solar concentration where large current densities are generated. Optimized grid patterns using this multilayer concept can provide a 1.6 to 20 percent increase in output power efficiency over optimized single thickness grids.
An optimized top contact design for solar cell concentrators
Desalvo, Gregory C.; Barnett, Allen M.
1985-01-01
A new grid optimization scheme is developed for point focus solar cell concentrators which employs a separated grid and busbar concept. Ideally, grid lines act as the primary current collectors and receive all of the current from the semiconductor region. Busbars are the secondary collectors which pick up current from the grids and carry it out of the active region of the solar cell. This separation of functions leads to a multithickness metallization design, where the busbars are made larger in cross section than the grids. This enables the busbars to carry more current per unit area of shading, which is advantageous under high solar concentration where large current densities are generated. Optimized grid patterns using this multilayer concept can provide a 1.6 to 20 percent increase in output power efficiency over optimized single thickness grids.
A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
Aziz, Jonathan; Scheeres, Daniel; Parker, Jeffrey; Englander, Jacob
2017-01-01
Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
Modeling, simulation and optimization of bipedal walking
Berns, Karsten
2013-01-01
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...
Simulation-optimization via Kriging and bootstrapping : A survey
Kleijnen, Jack P.C.
2014-01-01
This article surveys optimization of simulated systems. The simulation may be either deterministic or random. The survey reflects the author’s extensive experience with simulation-optimization through Kriging (or Gaussian process) metamodels, analysed through parametric bootstrapping for determinist
Simulation of Electrical Characteristics of a Solar Panel
Obukhov, S.; Plotnikov, I.; Kryuchkova, M.
2016-06-01
The fast-growing photovoltaic system market leads to the necessity of the informed choice of major energy components and optimization of operating conditions in order to improve energy efficiency. Development of mathematical models of the main components of photovoltaic systems to ensure their comprehensive study is an urgent problem of improving and practical using of the technology of electrical energy production. The paper presents a mathematical model of the solar module implemented in the popular software MATLAB/Simulink. Equivalent circuit of the solar cell with a diode parallel without derived resistance is used for modelling. The serie8s resistance of the solar module is calculated by Newton's iterative method using the data of its technical specifications. It ensures high precision of simulation. Model validity was evaluated by the well-known technical characteristics of the module Solarex MSX 60. The calculation results of the experiment showed that the obtained current-voltage and current-watt characteristics of the model are compatible with those of the manufacturer.
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
A computer simulation code was employed to evaluate several generic types of solar power systems (up to 10 MWe). Details of the simulation methodology, and the solar plant concepts are given along with cost and performance results. The Solar Energy Simulation computer code (SESII) was used, which optimizes the size of the collector field and energy storage subsystem for given engine-generator and energy-transport characteristics. Nine plant types were examined which employed combinations of different technology options, such as: distributed or central receivers with one- or two-axis tracking or no tracking; point- or line-focusing concentrator; central or distributed power conversion; Rankin, Brayton, or Stirling thermodynamic cycles; and thermal or electrical storage. Optimal cost curves were plotted as a function of levelized busbar energy cost and annualized plant capacity. Point-focusing distributed receiver systems were found to be most efficient (17-26 percent).
Yuan, Xingqiu; Trichtchenko, Larisa; Boteler, David
Propagation of coronal mass ejections from solar surface to the Earth magnetosphere is strongly influenced by the conditions in solar corona and ambient solar wind. Thus, reliable simulation of the background solar wind is the primary task toward the development of numerical model for the transient events. In this paper we introduce a new numerical model which has been specifically designed for numerical study of the solar corona and ambient solar wind. This model is based on our recently developed three-dimensional Spherical Coordinate Adaptive Magneto-Hydro-Dynamic (MHD) code (SCA-MHD-3D) [Yuan et al., 2009]. Modifications has been done to include the observed magnetic field at the photosphere as inner boundary conditions. The energy source term together with reduced plasma gamma are used in the nonlinear MHD equations in order to simulate the solar wind acceleration from subsonic speed at solar surface to supersonic speed at the inter-heliosphere region, and the absorbing boundary conditions are used at the solar surface. This model has been applied to simulate the background solar wind condition for several different solar rotations, and comparison between the observation and model output have shown that it reproduces many features of solar wind, including open and closed magnetic fields, fast and slow solar wind speed, sector boundaries, etc.
N. Dammak
2010-01-01
Full Text Available Problem statement: The objective of this study was to optimize the geometrical parameters of a bubble pump integrated in a solar flat plate collector. Approach: This solar bubble pump was part of an ammonia/water/helium (NH3/H2O/He absorption-diffusion cooling system. Results: An empirical model was developed on the basis of momentum, mass, material equations and energy balances. The mathematical model was solved using the simulation tool Engineering Equation Solver (EES. Conclusion/Recommendations: Using metrological data from Gabes (Tunisia various parameters were geometrically optimized for maximum bubble pump efficiency which was best for a bubble pump tube diameter of 6 mm, a tube length of 1.5 m, an inclination to the horizontal between 30 and 50° of the solar flat plate collector and a submergence ratio between 0.2 and 0.3.
Computer Modelling and Simulation of Solar PV Array Characteristics
Gautam, Nalin Kumar
2003-02-01
The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to
Optimized Interdigitated Back Contact (IBC) solar cell for high concentrated sunlight
Verlinden, P.; van de Wiele, F.; Stehelin, G.; David, J. P.
A one-dimensional analytical model for Interdigitated Back Contact solar cells (IBC), also applicable to Front Surface Field (FSF) and Tandem Junction (TJ) solar cells, is presented. The quantum efficiency, generation current, dark current, and conversion efficiency are calculated as a function of the physical parameters of the cell (doping levels, junction depths, thickness, and lifetime). The proposed model simulates the response of FSF and TJ solar cells more accurately than models using the concept of effective surface recombination velocity. The optimization of parameters (doping level and dimension of each region) is discussed. It is shown that a conversion efficiency of 24.8 percent can be reached under 50 suns. IBC solar cells were fabricated with different substrate resistivities and thicknesses. The experimental results are compared to the theoretical predictions.
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Engine Optimization for a Solar Thermal Powered Orbit Transfer Vehicle
1998-06-01
Recent technological advancements in solar thermal rocket propulsion and solar orbit transfer vehicles make it critical to perform additional engine performance analyses. Several system level flight demonstrations are imminent. Space flight hardware component testing is being conducted at the Air Force Research Laboratory, Edwards AFB, California. The focus of current research is engine and nozzle configurations for a solar orbit transfer vehicle. The optimal design must produce 1-10 pounds thrust, perform at high lsp and be compatible in a hybrid of spiral, perigee, and apogee (multi-burn) configurations. The nozzle material must not ablate when subjected to extreme thermal loading, yet be durable enough to withstand widely varying temperature differentials during frequent thermal cycling. This paper addresses propulsive needs in the orbit transfer arena and defines governing upper stage vehicle engine equations. These equations are modified versions of rocket engine equations used for chemical systems. The correction factors and modifications are for Solar Thermal Propulsion specific hardware.
Kanban simulation model for production process optimization
Golchev Riste
2015-01-01
Full Text Available A long time has passed since the KANBAN system has been established as an efficient method for coping with the excessive inventory. Still, the possibilities for its improvement through its integration with other different approaches should be investigated further. The basic research challenge of this paper is to present benefits of KANBAN implementation supported with Discrete Event Simulation (DES. In that direction, at the beginning, the basics of KANBAN system are presented with emphasis on the information and material flow, together with a methodology for implementation of KANBAN system. Certain analysis on combining the simulation with this methodology is presented. The paper is concluded with a practical example which shows that through understanding the philosophy of the implementation methodology of KANBAN system and the simulation methodology, a simulation model can be created which can serve as a basis for a variety of experiments that can be conducted within a short period of time, resulting with production process optimization.
Feirstine, K.; Bush, K.; Crosher, C.; Klein, M.; Bowers, D.; Wellems, D.; Duggin, M.; Vaughn, L.
2012-09-01
The Air Force Research Laboratory (AFRL) Time-domain Analysis Simulation for Advanced Tracking (TASAT) was used to explore the variation of Optical Cross Section (OCS) with glint angle for a solar panel with different solar cell attitude distribution statistics. Simulations were conducted using a 3D model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of "solar cell" material is not appropriate for OCS glint studies. However, modeling each individual solar cell on the panel, the tips and tilts of which come from a distribution of specified statistics (distribution type, mean, and standard deviation), accurately captures the solar panel OCS with glint angle. The objective of the simulations was to vary the glint measurement angle about the maximum glint position of the solar panel and observe the variations in OCS with angle for a bi-static illumination condition. OCS was calculated relative to the simulated scattering of a Spectralon material in the glint orientation. Results show the importance of solar cell attitude distribution statistics in modeling the OCS observed for a solar panel.
Solar photocatalytic treatment of simulated dyestuff effluents
Kositzi, M.; Antoniadis, A.; Poulios, I. [Thessaloniki Univ. (Greece). Dept. of Chemistry; Kiridis, I. [Viostamp S.A.-Thessaloniki Dyeing Mills S.A., Sindos (Greece); Malato, S. [Plataforma Solar de Almeria (CIEMAT), Tabemas (Spain)
2004-11-01
The photocatalytic organic content reduction of two selected synthetic wastewater from the textile dyeing industry, by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation, has been studied at a pilot plant scale at the Plataforma Solar de Almeria. The effect of two different TiO{sub 2} modifications with oxidants such as H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} on the decolourisation and the dissolved organic content reduction (DOC) of the wastewater was examined. The TiO{sub 2}/H{sub 2}O{sub 2} system seems to be more efficient in comparison to the synergetic action that appears when using persulphate and TiO{sub 2} in this specific wastewater. By an accumulated energy of 50 kJ l{sup -1} the synergetic effect of TiO{sub 2} P-25 with H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O8 leads to a 70% and 57% DOC reduction, respectively, in the case of cotton synthetic wastewater, while the decolourisation was almost complete. The photocatalytic decolourisation, as well as the DOC reduction in the case of nylon simulated wastewater is a slower process and an accumulated energy of 50 kJ l{sup -1} leads to almost 54% mineralisation in both cases. The photo-Fenton process in both types of wastewater was more efficient in comparison to the TiO{sub 2}/oxidant system. An accumulated energy of 50 kJ l{sup -1} leads to 90% reduction of the organic content. (Author)
Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells
Bai Lu
2014-01-01
Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.
Jatin Shringi
2016-04-01
Full Text Available The objective of paper is to carry out the study of optimization of thermal performance of solar radiation for optimum geometrical shape of a box type solar cooker. The study involves fabrication of different geometries for on field evaluation in region. In observation temperature profiles are plotted against equal time intervals and then figure of merit is calculated. In solar cooking heat transfer modes i.e. conduction, convection and radiation plays a dominant role. The solar technologies for cooking are highly useful in developing countries like India which is enriched with sunshine. The results show that trapezoidal shape is better than other geometrical shapes made and the information will likely impact on design of future solar cookers.
Decision-Theoretic Methods in Simulation Optimization
2014-09-24
Materiel Command REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is...Alamos National Lab: Frazier visited LANL , hosted by Frank Alexander, in January 2013, where he discussed the use of simulation optimization methods for...Alexander, Turab Lookman, and others from LANL , at the Materials Informatics Workshop at the Sante Fe Institute in April 2013. In February 2014, Frazier
Robust optimal sun-pointing control of a large solar power satellite
Wu, Shunan; Zhang, Kaiming; Peng, Haijun; Wu, Zhigang; Radice, Gianmarco
2016-10-01
The robust optimal sun-pointing control strategy for a large geostationary solar power satellite (SPS) is addressed in this paper. The SPS is considered as a huge rigid body, and the sun-pointing dynamics are firstly proposed in the state space representation. The perturbation effects caused by gravity gradient, solar radiation pressure and microwave reaction are investigated. To perform sun-pointing maneuvers, a periodically time-varying robust optimal LQR controller is designed to assess the pointing accuracy and the control inputs. It should be noted that, to reduce the pointing errors, the disturbance rejection technique is combined into the proposed LQR controller. A recursive algorithm is then proposed to solve the optimal LQR control gain. Simulation results are finally provided to illustrate the performance of the proposed closed-loop system.
Optimizing the integrated design of boilers - simulation
Sørensen, Kim; Karstensen, Claus M. S.; Condra, Thomas Joseph
2004-01-01
.) it is important to see the 3 components as an integrated unit and optimize these as such. This means that the burner must be designed and optimized exactly to the pressure part where it is utilized, the control system must have a conguration optimal for the pressure part and burner where it is utilized etc...... together with Aalborg University and The Technical University of Denmark carried out a project to develop the Model based Multivariable Control System . This is foreseen to be a control system utilizing the continuously increasing computational possibilities to take all the important operation parameters...... formulated as Differential-Algebraic-Equation (DAE) systems. For integration in SIMULINK the models have been index-reduced to Ordinary- Differential-Equation (ODE) systems. The simulations have been carried out by means of the MATLAB/SIMULINK integration routines. For verifying the models developed...
Simulation of Organic Solar Cells Using AMPS-1D Program
Samah G. Babiker
2012-03-01
Full Text Available The analysis of microelectronic and photonic structure in one dimension program [AMPS-1D] program has been successfully used to study inorganic solar cells. In this work the program has been used to optimize the performance of the organic solar cells. The cells considered consist of poly(2-methoxy-5-(3,7- dimethyloctyloxy-1,4-phenylenevinylene [MDMO-PPV
CFD simulation of a solar tower
Koten, Hasan; Yukselenturk, Yalcyn; Yilmaz, Mustafa [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr
2011-07-01
With the depletion of fossil fuels and the rising concerns about their impacts on the environment, the use of alternative energy sources has become necessary. Among the alternatives, solar energy, with its unlimited resources and its low impact on the environment, is the most promising. The aim of this paper is to present a numerical model of a regular solar tower. A CFD analysis of the solar tower was performed with a commercial CFD code and velocity fields, temperature measurements and flow characteristics were determined and compared to experimental results available in the literature. It was found that the numerical model is capable of assessing the buoyant air flow in chimneys. In addition results showed that increasing the solar chimney height, solar collector area, or solar irradiance increases power generation capacity while ambient temperature does not significantly affect this capacity. This study provided a numerical model which is proficient in modeling solar towers.
Solar walls in simulation programs; Solvaegge i simuleringsprogrammer
Wittchen, K.B.
1996-12-31
Using the Danish Building Research`s (SBI) computer programme tsbi3 as an example, this report describes ways of implementing routines for calculating solar walls in programmes for simulating the thermal behaviour of buildings. Because of the extreme temperature conditions in a solar wall, some thermal processes used in normal building simulations can not be used. These processes are described in detail in this report. It is proved possible to describe solar walls with the same level of detail as the rest of the building model in tsbi3 and, on the basis of this description, to build and implement models with acceptable accuracy. As a result of this work, a C version of the tsbi3 programme with models for simulating solar walls has been made. With this version it is possible to simulate five different types of solar wall. The five types are denoted: mass-wall, Trombe walls, internally ventilated solar walls, double Trombe walls and solar walls for preheating ventilation air. It is now possible to simulate solar walls and their influence on the temperatures in buildings using one programme. Major changes are the introduction of a 3. order polynomial curve-fitting routine for an accurate description of solar transmission and temperature dependency of the thermal resistance of the transparent cover and the use of air-speed dependent surface resistances at all internal surfaces of the solar wall. All major processes are reused from the original version of tsbi3, i.e. conduction through the massive construction of the solar wall, shadows from local and external obstacles and airing the enclosure in front of the absorber and the solar shading devices. (ARW)
Mohammed Ikbal Kabir
2012-01-01
Full Text Available The conversion efficiency of a solar cell can substantially be increased by improved material properties and associated designs. At first, this study has adopted AMPS-1D (analysis of microelectronic and photonic structures simulation technique to design and optimize the cell parameters prior to fabrication, where the optimum design parameters can be validated. Solar cells of single junction based on hydrogenated amorphous silicon (a-Si:H have been analyzed by using AMPS-1D simulator. The investigation has been made based on important model parameters such as thickness, doping concentrations, bandgap, and operating temperature and so forth. The efficiency of single junction a-Si:H can be achieved as high as over 19% after parametric optimization in the simulation, which might seem unrealistic with presently available technologies. Therefore, the numerically designed and optimized a-SiC:H/a-SiC:H-buffer/a-Si:H/a-Si:H solar cells have been fabricated by using PECVD (plasma-enhanced chemical vapor deposition, where the best initial conversion efficiency of 10.02% has been achieved ( V, mA/cm2 and for a small area cell (0.086 cm2. The quantum efficiency (QE characteristic shows the cell’s better spectral response in the wavelength range of 400 nm–650 nm, which proves it to be a potential candidate as the middle cell in a-Si-based multijunction structures.
Belhomme, Boris
2011-07-01
The levelized costs of a solar tower power plant are mainly influenced by the operational strategy of its heliostat field. Ensuring an efficient utilization of the heliostat field during the plant operation and therewith a high overall efficiency requires an optimal aim point strategy. The objective of the present work is to develop a computer-aided method for the optimization of aim point strategies. One main prerequisite for this kind of optimization is a realistic evaluation of a given aim point configuration. For this purpose an efficient ray tracing model for a fast and precise calculation of the flux density distribution caused by heliostats is developed as a first step. It is validated by a comparison of simulated and measured flux density distributions. By coupling the ray tracing model and a physical model of a receiver any variable of the receiver model can act as optimization variable. In a second step a method for the optimization of aim point configurations is developed. By defining a finite number of fixed aims points, the present problems becomes a combinatorial optimization problem. Due to the problem complexity, an exact solution can usually not be determined. On the other hand, this allows applying algorithms for the global optimization of combinatorial problems. Accordingly the Ant Colony Optimization metaheuristic is applied and adapted to the aim point optimization problem. By means of two selected example cases the general suitability of the method for the purpose of aim point optimization is proved and the influence of different optimization parameters on the optimization process is investigated. (orig.)
Geospatial Optimization of Siting Large-Scale Solar Projects
Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.
2014-03-01
Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.
Solar sail time-optimal interplanetary transfer trajectory design
Sheng-Ping Gong; Yun-Feng Gao; Jun-Feng Li
2011-01-01
The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable.A solar sail is a method of propulsion that does not consume fuel.Transfer time is one of the most pressing problems of solar sail transfer trajectory design.This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius.The optimal control law is derived from the principle of maximization.An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables,which are normalized within a unit sphere.The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit.A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories.For the cases where no time-optimal transfer trajectories exist,first-order necessary conditions of the optimal control are proposed to obtain feasible solutions.The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration.For a solar sail with a small lightness number,the transfer time may be evaluated analytically for a three-phase transfer trajectory.The analytical results are compared with previous results and the associated numerical results.The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.
Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference.
Arinze, Ebuka S; Qiu, Botong; Palmquist, Nathan; Cheng, Yan; Lin, Yida; Nyirjesy, Gabrielle; Qian, Gary; Thon, Susanna M
2017-02-20
Colloidal quantum dots (CQDs), are a promising candidate material for realizing colored and semitransparent solar cells, due to their band gap tunability, near infrared responsivity and solution-based processing flexibility. CQD solar cells are typically comprised of several optically thin active and electrode layers that are optimized for their electrical properties; however, their spectral tunability beyond the absorption onset of the CQD layer itself has been relatively unexplored. In this study, we design, optimize and fabricate multicolored and transparent CQD devices by means of thin film interference engineering. We develop an optimization algorithm to produce devices with controlled color characteristics. We quantify the tradeoffs between attainable color or transparency and available photocurrent, calculate the effects of non-ideal interference patterns on apparent device color, and apply our optimization method to tandem solar cell design. Experimentally, we fabricate blue, green, yellow, red and semitransparent devices and achieve photocurrents ranging from 10 to 15.2 mA/cm2 for the colored devices. We demonstrate semitransparent devices with average visible transparencies ranging from 27% to 32%, which match our design simulation results. We discuss how our optimization method provides a general platform for custom-design of optoelectronic devices with arbitrary spectral profiles.
Photovoltaic Experiment Using Light from a Solar Simulator Lamp.
Chow, R. H.
1980-01-01
A photovoltaic cell experiment utilizing the convenience of a solar simulating type lamp is described. Insight into the solid state aspect of a solar cell is gained by the student in studying the characteristics, and deducing from them cell parameters and efficiency. (Author/CS)
Photovoltaic Experiment Using Light from a Solar Simulator Lamp.
Chow, R. H.
1980-01-01
A photovoltaic cell experiment utilizing the convenience of a solar simulating type lamp is described. Insight into the solid state aspect of a solar cell is gained by the student in studying the characteristics, and deducing from them cell parameters and efficiency. (Author/CS)
Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells
Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)
2014-10-21
In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.
Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.
1980-01-01
A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.
Optimization of Curvilinear Tracing Applied to Solar Physics and Biophysics
Markus J. Aschwanden
2013-07-01
Full Text Available We developed an automated pattern recognition code that is particularly well suited to extract one-dimensional curvilinear features from two-dimensional digital images. A former version of this Oriented Coronal Curved Loop Tracing (OCCULT code was applied to spacecraft images of magnetic loops in the solar corona, recorded with the NASA spacecraft, Transition Region And Coronal Explorer (TRACE, in extreme ultra-violet wavelengths. Here, we apply an advanced version of this code (OCCULT-2, also, to similar images from the Solar Dynamics Observatory (SDO, to chromospheric H-α images obtained with the Swedish Solar Telescope (SST and to microscopy images of microtubule filaments in live cells in biophysics. We provide a full analytical description of the code, optimize the control parameters and compare the automated tracing with visual/manual methods. The traced structures differ by up to 16 orders of magnitude in size, which demonstrates the universality of the tracing algorithm.
Cui Min; Chen Nuo-Fu; Deng Jin-Xiang; Liu Li-Ying
2013-01-01
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number,height,and thickness of fins,the base thickness and thermal resistance of the thermal conductive adhesive.Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained.With optimized number,height and thickness of fins,and the thickness values of base of 8,1.4 cm,1.5 mm,and 2 mm,the lowest temperatures of the solar cell and heat sink are 41.7 ℃ and 36.3 ℃ respectively.A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built.Outdoor temperatures of the prototype are tested.Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃ respectively,slightly lower than the simulation results because of effects of the wind and cloud.Thus the simulation model enables to predict the thermal performance of the system,and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.
Experimental study and simulation of airflow in solar chimneys
Saifi, Nadia; Dokkar, Boubekeur; Negrou, Belkhir; Settou, Noureddine [Laboratory for Bioressources Saharan Preservation and Enhancement, University of Kasdi Merbah (Algeria)], e-mail: saifi.nadia2009@gmail.com
2011-07-01
With the depletion of traditional energies, new technologies are arising that use renewable energies. The aim of this paper is to present a study of airflow in solar chimneys. Mathematical simulation and experiments were carried out on solar chimneys with different geometries. It was found that the width of the channel and the angle of inclination of the chimney influence the field speed. A case study was then carried out on a solar chimney in Ouargla Province, Algeria, to assess the impact of a chimney's inclination on its performance. The simulation was conducted using a finite volume method in Fluent 6.3.26 computer software. A good match between experimental and simulation results was found. This paper presented a study on airflow in solar chimney and demonstrated that simulations using Fluent and the finite element method were able to provide good results.
Magnier, Laurent; Haghighat, Fariborz [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., BE-351, Montreal, Quebec H3G 1M8 (Canada)
2010-03-15
Building optimization involving multiple objectives is generally an extremely time-consuming process. The GAINN approach presented in this study first uses a simulation-based Artificial Neural Network (ANN) to characterize building behaviour, and then combines this ANN with a multiobjective Genetic Algorithm (NSGA-II) for optimization. The methodology has been used in the current study for the optimization of thermal comfort and energy consumption in a residential house. Results of ANN training and validation are first discussed. Two optimizations were then conducted taking variables from HVAC system settings, thermostat programming, and passive solar design. By integrating ANN into optimization the total simulation time was considerably reduced compared to classical optimization methodology. Results of the optimizations showed significant reduction in terms of energy consumption as well as improvement in thermal comfort. Finally, thanks to the multiobjective approach, dozens of potential designs were revealed, with a wide range of trade-offs between thermal comfort and energy consumption. (author)
Earth-moon Trajectory Optimization Using Solar Electric Propulsion
无
2007-01-01
The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolutions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a segment fiom a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equinoctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging technique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated.
Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt
2010-01-01
The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...
Optimization of tapered busses for solar cell contacts
Landis, G. A.
1979-01-01
Some fraction of the power produced by a solar cell is necessarily lost by series resistance associated with the metallized contact grid and by shadowing of cell active area by the grid. There are several approaches to reducing these losses, such as choosing a more efficient pattern, optimizing line spacing, and using tapered buses. The present paper analyzes tapered lines and derives from this analysis a theoretical lower bound to metallization power loss, independent of pattern chosen.
Simulation and optimization of fractional crystallization processes
Thomsen, Kaj; Rasmussen, Peter; Gani, Rafiqul
1998-01-01
A general method for the calculation of various types of phase diagrams for aqueous electrolyte mixtures is outlined. It is shown how the thermodynamic equilibrium precipitation process can be used to satisfy the operational needs of industrial crystallizer/centrifuge units. Examples of simulation...... and optimization of fractional crystallization processes are shown. In one of these examples, a process with multiple steady states is analyzed. The thermodynamic model applied for describing the highly non-ideal aqueous electrolyte systems is the Extended UNIQUAC model. (C) 1998 Published by Elsevier Science Ltd...
Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar
Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.
2004-07-01
Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)
A method for optimizing the cosine response of solar UV diffusers
Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki
2013-07-01
Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.
Fischer, S.; Fröhlich, B.; Ivaturi, A.; Herter, B.; Wolf, S.; Krämer, K. W.; Richards, B. S.; Goldschmidt, J. C.
2014-03-01
Upconverter materials and upconverter solar devices were recently investigated with broad-band excitation revealing the great potential of upconversion to enhance the efficiency of solar cell at comparatively low solar concentration factors. In this work first attempts are made to simulate the behavior of the upconverter β-NaYF4 doped with Er3+ under broad-band excitation. An existing model was adapted to account for the lower absorption of broader excitation spectra. While the same trends as observed for the experiments were found in the simulation, the absolute values are fairly different. This makes an upconversion model that specifically considers the line shape function of the ground state absorption indispensable to achieve accurate simulations of upconverter materials and upconverter solar cell devices with broadband excitations, such as the solar radiation.
Leonardo Leiderman
1992-03-01
Full Text Available Simulating an Optimizing Model of Currency Substitution This paper reports simulations based on the parameter estimates of an intertemporal model of currency substitution under nonexpected utility obtained by Bufman and Leiderman (1991. Here we first study the quantitative impact of changes in the degree of dollarization and in the elasticity of currency substitution on government seigniorage. Then, when examine whether the model can account for the comovement of consumption growth and assets' returnr after the 1985 stabilization program, and in particular for the consumption boom of 1986-87. The results are generally encouraging for future applications of optimizing models of currencysubstitution to policy and practical issues.
Atmospheric extinction in simulation tools for solar tower plants
Hanrieder, Natalie; Wilbert, Stefan; Schroedter-Homscheidt, Marion; Schnell, Franziska; Guevara, Diana Mancera; Buck, Reiner; Giuliano, Stefano; Pitz-Paal, Robert
2017-06-01
Atmospheric extinction causes significant radiation losses between the heliostat field and the receiver in a solar tower plants. These losses vary with site and time. State of the art is that in ray-tracing and plant optimization tools, atmospheric extinction is included by choosing between few constant standard atmospheric conditions. Even though some tools allow the consideration of site and time dependent extinction data, such data sets are nearly never available. This paper summarizes and compares the most common model equations implemented in several ray-tracing tools. There are already several methods developed and published to measure extinction on-site. An overview of the existing methods is also given here. Ray-tracing simulations of one exemplary tower plant at the Plataforma Solar de Almería (PSA) are presented to estimate the plant yield deviations between simulations using standard model equations instead of extinction time series. For PSA, the effect of atmospheric extinction accounts for losses between 1.6 and 7 %. This range is caused by considering overload dumping or not. Applying standard clear or hazy model equations instead of extinction time series lead to an underestimation of the annual plant yield at PSA. The discussion of the effect of extinction in tower plants has to include overload dumping. Situations in which overload dumping occurs are mostly connected to high radiation levels and low atmospheric extinction. Therefore it can be recommended that project developers should consider site and time dependent extinction data especially on hazy sites. A reduced uncertainty of the plant yield prediction can significantly reduce costs due to smaller risk margins for financing and EPCs. The generation of extinction data for several locations in form of representative yearly time series or geographical maps should be further elaborated.
A simulation modeling for optimization of flat plate collector design in Riyadh, Saudi Arabia
Al Ajlan, S.A.; Al Faris, H.; Khonkar, H. [King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia). Energy Research Inst.
2003-07-01
A simulation of forced convection solar heated water system is presented. A computer program is developed consisting of independent subroutines, capable of handling the variation of the collector tube diameter, tube spacing, ambient conditions, material thermal properties, collector and system design optimization. The meteorological data of Riyadh were used as the input in the program to simulate the performance of the collector system. The output of the program is analyzed to optimize the system design in the Riyadh region. The results of the simulations are compared with experimental data. There is a good agreement between the predicted and measured values.(author)
Cui Min; Chen Nuo-Fu; Deng Jin-Xiang
2012-01-01
A metal plate cooling model for 400× single concentrator solar cells was established.The effects of the thickness and the radius of the metal plate,and the air environment on the temperature of the solar cells were analyzed in detail.It is shown that the temperature of the solar cells decreased sharply at the beginning,with the increase in the thickness of the metal plate,and then changed more smoothly.When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker,the temperature of the solar cell basically stabilized at about 53 ℃.Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably.The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively,and demonstrated the superiority of Al material for the cooling system.Furthermore,considering cost reduction,space holding and the stress of the system,we optimized the structural design of the metal plate.The simulated results can be referred to the design of the structure for the metal plate.Finally,a method to devise the structure of the metal plate for single concentrator solar cells was given.
Performance optimization for a variable throat ejector in a solar refrigeration system
Yen, R.H.
2013-08-01
In a solar vapor ejector refrigeration system, the solar heat supply may vary because of variations in solar irradiation intensity, making it difficult to maintain a steady generator temperature. To improve ejector performance, this study proposes a variable throat ejector (VTEJ) and analyzes its performance using CFD simulations. The following conclusions can be drawn. An ejector with a greater throat area and larger solar collector allows a wider operating range of generator temperatures, but may be overdesigned and expensive. Conversely, decreasing the throat area limits the operating range of generator temperatures. Thus the ejector with a fixed throat area may be unsuitable to use solar energy as a heat source. For a VTEJ, this study derives a curve-fitting relationship between the optimum throat area ratio and the operating temperatures. Using this relationship to adjust the throat area ratio, the ejector can consistently achieve optimal and stable performances under a varying solar heat supply. © 2013 Elsevier Ltd and IIR. All rights reserved.
Evaluation and Optimization of an Innovative Low-Cost Photovoltaic Solar Concentrator
Franco Cotana
2011-01-01
Full Text Available Many researches showed that the cost of the energy produced by photovoltaic (PV concentrators is strongly reduced with respect to flat panels, especially in those countries that have a high solar irradiation. The cost drop comes from the reduction of the expensive high-efficiency photovoltaic surface through the use of optical concentrators of the solar radiation. In this paper, an experimental innovative PV low-concentration system is analysed. Numerical simulations were performed to determine the possible reasons of energy losses in the prototype, primarily due to geometrical factors. In particular, the effect of the shadows produced from the mirrors on the prototype performances was analysed: shadows are often neglected in the design phase of such systems. The study demonstrates that shadows may affect the performances of a hypothetical optimized PV low-concentration system up to 15%. Finally, an economical evaluation was carried out comparing the proposed optimized system to a traditional flat PV panel.
Quantum simulation using fidelity-profile optimization
Manu, V. S.; Kumar, Anil
2014-05-01
Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U =exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U , termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. [Ann. Phys. (N.Y.) 327, 292 (2012), 10.1016/j.aop.2011.08.004] in a nuclear magnetic resonance quantum information processor.
Vertical bifacial solar farms: Physics, design, and global optimization
Khan, M. Ryyan
2017-09-04
There have been sustained interest in bifacial solar cell technology since 1980s, with prospects of 30–50% increase in the output power from a stand-alone panel. Moreover, a vertical bifacial panel reduces dust accumulation and provides two output peaks during the day, with the second peak aligned to the peak electricity demand. Recent commercialization and anticipated growth of bifacial panel market have encouraged a closer scrutiny of the integrated power-output and economic viability of bifacial solar farms, where mutual shading will erode some of the anticipated energy gain associated with an isolated, single panel. Towards that goal, in this paper we focus on geography-specific optimization of ground-mounted vertical bifacial solar farms for the entire world. For local irradiance, we combine the measured meteorological data with the clear-sky model. In addition, we consider the effects of direct, diffuse, and albedo light. We assume the panel is configured into sub-strings with bypass-diodes. Based on calculated light collection and panel output, we analyze the optimum farm design for maximum yearly output at any given location in the world. Our results predict that, regardless of the geographical location, a vertical bifacial farm will yield 10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a viable technology option for large-scale solar energy generation.
Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems
Zhou, Wei
optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and
Signal processing for solar array monitoring, fault detection, and optimization
Braun, Henry; Spanias, Andreas
2012-01-01
Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...
Memory Optimization for Phase-field Simulations
Derek Gaston; John Peterson; Andrew Slaughter; Cody Permann; David Andrs
2014-08-01
Phase-field simulations are computationally and memory intensive applications. Many of the phase-field simulations being conducted in support of NEAMS were not capable of running on “normal clusters” with 2-4GB of RAM per core, and instead required specialized “big-memory” clusters with 64GB per core. To address this issue, the MOOSE team developed a new Python-based utility called MemoryLogger, and applied it to locate, diagnose, and eradicate memory bottlenecks within the MOOSE framework. MemoryLogger allows for a better understanding of the memory usage of an application being run in parallel across a cluster. Memory usage information is captured for every individual process in a parallel job, and communicated to the head node of the cluster. Console text output from the application itself is automatically matched with this memory usage information to produce a detailed picture of memory usage over time, making it straightforward to identify the subroutines which contribute most to the application’s peak memory usage. The information produced by the MemoryLogger quickly and effectively narrows the search for memory optimizations to the most data-intensive parts of the simulation.
Test and Simulation of Drain-back Solar DHW System from SolarNor AS. Norway
Qin, Lin
1997-01-01
A drain-back solar domestic hot water (DHW) system from SolarNor AS, Norway was built and tested in the laboratory’s test facility. The thermal performance of the system has been measured for the period from May to November 1997. A detailed simulation model have been developed for predicting...... the annually performance of the system. The simulation model was modified by means of comparison of the simulation results with the measurements. By using this simulation model the yearly thermal performance of the system have been investigated with the Danish Test Reference Year as the input weather data....
Visual Dynamic Simulation and Optimization of Zhangjiuhe Diversion Project
ZHONG Denghua; LIU Jianmin; XIONG Kaizhi; FU Jinqiang
2008-01-01
With the aim of visualizing the real-time simulation calculation of water delivery system (WDS), a structural drawing-oriented (SDO) simulation technique was presented, and applied to Zhangjiuhe Diversion Project, which is a long-distance water delivery system constructed for drawing water from the Zhangjiuhe River to Kunming city. Taking SIMULINK software as simulating platform, the technique established a visual dynamic simulation model for the system. The simulation procedure of the system was simplified, and the efficiency of modeling was also enhanced according to the modularization and reutilization of the simulation program. Furthermore, a selfoptimization model was presented. Based on the digital simulation models, the on line controlled optimization link was added, and the input data can be continually optimized according to the feedback information of simulating output. The system was thus optimized automatically. Built upon MATLAB software, simulation optimization of the Zhangjiuhe Diversion Project was achieved, which provides a new way for the research of optimal operation of WDS.
Photonic Nanostructures Design and Optimization for Solar Cell Application
Qian Liu
2015-08-01
Full Text Available In this paper, a semiconducting photonic nanostructure capable of wide range absorption and tunable optical resonance has been designed with a proposed theoretical optimization model. The design consists of ZnO/CdS core-shell nanowire arrays as well as multilayer thin films that act to absorb incident electromagnetic (EM waves over a broad frequency range. Theoretical, as well as numerical, studies of the nanostructure inside a solar cell plate have been conducted in order to validate the proposed microstructural design. Excellent energy absorption rates of EM waves have been achieved in the high frequency range by using the optical resonance of the nanowire array. By combining multilayer thin film with the core-shell nanowire in the unit cell of a photonic solar cell, a broadband high absorption has been achieved. Moreover, the geometry of the proposed photonic nanostructure is obtained through the implementation of a genetic algorithm. This avoids local minima and an optimized absorption rate of ~90% over the frequency range of 300 to 750 THz has been obtained in the solar cell.
Simulated long-term climate response to idealized solar geoengineering
Cao, Long; Duan, Lei; Bala, Govindasamy; Caldeira, Ken
2016-03-01
Solar geoengineering has been proposed as a potential means to counteract anthropogenic climate change, yet it is unknown how such climate intervention might affect the Earth's climate on the millennial time scale. Here we use the HadCM3L model to conduct a 1000 year sunshade geoengineering simulation in which solar irradiance is uniformly reduced by 4% to approximately offset global mean warming from an abrupt quadrupling of atmospheric CO2. During the 1000 year period, modeled global climate, including temperature, hydrological cycle, and ocean circulation of the high-CO2 simulation departs substantially from that of the control preindustrial simulation, whereas the climate of the geoengineering simulation remains much closer to that of the preindustrial state with little drift. The results of our study do not support the hypothesis that nonlinearities in the climate system would cause substantial drift in the climate system if solar geoengineering was to be deployed on the timescale of a millennium.
Burdorf, Sven; Bauer, Gottfried Heinrich; Brueggemann, Rudolf [Institut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany)
2011-07-01
Hybrid solar cells consisting of dye sensitizers incorporated in the i-layer of microcrystalline silicon pin solar cell have been proposed and even recently processed. The dye sensitizer molecules are embedded in the matrix and enhance the overall absorption of the dye-matrix system due to their high absorption coefficient in the spectral range interesting for photovoltaic applications. However, the charge transport properties of dyes are quite poor. Microcrystalline silicon on the other hand has acceptable charge transport properties, while the absorption, given a layer thickness in the micron range, is relatively poor. This contribution investigates the effiency improvement of hybrid dye-microcrystalline solar cells compared to pure microcrystalline solar cells by simulation. The results indicate that, under optimal conditions, the effiency can be improved by more than 20 % compared to a pure microcrystalline silicon cell. The thickness reduction for the hybrid system can be as large as 50 % for the same effiency.
Modeling and simulation of InGaN/GaN quantum dots solar cell
Aissat, A.; Benyettou, F.; Vilcot, J. P.
2016-07-01
Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In0.25Ga0.75N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In0.25Ga0.75N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.
Design, Analysis and Optimization of a Solar Dish/Stirling System
Seyyed Danial Nazemi
2016-02-01
Full Text Available In this paper, a mathematical model by which the thermal and physical behavior of a solar dish/Stirling system was investigated, then the system was designed, analysed and optimized. In this regard, all of heat losses in a dish/Stirling system were calculated, then, the output net-work of the Stirling engine was computed, and accordingly, the system efficiency was worked out. These heat losses include convection and conduction heat losses, radiation heat losses by emission in the cavity receiver, reflection heat losses of solar energy in the parabolic dish, internal and external conduction heat losses, energy dissipation by pressure drops, and energy losses by shuttle effect in displacer piston in the Stirling engine. All of these heat losses in the parabolic dish, cavity receiver and Stirling engine were calculated using mathematical modeling in MatlabTM software. For validation of the proposed model, a 10 kW solar dish/Stirling system was designed and the simulation results were compared with the Eurodish system data with a reasonable degree of agreement. This model is used to investigate the effect of geometric and thermodynamic parameters including the aperture diameter of the parabolic dish and the cavity receiver, and the pressure of the compression space of the Stirling engine, on the system performance. By using the PSO method, which is an intelligent optimization technique, the total design was optimized and the optimal values of decision-making parameters were determined. The optimization has been done in two scenarios. In the first scenario, the optimal value of each designed parameter has been changed when the other parameters are equal to the designed case study parameters. In the second scenario, all of parameters were assumed in their optimal values. By optimization of the modeled dish/Stirling system, the total efficiency of the system improved to 0.60% in the first scenario and it increased from 21.69% to 22.62% in the second
R. Venkata Rao
2015-12-01
Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.
Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)
2015-12-29
Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.
Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)
2009-01-15
Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)
Simulation of hybrid solar power plants
Dieckmann, Simon; Dersch, Jürgen
2017-06-01
Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.
A Practical Guide To Solar Array Simulation And PCDU Test
Schmitz, Noah; Carroll, Greg; Clegg, Russell
2011-10-01
Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.
Design and Simulation of InGaN p-n Junction Solar Cell
A. Mesrane
2015-01-01
Full Text Available The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In0.622Ga0.378N (Eg = 1.39 eV solar cell is the optimal structure found. It exhibits, under normalized conditions (AM1.5G, 0.1 W/cm2, and 300 K, the following electrical parameters: Jsc=32.6791 mA/cm2, Voc=0.94091 volts, FF = 86.2343%, and η=26.5056%. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In0.622Ga0.378N solar cell efficiency was inversely proportional with the temperature.
Application of simulation models for the optimization of business processes
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
Indium gallium nitride multijunction solar cell simulation using silvaco atlas
Garcia, Baldomero
2007-01-01
This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...
Optimization of Dish Solar Collectors with and without Secondary Concentrators
Jaffe, L. D.
1982-01-01
Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.
Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants
Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert
2017-06-01
Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further
Simulation of interdigitated back contact solar cell with trench structure
Kim, Soo Min; Chun, Seungju; Kang, Min Gu; Song, Hee-Eun; Lee, Jong-Han; Boo, Hyunpil; Bae, Soohyun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2015-02-01
We performed two-dimensional technology computer-aided design simulations for interdigitated back contact (IBC) solar cells with rear trench structures (TS), denoted here as TS-IBC solar cells. First, we calculated a reference simulation model for conventional IBC solar cells. We then assumed a trench structure at the rear surface of the IBC solar cell. For this structure, we analyzed solar cell performance as a function of various trench depths and type. It was found that emitter trench formation affects minority carrier collection, such that the short-circuit current density increases with increasing trench depth. However, the back-surface field (BSF) trench exhibited poor minority carrier collection, which reduced the conversion efficiency of the TS-IBC solar cells. It was also found that for the same trench depth (30 μm), the difference in conversion efficiencies of an IBC solar cell with an emitter trench and that with a BSF trench was 0.6%. We are thus convinced that the emitter trench structure is more important than the BSF trench structure.
Differential rotation in solar-like stars from global simulations
Guerrero, G; Kosovichev, A G; Mansour, N N
2013-01-01
To explore the physics of large-scale flows in solar-like stars, we perform 3D anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a subadiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear...
Topology optimization: An effective method for designing front metallization patterns of solar cells
Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van
2014-01-01
Optimal front electrode design is one of the approaches to improve the performance of solar cells. This work introduces the application of topology optimization (TO) to design complex front metallization patterns for solar cells. TO optimizes the distribution of electrode material on the front surfa
Topology optimization: An effective method for designing front metallization patterns of solar cells
Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van
2014-01-01
Optimal front electrode design is one of the approaches to improve the performance of solar cells. This work introduces the application of topology optimization (TO) to design complex front metallization patterns for solar cells. TO optimizes the distribution of electrode material on the front surfa
SDSim: A Novel Simulator for Solar Drying Processes
Yolanda Bolea
2012-01-01
Full Text Available SDSim is a novel solar dryer simulator based in a multicrop, inclined multipass solar air heather with in-built thermal storage mathematical model. This model has been developed as a designing and developing tool used to study and forecast the behavior of the system model in order to improve its drying efficiency and achieving a return on the dryer investment. The main feature of this simulator is that most of the parameters are permitted to be changed during the simulation process allowing finding the more suitable system for any specific situation with a user-friendly environment. The model has been evaluated in a real solar dryer system by comparing model estimates to collected data.
Solar assisted heat pump on air collectors: A simulation tool
Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)
2010-01-15
The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)
Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory
Hernández, L.; González, A.; Salas, G.; Santillán, A.
2007-08-01
Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.
Performance optimization of web-based medical simulation.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2013-01-01
This paper presents a technique for performance optimization of multimodal interactive web-based medical simulation. A web-based simulation framework is promising for easy access and wide dissemination of medical simulation. However, the real-time performance of the simulation highly depends on hardware capability on the client side. Providing consistent simulation in different hardware is critical for reliable medical simulation. This paper proposes a non-linear mixed integer programming model to optimize the performance of visualization and physics computation while considering hardware capability and application specific constraints. The optimization model identifies and parameterizes the rendering and computing capabilities of the client hardware using an exploratory proxy code. The parameters are utilized to determine the optimized simulation conditions including texture sizes, mesh sizes and canvas resolution. The test results show that the optimization model not only achieves a desired frame per second but also resolves visual artifacts due to low performance hardware.
Simulation of the Efficiency of CdS/CIGS Tandem Multi-Junction Solar Cells Using AMPS-1D
Mirkamali, Ashrafalsadat S
2016-01-01
In this paper we conduct numerical simulation of CdS/CIGS solar cells by use of the AMPS-1D software aiming to formulate the optimal design of the new multi-junction tandem solar cell providing its most efficient operation. We start with the numerical simulation of single-junction CdS/CIGS solar cells, which shows that its highest efficiency of 17.3% could be achieved by the thickness of CIGS p-layer of 200 nm. This result is in a good agreement with experimental data where the highest efficiency was 17.1% with the solar cell thickness of 1 micron. By use of the results of the numerical simulation of the single-junction solar cells we developed the design and conducted optimization of the new multi-junction tandem CdS/CIGS solar cell structure. Numerical simulation shows that the maximum efficiency of this solar cell is equal to 48.3%, which could be obtained with the thickness of the CIGS p-layer of 600 nm at a standard illumination of AM 1.5.
Zhou, Di; Pennec, Y.; Djafari-Rouhani, B.; Lambert, Y.; Deblock, Y.; Stiévenard, D., E-mail: didier.stievenard@isen.fr [Institut d' Electronique et de Microélectronique et de Nanotechnologies, IEMN, (CNRS, UMR 8520), Groupe de Physique, Cité scientifique, avenue Poincaré, 59652 Villeneuve d' Ascq (France); Cristini-Robbe, O. [PHLAM, UMR8523, Université de Lille 1, 59652 Villeneuve d' Asq Cedex (France); Xu, T. [Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Faucher, M. [Institut d' Electronique et de Microélectronique et de Nanotechnologies, IEMN, (CNRS, UMR 8520), Groupe NAM6, Cité scientifique, avenue Poincaré, 59652 Villeneuve d' Asq (France)
2014-04-07
Surface nanostructuration is an important challenge for the optimization of light trapping in solar cell. We present simulations on both the optical properties and the efficiency of micro pillars—MPs—or nanocones—NCs—silicon based solar cells together with measurements on their associated optical absorption. We address the simulation using the Finite Difference Time Domain method, well-adapted to deal with a periodic set of nanostructures. We study the effect of the period, the bottom diameter, the top diameter, and the height of the MPs or NCs on the efficiency, assuming that one absorbed photon induces one exciton. This allows us to give a kind of abacus involving all the geometrical parameters of the nanostructured surface with regard to the efficiency of the associated solar cell. We also show that for a given ratio of the diameter over the period, the best efficiency is obtained for small diameters. For small lengths, MPs are extended to NCs by changing the angle between the bottom surface and the vertical face of the MPs. The best efficiency is obtained for an angle of the order of 70°. Finally, nanostructures have been processed and allow comparing experimental results with simulations. In every case, a good agreement is found.
Optimization of broadband omnidirectional antireflection coatings for solar cells
Guo, Xia; Li, Chong; Zhou, Hongyi; Lv, Benshun; Feng, Yajie; Wang, Huaqiang; Liu, Wuming
2015-01-01
Broadband and omnidirectional antireflection coating is a generally effective way to improve solar cell efficiency, because the destructive interference between the reflected and input waves could maximize transmission light in the absorption layer. Several theoretical calculations have been developed to optimize the anti-reflective coating to maximize the average transmittance. However, the solar irradiances of the clear sky spectral direct beam on a receiver plane at different positions and times are variable greatly. Here we report a new theoretical calculation of anti-reflective coating with incident quantum efficiency {\\eta}in as evaluation function for practical application. The two-layer and three-layer anti-reflective coatings are optimized over {\\lambda} = [300, 1100] nm and {\\theta} = [0{\\deg}, 90{\\deg}] for cities of Quito, Beijing and Moscow. The {\\eta}in of two-layer anti-reflective coating increases by 0.26%, 1.37% and 4.24% for these 3 cities, respectively, compared with that other theoretical ...
Simon, F.
1975-01-01
A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.
Solar Simulation Laboratory Description and Manual.
1985-06-01
2000 was sent back to Cyborg Corp. three times over a five month period for repairs. The solar lab is presently using a loaner from Cyborg Corp. The IBM...PC/XT is connected to the ISAAC 2000 by a RS232 connection. All programs were written in advanced basic ("BASICA"). BASICA was used because Cyborg ...2067 CH/P Temperature.Control Bath TechnicalManual, November. 1980. A 30. Cyborg Corporation, Version 1.2, IS..AC.....Co..mpiut.er.liz e.d Data
Performance Simulation Comparison for Parabolic Trough Solar Collectors in China
Jinping Wang
2016-01-01
Full Text Available Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs are different in different regions and different seasons. To determine the optimum design and operation of the parabolic trough solar collector throughout the year, an accurate estimation of the daily performance is needed. In this study, a mathematical model for the optical efficiency of the parabolic trough solar collector was established and three typical regions of solar thermal utilization in China were selected. The performance characteristics of cosine effect, shadowing effect, end loss effect, and optical efficiency were calculated and simulated during a whole year in these three areas by using the mathematical model. The simulation results show that the optical efficiency of PTCs changes from 0.4 to 0.8 in a whole year. The highest optical efficiency of PTCs is in June and the lowest is in December. The optical efficiency of PTCs is mainly influenced by the solar incidence angle. The model is validated by comparing the test results in parabolic trough power plant, with relative error range of 1% to about 5%.
Models and optimization of solar-control automotive glasses
Blume, Russell Dale
Efforts to develop automotive glasses with enhanced solar control characteristics have been motivated by the desire for increased consumer comfort, reduced air-conditioning loads, and improved fuel-economy associated with a reduction in the total solar energy transmitted into the automotive interior. In the current investigation, the base soda-lime-silicate glass (72.7 wt.% SiO 2, 14.2% Na2O, 10.0% CaO, 2.5% MgO, 0.6% Al2O 3 with 0.3 Na2SO4 added to the batch as a fining agent) was modified with Fe2O3 (0.0 to 0.8%), NiO (0.0 to 0.15%), CoO (0.0 to 0.15%), V2O5 (0.0 to 0.225%), TiO2 (0.0 to 1.5%), SnO (0.0 to 3.0%), ZnS (0.0 to 0.09%), ZnO (0.0 to 2.0%), CaF2 (0.0 to 2.0%), and P2O5 (0.0 to 2.0%) to exploit reported non-linear mechanistic interactions among the dopants by which the solar-control characteristics of the base glass can be modified. Due to the large number of experimental variables under consideration, a D-optimal experimental design methodology was utilized to model the solar-optical properties as a function of batch composition. The independent variables were defined as the calculated batch concentrations of the primary (Fe2O 3, NiO, CoO, V2O5) and interactive (CaF2 , P2O5, SnO, ZnS, ZnO, TiO2) dopants in the glass. The dependent variable was defined as the apparent optical density over a wavelength range of 300--2700 nm at 10 nm intervals. The model form relating the batch composition to the apparent optical density was a modified Lambert-Beer absorption law; which, in addition to the linear terms, contained quadratic terms of the primary dopants, and a series of binary and ternary non-linear interactions amongst the primary and interactive dopants. Utilizing the developed model, exceptional fit in terms of both the discrete response (the transmission curves) and the integrated response (visible and solar transmittance) were realized. Glasses utilizing Fe2O 3, CoO, NiO, V2O5, ZnO and P2O 5 have generated innovative glasses with substantially improved
Simulated Space Environment Effects on a Candidate Solar Sail Material
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.
A numerical simulation study of CuInS{sub 2} solar cells
Shang, Xunzhong; Wang, Zhiqiang; Li, Mingkai; Zhang, Lei; Fang, Jingang; Tai, Jiali; He, Yunbin, E-mail: ybhe@hubu.edu.cn
2014-01-01
In this paper CuInS{sub 2} solar cells have been numerically simulated based on a one-dimensional device physics simulator: Analysis of Microelectronic and Photonic Structures. Solar cells having a typical structure Al/ZnO:Al/n-CdS/p-CuInS{sub 2}/Mo have been modeled. Various factors that affect cell performance have been studied, such as thickness and bandgap of the CuInS{sub 2} absorber layer, and thickness of the CdS buffer layer. The photovoltaic parameters are determined from the current density–voltage curves. The solar spectral response and recombination mechanism of the cells are represented by quantum efficiency–λ curves and net recombination rate–position curves, respectively. In this study, a simulated efficiency of 20.4% has been obtained with open-circuit voltage of 0.94 V, short-circuit current density of 26.2 mA/cm{sup 2} and fill factor of 0.84 for the CuInS{sub 2} solar cell with a bandgap of 1.40 eV. It is found that optimal thicknesses of the CuInS{sub 2} absorber layer and the CdS buffer layer are around 2000 and 50 nm, respectively, while optimal bandgap of the CuInS{sub 2} absorber layer is 1.40 eV. - Highlights: • Absorption coefficients of the CuInS{sub 2} and ZnO:Al layers were obtained from experimental data. • AMPS-1D software was applied to simulate the CuInS{sub 2}-based solar cells. • Optimal thicknesses of the buffer and absorber layers are around 50 and 2000 nm, respectively. • Optimal bandgap energy of the absorber layer was found at 1.40 eV for CuInS{sub 2}-based solar cells. • The best simulated performance is Eff = 21.3%, V{sub oc} = 0.97 V, J{sub sc} = 26.4 mA/cm{sup 2}, and FF = 0.83.
Simulation of chondrule formation in the DLR solar furnace
Sauerborn, M.; Neumann, A. [German Aerospace Center (DLR), High Flux Solar Furnace, Solar Energy Technology, Cologne (Germany); Klerner, S. [Inst. of Mineralogy and Geochemistry, Univ. of Cologne (Germany); Seboldt, W.; Hanowski, N. [German Aerospace Center (DLR), Inst. of Space Sensor Technology and Planetary Exploration, Cologne (Germany)
2001-07-01
A new vacuum chamber was installed in the DLR solar furnace in Cologne and tested for the first time in an experiment with small solid samples being melted and solidified subsequently. The goal of the actual project is to simulate the formation of so-called 'chondrules' - constituents of meteorites - by heating appropriate mineral samples with the concentrated beam of a solar furnace. The experiment has to be carried out under vacuum or oxygen free conditions. The project is a co-operation between the High Flux Solar Furnace of the DLR in Cologne (a department of the Solar Technology Division), the Mission Architecture and Advanced Technologies Section (a department of the Institute of Space Sensor Technology and Planetary Exploration of the DLR) and the Institute of Mineralogy and Geochemistry of the University of Cologne. (orig.)
BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool
Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass
2017-04-01
Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.
A Study on a Solar Simulator for Dye Sensitized Solar Cells
Kyoung-Jun Lee
2012-01-01
Full Text Available Dye-sensitized solar cells (DSSC are emerging low-cost, simple alternatives to conventional solar cells. While there has been considerable study on improving the efficiency of DSSCs, there has not been sufficient research on a photovoltaic power conditioning system adaptable to DSSCs or on a solar simulator for DSSCs. When DSSCs are commercialized in the near future, the DSSC modules must be connected to an adaptable power conditioning system in order to manage the energy produced and provide a suitable interface to the load. In the process of developing a power conditioning system, a solar simulator with the characteristics of DSSCs is essential to show the performance of the maximum power point tracking. In this paper, a virtual DSSC is designed and simulated in PSIM. Irradiation factors, temperature and shadow effects are considered in dynamic link library block in PSIM which is linked to the external C routine. A 100 W converter is built to show the performance of a DSSC as the solar simulator controlled by a digital signal processor.
Differential rotation in solar-like stars from global simulations
Guerrero, G.; Kosovichev, A. G. [Solar Physics, HEPL, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom); Mansour, N. N., E-mail: gag@stanford.edu, E-mail: sasha@sun.stanford.edu, E-mail: smolar@ecmwf.int, E-mail: nagi.n.mansour@nasa.gov [NASA, Ames Research Center, Moffett Field, Mountain View, CA 94040 (United States)
2013-12-20
To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.
Accurate characterization of OPVs: Device masking and different solar simulators
Gevorgyan, Suren; Carlé, Jon Eggert; Søndergaard, Roar R.;
2013-01-01
laboratories following rigorous ASTM and IEC standards. This work tries to address some of the issues confronting the standard laboratory in this regard. Solar simulator lamps are investigated for their light field homogeneity and direct versus diffuse components, as well as the correct device area...
Simulation and optimization of electromagnetohydrodynamic flows
Dennis, Brian Harrison
2000-10-01
Electromagnetohydrodynamics (EMHD) is the study of flow of electrically conducting incompressible fluids in applied electric and magnetic fields. The goal of this research was to develop and implement a numerical method for the simulation and optimization of steady viscous planar and axisymmetric EMHD flows. A finite element method based on least-squares variational principles, known as least-squares finite element method (LSFEM), was used to discretize the governing system of partial differential equations. The use of LSFEM allows the use of equal order approximation functions for all unknowns and is stable for high Reynolds numbers. In addition, the LSFEM allows the enforcement of the divergence constraint on the magnetic field in a straight forward manner. The associated linear algebraic system is symmetric and positive definite. A new second order theoretical model of the combined interaction of externally applied electric and magnetic fields and viscous incompressible fluid flows was rewritten as a system of first order partial differential equations, making it suitable for the application of LSFEM. The method was implemented in an object-oriented fashion using the C++ programming language. Both h and p-type finite elements were implemented in the software. The p-type finite elements were developed using hierarchical basis functions based on Jacobi polynomials. The hierarchical basis leads to a linear algebraic system with a natural multilevel structure that is well suited to adaptive enrichment. The sparse linear systems were solved by either direct sparse LU factorization or by iterative methods. Two iterative methods were implemented in the software, one based on a Jacobi preconditioned conjugate gradient and the another based a multigrid-like technique that uses the hierarchy of basis functions instead of a hierarchy of finer grids. The software was tested against analytic solutions for Navier-Stokes equations and for channel flows through transverse
Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms
Cao, Ming; Lu, Ming; Zhang, Jian-Ping
2004-01-01
This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation m
Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator
Shalliker, R. A.; Kayillo, S.; Dennis, G. R.
2008-01-01
Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…
Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms
Cao, Ming; Lu, Ming; Zhang, Jian-Ping
2004-01-01
This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation m
Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms
Cao, Ming; Lu, Ming; Zhang, Jian-Ping
2004-01-01
This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation
Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator
Shalliker, R. A.; Kayillo, S.; Dennis, G. R.
2008-01-01
Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…
Hang, Yin
Buildings in the United States are responsible for 41% of the primary energy use and 30% of carbon dioxide emissions. Due to mounting concerns about climate change and resource depletion, meeting building heating and cooling demand with renewable energy has attracted increasing attention in the energy system design of green buildings. One of these approaches, the solar absorption cooling and heating (SACH) technology can be a key solution to addressing the energy and environmental challenges. SACH system is an integration of solar thermal heating system and solar thermal driven absorption cooling system. So far, SACH systems still remain at the demonstration and testing stage due to not only its high cost but also complicated system characteristics. This research aims to develop a methodology to evaluate the life cycle energy, economic and environmental performance of SACH systems by high-fidelity simulations validated by experimental data. The developed methodology can be used to assist the system design. In order to achieve this goal, the study includes four objectives as follows: * Objective 1: Develop the evaluation model for the SACH system. The model includes three aspects: energy, economy, and environment from a life cycle point of view. * Objective 2: Validate the energy system model by solar experiments performance data. * Objective 3: Develop a fast and effective multi-objective optimization methodology to find the optimal system configuration which achieves the maximum system benefits on energy, economy and environment. Statistic techniques are explored to reveal the relations between the system key parameters and the three evaluation targets. The Pareto front is generated by solving this multi-objective optimization problem. * Objective 4: Apply the developed assessment methodology to different building types and locations. Furthermore, this study considered the influence of the input uncertainties on the overall system performance. The sensitivity
WANGJian-feng; SUNChun-Lin; CHENYong-qing
2004-01-01
Ordinal optimization concentrates on isolating a subset of good designs with high probability and reduces the required simulation time dramatically for discrete event simulation. To obtain the same probability level,we may optimally allocate our computing budget among different designs,instead of equally simulating all different designs. In this paper we present an effective approach to optimally allocate computing budget for discrete-event system simulation. While ordinal optimization can dramatically reduce the computation cost, our approach can further reduce the already-low cost.
García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier
2017-06-01
CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different
Hermle, Martin
2008-11-27
This work presents various simulation studies of silicon and III-V solar cells. For standard silicon solar cells, one of the critical parameters to obtain good performance, is the rear side recombination velocity. The optical and electrical differences of the different cell structures were determined. The optical differences and the effective recombination velocity Sback of the different rear side structures for 1 Ohmcm material were extracted. Beside standard silicon solar cells, back junction silicon solar cells were investigated. Especially the influence of the front surface field and the electrical shading due to the rear side, was investigated. In the last two chapters, III-V solar cells were analysed. For the simulation of III-V multi-junction solar cells, the simulation of the tunneldiode is the basic prerequisite. In this work, the numerical calibration of an GaAs tunneldiode was achieved by using an non-local tunnel model. Using this model, it was possible to successfully simulate a III-V tandem solar cell. The last chapter deals with an optimization of the III-V 3-junction cell for space applications. Especially the influence of the GaAs middle cell was investigated. Due to structural changes, the end-of-life efficiency was drastically increased.
Computer simulation tests of optimized neutron powder diffractometer configurations
Cussen, L.D., E-mail: Leo@CussenConsulting.com [Cussen Consulting, 23 Burgundy Drive, Doncaster 3108 (Australia); Lieutenant, K., E-mail: Klaus.Lieutenant@helmholtz-berlin.de [Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany)
2016-06-21
Recent work has developed a new mathematical approach to optimally choose beam elements for constant wavelength neutron powder diffractometers. This article compares Monte Carlo computer simulations of existing instruments with simulations of instruments using configurations chosen using the new approach. The simulations show that large performance improvements over current best practice are possible. The tests here are limited to instruments optimized for samples with a cubic structure which differs from the optimization for triclinic structure samples. A novel primary spectrometer design is discussed and simulation tests show that it performs as expected and allows a single instrument to operate flexibly over a wide range of measurement resolution.
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
Simulation of solar radiation during a total solar eclipse: a challenge for radiative transfer
C. Emde
2007-01-01
Full Text Available A solar eclipse is a rare but spectacular natural phenomenon and furthermore it is a challenge for radiative transfer modeling. Whereas a simple one-dimensional radiative transfer model with reduced solar irradiance at the top of the atmosphere can be used to calculate the brightness during partial eclipses a much more sophisticated model is required to calculate the brightness (i.e. the diffuse radiation during the total eclipse. The reason is that radiation reaching a detector in the shadow gets there exclusively by horizontal (three-dimensional transport of photons in a spherical shell atmosphere. In this study the first accurate simulations are presented examplified by the solar eclipse at 29 March 2006. Using a backward Monte Carlo model we calculated the diffuse radiation in the umbra and simulated the changing colors of the sky. Radiance and irradiance are decreased by 3 to 4 orders of magnitude, depending on wavelength. We found that aerosol has a comparatively small impact on the radiation in the umbra. We also estimated the contribution of the solar corona to the radiation under the umbra and found that it is negligible compared to the diffuse solar radiation in most parts of the spectrum. Spectrally resolved measurements in the umbra are not yet available. They are challenging due to the low intensity and therefore need careful planning. The new model may be used to support measurements during future solar eclipses.
Systematic Optimization of Boron Diffusion for Solar Cell Emitters
Ebrahimi, P.; Kolahdouz, M.; Iraj, M.; Ganjian, M.; Aghababa, H.; Asl-Soleimani, E.; Radamson, Henry H.
2017-02-01
To achieve p-n junctions for n-type solar cells, we have studied BBr3 diffusion in an open tube furnace, varying parameters of the BBr3 diffusion process such as temperature, gas flows, and duration of individual process steps, i.e., predeposition and drive-in. Then, output parameters such as carrier lifetime, sheet resistance, and diffusion profile were measured and statistically analyzed to optimize the emitter characteristics. Statistical analysis (factorial design) was finally employed to systematically explore the effects of the set of input variables on the outputs. The effect of the interactions between inputs was also evaluated for each output, quantified using a two-level factorial method. Temperature and BBr3 flow were found to have the most significant effect on different outputs such as carrier lifetime, junction depth, sheet resistance, and final surface concentration.
Analyses of Simulated Reconnection-Driven Solar Polar Jets
Roberts, M. A.; Uritsky, V. M.; Karpen, J. T.; DeVore, C. R.
2014-12-01
Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called "anemone" regions are generally accepted to be regions of opposite polarity, and are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface. Previous analysis of these jets (Pariat et al. 2009,2010) modeled using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) has supported the claim that magnetic reconnection across current sheets formed at the null point between the highly twisted closed field of the dipole and open field lines surrounding it releases the energy necessary to drive these jets. However, these initial simulations assumed a "static" environment for the jets, neglecting effects due to gravity, solar wind and the expanding spherical geometry. A new set of ARMS simulations taking into account these additional physical processes was recently performed. Initial results are qualitatively consistent with the earlier Cartesian studies, demonstrating the robustness of the underlying ideal and resistive mechanisms. We focus on density and velocity fluctuations within a narrow radial slit aligned with the direction of the spine of the jet, as well as other physical properties, in order to identify and refine their signatures in the lower heliosphere. These refined signatures can be used as parameters by which plasma processes initiated by these jets may be identified in situ by future missions such as Solar Orbiter and Solar Probe Plus.
Lattice Boltzmann Simulation for Complex Flow in a Solar Wall
CHEN Rou; Shao Jiu-Gu; ZHENG You-Qu; YU Hui-Dan; XU You-Sheng
2013-01-01
In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector (UTC).Besides the lattice Boltzmann equation (LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid (air) and solid (porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.
Optimization of Operations Resources via Discrete Event Simulation Modeling
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell
Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal
2017-01-01
The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode. PMID:28128369
Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell
Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal
2017-01-01
The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode.
Optimized concentrating/passive tracking solar collector. Final report
Sterne, K E; Johnson, A L; Grotheer, R H
1979-01-01
A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.
Humanoid robot simulation with a joint trajectory optimized controller
2008-01-01
This paper describes a joint trajectory optimized controller for a humanoid robot simulator following the real robot characteristics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback. The proposed simulator, with realistic dynamics, allows to design and test behaviours and control strat...
Solar Signals in CMIP-5 Simulations: The Stratospheric Pathway
Mitchell, D.M.; Misios, S.; Gray, L. J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thieblemont, R.; Rozanov, E.;
2015-01-01
The 11 year solar-cycle component of climate variability is assessed in historical simulations of models taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal temperature, wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period approximately 1850-2005. The analysis is performed on all CMIP-5 models but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models) and compares the simulated solar cycle signature with reanalysis data. The 11 year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in the reanalysis. The peak in temperature in the lower equatorial stratosphere (approximately 70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11 year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the short-wave region. The PJO evolution is slower in these models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitude of the modeled response is more consistent with observations when only data from 1979-2005 are considered. The observed North Pacific high-pressure surface response during the solar maximum is only simulated in some models, for which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.
Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant
Francesco Calise
2015-04-01
Full Text Available This paper presents a dynamic simulation model and a parametric analysis of a solar-geothermal hybrid cogeneration plant based on an Organic Rankine Cycle (ORC powered by a medium-enthalpy geothermal resource and a Parabolic Trough Collector solar field. The fluid temperature supplying heat to the ORC varies continuously as a function of the solar irradiation, affecting both the electrical and thermal energies produced by the system. Thus, a dynamic simulation was performed. The ORC model, developed in Engineering Equation Solver, is based on zero-dimensional energy and mass balances and includes specific algorithms to evaluate the off-design system performance. The overall simulation model of the solar-geothermal cogenerative plant was implemented in the TRNSYS environment. Here, the ORC model is imported, whereas the models of the other components of the system are developed on the basis of literature data. Results are analyzed on different time bases presenting energetic, economic and exergetic performance data. Finally, a rigorous optimization has been performed to determine the set of system design/control parameters minimizing simple payback period and exergy destruction rate. The system is profitable when a significant amount of the heat produced is consumed. The highest irreversibilities are due to the solar field and to the heat exchangers.
Numerical Simulation of a Solar Domestic Hot Water System
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
Chen, Aqing; Shao, Qingyi; Ji, Zhenguo
2016-01-01
The influences of work function of transparent conducting oxides (TCO) on the per-formance of organic solar cells, including open circuit voltage, conversion efficiency and fill factor, has been simulated. It is obtained that for non-Ohmic contact the open circuit voltage and conversion efficiency increase monotonically with the TCO work function but keep constant for Ohmic contact. Fill factor decreases and increases with the electrode work function when the electrode work function is below and above a critical value (4.2 eV for TCO and 4.5 eV for back-contact), respectively. The results of this simulation are significant in the choice of TCO contacts to optimize organic planar heterojunction solar cells.
Calculation of irradiances on slopes for optimal utilization of solar energy
Aydinli, S.
1983-08-01
The effective use of solar receivers and their positioning is important for an economic utilization of solar energy. A correct precalculation of the long term average available solar energy on slopes in consideration of the local meteorological data is the basis for the economic use. The characteristics of the solar receivers can be included in this method. An optimal orientation of the receiver, which depends also on the type of use, can be calculated.
Controllable design of solid-state perovskite solar cells by SCAPS device simulation
Tan, Kai; Lin, Peng; Wang, Gang; Liu, Yan; Xu, Zongchang; Lin, Yixin
2016-12-01
The highest power conversion efficiency (PCE) of solid-state perovskite solar cells (ssPSCs) has achieved 20.1% recently. There is reason to believe that ssPSCs is a strong competitor with silicon and CIGS solar cells in photovoltaic field. The deep understanding of operation mechanism of ssPSCs is essential and required to furtherly improve device performance. The configuration and excition type are similar to inorganic semiconductor solar cells. Therefore, Solar Cell Capacitance Simulator (SCAPS), a device simulator widely using in inorganic solar cells, was employed to controllably design ssPSCs. The validity of device simulation was verified by comparing with real devices from reported literatures. The influence of absorber thickness on device property was discussed, which indicate that it exists an optimal thickness range. Two hypothetical interface layers, TiO2/perovskite layer and perovskite/HTM layer, were introduced into the construction model to consider the effects of interfaces defect density on device performance. It revealed TiO2/perovskite has stronger impact than perovskite/HTM, because higher excess carrier density existing at TiO2/perovskite will cause more recombination rate. In addition, hole transport materials (HTM) parameters, hole mobility and acceptor density, were chosen to study the impact of HTM characteristics on PCE. The analysis illuminate that the design of HTM layer should balance hole mobility and acceptor density. Meanwhile, different HTM candidates were selected and replaced typical HTM layer. The discussion about the function of candidates on solar cells performance demonstrated that a thiophene group hole-transporting polymer (PTAA) and a copper-based conductor (CuI) both have relatively high PCE, which is due to their wide bandgap, high conductivity, and better chemical interaction with perovskite absorber.
Mansour, F. A.; Nizam, M.; Anwar, M.
2017-02-01
This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.
Design and Simulation of an Absorption Diffusion Solar Refrigeration Unit
B. Chaouachi
2007-01-01
Full Text Available The purpose of this study was the design and the simulation of an absorption diffusion refrigerator using solar as source of energy, for domestic use. The design holds account about the climatic conditions and the unit cost due to technical constraints imposed by the technology of the various components of the installation such as the solar generator, the condenser, the absorber and the evaporator. Mass and energy conservation equations were developed for each component of the cycle and solved numerically. The obtained results showed, that the new designed mono pressure absorption cycle of ammonia was suitable well for the cold production by means of the solar energy and that with a simple plate collector we can reach a power, of the order of 900 watts sufficient for domestic use.
Numerical simulations of magnetic reconnection in the lower solar atmosphere
Xiao-Yan Xu; Cheng Fang; Ming-De Ding; Dan-Hui Gao
2011-01-01
Observations indicate that Ellerman bombs (EBs) and chromospheric microflares both occur in the lower solar atmosphere, and share many common features,such as temperature enhancements, accompanying jet-like mass motions, short lifetime, and so on. These strongly suggest that EBs and chromospheric microflares could both probably be induced by magnetic reconnection in the lower solar atmosphere.With gravity, ionization and radiation considered, we perform two-dimensional numerical simulations of magnetic reconnection in the lower solar atmosphere. The influence of different parameters, such as intensity of the magnetic field and anomalous resistivity, on the results are investigated. Our result demonstrates that the temperature increases are mainly due to the joule dissipation caused by magnetic reconnection.The spectral profiles of EBs and chromospheric microflares are calculated with the non-LTE radiative transfer theory and compared with observations. It is found that the typical features of the two phenomena can be qualitatively reproduced.
Anon Namin; Chaya Jivacate; Dhirayut Chenvidhya; Krissanapong Kirtikara; Jutturit Thongpron
2012-01-01
I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell charac...
Noel Machado Toranzo
2015-06-01
Full Text Available En este trabajo se realizó el diseño e implementación de un dispositivo encargado de obtener las coordenadas del Sol en cualquier momento del día, es decir, un seguidor solar a dos ejes por punto luminoso. Este seguidor consta de dos bloques principales: la tarjeta controladora y la parte mecánica. Su diseño se basó en el uso de fotorresistencias, microcontroladores y motores de pasos, el mismo posee altas prestaciones y bajo costo. El prototipo construido es utilizado en las investigaciones de aprovechamiento de la energía solar que se realizan en el Grupo de Energía Renovable Aplicadas (GERA de la Universidad de Oriente, particularmente en los paneles fotovoltaicos y los calentadores de agua. Se realizó una prueba experimental en los laboratorios y en el polígono de dicho grupo y se comprobó que el seguidor solar funciona adecuadamente, cumpliendo con las expectativas deseadas.The design and implementation of a device for obtaining the coordinates of the sun at any time during the day, it means, a solar tracker of type two axis by luminous point is developed in this paper. This tracker consists of two main blocks: the controller board and the mechanical part. The design is based on the use of photoresistences, microcontrollers and stepper motors. The prototype is used on investigations about solar energy developed at the GERA (Grupo de Energía Renovable Aplicada of Universidad de Oriente, particularly in photovoltaic panels and water heaters. An experimental test was conducted in the laboratories and at the site of the group and it was found that the solar tracker is functioning properly, meeting the desired expectations.
Development of a framework for optimization of reservoir simulation studies
Zhang, Jiang; Delshad, Mojdeh; Sepehrnoori, Kamy [The University of Texas at Austin, Austin, TX (United States)
2007-10-15
We have developed a framework that distributes multiple reservoir simulations on a cluster of CPUs for fast and efficient process optimization studies. This platform utilizes several commercial reservoir simulators for flow simulations, an experimental design and a Monte Carlo algorithm with a global optimization search engine to identify the optimum combination of reservoir decision factors under uncertainty. This approach is applied to a well placement design for a field-scale development exercise. The uncertainties considered are in the fault structure, porosity and permeability, PVT, and relative permeabilities. The results indicate that the approach is practical and efficient for performing reservoir optimization studies. (author)
Field sampling scheme optimization using simulated annealing
Debba, Pravesh
2010-10-01
Full Text Available to derive optimal sampling schemes. 2. Hyperspectral remote sensing In the study of electro-magnetic physics, when energy in the form of light interacts with a material, part of the energy at certain wavelength is absorbed, transmitted, emitted... in order to derive optimal sampling schemes. 2. Hyperspectral remote sensing In the study of electro-magnetic physics, when energy in the form of light interacts with a material, part of the energy at certain wavelength is absorbed, transmitted, emitted...
Simulation of a solar powered electric vehicle under the constraints of the world solar challenge
Roerig, Steven J.
1995-03-01
Development of an effective method for evaluation of alternative energy sources in the automotive industry has always been a necessity for cost efficient design analysis. One viable alternative energy source is electricity. In the present day environment of shrinking fossil fuel supplies and environmental awareness, electric powered vehicles are becoming a low cost, non-polluting, alternative means of transportation. The analysis of reliable electric propulsion can be expensive without a modeling tool for evaluating design strategies before vehicle construction. This thesis explores electricity as an alternative energy source for the automobile of tomorrow. Under the guidelines of the World Solar challenge, a solar powered electric vehicle, using a permanent-magnet brushless dc motor has be modeled and simulated in Simulink (Dynamic System Simulation Software). The simulations were performed with the goal of determining the optimum configuration to efficiently utilize the power supplied from the solar array, batteries, and motor. The simulated vehicle was 'driven' over various terrain's and at various speeds. The results obtained confirm this simulation as an efficient design tool and present an example of an optimum vehicle speed for one particular vehicle configuration.
Solar Magnetic Flux Tube Simulations with Time-Dependent Ionization
Fawzy, Diaa E; Rammacher, Wolfgang
2012-01-01
In the present work we expand the study of time-dependent ionization previously identified to be of pivotal importance for acoustic waves in solar magnetic flux tube simulations. We focus on longitudinal tube waves (LTW) known to be an important heating agent of solar magnetic regions. Our models also consider new results of wave energy generation as well as an updated determination of the mixing length of convection now identified as 1.8 scale heights in the upper solar convective layers. We present 1-D wave simulations for the solar chromosphere by studying tubes of different spreading as function of height aimed at representing tubes in environments of different magnetic filling factors. Multi-level radiative transfer has been applied to correctly represent the total chromospheric emission function. The effects of time-dependent ionization are significant in all models studied. They are most pronounced behind strong shocks and in low density regions, i.e., the middle and high chromosphere. Concerning our m...
Simulated Space Environmental Effects on Thin Film Solar Array Components
Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon
2017-01-01
The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.
Optimizing reversible simulation of injective functions
Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert
2012-01-01
of the computation and uncomputation steps for a class of injective programs. A practical consequence is that the reversible simulation runs twice as fast as Bennett’s simulation. The proposed method is demonstrated by developing lossless encoders and decoders for run-length encoding and range coding. The range...
A solar simulator design for concentrating photovoltaics
Rehn, H.; Hartwig, U.
2010-08-01
In our contribution, we discuss an optical system which is able to provide sun-like radiation on a CPV module. This system is able to realize collimated light with more than 130 klx, with an angle of incidence of less than 0.26°. Special attention is given to a uniform light distribution on an illuminated area of 8 × 8 inches. The resulting optical efficiency of the system is 33%, much better than previously achieved with Xe flash lamp designs [1]. The design is based on a P-VIP 330/1.0 lamp, the latest in a series of OSRAM's P-VIP lamp types for video projectionwhich is featuring a peak luminance of approximately 9 Gcd/m2. As a result of the enormous operating pressure of the lamp, its spectrum is similar to the spectrum of the sun and will probably enable at least a class B simulator. The device based on the described design delivers continuous, sun-like radiation. This way, features of CPV modules as efficiency, angular sensitivity or tracking behavior can be tested during development or even in production.
Beam Delivery Simulation - Recent Developments and Optimization
AUTHOR|(INSPIRE)INSPIRE-00232566; Boogert, Stewart Takashi; Garcia-Morales, H; Gibson, Stephen; Kwee-Hinzmann, Regina; Nevay, Laurence James; Deacon, Lawrence Charles
2015-01-01
Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed.
Simulating performance of solar cells with spectral downshifting layers
Sark, W.G.J.H.M. van [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)], E-mail: w.g.j.h.m.vansark@chem.uu.nl
2008-08-30
In order to estimate the performance of solar cells with downshifters under realistic irradiation conditions we used spectral distributions as they may be found outdoors. The spectral distributions were generated on a minutely basis by means of the spectrum simulation model SEDES2, using minutely measured data for global, direct, and diffuse irradiation from a Dutch meteorological station. Hourly aggregated spectra for a number of typical days (clear summer day, cloudy summer day, clear winter day, cloudy winter day) were used in modelling the output of the solar cell with and without downshifter. It was found that the simulated short current enhancement, which varies between about 7 and 23%, is linearly related with the average photon energy of the spectra.
Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms
Dasi-Espuig, M; Krivova, N A; Solanki, S K; Unruh, Y C; Yeo, K L
2016-01-01
We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semisynthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number....
Device simulation and modeling of microcrystalline silicon solar cells
Takakura, H.; Hamakawa, Y. [Ritsumeikan Univ., Shiga (Japan). Dept. of Photonics
2002-10-01
Device modeling for p-i-n junction basis thin film microcrystalline Si solar cells has been examined with a simple model of columnar grain structure utilizing two-dimensional device simulator. The simulation results of solar cell characteristics show that open-circuit voltage (V{sub oc}) and fill factor considerably depend on structural parameters such as grain size and acceptor doping in intrinsic layer, while short-circuit current density (J{sub sc}) is comparatively stable by built-in electric field in the i-layer. It is also found that conversion efficiency of more than 16% could be expected with 1 {sup {mu}}m grain size and well-passivated condition with 10 {sup {mu}}m thick i-layer and optical confinement. (Author)
Simulation of closed loop controlled boost converter for solar installation
Kalirasu Athimulam
2010-01-01
Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high stepup and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper digital simulation of closed loop controlled boost converter for solar installation is presented. Circuit models for open loop and closed loop controlled systems are developed using the blocks of simulink. The simulation results are compared with the theoretical results. This converter has advantages like improved power factor, fast response and reduced hardware. .
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai
2003-10-01
This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.
Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.
2017-03-01
This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.
Thermal analysis and performance optimization of a solar hot water plant with economic evaluation
Kim, Youngdeuk
2012-05-01
The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter
Solar collector exergetic optimization for a multi effect humidification desalination prototype
R González-Acuña
2016-09-01
Full Text Available Venezuela is a country with a great deal of water resources. In spite of this, about 1.6 million inhabitants are dispersed in remote regions where water distribution is problematic due to the lack of this resource. A flat plate solar collector was built as a component of a single-stage Multi-Effect Humidification (MEH desalination plant prototype, and its characterization was done on a testing rig designed and constructed according to the ANSI/ASHRAE 93-2003 standards. In order to optimize the operation of this equipment, the exergetic change of the working fluid across the solar collector was maximized. This objective was accomplished through a numerical simulation of the solar collector performance using a predictive algorithm and available yearlong meteorological data. It was found that a mass flow rate equal to 0.006 kg/s (0.36 LPM should be maintain to ensure the maximum exergetic gain of the working fluid for an inlet temperature of 54°C.
Observations and Simulations of Magnetohydrodynamic Turbulence in the Solar Wind
Goldstein, M. L.
2006-12-01
Alfvénic fluctuations are a ubiquitous component of the solar wind. Evidence from many spacecraft indicates that the fluctuations are convected out of the solar corona with relatively flat power spectra and constitute a source of free energy for a turbulent cascade of magnetic and kinetic energy to high wave numbers. Observations and simulations support the conclusion that the cascade evolves most rapidly in the vicinity of velocity shears and current sheets. Numerical solutions of the magnetohydrodynamic equations have elucidated the role of expansion on the evolution of the turbulence. Such studies are clarifying not only how a turbulent cascade develops, but also the nature of the symmetries of the turbulence. Of particular interest is the origin of the two-component correlation function of magnetic fluctuations that was deduced from ISEE-3 data. A central issue to be resolved is whether the correlation function indicates the existence of a quasi-two- dimensional component of the turbulence, or reflects another origin, such as pressure-balanced structures or small velocity shears. In our efforts to simulate solar wind turbulence we have included a tilted rotating current heliospheric sheet as well as variety of waves (e.g., Alfvénic, quasi-two-dimensional, pressure balance structures) and microstreams. These simulations have replicated many of the observations, but challenges remain.
Optimizing the integrated design of boilers - simulation
Sørensen, Kim; Karstensen, Claus M. S.; Condra, Thomas Joseph
2004-01-01
.) it is important to see the 3 components as an integrated unit and optimize these as such. This means that the burner must be designed and optimized exactly to the pressure part where it is utilized, the control system must have a conguration optimal for the pressure part and burner where it is utilized etc....... Traditionally boiler control systems have been designed in a rather simple manner consisting of a feed water controller and a pressure controller; two controllers which, in principle, operated without any interaction - for more details on boiler control see [4]. During the last year Aalborg Industries A/S has...... that are difcult to estimate/calculate have (on the basis of the tests) been determined by means of a least-square data tting, the minimums have been found by means of a Gauss-Newton algorithm and physically veried afterwards. The dynamic boiler model will be applied for developing controllers and adapting...
LOGISTICS ALTERNATIVE IN SIMULATION AND OPTIMIZATION THE SUPPLY CHAIN
Liliana CONDRATCHI
2013-01-01
Full Text Available The purpose of this work is the presentation a general framework to support the operational decisions for supply chain networks using a combination of optimization model and discrete-event simulation. The simulation model includes nonlinear and stochastic elements, whereas the optimization model represents a simplified version. Based on initial simulation runs cost parameters, production and transportation times are estimated for the optimization model. The solutions of the optimization model are translated into decision rules for the discrete-event simulation. This procedure is applied iteratively until the difference between subsequent solutions is small enough. This method is applied successfully to several test examples and is shown to delivery competitive results much faster compared to conventional mixed-integer models in a stochastic environment. It provides the possibility to model and solve morerealistic problems (incorporating dynamism and uncertainty in an acceptable way
Robust Optimization in Simulation : Taguchi and Response Surface Methodology
Dellino, G.; Kleijnen, J.P.C.; Meloni, C.
2008-01-01
Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a 'robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by
Simulated hail impact testing of photovoltaic solar panels
Moore, D.; Wilson, A.; Ross, R.
1978-01-01
Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.
Initiation Style Optimization of Aimed Warhead by Numerical Simulation
WEI Ji-feng; LI Na; WEN Yu-quan; WANG Wen-jie
2008-01-01
The kill characteristics of aimed warhead were studied.Emphasis on the improvement of initiation system,experiments and three dimensional numerical investigations were carried out.Simulation results of side three initiation points fit experiments well.Optimal initiation style is obtained through further simulation.It shows that the effective fragments and the effective kill energy of the optimal scheme increase 12.8%and 10.1%respectively.
Simulation and optimization of energy systems for in-bin drying of canola grain (rapeseed)
Schoenau, G.J.; Arinze, E.A.; Sokhansanj, S. [Saskatchewan Univ., Saskatoon, SK (Canada). College of Engineering
1995-01-01
Energy utilization systems optimization and management strategies for in-bin drying of canola were investigated by using a validated computer simulation model and typical weather data for a prairie location in North America. The use of different energy systems, including natural gas, propane, electricity, solar energy, and combined natural gas and solar energy for drying grain within 15 days with airflow rates of 0.5-2m{sup 3}/min t, initial grain moisture contents of 13, 16 and 19%, and three harvest dates in August, September and October, was simulated for 10% and 8% moisture contents average-dry and through-dry policies. The drying systems were optimized by considering the total annual cost of a drying system within set bounds of drying time ({<=}15 days) and spoilage index (SI < 1.0). Continuous fan operation with 1.5-2m{sup 3}/min t ambient air with about 9-26 MJ/t fan energy consumption was required to dry canola grain to 10% and 8% average-dry and through-dry moisture contents in 15 days or less August at 19% initial moisture content or less. Supplemental heat, by raising the ambient temperature by 5-10{sup o}C, maintaining the plenum temperature at 20{sup o}C and solar heating, must be applied to successfully dry the product in September and October. Solar heating for drying was found to be more cost effective than other supplemental heat systems provided a well designed flat-plate solar collector for air heating can be found for use in locations with good solar energy availability. Heating the drying air with natural gas or propane was the cost effective for situations where the use of conventional energy systems is preferable to renewable energy sources in grain drying operation. (Author)
A solar simulator-pumped gas laser for the direct conversion of solar energy
Weaver, W. R.; Lee, J. H.
1981-01-01
Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.
Preisler, A.; Brychta, M.; Dubisch, F.; Stift, F.; Edlinger, T. [AIT - Austrian Institute of Technology, Wien (Austria). Sustainable Building Technologies
2010-07-01
The authors of the contribution under consideration evaluate the efficiency and the potential of optimization of the utilization of solar energy of a DEC system (DEC: Desiccant Evaporative Cooling) for cooling of offices by means of monitoring results. In parallel, a simulation model in the TRNSYS simulation environment was created. This simulation model considers the solar system and registry of regeneration in the ventilation system.
金慧娇; 田汉民; 李春静; 戎小莹; 张天
2016-01-01
With the rapid development of organic-inorganic metal halide perovskite materials,which possess su-perior photoelectric properties,perovskite solar cells have received great attention from researchers.The tandem solar cells with the perovskite as the top cell have also gained wide concern of researchers.Through a series of studies,a re-liable theory confirmed that the tandem solar cells have a higher power conversion efficiency of more than 3 5%,a lo-wer cost on production,and a simpler process.Therefore,it is likely to foster new breakthroughs in the development of photovoltaic device.This paper mainly introduces the recent progress of perovskite tandem solar cells in the aspects of structures,preparations of process,performance,efficiency etc.%随着光电性质优越的有机-无机金属卤化物钙钛矿材料的快速发展，钙钛矿太阳电池受到了众多研究者的关注，以钙钛矿太阳电池作为顶层电池的叠层电池也受到了研究者的重视。经研究发现这种叠层电池的光电转换效率理论值高于35%，并且制作成本低，生产工艺简单，从而有可能孕育出光伏器件发展的新突破。主要介绍钙钛矿叠层太阳电池的结构、工艺制备，及其性能、效率等方面的最新进展。
Optimization of solar power plants with rotating electric generators
Ruppe, Harry O.; Blumenberg, J.
It is shown how such electric power plants can be optimized for space applications, including space-based solar power systems generating electric energy for Earth usage. Reradiation from the energy collector and optical properties of the collector are of significant influence. Main conclusions are: -simple (i.e optically inferior), but light-weight concentrators should not be ruled out, -optimum temperatures are not extremely high, -the ratio of power plant mass to electric power is comparable to corresponding data for such systems deriving primary power from nuclear reactors. This paper consists of two parts: Firstly (H. O. Ruppe), somewhat extreme and idealized design examples are presented and the method is developed. Only the Rankine (really, derated Carnot) cycle is considered. All of this information is based strongly on pp. 225-241 of Ruppe, Introduction to Astronautica, Vol. 2. Academic Press, New York (1967). Secondly (J. Blumenberg), more refined information is included. This is largely taken from Blumenberg, Acta Astronautica8, 839-854 (1981), and additional data which were developed for this publication.
Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design
Perers, Bengt; Furbo, Simon; Tian, Zhiyong
2016-01-01
, was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP...... collectors could raise flexibility in the control strategy of the plant. The TRNSYS-Genopt model is based on individually validated component models and collector parameters from experiments. Optimization of the cost performance of the plant has been conducted in this paper. The simulation model remains...... to be validated with annual measured data from the plant....
Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells.
Pala, Ragip A; Liu, John S Q; Barnard, Edward S; Askarov, Daulet; Garnett, Erik C; Fan, Shanhui; Brongersma, Mark L
2013-01-01
Non-periodic arrangements of nanoscale light scatterers allow for the realization of extremely effective broadband light-trapping layers for solar cells. However, their optimization is challenging given the massive number of degrees of freedom. Brute-force, full-field electromagnetic simulations are computationally too time intensive to identify high-performance solutions in a vast design space. Here we illustrate how a semi-analytical model can be used to quickly identify promising non-periodic spatial arrangements of nanoscale scatterers. This model only requires basic knowledge of the scattering behaviour of a chosen nanostructure and the waveguiding properties of the semiconductor layer in a cell. Due to its simplicity, it provides new intuition into the ideal amount of disorder in high-performance light-trapping layers. Using simulations and experiments, we demonstrate that arrays of nanometallic stripes featuring a limited amount of disorder, for example, following a quasi-periodic or Fibonacci sequence, can substantially enhance solar absorption over perfectly periodic and random arrays.
Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells
Pala, Ragip A.; Liu, John S. Q.; Barnard, Edward S.; Askarov, Daulet; Garnett, Erik C.; Fan, Shanhui; Brongersma, Mark L.
2013-07-01
Non-periodic arrangements of nanoscale light scatterers allow for the realization of extremely effective broadband light-trapping layers for solar cells. However, their optimization is challenging given the massive number of degrees of freedom. Brute-force, full-field electromagnetic simulations are computationally too time intensive to identify high-performance solutions in a vast design space. Here we illustrate how a semi-analytical model can be used to quickly identify promising non-periodic spatial arrangements of nanoscale scatterers. This model only requires basic knowledge of the scattering behaviour of a chosen nanostructure and the waveguiding properties of the semiconductor layer in a cell. Due to its simplicity, it provides new intuition into the ideal amount of disorder in high-performance light-trapping layers. Using simulations and experiments, we demonstrate that arrays of nanometallic stripes featuring a limited amount of disorder, for example, following a quasi-periodic or Fibonacci sequence, can substantially enhance solar absorption over perfectly periodic and random arrays.
Multivariate optimization of a solar water heating system using the Simplex method
Michelson, E
1982-01-01
Two Simplex computer library packages for multivariate optimization have been tested on an hour-by-hour simulation of a solar water heating system. The two packages are: MINUITS written at CERN (Geneva) , and the E04CCF routine which is part of the UK Numerical Algorithms Group Library. Technical and economic optima have been derived for three of the following variables simultaneously: collector area, tilt, azimuth, and store volume. The two packages give the same results. The meteorological data used were one (composite) year for Hamburg (Germany) and 1964 for Kew (UK). The Hamburg data were also condensed to form a year consisting of 60 averaged days. The optima derived with the 60-day year were very close to those obtained with the 365-day year. The Simplex method, which is a direct search method, is known to be very robust. It is particularly suited to hour-by-hour simulations of solar heating systems since the function being minimized is not monotonically decreasing towards the minimum in sufficient sign...
Study by simulation of the SnO2 and ZnO anti-reflection layers in n-SiC/p-SiC solar cells
Zerfaoui, Hana; Dib, Djalel; Rahmani, Mohamed; Benyelloul, Kamel; Mebarkia, Chafia
2016-07-01
Recently, Two technologies of the photovoltaic cells are present today namely the cells crystalline (polycrystalline and monocrystalline) and the cell thin layers. The development of the solar cells requires a technological change of materials used in their manufacturing. The thin layers are parts of these materials and which announced their effectiveness and growth of output of the solar cell. The aim of this paper article is to the study and simulation of photovoltaic cells containing SiC materials. This material is have important having a part in the development of renewable energies. Based on the SCAPS (a Solar Cell Capacitance Simulator) simulation, the obtained results are Vco, Jsc, FF and the output energy of conversion of a solar cell n-SiC/p-SiC with different materials for the anti-reflecting layer ZnO and SnO2.with the SCAPS (a Solar Cell Capacitance Simulator) computer code in one dimension, the results obtained after optimization.
Transmission network expansion planning with simulation optimization
Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory
2010-01-01
Within the electric power literatW''e the transmi ssion expansion planning problem (TNEP) refers to the problem of how to upgrade an electric power network to meet future demands. As this problem is a complex, non-linear, and non-convex optimization problem, researchers have traditionally focused on approximate models. Often, their approaches are tightly coupled to the approximation choice. Until recently, these approximations have produced results that are straight-forward to adapt to the more complex (real) problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (i.e. large amounts of limited control, renewable generation) that necessitates new optimization techniques. In this paper, we propose a generalization of the powerful Limited Discrepancy Search (LDS) that encapsulates the complexity in a black box that may be queJied for information about the quality of a proposed expansion. This allows the development of a new optimization algOlitlun that is independent of the underlying power model.
Simulation of turbulent magnetic reconnection in the smallscale solar wind
魏奉思; 胡强; R.Schwen; 冯学尚
2000-01-01
Some observational examples for the possible occurrence of the turbulent magnetic reconnection in the solar wind are found by analysing Helios spacecraft’s high resolution data. The phenom-ena of turbulent magnetic reconnections in small scale solar wind are simulated by introducing a third order accuracy upwind compact difference scheme to the compressible two-dimensional MHD flow. Numerical results verify that the turbulent magnetic reconnection process could occur in small scale in-terplanetary solar wind, which is a basic feature characterizing the magnetic reconnection in high-mag-netie Peynolds number ( RM = 2 000-10 000) solar wind. The configurations of the magnetic reconnection could evolve from a single X-line to a multiple X-line reconnection, exhibiting a complex picture of the formation, merging and evolution of magnetic islands, and finally the magnetic reconnection would evolve into a low-energy state. Its life-span of evolution is about one hour order of magnitude. Various magnetic and f
Design data package and operating procedures for MSFC solar simulator test facility
1981-01-01
Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.
A framework for response surface methodology for simulation optimization
H.G. Neddermeijer; G.J. van Oortmarssen (Gerrit); N. Piersma (Nanda); R. Dekker (Rommert)
2000-01-01
textabstractWe develop a framework for automated optimization of stochastic simulation models using Response Surface Methodology. The framework is especially intended for simulation models where the calculation of the corresponding stochastic response function is very expensive or time-consuming. Re
Optimization of simulated inventory systems: OptQuest and alternatives
Kleijnen, J.P.C.; Wan, J.
2006-01-01
This article illustrates simulation optimization through an (s, S) inventory manage- ment system. In this system, the goal function to be minimized is the expected value of speci…c inventory costs. Moreover, speci…c constraints must be satis…ed for some random simulation responses, namely the servic
Optimization of Simulated Inventory Systems : OptQuest and Alternatives
Kleijnen, J.P.C.; Wan, J.
2006-01-01
This article illustrates simulation optimization through an (s, S) inventory management system.In this system, the goal function to be minimized is the expected value of specific inventory costs.Moreover, specific constraints must be satisfied for some random simulation responses, namely the service
Modeling the Effects of Solar Cell Distribution on Optical Cross Section for Solar Panel Simulation
2012-09-01
TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON a...backscatter is not a concern in this experiment as the only geometry used is a bistatic geometry with a 90∘ Solar Phase Angle (SPA), as depicted in Figure...the space object. This way, the far-field imagery, spectrum, and any simulation data can be compared directly. Figure 3. Bistatic illumination
Simulation of the Efficiency of a-SiC:H/a-Si:H Tandem Multilayer Solar Cells
Muminov, Khikmat Kh
2016-01-01
In this paper we carried out theoretical study of the general issues related to the efficiency of SiC:H/a-Si:H single- and multi-junction tandem solar cells. Implementation of numerical simulations by the use of AMPS-1D program of one-dimensional analysis of microelectronic and photonic structures for the analysis of hydrogenated silicon solar cells allowed us to formulate the optimal design of new kind of multi-junction tandem solar cells, providing its most efficient operation. The numerical analysis of SiC:H/a-Si:H single-junction solar cell whith doped i-layer used as the intermediate absorbing layer (a -Si: H) placed between layers of p-type (a-SiC: H) and n-type (a-Si: H) has been conducted. It has been established that after optimizing the solar cell parameters its highest efficiency of 19.62% is achieved at 500 nm thickness of i-layer. The optimization of the newly developed multi-junction structure of a-SiC:H/a-Si:H tandem solar cell has been conducted. It has been shown numerically that its highest ...
Simulation Based Optimization for World Line Card Production System
Sinan APAK
2012-07-01
Full Text Available Simulation based decision support system is one of the commonly used tool to examine complex production systems. The simulation approach provides process modules which can be adjusted with certain parameters by using data relatively easily obtainable in production process. World Line Card production system simulation is developed to evaluate the optimality of existing production line via using discrete event simulation model with variaty of alternative proposals. The current production system is analysed by a simulation model emphasizing the bottlenecks and the poorly utilized production line. Our analysis identified some improvements and efficient solutions for the existing system.
Lee, Cheng-Kuang; Pao, Chun-Wei
2016-08-17
Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.
李志永; 陈超; 张叶; 李清清; 罗海亮; 邓超
2012-01-01
The solar energy-phase change thermal storage-fresh air heating system was built to afford building fresh air heating load. In this system, all-glass vacuum tube solar collector was taken as system' s heat source. The phase change thermal storage equipment was taken the core heat storage component of this system. The air-water heat exchanger was taken as the system' s heating end. By running the different modes of the system, the unstable solar energy was changed with the stable heat source. A model describing the transient behavior of system was first establishes in this paper and the model was validated by experiment. Then, based on this model, the system design parameters (collector system flow rate, quality of phase change materials, phase change temperature, etc. ) and operating strategies were investigated.%构建太阳能-相变蓄热-新风供暖系统用于承担建筑新风负荷,以全玻璃真空管集热器作为系统集热组件,以相变蓄热装置作为系统蓄热组件,以空气-水换热器作为系统供暖末端.通过使系统运行不同模式的方式达到将不稳定的太阳能变为稳定供暖热源的目的.建立耦合系统动态仿真模型并对其进行实验验证.依据此模型对系统最佳设计参数(集热系统流量、相变材料质量、相变温度等)和运行策略进行研究.
A numerical multivariate approach to optimization of photovoltaic solar low energy building designs
Peippo, K.
1997-12-31
The large number of options available to the energy conscious building designer calls for careful assessment of the competitiveness of the various technologies, in order to find the best technology mix for each design. Here, a simplified rigorous numerical multivariate optimization scheme is introduced to address the energy efficient solar low energy building design problem at the early design stages. The approach is based on elementary building modeling and non-linear optimization techniques where the basic physical, technical and economical interactions between the building design options and energy flows are accounted for. The design features considered include building geometry, thermal insulation, windows, daylighting, solar thermal systems and photovoltaics. The applicability of the approach is assessed through a set of case studies for a single-family residential house and a large office building in three different climates in Europe: Helsinki, Finland (60 deg C N), Paris, France (49 deg C N) and Trapani, Italy (38 deg C N). The analysis is based on annual hourly simulations with Test Reference Years. First, the design minimizing the sum of annual capital and energy cost of the building is determined. Then, the optimal path is computed that gives the most economical design to reach a given level of annual primary energy requirements, should this desired level be lower than the one in the least cost option. The optimal values of the key design variables for the case studies are presented. As a typical low energy building design feature, photovoltaics is to be introduced at a relatively early stage in the designs, in order to further decrease the auxiliary energy requirements. This due to the rather high share of electricity in the energy balance of low energy buildings. However, it is crucial for the integrity of low energy building design, that also the other design features are optimized before one resorts to PV. In addition, it is notable that the somewhat
Final Report of the Simulation Optimization Task Force
Rimoldi, A; Dell'Acqua, A; Froidevaux, D; Gianotti, F; Guyot, C; Hinchliffe, I; Jakobs, K; Marshall, Z; Nisati, A; Quarrie, D; Unal, G; Young, C
2009-01-01
This is the final report of the ATLAS Simulation Optimization Task Force, established in June of 2007. This note justifies the selected Geant4 version, physics list, and range cuts to be used by the default ATLAS simulation for initial data taking and beyond. The current status of several projects, including detector description, simulation validation, studies of additional Geant4 parameters, and cavern background, are reported.
An Optimization Method for Simulator Using Probability Statistic Model
无
2006-01-01
An optimization method was presented to be easily applied in retargetable simulator. The substance of this method is to reduce the redundant information of operation code which is caused by the variety of execution frequencies of instructions. By recoding the operation code in the loading part of simulator, times of bit comparison in identification of an instruction will get reduced. Thus the performance of the simulator will be improved. The theoretical analysis and experimental results both prove the validity of this method.
S. Saravanan
2015-05-01
Full Text Available Thin film solar cells are cheaper but having low absorption in longer wavelength and hence, an effective light trapping mechanism is essential. In this work, we proposed an ultrathin crystalline silicon solar cell which showed extraordinary performance due to enhanced light absorption in visible and infrared part of solar spectrum. Various designing parameters such as number of distributed Bragg reflector (DBR pairs, anti-reflection layer thickness, grating thickness, active layer thickness, grating duty cycle and period were optimized for the optimal performance of solar cell. An ultrathin silicon solar cell with 40 nm active layer could produce an enhancement in cell efficiency ∼15 % and current density ∼23 mA/cm2. This design approach would be useful for the realization of new generation of solar cells with reduced active layer thickness.
Simulation Propulsion System and Trajectory Optimization
Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.
2017-01-01
A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.
Nonlinear Compensation of Solar Array Simulators with Dual Power Regulation
Mizrah, E. A.; Tkachev, S. B.; Poymanov, D. N.; Fedchenko, A. S.
2016-11-01
During the tests of the spacecraft electrical systems there is a need for simulators of individual parts of the spacecrafts, in particular, solar array simulators (SAS). One of the topologies of medium and high power SAS simulators has dual control of consumed power and contains series or parallel connected linear and switching regulators. This topology allows to provide wide bandwidth and high efficiency, but the range of the resistance change of periodically switched SAS load is limited to the value of the stabilized attribute. Nonlinear compensator (NC) allows to reduce the average feedback voltage of the switching regulator in case of periodic load switching, which, in turn, allows to increase the average value of the stabilized attribute. The describing function method provides a mathematical description of the NC electrical circuit, which allows to select parameters of NC that eliminate the excitation of self-oscillation based on the SAS load switching frequency range and to study the switching regulator stability.
Simulations for optimization of SSRF BPM
YANG Nuo; LIU Gui-Min
2003-01-01
The wake field, impedance and output signal for SSRF BPM have been calculated and analyzed by us-ing the numerical simulation code of MAFIA. The narrow-band impedance of BPM arising from formation of reso-nance in its cavity like structure either is harmful to beam or limits the performance of BPM itself, and should be re-duced to tolerable levels. The calculated results show that there are three main peaks in the impedance spectrum ofthe SSRF BPM prototype, and two of which are above the limit. After lots of simulations for different shapes of theBPM button, a new structure of SSRF BPM have been found, and there is only one main peak, which is under thelimit, in the impedance spectrum. Its output signal also meets the requirement.
CLIC Telescope optimization with ALLPIX simulation
Qi, Wu
2015-01-01
A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.
Programmable physical parameter optimization for particle plasma simulations
Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh
2012-10-01
We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.
Simulation and Optimization of Turning-Milling Complex Machining
Shihong Guo
2013-05-01
Full Text Available In this study, the turning-milling complex processing simulation platform is established based on the simulation and optimization platform of VERICUT NC machining, with WFL M65 turning-milling complex machining center as the research object; taking barrel body parts as an example, the simulation machining and related process issues checking in machining process is made and the analysis and optimization of effect factors is made for processing efficiency. The application indicates that: the research results effectively realize the simulation of the turning-milling complex machining process and the correctness verification and process optimization of the NC machining program, improve the processing efficiency and the processing quality, well improve the application level of enterprise turning-milling complex machining center, promote the development of the turning-milling complex machining technology.
Simulation Optimization of the Crossdock Door Assignment Problem
Aickelin, Uwe
2008-01-01
The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.
A comparison of measured and simulated solar network contrast
Afram, N; Solanki, S K; Schüssler, M; Mathew, S K
2009-01-01
Long-term trends in the solar spectral irradiance are important to determine the impact on Earth's climate. These long-term changes are thought to be caused mainly by changes in the surface area covered by small-scale magnetic elements. The direct measurement of the contrast to determine the impact of these small-scale magnetic elements is, however, limited to a few wavelengths, and is, even for space instruments, affected by scattered light and instrument defocus. In this work we calculate emergent intensities from 3-D simulations of solar magneto-convection and validate the outcome by comparing with observations from Hinode/SOT. In this manner we aim to construct the contrast at wavelengths ranging from the NUV to the FIR.
Validation of CFD simulation for flat plate solar energy collector
Selmi, Mohamed; Al-Khawaja, Mohammed J.; Marafia, Abdulhamid [Department of Mechanical Engineering, University of Qatar, P.O. Box 2713, Doha, State of Qatar (Qatar)
2008-03-15
The problem of flat plate solar energy collector with water flow is simulated and analyzed using computational fluid dynamics (CFD) software. The considered case includes the CFD modeling of solar irradiation and the modes of mixed convection and radiation heat transfer between tube surface, glass cover, side walls, and insulating base of the collector as well as the mixed convective heat transfer in the circulating water inside the tube and conduction between the base and tube material. The collector performance, after obtaining 3-D temperature distribution over the volume of the body of the collector, was studied with and without circulating water flow. An experimental model was built and experiments were performed to validate the CFD model. The outlet temperature of water is compared with experimental results and there is a good agreement. (author)
Distribution System Optimization Planning Based on Plant Growth Simulation Algorithm
WANG Chun; CHENG Hao-zhong; HU Ze-chun; WANG Yi
2008-01-01
An approach for the integrated optimization of the construction/expansion capacity of high-voltage/medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.
Thermal performance optimization of a flat plate solar air heater using genetic algorithm
Varun; Siddhartha [Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177 005 (H.P.) (India)
2010-05-15
Thermal performance of solar air heater is low and different techniques are adopted to increase the performance of solar air heaters, such as: fins, artificial roughness etc. In this paper an attempt has been done to optimize the thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different Reynolds number, emissivity of the plate, tilt angle and number of glass plates by using genetic algorithm. (author)
Benefits of full scope simulators during solar thermal power plants design and construction
Gallego, José F.; Gil, Elena; Rey, Pablo
2017-06-01
In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.
Theoretical Study and Simulations of an InGaN Dual-Junction Solar Cell
Mesrane, A.; Mahrane, A.; Rahmoune, F.; Oulebsir, A.
2016-12-01
This study aims to determine the optimal configuration of the dual-junction InGaN solar cell. Several parameters of the dual-InGaN-junction solar cell have been investigated as the band gap combination and the thicknesses of the layers. Physical models and the optical properties of the In x Ga1-x N according to the indium content have been used. The dual-junction solar cell has been designed and simulated for each chosen band gap combination. The current densities drawn from the sub-cells were matched by adjusting their emitter layers thicknesses. The best conversion efficiency obtained for the optimized dual-junction In0.49Ga0.51N/In0.74Ga0.26N solar cell, under standard conditions, was 34.93% which corresponds to the band gap combination of 1.73 eV/1.13 eV. The short-circuit current density and the open circuit voltage obtained from the tandem cell In0.49Ga0.51N/In0.74Ga0.26N are respectively, 21.3941 mA/cm2 and 1.9144 V. The current mismatch was 0.057%. The effects of the front and back layers thicknesses of the top and bottom cells on the efficiency were also studied. Furthermore, the electrical characteristics of the dual-junction solar cell and its sub-cells were also discussed.
Theoretical Study and Simulations of an InGaN Dual-Junction Solar Cell
Mesrane, A.; Mahrane, A.; Rahmoune, F.; Oulebsir, A.
2017-03-01
This study aims to determine the optimal configuration of the dual-junction InGaN solar cell. Several parameters of the dual-InGaN-junction solar cell have been investigated as the band gap combination and the thicknesses of the layers. Physical models and the optical properties of the In x Ga1- x N according to the indium content have been used. The dual-junction solar cell has been designed and simulated for each chosen band gap combination. The current densities drawn from the sub-cells were matched by adjusting their emitter layers thicknesses. The best conversion efficiency obtained for the optimized dual-junction In0.49Ga0.51N/In0.74Ga0.26N solar cell, under standard conditions, was 34.93% which corresponds to the band gap combination of 1.73 eV/1.13 eV. The short-circuit current density and the open circuit voltage obtained from the tandem cell In0.49Ga0.51N/In0.74Ga0.26N are respectively, 21.3941 mA/cm2 and 1.9144 V. The current mismatch was 0.057%. The effects of the front and back layers thicknesses of the top and bottom cells on the efficiency were also studied. Furthermore, the electrical characteristics of the dual-junction solar cell and its sub-cells were also discussed.
ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS
Liu, Jiajia; Wang, Yuming; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, NO. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Fang, Fang [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States); McIntosh, Scott W.; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)
2016-02-01
We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.
Simulation of the Formation of a Solar Active Region
Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.
2010-09-01
We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.
Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia
Shen, W.X. [School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan (Malaysia)
2009-01-15
Size optimization of solar array and battery in a standalone photovoltaic (SPV) system is investigated. Based on the energy efficiency model, the loss of power supply probability (LPSP) of the SPV system is calculated for different size combinations of solar array and battery. For the desired LPSP at the given load demand, the optimal size combination is obtained at the minimum system cost. One case study is given to show the application of the method in Malaysian weather conditions. (author)
Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene
2017-07-01
The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.
A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices
Pershin, Anton; Donets, Sergii; Baeurle, Stephan A.
2012-05-01
The photoelectric power conversion efficiency of polymer solar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymer solar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties. Our approach consists in coupling a mesoscopic field-theoretic method with a suitable dynamic Monte Carlo algorithm, to model the elementary photovoltaic processes. Using this algorithm, we investigate the influence of structural characteristics and different device conditions on the exciton generation and charge transport efficiencies in case of a novel nanostructured polymer blend. More specifically, we find that the disjunction of continuous percolation paths leads to the creation of dead ends, resulting in charge carrier losses through charge recombination. Moreover, we observe that defects are characterized by a low exciton dissociation efficiency due to a high charge accumulation, counteracting the charge generation process. From these observations, we conclude that both the charge carrier loss and the exciton loss phenomena lead to a dramatic decrease in the internal quantum efficiency. Finally, by analyzing the photovoltaic behavior of the nanostructures under different circuit conditions, we demonstrate that charge injection significantly determines the impact of the defects on the solar cell performance.
Modeling and simulation of InGaN/GaN quantum dots solar cell
Aissat, A., E-mail: sakre23@yahoo.fr [LATSI Laboratory, Faculty of Technology, University of Blida 1 (Algeria); LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Benyettou, F. [LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Vilcot, J. P. [Institute of Electronics, Micro-Electronics and Nanotechnologies,UMR CNRS 8520, Université des Sciences et Technologies de Lille1, Avenue Poincaré, CS 60069, 59652 Villeneuve d’Ascq (France)
2016-07-25
Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In{sub 0.25}Ga{sub 0.75}N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In{sub 0.25}Ga{sub 0.75}N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.
Numerical Simulations of Magnetized Winds of Solar-Like Stars
Vidotto, A A; Jatenco-Pereira, V; Gombosi, T I
2009-01-01
We investigate magnetized solar-like stellar winds by means of self-consistent three-dimensional (3D) magnetohydrodynamics (MHD) numerical simulations. We analyze winds with different magnetic field intensities and densities as to explore the dependence on the plasma-beta parameter. By solving the fully ideal 3D MHD equations, we show that the plasma-beta parameter is the crucial parameter in the configuration of the steady-state wind. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite of its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same.
Solar Event Simulations using the HAWC Scaler System
Enriquez-Rivera, O; Caballero-Lopez, R
2015-01-01
The High Altitude Water Cherenkov (HAWC) Observatory is an air shower array located near the volcano Sierra Negra in Mexico. The observatory has a scaler system sensitive to low energy cosmic rays (the geomagnetic cutoff for the site is 8 GV) suitable for conducting studies of solar or heliospheric transients such as Ground Level Enhancements (GLEs) and Forbush decreases. In this work we present the simulation of the HAWC response to these phenomena. We computed HAWC effective areas for different array configurations (different selection of photomultiplier tubes per detector) relevant for Forbush decreases and GLEs.
Investigations of Solar Prominence Dynamics Using Laboratory Simulations
Paul M Bellan
2008-05-28
Laboratory experiments simulating many of the dynamical features of solar coronal loops have been carried out. These experiments manifest collimation, kinking, jet flows, and S-shapes. Diagnostics include high-speed photography and x-ray detectors. Two loops having opposite or the same magnetic helicity polarities have been merged and it is found that counter-helicity merging provides much greater x-ray emission. A non-MHD particle orbit instability has been discovered whereby ions going in the opposite direction of the current flow direction can be ejected from a magnetic flux tube.
Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System
Nannan Dai
2017-02-01
Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used
Optimized grid design for thin film solar panels
Deelen, J. van; Klerk, L.; Barink, M.
2014-01-01
There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid d
Randol, B. M.; Christian, E. R.
2014-12-01
In a previous study (Randol and Christian, submitted to JGR, April 2014), numerical simulations of protons and anti-protons obeying Coulomb's law provided key insight into the self-consistent generation of κ distributions in space plasmas. In that study, the velocity distribution function (VDF) first formed a tail with the common spectral index of -5 and then gradually became a κ-r distribution, with κ = 1.5, corresponding to the common spectrum. The form of this distribution was found to relate to the electric field distribution function (EDF). These results were robust to a range of initialized densities and thermal speeds; however, this range of parameters did not include values close to those of the solar wind at 1 AU. Here we report on simulations of the same type but for a broader range of parameters, including those of the solar wind and corona. Our earliest findings indicate a lack of consistency in the VDF with the common spectrum, the cause of which again lies in the EDF. The results are instructive for understanding the solar wind ion VDF core and tail, as well as for κ distributed plasmas in general.
Saša Pavlović
2015-08-01
Full Text Available The paper presents a physical and mathematical model of the new offset type parabolic concentrator and a numerical procedure for predicting its optical performances. Also presented is the process of design and optical ray tracing analysis of a low cost solar concentrator for medium temperature applications. This study develops and applies a new mathematical model for estimating the intercept factor of the solar concentrator based on its geometrical and optical behavior. The solar concentrating system consists of three offset parabolic dish reflectors and a solar thermal absorber at the focus. Two types of absorbers are discussed. One is a flat plate circular absorber and the other a spiral smooth pipe absorber. The simulation results could serve as a useful reference for design and optimization of offset parabolic concentrators.
Dionysios I. Kolaitis
2015-06-01
Full Text Available Solar walls can be used to increase the overall energy efficiency of a building. Phase Change Materials (PCM are capable of increasing the effective thermal mass of building elements, thus decreasing the overall energy consumption. Recently, the incorporation of PCM in a solar wall has been proposed, aiming to increase the total energy efficiency of the system. The main scope of this work is to investigate the thermal behaviour of a PCM-enhanced solar wall (PCMESW, using experimental and numerical simulation techniques. A prototype PCMESW is installed in a large-scale test facility and is exposed to dynamically changing climate conditions. A broad range of sensors, used to monitor the time-evolution of several important physical parameters, is employed to assess the dynamic response of the PCMESW. In addition, a Computational Fluid Dynamics tool is used to numerically investigate the thermal behaviour of the PCMESW prototype. Predictions of the developing flow- and thermal-field in the PCMESW’s air cavity are validated by means of comparison with the obtained measurements; in general, good levels of agreement are observed. Results of the numerical simulations may support the design optimization process of innovative PCMESW systems.
Simulation study of InGaN intermediate-band solar cells
Chen, Kuo-Feng; Hung, Chien-Lun; Tsai, Yao-Lung
2016-12-01
The performances of single-junction InGaN solar cells with various intermediate bands (IBs) have been simulated using the lifetime model of a 1D simulation program called Analysis of Microelectronic and Photonic Structures (AMPS-1D). It has been observed that the maximum efficiencies of the InGaN solar cells with one, two and three intermediate bands are 47.72%, 55.10% and 58.20%, respectively, which outperform the 25.96% efficiency of the conventional single-junction structure by far. This is primarily attributed to the outstanding capability of the light harvesting from the sub-bandgap absorption. At the optimized bandgap of 2.41 eV, two-IB InGaN solar cells with the IB positions located at 0.95-1.1 eV and 0.3-0.75 eV, respectively, may have an opportunity to realize over 50% efficiency.
Katsaounis, Theodoros
2017-09-18
A customized 2D computational tool has been developed to simulate bifacial rear local contact PERC type PV structures based on the numerical solution of the transport equations through the finite element method. Simulations were performed under various device material parameters and back contact geometry configurations in order to optimize bifacial solar cell performance under different simulated illumination conditions. Bifacial device maximum power output was also compared with the monofacial equivalent one and the industrial standard Al-BSF structure. The performance of the bifacial structure during highly diffused irradiance conditions commonly observed in the Middle East region due to high concentrations of airborne dust particles was also investigated. Simulation results demonstrated that such conditions are highly favorable for the bifacial device because of the significantly increased diffuse component of the solar radiation which enters the back cell surface.
Simulation and optimization of a smart reconfigurable aperture antenna
Washington, Gregory N.; Yoon, Hwan-Sik; Theunissen, Wilhelmus H.
2002-07-01
The work in this study develops the framework for placement and actuation of novel mechanically reconfigurable dual-offset contour beam reflector antennas (DCBRA). Towards that end the methodology for the antennas' design is defined. The antenna designed in this study employs piezoelectrically driven ball screw actuators. These actuators are attached to a flexible sub reflector surface and are used to vary radiation pattern. In addition, two separate optimization problems are stated and solved: Actuator position optimization and actuation value optimization. For the former, a method termed as Greatest Error Suppression method is proposed where the position of each actuator is decided one by one after each evaluation of the error between the desired subreflector shape and the actual subreflector shape. For the second problem, a mathematical analysis shows that there exists only one optimal configuration. Two optimization techniques are used for the second problem: the Simulated Annealing algorithm and a simple univariate optimization technique. The univariate technique always generates the same optimal configuration for different initial configurations and it gives the low bound in the evaluation of the error. The Simulated Annealing algorithm is a stochastic technique used to search for global optimum point. Finally, as an example, the results of the proposed optimization techniques are presented for the generation of a subreflector shape for the geographical outline of Brazil.
Bettonvil, B.W.M.; Del Castillo, E.; Kleijnen, J.P.C.
2007-01-01
This paper studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for test- ing whether a specific input combination
Bettonvil, B.W.M.; Del Castillo, E.; Kleijnen, J.P.C.
2007-01-01
This paper studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for test- ing whether a specific input combination (propo
Solar power plant performance evaluation: simulation and experimental validation
Natsheh, E. M.; Albarbar, A.
2012-05-01
In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.
Structure optimization and simulation analysis of the quartz micromachined gyroscope
Wu, Xuezhong; Wang, Haoxu; Xie, Liqiang; Dong, Peitao
2014-03-01
Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS) technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.
Structure optimization and simulation analysis of the quartz micromachined gyroscope
Xuezhong Wu
2014-02-01
Full Text Available Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.
Design and evaluation of a computer controlled solar collector simulator
Kotas, J. F.; Wood, B. D.
1980-11-01
A computer-controlled system has been developed to simulate the thermal processes of a flat-plate solar collector. The simulator is based on four water heaters of capacities of 1.5, 2.5, 5.0 and 5.0 kW providing a maximum design output of 14.0 kW which are controlled by a Nova 3 minicomputer, which also monitors temperatures in the fluid stream. Measurements have been obtained of the steady-state operating values and time constants of the individual heaters at different flow rates in order to utilize effectively their thermal outputs. Software was designed to control the heater system so the total thermal output closely approximates that of an actual heater array, utilizing steady-state or dynamic control modes. Simulation of the heat output of a previously tested collector has resulted in simulated values differing from actual output by a maximum of 3% under identical operating conditions, thus indicating that the simulator represents a viable alternative to the testing of a large field of collectors.
Bava, Federico; Furbo, Simon; Perers, Bengt
2015-01-01
the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...... analysis was carried out by modifying the composition of the row, in order to find both the energy and economy optimum....
Samuel Nelson Melegari de Souza
2005-01-01
Full Text Available This paper presents a new methodology for sizing an autonomousphotovoltaic-wind hybrid energy system with battery storage, using simulation and optimization tools. The developed model is useful for energizing remote rural areas and produces a system with minimum cost and high reliability, based on the concept of Loss of Power Supply Probability (LPSP applied for consecutive hours. Some scenarios arecalculated and compared, using different numbers of consecutive hours and different LPSP values. As a result, a complete sizing of the system and a long-term cost evaluation are presented.Este trabalho apresenta uma nova metodologia para dimensionamento de sistemas híbridos de energia (solar-eólica com armazenamento em banco de baterias, utilizando ferramentas de simulação e otimização. O modelo desenvolvido é útil para a energização de áreas ruraisisoladas e resulta num sistema com custo mínimo e alta confiabilidade, baseado no conceito de perda de fornecimento de energia à carga (LPSP aplicado para horas consecutivas. Alguns cenários são calculados e comparados, utilizando-se diferentes períodos de horas consecutivas e diferentes valores de LPSP. Os resultados apresentam um dimensionamento completo do sistema e uma avaliação de custos ao longo de vários anos.
Determination of the Optimal Tilt Angle for Solar Photovoltaic Panel in Ilorin, Nigeria
K.R. Ajao; R.M. Ambali; M.O. Mahmoud
2013-01-01
The optimal tilt angle of solar photovoltaic panel in Ilorin, Nigeria was determined. The solar panel was first mounted at 0o to the horizontal and after ten minutes, the voltage and current generated with the corresponding atmospheric temperature were recorded. The same procedure was repeated for 2o to 30o at a succession of 2o at ten minutes time interval over the entire measurement period. The result obtained shows that the average optimal tilt angle at which a solar panel will...
Chia-En Ho
2012-09-01
Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.
SUBSTRATE MATERIALS FOR POLY-CSiTF SOLAR CELLS:OPTIMIZATION OF SILICON SHEET FROM POWDER
Q. Ban; H. Shen; X.J. Wang; X.W. Zou; Z.C. Liang
2005-01-01
The optimization of silicon sheet from powder (SSP) technology as polycrystalline silicon thin film (poly-CSiTF) solar cells' substrate materials is studied by orthogonal design experimental method. Based on technological optimization of SSP prepared from electronic grade silicon powder, SSP solar cell devices with simple structure are prepared and the effect of SSP substrate is discussed. Up to now, the conversion efficiency of the prepared solar cells on low purity SSP substrate with fundamental structure has reached 8.25% (with area of 1 cm×1 cm).
Allouche, Yosr; Varga, Szabolcs; Bouden, Chiheb; Oliveira, Armando
2017-02-01
In this paper, the development of a TRNSYS model, for the simulation of a solar driven ejector cooling system with an integrated PCM cold storage is presented. The simulations were carried out with the aim of satisfying the cooling needs of a 140 m3 space during the summer season in Tunis, Tunisia. The system is composed of three main subsystems, which include: a solar loop, an ejector cycle and a PCM cold storage tank. The latter is connected to the air-conditioned space. The influence of applying cold storage on the system performance was investigated. It was found that the system COP increased compared to a system without cold storage. An optimal storage volume of 1000 l was identified resulting in the highest cooling COP and highest indoor comfort (95% of the time with a room temperature below 26°C). The maximum COP and solar thermal ratio (STR) were 0.193 and 0.097, respectively.
Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.
2013-09-01
Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.
Simulating the in situ condensation process of solar prominences
Xia, Chun; Antolin, Patrick; Porth, Oliver
2014-01-01
Prominences in the solar corona are hundredfold cooler and denser than their surroundings, with a total mass of 1.e13 up to 1.e15 g. Here we report on the first comprehensive simulations of three-dimensional, thermally and gravitationally stratified magnetic flux ropes, where in situ condensation to a prominence happens due to radiative losses. After a gradual thermodynamic adjustment, we witness a phase where runaway cooling happens while counter-streaming shearing flows drain off mass along helical field lines. After this drainage, a prominence-like condensation resides in concave upward field regions, and this prominence retains its overall characteristics for more than two hours. While condensing, the prominence establishes a prominence-corona transition region, where magnetic field-aligned thermal conduction is operative during the runaway cooling. The prominence structure represents a force-balanced state in a helical flux rope. The simulated condensation demonstrates a right-bearing barb, as a remnant ...
USMC Inventory Control Using Optimization Modeling and Discrete Event Simulation
2016-09-01
same as DES. Source : [6] C. Almeder, M. Preusser and R. F. Hatl, “Simlulation and Optimization of Supply Chains : Alternative or Complementary...brief discussion of the current techniques in which optimization and simulation are used to improve supply chain and inventory management processes is...combat environment is most likely impractical, which is not the case in established supply chain networks. In the area of supply chain network
Rongrong Zhai
2015-01-01
Full Text Available Solar aided coal-fired power generation system (SACFPGS combines solar energy and traditional coal-fired units in a particular way. This study mainly improves the solar thermal storage system. Genetic algorithm is used to optimize the SACFPGS. The best integration approach of the system, the collector area, and the corresponding thermal storage capacity to replace each high-pressure extraction are obtained when the amount of coal saving in unit solar investment per hour is at its largest. System performance before and after the improvement is compared. Results show that the improvement of the thermal storage system effectively increases the economic benefit of the integrated system.
Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm
Sencan Sahin, Arzu [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey)
2012-11-15
Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector. (orig.)
Optimization of Rear Local Contacts on High Efficiency PERC Solar Cells Structures
Kapila Wijekoon
2013-01-01
Full Text Available A local contact formation process and integration scheme have been developed for the fabrication of rear passivated point contact solar cells. Conversion efficiency of 19.6% was achieved using mm, pseudo square, p-type single crystalline silicon wafers. This is a significant improvement when compared to unpassivated, full area aluminum back surface field solar cells, which exhibit only 18.9% conversion efficiency on the same wafer type. The effect of rear contact formation on cell efficiency was studied as a function of contact area and contact pitch, hence the metallization fraction. Contact shape and the thickness of Al-BSF layer were found to be heavily dependent on the laser ablation pattern and contact area. Simulated cell parameters as a function of metallization showed that there is a tradeoff between open circuit voltage and fill factor gains as the metallization fraction varies. The rear surface was passivated with an Al2O3 layer and a capping layer. The rear surface contact pattern was created by laser ablation and the contact geometry was optimized to obtain voids free contact filling, resulting in a uniform back surface field. The efficiency gain in rear passivated cells over the reference cells is mainly due to improved short circuit current and open circuit voltage.
Flow Simulation and Optimization of Plasma Reactors for Coal Gasification
冀春俊; 张英姿; 马腾才
2003-01-01
This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.
Optimization and Simulation in the Danish Fishing Industry
Jensen, Toke Koldborg; Clausen, Jens
We consider the Danish fishing industry from a holistic viewpoint, and give a review of the main aspects, and the important actors. We also consider supply chain theory, and identify both theoretically, and based on other application areas, e.g. other fresh food industries, how optimization...... and simulation can be applied in a holistic modeling framework. Using the insights into supply chain theory and the Danish fishing industry, we investigate how the fishing industry as a whole may benefit from the formulation and use of mathematical optimization and simulation models. Finally, an appendix...
SIMULATING THE IN SITU CONDENSATION PROCESS OF SOLAR PROMINENCES
Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Porth, O. [Department of Applied Mathematics, The University of Leeds, Leeds LS2 9JT (United Kingdom)
2014-09-10
Prominences in the solar corona are a hundredfold cooler and denser than their surroundings, with a total mass of 10{sup 13} up to 10{sup 15} g. Here, we report on the first comprehensive simulations of three-dimensional, thermally and gravitationally stratified magnetic flux ropes where in situ condensation to a prominence occurs due to radiative losses. After a gradual thermodynamic adjustment, we witness a phase where runaway cooling occurs while counter-streaming shearing flows drain off mass along helical field lines. After this drainage, a prominence-like condensation resides in concave upward field regions, and this prominence retains its overall characteristics for more than two hours. While condensing, the prominence establishes a prominence-corona transition region where magnetic field-aligned thermal conduction is operative during the runaway cooling. The prominence structure represents a force-balanced state in a helical flux rope. The simulated condensation demonstrates a right-bearing barb, as a remnant of the drainage. Synthetic images at extreme ultraviolet wavelengths follow the onset of the condensation, and confirm the appearance of horns and a three-part structure for the stable prominence state, as often seen in erupting prominences. This naturally explains recent Solar Dynamics Observatory views with the Atmospheric Imaging Assembly on prominences in coronal cavities demonstrating horns.
SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Chhiber, R; Usmanov, AV; Matthaeus, WH [Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Goldstein, ML [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2016-04-10
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko
2015-04-06
In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.
Flow simulation and optimization of plasma reactors for coal gasification
Ji, C.J.; Zhang, Y.Z.; Ma, T.C. [Dalian University of Technology, Dalian (China). Power Engineering Dept.
2003-10-01
This paper reports a 3-D numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.
Terascale Optimal PDE Simulations (TOPS) Center
Professor Olof B. Widlund
2007-07-09
Our work has focused on the development and analysis of domain decomposition algorithms for a variety of problems arising in continuum mechanics modeling. In particular, we have extended and analyzed FETI-DP and BDDC algorithms; these iterative solvers were first introduced and studied by Charbel Farhat and his collaborators, see [11, 45, 12], and by Clark Dohrmann of SANDIA, Albuquerque, see [43, 2, 1], respectively. These two closely related families of methods are of particular interest since they are used more extensively than other iterative substructuring methods to solve very large and difficult problems. Thus, the FETI algorithms are part of the SALINAS system developed by the SANDIA National Laboratories for very large scale computations, and as already noted, BDDC was first developed by a SANDIA scientist, Dr. Clark Dohrmann. The FETI algorithms are also making inroads in commercial engineering software systems. We also note that the analysis of these algorithms poses very real mathematical challenges. The success in developing this theory has, in several instances, led to significant improvements in the performance of these algorithms. A very desirable feature of these iterative substructuring and other domain decomposition algorithms is that they respect the memory hierarchy of modern parallel and distributed computing systems, which is essential for approaching peak floating point performance. The development of improved methods, together with more powerful computer systems, is making it possible to carry out simulations in three dimensions, with quite high resolution, relatively easily. This work is supported by high quality software systems, such as Argonne's PETSc library, which facilitates code development as well as the access to a variety of parallel and distributed computer systems. The success in finding scalable and robust domain decomposition algorithms for very large number of processors and very large finite element problems is, e
Chao Zhou
2017-08-01
Full Text Available Photovoltaic-thermal (PVT technology refers to the integration of a photovoltaic (PV and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.
Optimal Design of a Solar Desalination Unit with Heliostats
M. Abidi
2017-01-01
Full Text Available The objective is to improve the yield of a solar desalination cell using concentration of solar rays by means of automatically controlled heliostats. The vertical cell is orientated towards the north. It is mainly composed of two plates; the one being heated by the solar rays reflected by the mirrors is used for evaporation of a falling water film; the other one is used for water vapor condensation. Each heliostat consists of an altitude-azimuth mount having two degrees of freedom and supporting a plane mirror. The heliostat permanently follows the sun trajectory and reflects the solar rays on the cell by means of automatic control implemented in a control card based on a microcontroller. Model predictive control allows us to maximize the distilled water production.
A Simulation Framework for Optimal Energy Storage Sizing
Carlos Suazo-Martínez; Eduardo Pereira-Bonvallet; Rodrigo Palma-Behnke
2014-01-01
Despite the increasing interest in Energy Storage Systems (ESS), quantification of their technical and economical benefits remains a challenge. To assess the use of ESS, a simulation approach for ESS optimal sizing is presented. The algorithm is based on an adapted Unit Commitment, including ESS operational constraints, and the use of high performance computing (HPC). Multiple short-term simulations are carried out within a multiple year horizon. Evaluation is performed for Chile's No...
Optimization and Simulation in Drug Development - Review and Analysis
Schjødt-Eriksen, Jens; Clausen, Jens
2003-01-01
We give a review of pharmaceutical R&D and mathematical simulation and optimization methods used to support decision making within the pharmaceutical development process. The complex nature of drug development is pointed out through a description of the various phases of the pharmaceutical...... development process. A part of the paper is dedicated to the use of simulation techniques to support clinical trials. The paper ends with a section describing portfolio modelling methods in the context of the pharmaceutical industry....
Optimization and Simulation in Drug Development - Review and Analysis
Schjødt-Eriksen, Jens; Clausen, Jens
2003-01-01
We give a review of pharmaceutical R&D and mathematical simulation and optimization methods used to support decision making within the pharmaceutical development process. The complex nature of drug development is pointed out through a description of the various phases of the pharmaceutical development process. A part of the paper is dedicated to the use of simulation techniques to support clinical trials. The paper ends with a section describing portfolio modelling methods in the context ...
Solar Collector Design Optimization: A Hands-on Project Case Study
Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.
2012-01-01
A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…
Solar Collector Design Optimization: A Hands-on Project Case Study
Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.
2012-01-01
A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…
Simulation of ionospheric corrections regarding of solar activity on GNSS
Schlueter, S.; Engler, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Neustrelitz (Germany)
1999-07-01
Future use of satellite navigation systems in transportation, especially in aviation and shipping, will make great demands on precision and integrity of existing new systems. As a first step in the direction of a GNSS, the US, Japan and Europe are building up the GPS augmentation systems WAAS, MSAS and EGNOS to improve the current situation in navigation and positioning. The improvement of existing as well as the development of new systems needs suitable simulation tools for design and validation. In this context the projects NavSim and SatNav SIMplus have to be seen. They are parts of the cooperation agreements between DLR (Deutsches Zentrum fuer Luft- und Raumfahrt) and DSS (Daymler Chrysler Aerospace, Dornier Satellitensystem GmbH). Both projects complement on another on the way to establish and end-to-end software simulator for navigation systems. Here we present some preliminary simulations based on the ionospheric module of the NavSim simulator taking into account the situation of high solar activity in the years 2000-2001. (orig.)
Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.
2009-01-01
A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.
Optimization of a point-focusing, distributed receiver solar thermal electric system
Pons, R. L.
1979-01-01
This paper presents an approach to optimization of a solar concept which employs solar-to-electric power conversion at the focus of parabolic dish concentrators. The optimization procedure is presented through a series of trade studies, which include the results of optical/thermal analyses and individual subsystem trades. Alternate closed-cycle and open-cycle Brayton engines and organic Rankine engines are considered to show the influence of the optimization process, and various storage techniques are evaluated, including batteries, flywheels, and hybrid-engine operation.
Zhuang, Zhenfeng; Yu, Feihong
2014-08-01
This paper presents a novel hybrid Fresnel-based concentrator with improved uniformity irradiance distribution on the solar cell without using secondary optical element (SOE) in the concentrator photovoltaic (CPV) system to overcome the Fresnel loss and to increase the solar cell conversion efficiency. The designed hybrid Fresnel-based concentrator is composed of two parts, the inner part and the outer part. The inner part is the conventional Fresnel lens, while the outer part is double total internal reflection (DTIR) lens. According to the simple geometrical relation, the profile of the proposed hybrid Fresnel-based concentrator is calculated as an initial design profile. To obtain good irradiance uniformity on the solar cell, optimal prism displacements are optimized by using a simplex algorithm for collimated incident sunlight based on different prism focus on different position principles. In addition, a Monte-Carlo ray-tracing simulation approach is utilized to verify the optical performance for the hybrid Fresnel-based concentrator. Results indicate that the hybrid Fresnel-based concentrator designed using this method can achieve spatial non-uniformity less than 16.2%, f-number less than 0.59 (focal length to entry aperture diameter ratio), geometrical concentrator ratio 1759.8×, and acceptance angle ±0.23°. Compared to the conventional Fresnel-based lens and the traditional hybrid Fresnel-based lens, the optimized concentrator yields a significant improvement in irradiance uniformity on the solar cell with a wide solar spectrum range. It also has good tolerance to the incident sunlight.
A simulation study on the electrical structure of interdigitated back-contact silicon solar cells
Kang, Min Gu; Song, Hee-eun; Kim, Soo Min; Kim, Donghwan
2015-05-01
In this paper, a simulation for interdigitated back-contact (IBC) silicon solar cells was performed by using Silvaco TCAD ATLAS to investigate the cell's electrical properties. The impacts of various parameters, including the depth of the front surface field(FSF), the FSF peak doping concentration, the depths of the emitter and the back surface field(BSF), the peak doping concentrations of the emitter and BSF, the base doping, and the bulk lifetime on the output characteristics like the light current-voltage curves and the internal quantum efficiency of the IBC solar cell, were investigated. The light absorption was determined by adjusting the antireflection coating and the Al thickness. The FSF must be thin and have a low doping concentration for high-efficiency IBC cells. If the conversion efficiency is to be improved, a thick emitter and a high doping concentration are needed. Because of the low resistivity of the Si substrate, the series resistance was reduced, but recombination was increased. With a high-resistivity Si substrate, the opposite trends were observed. By counter-balancing the series resistance and the recombination, we determined by simulation that the optimized resistivity for the IBC cells was 1 Ω·cm. Because all metal electrodes in the IBC cells are located on the back side, a higher minority carrier lifetime showed a higher efficiency. After the various parameters had been optimized, texturing and surface recombination were added into the simulation. The simulated IBC cells showed a short-circuit current density of 42.89 mA/cm2, an open-circuit voltage of 714.8 mV, a fill factor of 84.04%, and a conversion efficiency of 25.77%.
Automatic CT simulation optimization for radiation therapy: A general strategy
Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Yu, Lifeng [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)
2014-03-15
Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube
Robust Optimization in Simulation : Taguchi and Response Surface Methodology
Dellino, G.; Kleijnen, J.P.C.; Meloni, C.
2008-01-01
Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a 'robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by Respons
Optimized firing. Numerical simulation of flow; Optimierte Feuerung. Numerische Stroemungssimulation
Klasen, T. [Inpro-Consult (Germany); Floetgen, A.
2007-07-01
By the aid of a numerical flow simulation in the beginning of boiler design can be optimized geometrical and process details. An example is shown for a feeding stoker with combined dust firing of an existing boiler plant for biogenic fuels. (GL)
Simulation and OR (operations research) in combination for practical optimization
N. van Dijk; E. van der Sluis; R. Haijema; A. Al-Ibrahim; J. van der Wal
2005-01-01
Should we pool capacities or not? This is a question that one can regularly be confronted with in operations and service management. It is a question that necessarily requires a combination of queueing (as OR discipline) and simulation (as evaluative tool) and further steps for optimization. It will
Robust Optimization in Simulation : Taguchi and Krige Combined
Dellino, G.; Kleijnen, Jack P.C.; Meloni, C.
2009-01-01
Optimization of simulated systems is the goal of many methods, but most methods as- sume known environments. We, however, develop a `robust' methodology that accounts for uncertain environments. Our methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by Kr
Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.
1977-01-01
The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.
Optimization of a 5 kW solar powered alpha stirling engine using Powell's method
Shamekhi, A. [Numeric Method Development Co., Shemiranat, Tehran (Iran, Islamic Republic of); Aliabadi, A. [MAPNA Group, Tehran (Iran, Islamic Republic of)
2010-08-13
Many types of Stirling engines have been built in a variety of forms and sizes since its invention in 1816. The Stirling engine offers maximum efficiency; maximum power; and minimum costs. In this study, a solar powered alpha Stirling engine was simulated using a second order method. The paper presented the governing equations, including conservation of mass; pressure losses inside the heat exchangers; pressure losses inside the regenerator; and heat transfer in the heat exchangers. Methods to optimize the parameters in order to improve engine efficiency were also discussed. The study showed that the geometric parameter of the engine influences engine performance considerably. After 20 iterations of Powell's method for engine optimization, the engine performance was optimized to the value of 25.4 percent. 18 refs., 2 tabs., 8 figs.
Simulation and optimization of an industrial PSA unit
Barg C.
2000-01-01
Full Text Available The Pressure Swing Adsorption (PSA units have been used as a low cost alternative to the usual gas separation processes. Its largest commercial application is for hydrogen purification systems. Several studies have been made about the simulation of pressure swing adsorption units, but there are only few reports on the optimization of such processes. The objective of this study is to simulate and optimize an industrial PSA unit for hydrogen purification. This unit consists of six beds, each of them have three layers of different kinds of adsorbents. The main impurities are methane, carbon monoxide and sulfidric gas. The product stream has 99.99% purity in hydrogen, and the recovery is around 90%. A mathematical model for a commercial PSA unit is developed. The cycle time and the pressure swing steps are optimized. All the features concerning with complex commercial processes are considered.
Applied simulation and optimization in logistics, industrial and aeronautical practice
Mota, Idalia; Serrano, Daniel
2015-01-01
Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from manufacturing to aviation problems, where the common denominator is the combination of simulation’s flexibility with optimization techniques’ robustness. Providing readers with a comprehensive guide to tackle similar issues in industrial environments, this text explores novel ways to face industrial problems through hybrid approaches (simulation-optimization) that benefit from the advantages of both paradigms, in order to give solutions to important problems in service industry, production processes, or supply chains, such as scheduling, routing problems and resource allocations, among others.
A Simulation Approach to Statistical Estimation of Multiperiod Optimal Portfolios
Hiroshi Shiraishi
2012-01-01
Full Text Available This paper discusses a simulation-based method for solving discrete-time multiperiod portfolio choice problems under AR(1 process. The method is applicable even if the distributions of return processes are unknown. We first generate simulation sample paths of the random returns by using AR bootstrap. Then, for each sample path and each investment time, we obtain an optimal portfolio estimator, which optimizes a constant relative risk aversion (CRRA utility function. When an investor considers an optimal investment strategy with portfolio rebalancing, it is convenient to introduce a value function. The most important difference between single-period portfolio choice problems and multiperiod ones is that the value function is time dependent. Our method takes care of the time dependency by using bootstrapped sample paths. Numerical studies are provided to examine the validity of our method. The result shows the necessity to take care of the time dependency of the value function.
Impact of curvature on the optimal configuration of flexible luminescent solar concentrators.
Portnoi, Mark; Sol, Christian; Tummeltshammer, Clemens; Papakonstantinou, Ioannis
2017-07-15
Flexible luminescent solar concentrators (LSCs) could deliver integrated photovoltaics in all aspects of our lives, from architecture to wearable electronics. We present and experimentally verify a model for the optimization of the external optical efficiency of LSCs under varying degrees of curvature. We demonstrate differences between the optimization of flat and bent LSCs, showing that optimal fluorophore concentrations can differ by a factor of two.
Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system
Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham
2013-10-01
According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.
Optimization Of Assembly Line Of Printed Circuit Board Using Simulation
Kamal Alzameli
2015-08-01
Full Text Available The development of an assembly line would not stop at a specific research even if that research contains very detailed sectors of one assembly line or starting from customer order to product delivery. Therefore continuous improvement needs to be vigorous for continuous productivity improvement and innovation. The optimization process of printed circuit board assembly line includes hard and soft optimization. The hard optimization includes hardware changes via design and the soft optimization is figured via simulation of the current assembly line and analysis. The aim of the research is to determine the bottlenecks find a solution and develop improvement method via changing the configuration of the setup on the assembly line until the feasible optimal configuration is definite. The software that will be used for this simulation is Arena software. The data of the research is collected from real assembly line. The best engineering assumption for the area is used for no permanent data that could be available such as the data that might be collected from the manual stations. In addition to the aim of the research is to get a better yield via improving the time of the PCB assembly process. Hence the outcome to all of these attempts of optimizing the assembly line of PCB for continuous improvement is to deliver good quality products reduce cost and minimize the time to delivery and meet the customer expectations.
Optimization of simulated moving bed (SMB) chromatography: a multi-level optimization procedure
Jørgensen, Sten Bay; Lim, Young-il
2004-01-01
This paper presents a multi-level optimization strategy to obtain optimum operating conditions (four flowrates and cycle time) of nonlinear simulated moving bed chromatography. The multi-level optimization procedure (MLOP) approaches systematically from initialization to optimization with two...... objective functions (productivity and desorbent consumption), employing the standing wave analysis, the true moving bed (TMB) model and the simulated moving bed (SMB) model. The procedure is constructed on a non-worse solution property advancing level by level and its solution does not mean a global optimum....... That is, the lower desorbent consumption under the higher productivity is successively obtained on the basis of the SMB model, as the two SMB-model optimizations are repeated using a standard SQP (successive quadratic programming) algorithm. This approach takes advantage of the TMB model and surmounts...
Optimizing the simulation of riverine species flow preferences
Kiesel, Jens; Pfannerstill, Matthias; Guse, Björn; Kakouei, Karan; Jähnig, Sonja C.; Fohrer, Nicola
2016-04-01
Riverine biota have distinct demands on the discharge regime. To quantify these demands, discharge time series are translated to ecohydrological indicators, e.g. magnitude, timing or duration of baseflow or peak flow events. These indicators are then related to species occurrence and/or absence to establish the feedback response of aquatic species to hydrological conditions. These links can be used in conjunction with hydrological simulations for predictions of species occurrences. If differences between observed and simulated ecohydrological indicator values are too high, such predictions can be wrong. Indicator differences can be due to poor input data quality and simplified model algorithms, but also depend on how the model was optimized. For instance, in case the model was optimised towards a single objective function, e.g. minimizing the difference between simulated and observed Q95, differences between simulated and observed high flow indicators will be smaller as compared to baseflow indicators. In this study, we are working towards assessing this error depending on the optimisation of the model. This assessment is based on a multi-objective vs. single-objective model optimization which we have realised in the following four-step approach: (1) sets of highly relevant ecohydrological indicators are defined; (2) the hydrologic model is optimised using a multi-objective function that combines all indicators; (3) the hydrologic model is optimised using single-objective functions with one optimisation round for each indicator and (4) the differences between all optimisation methods are calculated. By assessing these absolute (simulated vs observed) and relative (simulated vs simulated) differences, we can evaluate the magnitude of the possible error band when optimising a hydrological model towards different ecohydrological indicators. This assessment can be used to optimize hydrological models for depicting preferences of riverine biota more effectively and
Equivalence between solar irradiance and solar simulators in aging tests of sunglasses.
Masili, Mauro; Ventura, Liliane
2016-08-26
This work is part of a broader research that focuses on ocular health. Three outlines are the basis of the pyramid that comprehend the research as a whole: authors' previous work, which has provided the public to self-check their own sunglasses regarding the ultraviolet protection compatible to their category; Brazilian national survey in order to improve nationalization of sunglasses standards; and studies conducted on revisiting requirements of worldwide sunglasses standards, in which this work is inserted. It is still controversial on the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on the studies reported in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-h radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits for UV irradiance. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.
Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization
Xuefeng Yan
2013-01-01
Full Text Available The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.
An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty
Feng Zhou
2015-11-01
Full Text Available An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step strategy: (1 application of interval regression equations derived by a Bayesian recursive regression tree (BRRT v2 algorithm, which approximates the original hydrodynamic and water-quality simulation models and accurately quantifies the inherent nonlinear relationship between nutrient load reductions and the credible interval of algal biomass with a given confidence interval; and (2 incorporation of the calibrated interval regression equations into an uncertain optimization framework, which is further converted to our indirect equivalent framework by the enhanced-interval linear programming (EILP method and provides approximate-optimal solutions at various risk levels. The proposed strategy was applied to the Swift Creek Reservoir’s nutrient TMDL allocation (Chesterfield County, VA to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll criteria. Our results indicated that the BRRT-EILP model could identify critical sub-watersheds faster than the traditional one and requires lower reduction of nutrient loadings compared to traditional stochastic simulation and trial-and-error (TAE approaches. This suggests that our proposed framework performs better in optimal TMDL development compared to the traditional simulation-optimization models and provides extreme and non-extreme tradeoff analysis under uncertainty for risk-based decision making.
On the Observation and Simulation of Solar Coronal Twin Jets
Liu, Jiajia; Wang, Yuming; McIntosh, Scott W; Fan, Yuhong; Zhang, Quanhao
2016-01-01
We present the first observation, analysis and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. 2014. However the erupting process and kinetics of the twin jets appear to be different from the preceding one. In lack of the detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al. 2014, and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we sugges...
Modeling solar energetic particle events using ENLIL heliosphere simulations
Luhmann, J. G.; Mays, M. L.; Odstrcil, D.; Li, Yan; Bain, H.; Lee, C. O.; Galvin, A. B.; Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A.; Larson, D.; Futaana, Y.
2017-07-01
Solar energetic particle (SEP) event modeling has gained renewed attention in part because of the availability of a decade of multipoint measurements from STEREO and L1 spacecraft at 1 AU. These observations are coupled with improving simulations of the geometry and strength of heliospheric shocks obtained by using coronagraph images to send erupted material into realistic solar wind backgrounds. The STEREO and ACE measurements in particular have highlighted the sometimes surprisingly widespread nature of SEP events. It is thus an opportune time for testing SEP models, which typically focus on protons 1-100 MeV, toward both physical insight to these observations and potentially useful space radiation environment forecasting tools. Some approaches emphasize the concept of particle acceleration and propagation from close to the Sun, while others emphasize the local field line connection to a traveling, evolving shock source. Among the latter is the previously introduced SEPMOD treatment, based on the widely accessible and well-exercised WSA-ENLIL-cone model. SEPMOD produces SEP proton time profiles at any location within the ENLIL domain. Here we demonstrate a SEPMOD version that accommodates multiple, concurrent shock sources occurring over periods of several weeks. The results illustrate the importance of considering longer-duration time periods and multiple CME contributions in analyzing, modeling, and forecasting SEP events.
Quantum molecular dynamics simulations of hydrogen production and solar cells
Mou, Weiwei
The global energy crisis presents two major challenges for scientists around the world: Producing cleaner energy which is sustainable for the environment; And improving the efficiency of energy production as well as consumption. It is crucial and yet elusive to understand the atomistic mechanisms and electronic properties, which are needed in order to tackle those challenges. Quantum molecular dynamics simulations and nonadiabatic quantum molecular dynamics are two of the dominant methods used to address the atomistic and electronic properties in various energy studies. This dissertation is an ensemble of three studies in energy research: (1) Hydrogen production from the reaction of aluminum clusters with water to provide a renewable energy cycle; (2) The photo-excited charge transfer and recombination at a quaterthiophene/zinc oxide interface to improve the power conversion efficiency of hybrid poly(3-hexylthiophene) (P3HT) /ZnO solar cells; and (3) the charge transfer at a rubrene/C60 interface to understand why phenyl groups in rubrene improve the performance of rubrene/C60 solar cells.
T. E. Boukelia; M. S. Mecibah; A. Laouafi
2016-01-01
The Parabolic trough solar collector is considered as one of the most proven, mature and commercial concentrating solar systems implemented in arid and semi-arid regions for energy production. It focuses sunlight onto a solar receiver by using mirrors and is finally converted to a useful thermal energy by means of a heat transfer fluid. The aims of this study are (i) to develop a new methodology for simulation and performance evaluation of parabolic trough solar collector, in addition (i) to ...
Hakkarainen, Elina; Tähtinen, Matti
2016-05-01
Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.
Theoretical study on optimization of high efficiency GaInP/GaInAs/Ge tandem solar cells
Lin, Gui Jiang; Huang, Sheng Rong; Wu, Jyh Chiarng; Huang, Mei Chun
2009-08-01
This paper investigates which dopping concentration or layer thickness should be used to design practical GaInP/GaInAs/Ge triple-junction cells in order to optimize their performance. A rigorous model includes optical and electrical modules is developed to simulate the external quantumn efficiency, photocurrent and photovoltage of the GaInP/GaInAs/Ge tandem solar cells. It is found that cell efficiency strongly dependend on the top cell thickness and doping concentration at base and emitter layers. Proper structures of the tandem cell operating under AM0 ("air mass zero") illumination are suggested to obtain high efficiency.
Generic solar photovoltaic system dynamic simulation model specification
Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Behnke, Michael Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-10-01
This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.
Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
Meyer, Karen A; van Ballegooijen, Adriaan A; Parnell, Clare E; 10.1007/s11207-011-9809-3
2011-01-01
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simu...
Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol
Neamtu, Mariana, E-mail: mariana.neamtu@web.de [Technical University of Iasi, Department of Environmental Engineering and Management, Bd. D. Mangeron 71A, 700050 Iasi (Romania)] [University of Karlsruhe, Water Chemistry, Engler-Bunte-Institute, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Popa, Dana-Melania [University of Karlsruhe, Water Chemistry, Engler-Bunte-Institute, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)] [' Lucian Blaga' University of Sibiu, Str. Ion Ratiu 5-7, 550012 Sibiu (Romania); Frimmel, Fritz H. [University of Karlsruhe, Water Chemistry, Engler-Bunte-Institute, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)
2009-05-30
The photolysis of octylphenol (OP) was investigated using a solar simulator in the absence/presence of dissolved natural organic matter (DNOM), HCO{sub 3}{sup -}, NO{sub 3}{sup -} and Fe(III) ions. The effects of different parameters such as initial pH, initial concentration of substrate, temperature, and the effect of hydrogen peroxide concentration on photodegradation of octylphenol in aqueous solution have been assessed. The results indicate that the oxidation rate increases in the presence of H{sub 2}O{sub 2}, nitrate and DNOM. Phenol, 1,4-dihydroxylbenzene and 1,4-benzoquinone were identified as intermediate products of photodegradation of octylphenol, through an HPLC method. In addition, the disappearance of the estrogenic activity of octylphenol during irradiation using YES test was investigated. Based upon the YES test results, there was a strong decrease of estrogenic activity of octylphenol after 8 h irradiation in the presence of hydrogen peroxide.
Petr Tomeš
2010-04-01
Full Text Available The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM. These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4 and two n-type (CaMn0.98Nb0.02O3 thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.
Simulation and design of solar-blind Raman Lidar for water vapor measurement
Shi, Dongchen; Hua, Dengxin; Gao, Fei; Lei, Ning; Wang, Li
2017-02-01
A novel water vapor Raman Lidar is developed at a solar-blind wavelength of 266nm. To obtain signals of Mie-Rayleigh scattering spectra and Raman scattering spectra of H2O, N2 and O2 with fine separation and high efficient extraction, a newly high-efficiency Raman polychromatic system is designed using the combination of dichroic mirrors and narrow- band interference filters. Using the standard atmospheric scattering models and aerosol extinction coefficients, the rejection rate of Mie-Rayleigh scattering signals and the signal-to-noise ratio of atmospheric water vapor measurement are simulated. The optimal parameters of Lidar system are obtained based on the detailed analysis and the discussion of the SNR of echo signals. Lidar emission wavelength and Raman scattering echo wavelengths are all in the ultraviolet range below 300nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of detecting water vapor in the daytime without the influence of solar background radiation in the system. Through the comparison between the Raman Lidars at the wavelengths of 266nm and 355nm respectively, it is concluded that the detection performance of the designed system at 266nm is better than the Raman Lidar system at 355nm during the daytime measurement, and the measurement height can be up to the 4 km.
Ulleberg, Oeystein
1998-12-31
This thesis gives a systematic review of the fundamentals of energy systems, the governing physical and chemical laws related to energy, inherent characteristics of energy system, and the availability of the earth`s energy. It shows clearly why solar-hydrogen systems are one of the most viable options for the future. The main subject discussed is the modelling of SAPS (Stand-Alone Power Systems), with focus on photovoltaic-hydrogen energy systems. Simulation models for a transient simulation program are developed for PV-H{sub 2} components, including models for photovoltaics, water electrolysis, hydrogen storage, fuel cells, and secondary batteries. A PV-H{sub 2} demonstration plant in Juelich, Germany, is studied as a reference plant and the models validated against data from this plant. Most of the models developed were found to be sufficiently accurate to perform short-term system simulations, while all were more than accurate enough to perform long-term simulations. Finally, the verified simulation models are used to find the optimal operation and control strategies of an existing PV-H{sub 2} system. The main conclusion is that the simulation methods can be successfully used to find optimal operation and control strategies for a system with fixed design, and similar methods could be used to find alternative system designs. 148 refs., 78 figs., 31 tabs.
Simulation platform to model, optimize and design wind turbines
Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.
2004-03-01
This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind
Solar water heating for aquaculture : optimizing design for sustainability
McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)
2003-08-01
This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.
Determination of the Optimal Tilt Angle for Solar Photovoltaic Panel in Ilorin, Nigeria
K.R. Ajao
2013-06-01
Full Text Available The optimal tilt angle of solar photovoltaic panel in Ilorin, Nigeria was determined. The solar panel was first mounted at 0o to the horizontal and after ten minutes, the voltage and current generated with the corresponding atmospheric temperature were recorded. The same procedure was repeated for 2o to 30o at a succession of 2o at ten minutes time interval over the entire measurement period. The result obtained shows that the average optimal tilt angle at which a solar panel will be mounted for maximum power performance at fixed position in Ilorin is 22o. This optimum angle of tilt of the solar panel and the orientation are dependent on the month of the year and the location of the site of study.
ANN based optimization of a solar assisted hybrid cooling system in Turkey
Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr
2011-07-01
This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.
Herman, Aline; Deparis, Olivier
2014-01-01
Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.
Seasonal optimal mix of wind and solar power in a future, highly renewable Europe
Heide, Dominik; Bremen, Lueder von; Greiner, Martin
2010-01-01
behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe......The renewable power generation aggregated across Europe exhibits strong seasonal behaviors. Wind power generation is much stronger in winter than in summer. The opposite is true for solar power generation. In a future Europe with a very high share of renewable power generation those two opposite...... the seasonal optimal mix becomes 55% wind and 45% solar power generation. For less than 100% renewable scenarios the fraction of wind power generation increases and that of solar power generation decreases....
Pan Jun; Fan Xiumin; Ma Dengzhe; Jin Ye
2003-01-01
Virtual product development (VPD) is essentially based on simulation. Due to computational inefficiency, traditional engineering simulation software and optimization methods are inadequate to analyze optimization problems in VPD. Optimization method based on simulation metamodel for virtual product development is proposed to satisfy the needs of complex optimal designs driven by VPD. This method extends the current design of experiments (DOE) by various metamodeling technologies. Simulation metamodels are built to approximate detailed simulation codes, so as to provide link between optimization and simulation, or serve as a bridge for simulation software integration among different domains. An example of optimal design for composite material structure is used to demonstrate the newly introduced method.
Hennaut, Samuel; Thomas, Sébastien; Davin, Elisabeth; Andre, Philippe
2011-01-01
This work focuses on the evaluation of the performances of a solar combisystem coupled to seasonal thermochemical storage using SrBr2/H20 as adsorbent/adsorbate couple. The objective is to determine the characteristics required for solar system and storage reactor to reach a 100 % solar fraction for a building with a low heating load. The complete system, including the storage reactor, is simulated, using the dynamic simulation software TRNSYS. The influence of some components and p...
A Simulation Framework for Optimal Energy Storage Sizing
Carlos Suazo-Martínez
2014-05-01
Full Text Available Despite the increasing interest in Energy Storage Systems (ESS, quantification of their technical and economical benefits remains a challenge. To assess the use of ESS, a simulation approach for ESS optimal sizing is presented. The algorithm is based on an adapted Unit Commitment, including ESS operational constraints, and the use of high performance computing (HPC. Multiple short-term simulations are carried out within a multiple year horizon. Evaluation is performed for Chile's Northern Interconnected Power System (SING. The authors show that a single year evaluation could lead to sub-optimal results when evaluating optimal ESS size. Hence, it is advisable to perform long-term evaluations of ESS. Additionally, the importance of detailed simulation for adequate assessment of ESS contributions and to fully capture storage value is also discussed. Furthermore, the robustness of the optimal sizing approach is evaluated by means of a sensitivity analyses. The results suggest that regulatory frameworks should recognize multiple value streams from storage in order to encourage greater ESS integration.
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms
Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.
2016-05-01
Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. Methods: The record of sunspot group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The
Tokamak Scenario Trajectory Optimization Using Fast Integrated Simulations
Urban, Jakub; Artaud, Jean-François; Vahala, Linda; Vahala, George
2015-11-01
We employ a fast integrated tokamak simulator, METIS, for optimizing tokamak discharge trajectories. METIS is based on scaling laws and simplified transport equations, validated on existing experiments and capable of simulating a full tokamak discharge in about 1 minute. Rapid free-boundary equilibrium post-processing using FREEBIE provides estimates of PF coil currents or forces. We employ several optimization strategies for optimizing key trajectories, such as Ip or heating power, of a model ITER hybrid discharge. Local and global algorithms with single or multiple objective functions show how to reach optimum performance, stationarity or minimum flux consumption. We constrain fundamental operation parameters, such as ramp-up rate, PF coils currents and forces or heating power. As an example, we demonstrate the benefit of current over-shoot for hybrid mode, consistent with previous results. This particular optimization took less than 2 hours on a single PC. Overall, we have established a powerful approach for rapid, non-linear tokamak scenario optimization, including operational constraints, pertinent to existing and future devices design and operation.
When teams shift among processes: insights from simulation and optimization.
Kennedy, Deanna M; McComb, Sara A
2014-09-01
This article introduces process shifts to study the temporal interplay among transition and action processes espoused in the recurring phase model proposed by Marks, Mathieu, and Zacarro (2001). Process shifts are those points in time when teams complete a focal process and change to another process. By using team communication patterns to measure process shifts, this research explores (a) when teams shift among different transition processes and initiate action processes and (b) the potential of different interventions, such as communication directives, to manipulate process shift timing and order and, ultimately, team performance. Virtual experiments are employed to compare data from observed laboratory teams not receiving interventions, simulated teams receiving interventions, and optimal simulated teams generated using genetic algorithm procedures. Our results offer insights about the potential for different interventions to affect team performance. Moreover, certain interventions may promote discussions about key issues (e.g., tactical strategies) and facilitate shifting among transition processes in a manner that emulates optimal simulated teams' communication patterns. Thus, we contribute to theory regarding team processes in 2 important ways. First, we present process shifts as a way to explore the timing of when teams shift from transition to action processes. Second, we use virtual experimentation to identify those interventions with the greatest potential to affect performance by changing when teams shift among processes. Additionally, we employ computational methods including neural networks, simulation, and optimization, thereby demonstrating their applicability in conducting team research.
Ray-trace simulation of CuInS(Se)₂ quantum dot based luminescent solar concentrators.
Hu, Xiangmin; Kang, Ruidan; Zhang, Yongyou; Deng, Luogen; Zhong, Haizheng; Zou, Bingsuo; Shi, Li-Jie
2015-07-27
To enhance the performance of luminescent solar concentrator (LSC), there is an increased need to search novel emissive materials with broad absorption and large Stokes shifts. I-III-VI colloidal CuInS2 and CuInSe2 based nanocrystals, which exhibit strong photoluminescence emissions in the visible to near infrared region with large Stokes shifts, are expected to improve performance in luminescent solar concentrator applications. In this work, the performance of CuInS(Se)2 quantum dots in simple planar LSC is evaluated by applying Monte-Carlo ray-trace simulation. A systematic parameters study was conducted to optimize the performance. An optimized photon concentration ratio of 0.34 for CuInS2 nanocrystals and 1.25 for CuInSe2 nanocrystals doping LSC are obtained from the simulation. The results demonstrated that CuInSe2 based nanocrystals are particularly interesting for luminescent solar concentrator applications, especially to combine with low price Si solar cells.
Michael Hu
2012-10-01
Full Text Available Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs and bulk heterojuntion solar cells (BHJs]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.
Ganapati, Vidya; Yablonovitch, Eli
2013-01-01
Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall...
Optimization of Serial Combined System of Ground-Coupled Heat Pump and Solar Collector
ZHAO Jun; CHEN Yan; LU Suzhen; CUI Junkui
2009-01-01
A mathematical optimization model was set up for a ground-solar combined system based on in-situ experimental results,in which the solar collector was combined serially with a ground-coupled heat pump(GCHP).The universal optimal equations were solved by the constrained variable metric method considering both the performance and economics.Then the model was applied to a specific case concerning an actual solar assisted GCHP system for space heating.The results indicated a system coefficient of performance(COP)of 3.9 for the optimal method under the seriaI heating mode,and 3.2 for the conventional one.In addition,the optimum solution also showed advantages in energy and cost saving.1eading to a 16.7%improvement in the heat pump performance at 17.2%less energy consumption and 11.8%lower annual cost,respectively.
Optimal estuarine sediment monitoring network design with simulated annealing.
Nunes, L M; Caeiro, S; Cunha, M C; Ribeiro, L
2006-02-01
An objective function based on geostatistical variance reduction, constrained to the reproduction of the probability distribution functions of selected physical and chemical sediment variables, is applied to the selection of the best set of compliance monitoring stations in the Sado river estuary in Portugal. These stations were to be selected from a large set of sampling stations from a prior field campaign. Simulated annealing was chosen to solve the optimisation function model. Both the combinatorial problem structure and the resulting candidate sediment monitoring networks are discussed, and the optimal dimension and spatial distribution are proposed. An optimal network of sixty stations was obtained from an original 153-station sampling campaign.
Automatic, optimized interface placement in forward flux sampling simulations
Kratzer, Kai; Allen, Rosalind J
2013-01-01
Forward flux sampling (FFS) provides a convenient and efficient way to simulate rare events in equilibrium or non-equilibrium systems. FFS ratchets the system from an initial state to a final state via a series of interfaces in phase space. The efficiency of FFS depends sensitively on the positions of the interfaces. We present two alternative methods for placing interfaces automatically and adaptively in their optimal locations, on-the-fly as an FFS simulation progresses, without prior knowledge or user intervention. These methods allow the FFS simulation to advance efficiently through bottlenecks in phase space by placing more interfaces where the probability of advancement is lower. The methods are demonstrated both for a single-particle test problem and for the crystallization of Yukawa particles. By removing the need for manual interface placement, our methods both facilitate the setting up of FFS simulations and improve their performance, especially for rare events which involve complex trajectories thr...
Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization
Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin
2016-05-01
The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.
Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells
2015-09-01
system is rated at providing 300 W of continuous power that is generated from a set of solar panels rated at 1.6 kW and includes a set of batteries that...region=8 conmob # SOLAR LIGHT (AM 1.5) beam num=1 x.origin=0.5 y.origin=-2 angle =90 am1.5 wavel.start=0.285 wavel.end=1.655 wavel.num=137...OPTIMIZATION OF COPPER INDIUM GALLIUM SELENIDE THIN FILM SOLAR CELLS by Daniel B. Katzman September 2015 Thesis Advisor: Sherif Michael Second
Dynamic Analysis and Optimization of a Solar Car Using FE Method
Liang Xinhua; Zhu Ping; Lin Zhongqin; Zhang Yan
2004-01-01
As we all know, the design of solar car focuses on lightweight in order to reduce the energy expenditure. However, the lightweight can induce large vibration, particularly in lower frequencies. The vibration not only influences the riding comfort but also cause the fatigue breakage. So the dynamic performance of the solar car must also be taken into account. In this paper, the finite element model of a solar car frame is built, and the modal analysis is also performed. Afterwards,the frequency responses of the frame are analyzed under harmonic load. Finally, some modification is performed on this frame by structure optimization procedure.
Silvicultural decisions based on simulation-optimization systems
Cao, Tianjian
2010-05-15
Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual
Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms
Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.
2011-08-01
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 - 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.
Synthetic radio views on simulated solar flux ropes
Kuznetsov, Alexey; Xia, Chun
2016-01-01
In this paper, we produce synthetic radio views on simulated flux ropes in the solar corona, where finite-beta magnetohydrodynamic (MHD) simulations serve to mimic the flux rope formation stages, as well as their stable endstates. These endstates represent twisted flux ropes where balancing Lorentz forces, gravity and pressure gradients determine the full thermodynamic variation throughout the flux rope. The obtained models are needed to quantify radiative transfer in radio bands, and allow us to contrast weak to strong magnetic field conditions. Field strengths of up to 100 G in the flux rope yield the radio views dominated by optically thin free-free emission. The forming flux rope shows clear morphological changes in its emission structure as it deforms from an arcade to a flux rope, both on disk and at the limb. For an active region filament channel with a field strength of up to 680 G in the flux rope, gyroresonance emission (from the third-fourth gyrolayers) can be detected and even dominates over free-...
Numerical Simulations of Helicity Condensation in the Solar Corona
Zhao, L.; DeVore, C. R.; Antiochos, S. K.; Zurbuchen, T. H.
2015-01-01
The helicity condensation model has been proposed by Antiochos (2013) to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the system. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of, for example, a bipolar active region. The calculations demonstrate that, contrary to common belief, coronal loops having opposite helicity do not reconnect, whereas loops having the same sense of helicity do reconnect. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.
Generating optimal initial conditions for smooth particle hydrodynamics (SPH) simulations
Diehl, Steven [Los Alamos National Laboratory; Rockefeller, Gabriel M [Los Alamos National Laboratory; Fryer, Christopher L [Los Alamos National Laboratory
2008-01-01
We present a new optimal method to set up initial conditions for Smooth Particle Hydrodynamics Simulations, which may also be of interest for N-body simulations. This new method is based on weighted Voronoi tesselations (WVTs) and can meet arbitrarily complex spatial resolution requirements. We conduct a comprehensive review of existing SPH setup methods, and outline their advantages, limitations and drawbacks. A serial version of our WVT setup method is publicly available and we give detailed instruction on how to easily implement the new method on top of an existing parallel SPH code.
Modified Sequential Kriging Optimization for Multidisciplinary Complex Product Simulation
Wang Hao; Wang Shaoping; Mileta M.Tomovic
2010-01-01
Directing to the high cost of computer simulation optimization problem,Kriging surrogate model is widely used to decrease the computation time.Since the sequential Kriging optimization is time consuming,this article extends the expected improvement and put forwards a modified sequential Kriging optimization (MSKO).This method changes the twice optimization problem into once by adding more than one point at the same time.Before re-fitting the Kriging model,the new sample points are verified to ensure that they do not overlap the previous one and the distance between two sample points is not too small.This article presents the double stopping criterion to keep the root mean square error (RMSE) of the final surrogate model at an ac-ceptable level.The example shows that MSKO can approach the global optimization quickly and accurately.MSKO can ensure global optimization no matter where the initial point is.Application of active suspension indicates that the proposed method is effective.
Optimized molten salt receivers for ultimate trough solar fields
Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas
2016-05-01
Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.
Influence of Reflectivity and Cloud Cover on the Optimal TiltAngle of Solar Panels
David J. Torres
2015-09-01
Full Text Available Determining the optimum angle for a solar panel is important if tracking systems are not used and a tilt angle remains constant. This article determines the sensitivity of the optimum angle to surface reflectivity at different latitudes using a mathematical model that accounts for direct, diffuse and reflected radiation. A quadratic correlation is also developed to compute the optimal angle and maximum energy as a function of latitude and reflectivity. We also seek to determine how sensitive the optimal tilt angle is to cloud cover using the 35° latitude of the Prosperity solar facility in Albuquerque, NM.
Giovanni Aiello
2017-01-01
Full Text Available Thin-film solar cells enable a strong reduction of the amount of silicon needed to produce photovoltaic panels but their efficiency lowers. Placing metallic or dielectric nanoparticles over the silicon substrate increases the light trapping into the panel thanks to the plasmonic scattering from nanoparticles at the surface of the cell. The goal of this paper is to optimize the geometry of a thin-film solar cell with silver and silica nanoparticles in order to improve its efficiency, taking into account the amount of silver. An efficient evolutionary algorithm is applied to perform the optimization with a reduced computing time.
张东; 王林
2013-01-01
In this paper, a principle model of a single tank thermocline heat storage system in the solar power tower plant was first constructed. Then, the energy of heat charging was selected as objective, and the height of heat storage tank, the inlet temperature and flow rate of heat transfer oil were set to be optimized. Meanwhile, an improved Simulated Annealing (SA) algorithm was proposed to solve this optimal design problem,in which an adaptive searching step was used to prevent the local minimum. The effect of the proposed model and the improved SA algorithm was demonstrated through a case study. The optimal tank height was 2 m when the economic conditions were considered during the design procedure. Meanwhile, in the operation procedure, the optimal inlet temperature of heat transfer oil was 300 ºC and optimal flow rate was 1.5 ml/s, as a result, the maximum heat storage energy was 24.87 MJ. Moreover, the normal SA method and the proposed SA method were compared on the stability of optimum results with different lengths of Markov Chain. The results showed that the proposed SA method can find a more stable maximum result than the normal SA method.%研究建立了太阳能热电站单罐蓄热器的数学模型，并以蓄热量为优化目标，蓄热器高度、入口处导热油温度和流量为优化变量，通过优化计算得到蓄热器的最优设计条件和最优操作条件。在优化求解过程中，针对解决求解过程中存在局部极小点的问题，本文提出了一种改进型模拟退火算法。在改进型算法中，考虑新状态变量值被接受和被拒绝的统计规律，自适应地调整搜索邻域的大小，有效提高了算法调出局部极小点的能力。仿真结果表明，通过优化计算，确定蓄热器高度和蓄热量的变化有关，考虑设计条件中的经济因素，最优蓄热器高度为2 m。当导热油采用CAFLO油时，最优的入口油温为300℃、最优入口流量为1.5 ml/s时
Optimized GPU simulation of continuous-spin glass models
Yavors'kii, Taras
2012-01-01
We develop a highly optimized code for simulating the Edwards-Anderson Heisenberg model on graphics processing units (GPUs). Using a number of computational tricks such as tiling, data compression and appropriate memory layouts, the simulation code combining over-relaxation, heat bath and parallel tempering moves achieves a peak performance of 0.29 ns per spin update on realistic system sizes, corresponding to a more than 150 fold speed-up over a serial CPU reference implementation. The optimized implementation is used to study the spin-glass transition in a random external magnetic field to probe the existence of a de Almeida-Thouless line in the model, for which we give benchmark results.
Optimized GPU simulation of continuous-spin glass models
Yavors'kii, T.; Weigel, M.
2012-08-01
We develop a highly optimized code for simulating the Edwards-Anderson Heisenberg model on graphics processing units (GPUs). Using a number of computational tricks such as tiling, data compression and appropriate memory layouts, the simulation code combining over-relaxation, heat bath and parallel tempering moves achieves a peak performance of 0.29 ns per spin update on realistic system sizes, corresponding to a more than 150 fold speed-up over a serial CPU reference implementation. The optimized implementation is used to study the spin-glass transition in a random external magnetic field to probe the existence of a de Almeida-Thouless line in the model, for which we give benchmark results.
García-Barberena, Javier; Erdocia, Ioseba
2016-05-01
The increase of electric power demand and the wish to protect the environment are leading to a change in the energy sources. Conventional energy plants are losing strength against the renewable energy plants and, in particular, solar energy plants have a huge potential to provide clean energy supply for the increasing world's energy demand. Among the existing solar technologies, Concentrating Solar Power (CSP) is one of the most promising technologies. One of the major advantages of CSP plants is the technically feasible and cost-effective integration of Thermal Energy Storage (TES) systems. To increase the plant dispatchability, it is possible to create different operational strategies defining how such TES system is used. In this work, different strategies with different overall goals have been simulated over a complete year and the results are presented and compared here to demonstrate the capabilities of the operational strategies towards an increased dispatchability and plant economic effectiveness. The analysis shows that different strategies may lead to significant differences in the plant annual production, expected economic incomes, number of power block stops, mean efficiency, etc. Specifically, it has been found that the economic incomes of a plant can be increased (+1.3%) even with a decreased total energy production (-1.5%) if the production is scheduled to follow a demand/price curve. Also, dramatic reduction in the number of turbine stops (-67%) can be achieved if the plant is operated towards this objective. The strategies presented in this study have not been optimized towards any specific objective, but only created to show the potential of well designed operational strategies in CSP plants. Therefore, many other strategies as well as optimized versions of the strategies explained below are possible and will be analyzed in future works.
Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level
Matic Herman
2012-01-01
Full Text Available High-efficiency solar cells and modules exhibit strong capacitive character resulting in limited speed of transient responses. A too fast I-V curve measurement can thus introduce a significant error due to its internal capacitances. This paper analyses the I-V curve error of a measured solar cell or module in light of scan time and irradiance level. It rests on a two-diode solar cell model extended by two bias-dependent capacitances, modelling the junction, and the diffusion capacitance. A method for determination of all extended model parameters from a quasistatic I-V curve and open-circuit voltage decay measurement is presented and validated. Applicability of the extended model and the developed parameter extraction method to PV modules is demonstrated and confirmed. SPICE simulations of the extended model are used to obtain the I-V curve error versus scan time dependence and the I-V curve hysteresis. Determination of the optimal scan time is addressed, and finally the influence of the irradiance level on the I-V curve scan time and error is revealed. The method is applied but is not limited to three different wafer-based silicon solar cell types.
The Simulation and Optimization of Aspheric Plastic Lens Injection Molding
WEN Jialing; WEN Pengfei
2005-01-01
For the purpose of reducing the volumetric shrinkage and volumetric shrinkage variation, the process in injection molding of aspheric plastic lens was simulated, and several process parameters which include holding pressure, melt temperature, mold temperature, fill time, holding pressure time and cooling time were optimized by using an orthogonal experimental design method. Finally, the optimum process parameters and the influence degree of process parameters on the average volumetric shrinkage and the volumetric shrinkage variation are obtained.
Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems
Tao Ren
2012-01-01
Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.
Modeling and simulation of a solar power source at 3kW for a clean energy without pollution
Louzazni M.
2014-04-01
Full Text Available The air pollution was much worse, and it became necessary to replace the fossil energy sources by the renewable energies. The causes are related to reserves that can be exhausted, to pollution and their impacts on the environment. Production of toxic gases from the combustion of coal for the effect of increasing the temperature of the earth. Solar energy is a clean and inexhaustible excellent alternative. We propose a modeling and simulation of a solar system consists of a photovoltaic generator (PVG, a boost chopper, to supply a telecommunications relay station (BTS, According to the load characteristics (I = 60A, V = 48V DC (3 kW. A stage adaptation composed of this chopper controlled by a PWM controller (Pulse Width Modulation is used to control the optimal operating point (MPPT and optimize system performance using Matlab / Simulink.
Scheduling Patients’ Appointments: Allocation of Healthcare Service Using Simulation Optimization
Ping-Shun Chen
2015-01-01
Full Text Available In the service industry, scheduling medical procedures causes difficulties for both patients and management. Factors such as fluctuations in customer demand and service time affect the appointment scheduling systems’ performance in terms of, for example, patients’ waiting time, idle time of resources, and total cost/profits. This research implements four appointment scheduling policies, i.e., constant arrival, mixed patient arrival, three-section pattern arrival, and irregular arrival, in an ultrasound department of a hospital in Taiwan. By simulating the four implemented policies’ optimization procedures, optimal or near-optimal solutions can be obtained for patients per arrival, patients’ inter-arrival time, and the number of the time slots for arrived patients. Furthermore, three objective functions are tested, and the results are discussed. The managerial implications and discussions are summarized to demonstrate how outcomes can be useful for hospital managers seeking to allocate their healthcare service capacities.
spsann - optimization of sample patterns using spatial simulated annealing
Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia
2015-04-01
There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a
Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki
2014-06-07
Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.
A methodology to quantify and optimize time complementarity between hydropower and solar PV systems
Kougias, Ioannis; Szabó, Sándor; Monforti-Ferrario, Fabio; Huld, Thomas; Bódis, Katalin
2016-04-01
Hydropower and solar energy are expected to play a major role in achieving renewable energy sources' (RES) penetration targets. However, the integration of RES in the energy mix needs to overcome the technical challenges that are related to grid's operation. Therefore, there is an increasing need to explore approaches where different RES will operate under a synergetic approach. Ideally, hydropower and solar PV systems can be jointly developed in such systems where their electricity output profiles complement each other as much as possible and minimize the need for reserve capacities and storage costs. A straightforward way to achieve that is by optimizing the complementarity among RES systems both over time and spatially. The present research developed a methodology that quantifies the degree of time complementarity between small-scale hydropower stations and solar PV systems and examines ways to increase it. The methodology analyses high-resolution spatial and temporal data for solar radiation obtained from the existing PVGIS model (available online at: http://re.jrc.ec.europa.eu/pvgis/) and associates it with hydrological information of water inflows to a hydropower station. It builds on an exhaustive optimization algorithm that tests possible alterations of the PV system installation (azimuth, tilt) aiming to increase the complementarity, with minor compromises in the total solar energy output. The methodology has been tested in several case studies and the results indicated variations among regions and different hydraulic regimes. In some cases a small compromise in the solar energy output showed significant increases of the complementarity, while in other cases the effect is not that strong. Our contribution aims to present these findings in detail and initiate a discussion on the role and gains of increased complementarity between solar and hydropower energies. Reference: Kougias I, Szabó S, Monforti-Ferrario F, Huld T, Bódis K (2016). A methodology for
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
Simulation based optimized beam velocity in additive manufacturing
Vignat, Frédéric; Béraud, Nicolas; Villeneuve, François
2017-08-01
Manufacturing good parts with additive technologies rely on melt pool dimension and temperature and are controlled by manufacturing strategies often decided on machine side. Strategies are built on beam path and variable energy input. Beam path are often a mix of contour and hatching strategies filling the contours at each slice. Energy input depend on beam intensity and speed and is determined from simple thermal models to control melt pool dimensions and temperature and ensure porosity free material. These models take into account variation in thermal environment such as overhanging surfaces or back and forth hatching path. However not all the situations are correctly handled and precision is limited. This paper proposes new method to determine energy input from full built chamber 3D thermal simulation. Using the results of the simulation, energy is modified to keep melt pool temperature in a predetermined range. The paper present first an experimental method to determine the optimal range of temperature. In a second part the method to optimize the beam speed from the simulation results is presented. Finally, the optimized beam path is tested in the EBM machine and built part are compared with part built with ordinary beam path.
Reliability Simulation and Design Optimization for Mechanical Maintenance
LIU Deshun; HUANG Liangpei; YUE Wenhui; XU Xiaoyan
2009-01-01
Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in system design. In this paper, a reliability model and reliability-based design optimization methodology for maintenance are presented. First, based on the time-to-failure density function of the part of the system, the age distributions of all parts of the system during service are investigated, a reliability model of the mechanical system for maintenance is developed. Then, reliability simulations of the systems with Weibull probability density functions are performed, the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system. Thirdly, a maintenance cost model is developed based on replacement rates of the parts, a reliability-based design optimization model for maintenance is presented, in which total life cycle cost is considered as design objective and system reliability as design constrain. Finally, the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor, which shows that optimal design with the lowest maintenance cost can be obtained, and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor.
Simulated Annealing-Based Krill Herd Algorithm for Global Optimization
Gai-Ge Wang
2013-01-01
Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.
Numerical simulations of electromagnetic scattering by Solar system objects
Dlugach, Janna M.
2016-11-01
Having been profoundly stimulated by the seminal work of Viktor V. Sobolev, I have been involved in multi-decadal research in the fields of radiative transfer, electromagnetic scattering by morphologically complex particles and particulate media, and planetary remote sensing. Much of this research has been done in close collaboration with other "descendants" of Academician Sobolev. This tutorial paper gives a representative overview of the results of extensive numerical simulations (in the vast majority carried out in collaboration with Michael Mishchenko) used to analyze remote-sensing observations of Solar system objects and based on highly accurate methods of the radiative transfer theory and direct computer solvers of the Maxwell equations. Using the atmosphere of Jupiter as a proving ground and performing T-matrix and radiative-transfer calculations helps demonstrate the strong effect of aerosol-particle shapes on the accuracy of remote-sensing retrievals. I then discuss the application of the T-matrix method, a numerically exact solution of the vector radiative transfer equation, and the theory of coherent backscattering to an analysis of polarimetric radar observations of Saturn's rings. Numerical modeling performed by using the superposition T-matrix method in application to cometary dust in the form of aggregates serves to reproduce the results of polarimetric observations of the distant comet C/2010 S1. On the basis of direct computer solutions of the Maxwell equations, it is demonstrated that all backscattering effects predicted by the low-density theories of radiative transfer and coherent backscattering can also be identified for media with volume packing densities typically encountered in natural and artificial environments. This result implies that spectacular opposition effects observed for some high-albedo atmoshereless Solar system bodies can be attributed to coherent backscattering of sunlight by regolith layers composed of microscopic particles.
Solar photo catalytic treatment of simulated dyestuff effluents
Kositzi, M.; Antoniadis, A.; Poulios, I.; Kiridies, I.; Malato, S.
2003-07-01
The photo catalytic organic content reduction of two selected synthetic wastewater from the textile dyeing industry, by the use heterogeneous and homogeneous photo catalytic methods under solar irradiation, has been studied at a pilot plant scale at the Plataforma Solar de Almeria. the effect of two different TiO{sub 2} modifications with oxidants such as H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8}, on the decolorisation and the organic content reduction (DOC) of the wastewater was examined. the TiO{sub 2}/H{sub 2}O{sub 2} system seems to be more efficient in comparison to the synergetic action which appears when using persulfate and TiO{sub 2} in these specific wastewaters. By an accumulation energy of 50 KJ L''-1 the synergetic effect of TiO{sub 2} P-25 with H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} leads to a 70% and 57% DOC reduction, respectively, in the case of cotton synthetic wastewater, while the decolorisation was almost complete. The photo catalytic decolorisation, as well as the DOC reduction in the case of naylon simulated wastewater is a slower process and by an accumulation energy of 50 KJ L''-1 leads to 54% mineralization in both cases. The Photo-Fenton process in both cases was more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation of energy of 50 KJ L''-1 leads to 90% reduction of the organic content. (Author) 13 refs.
Fix, Stuart; Richman, Russell [Department of Architectural Science, Faculty of Engineering, Architecture and Science, Ryerson University (Canada)], email: sfix@ryerson.ca, email: richman@ryerson.ca
2011-07-01
With the depletion of energy resources and the rising concerns about the environment, building designers are shifting towards green building designs. However since no design optimization for an entire building exists, a significant degree of uncertainty is involved in design decisions. The aim of this paper is to present the brute force optimization process which is a method removing the uncertainty from green building designs. This method relies on the selection of optimization criteria and then several simulations are performed. A demonstration pilot was carried out in Toronto and over one million design permutations were conducted. Results showed that parameters such as total building area, window performance and infiltration level are the most important to the lifetime energy consumption of a building. This study pointed out the important parameters to optimize in order to reduce a building's energy consumption.
QCAD simulation and optimization of semiconductor double quantum dots
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design
Kamioka, Takefumi; Hayashi, Yutaka; Nakamura, Kyotaro; Ohshita, Yoshio
2015-08-01
A simulation of interdigitated back-contact silicon heterojunction (IBC-SHJ) solar cells was performed using a quantum transport model to consider the quantum effect at the crystalline/amorphous (c/a) heterojunction interface. It was found that the impact of the quantum effect on the open-circuit voltage is comparable to that of the interface defect density at the c/a interface, indicating the importance of implementation of the quantum model. The optimal back-contact design was also discussed from the viewpoint of mass production, in which the design rule is relaxed. The degradation of the conversion efficiency by widening the gap between the p- and n-aSi:H layers can be compensated by improving passivation quality at the c/a interface.
Optimized dispatch in a first-principles concentrating solar power production model
Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.; Braun, Robert J.
2017-10-01
Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum and maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun
2016-01-01
panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large......There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...
Karam, Ayman M.
2015-09-21
This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.
Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.
Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier
2014-10-20
We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found.
Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter
2013-03-01
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.
Coupled simulation of performance of a crossed compound parabolic concentrator with solar cell
2015-01-01
An optimal installation of a compound parabolic concentrator (CCPC) into a scalable solar thermoelectrics and photovoltaics system is desirable by applying analytical tools to improve the optical and thermal performance of a CCPC with a solar cell. In this paper, the optical and thermal performances of an isolated CCPC with solar cell are investigated by employing commercial software ‘ANSYS CFX 15.0’ with a coupled optical grey and multiphysics model. Numerical results are validated against t...
Optimization of spherical facets for parabolic solar concentrators
White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.
1986-01-01
Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.
Optimizing the size of a solar cell array; Optimiser la taille d'un panneau solaire
Shannon, J. [Linear Technology, 94 - Rungis (France)
2006-06-15
The electronic power conversion system is a strategic part of solar power supply systems. An ideal diode controller combined to a compensated switching regulator allows to optimize the operation of the battery and to optimize the dimensioning of the solar cells array. The ideal diode controller limits the discharge of the battery inside the non-exposed solar cells and limits the related direct voltage drop and loss of power. The switching regulator charger lowers the solar cells voltage to charge the battery and ensures the optimum operation of the solar elements. (J.S.)
Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method
Jenn-Kai Tsai; Wen Dung Hsu; Tian-Chiuan Wu; Jia-Song Zhou; Ji-Lin Li; Jian-Hao Liao; Teen-Hang Meen
2013-01-01
The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs). Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) were added...
Dragsted, Janne; Furbo, Simon
2009-01-01
Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate represe...
Janjai, S.; Lamlert, N.; Intawee, P. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Mahayothee, B. [Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); Bala, B.K. [Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Nagle, M.; Mueller, J. [Institute of Agricultural Engineering, University of Hohenheim, Stuttgart 70593 (Germany)
2009-09-15
This paper presents experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. The dryer consists of a parabolic roof structure covered with polycarbonate plates on a concrete floor. Three fans powered by a 50-W PV module ventilate the dryer. To investigate the experimental performances of the solar greenhouse dryer for drying of peeled longan and banana, 10 full scale experimental runs were conducted. Of which five experimental runs were conducted for drying of peeled longan and another five experimental runs were conducted for drying of banana. The drying air temperature varied from 31 C to 58 C during drying of peeled longan while it varied from 30 C to 60 C during drying of banana. The drying time of peeled longan in the solar greenhouse dryer was 3 days, whereas 5-6 days are required for natural sun drying under similar conditions. The drying time of banana in the solar greenhouse dryer was 4 days, while it took 5-6 days for natural sun drying under similar conditions. The quality of solar dried products in terms of colour and taste was high-quality dried products. A system of partial differential equations describing heat and moisture transfer during drying of peeled longan and banana in the solar greenhouse dryer was developed and this system of non-linear partial differential equations was solved numerically using the finite difference method. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5. The simulated results reasonably agreed with the experimental data for solar drying of peeled longan and banana. This model can be used to provide the design data and is also essential for optimal design of the dryer. (author)
Multicriteria analysis in selecting the optimal variant of solar system
Radziejowska Aleksandra
2016-01-01
Full Text Available Alternative energy sources are becoming more serious competition to traditional ways of generating energy. It becomes real integration of eco-energy with ecology, as well as the innovative technologies with low-energy construction. Apart from the cost an important issue are technical parameters of the equipment, durability, ease of installation, etc. The investor therefore is facing with the problem of decision-making to choose the best solution from the point of view of many criteria. In the article, the authors present the proposal to apply the methods of multi-criteria analysis to select the most beneficial variant of the solar system solutions. In this purpose will be use among other method: multivariate analysis of Saaty’s AHP, the taxonomic method of weighting factors and, belonging to a group of methods using outranking relations, the Promethee II method. Proposed comparative analysis can be used as a method for decision support during the selection of the most beneficial technological solution of solar installation and to evaluate operational efficiency existing buildings which will have implemented new systems.
Optimization of black diamond films for solar energy conversion
Bellucci, Alessandro; Calvani, Paolo; Girolami, Marco [CNR-ISM—Montelibretti Sect., Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma (Italy); Orlando, Stefano [CNR-ISM—Tito Scalo Sect., Zona Industriale, 85050 Tito Scalo, PZ (Italy); Polini, Riccardo [CNR-ISM—Montelibretti Sect., Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma (Italy); Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Trucchi, Daniele M., E-mail: daniele.trucchi@ism.cnr.it [CNR-ISM—Montelibretti Sect., Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma (Italy)
2016-09-01
Highlights: • Black diamond films were developed by fs-laser subwavelength surface texturing. • Black diamond films can be used as photon-enhanced thermionic emission devices. • A simple method for developing a 2D periodic surface texturing is proposed. • Although not perfectly regular, the 2D texturing induced a 98% solar absorptance. • The 2D texturing enhances the photoelectronic capability of black diamond films. - Abstract: Black diamond, namely a surface textured diamond film able to absorb efficiently the sunlight, is developed by the use of ultrashort pulse laser treatments. With the aim of fabricating a 2D periodic surface structure, a double-step texturing process is implemented and compared to the single-step one, able to induce the formation of 1D periodic structures. Although the obtained sub-microstructure does not show a regular 2D periodicity, a solar absorptance of about 98% is achieved as well as a quantum efficiency enhanced of one order of magnitude with respect to the 1D periodic surface texturing.
Geometric optimization of a solar cubic-cavity multi-tubular reactor
Valades-Pelayo, P. J.; Arancibia-Bulnes, C. A.; Villafan-Vidales, H.; Romero-Paredes, H.
2016-05-01
A multi-tubular solar thermochemical cavity reactor is proposed and the tubular array optimized. The optimized reactor design aims at operating under different temperatures and carrying out different kinds of thermochemical reactions. The radiation entering the receptacle comes from a solar concentrating system and the reactor consists of a cubic receptacle made of woven graphite, housing nine 2.54 cm diameter tungsten tubes. A model is developed and implemented considering high-temperature radiative transfer at steady state. The temperature distribution within the cavity surfaces is determined by employing a hybrid Monte Carlo-Finite Volume approach. Optimal tube distributions are explored by using a custom-made stochastic, multi-parameter, optimization algorithm. In this way, multiple global maxima are determined. Patterns among all possible optimal tube distributions within the cavity are obtained for different scenarios, by maximizing average tube temperature. From this study, practical guidelines are obtained for future application in the design of solar cavity reactors and more specifically, on the layout of multi tubular arrays to optimize radiative heat transfer.
Performance Investigation and Structure Optimization of a Flat Dual-Function Solar Collector
Jinwei Ma
2015-01-01
Full Text Available The performance of a dual-function solar collector (DFSC that can work as either water heater or air heater depending on seasonal requirement is investigated via both experimental and numerical approaches in this paper. The numerical results are well consistent with the experimental results. Daily efficiency of the thermosiphon system with DFSC is more than 55% in water heating mode and the instantaneous air heating efficiency of the collector reaches 60%. The effects of inner parameters on the thermal efficiency of the collector are analyzed by numerical simulations of the operation of DFSC in two working modes. It is found that the depths of the two air channels in DFSC have an optimal range suitable for both working modes. The thickness of back insulation should be no less than 0.06 m to prevent heat loss via backboard, and the diameter and number of copper tubes show notable effect on the efficiency of DFSC in water heating mode but slight effect in air heating mode.
Fan, Li; Faryad, Muhammad; Barber, Greg D.; Mallouk, Thomas E.; Monk, Peter B.; Lakhtakia, Akhlesh
2015-01-01
A spectrum splitter can be used to spatially multiplex different solar cells that have high efficiency in mutually exclusive parts of the solar spectrum. We investigated the use of a grating, comprising an array of dielectric cylinders embedded in a dielectric slab, for specularly transmitting one part of the solar spectrum while the other part is transmitted nonspecularly and the total reflectance is very low. A combination of (1) the rigorous coupled-wave approach for computing the reflection and transmission coefficients of the grating and (2) the differential evolution algorithm for optimizing the grating geometry and the refractive indices of dielectric materials was devised as a design tool. We used this tool to optimize two candidate gratings and obtained definite improvements to the initial guesses for the structural and constitutive parameters. Significant spectrum splitting can be achieved if the angle of incidence does not exceed 15 deg.
Design tool for large solar hot water systems - Uniform optimization of components and economy
Visser, H.
1996-01-01
In close collaboration with the parties concerned, i.e. both the sellers and investors, a design and optimization method for large solar hot water systems is being developed. In order to support investors in achieving the feasibility of such systems, the normalized method including software tool for
Designing optimized nano textures for thin-film silicon solar cells
Jäger, K.; Fischer, M.; Van Swaaij, R.A.C.M.M.; Zeman, M.
2013-01-01
Thin-film silicon solar cells (TFSSC), which can be manufactured from abundant materials solely, contain nano-textured interfaces that scatter the incident light. We present an approximate very fast algorithm that allows optimizing the surface morphology of two-dimensional nano-textured interfaces.
Optimization of imprintable nanostructured a-Si solar cells: FDTD study.
Fisker, Christian; Pedersen, Thomas Garm
2013-03-11
We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.
Optimizations of large area quasi-solid-state dye-sensitized solar cells
Biancardo, M.; West, K.; Krebs, Frederik C
2006-01-01
In this paper, we address optimizations of dye sensitized solar cells (DSSCs) through the combination of important issues like semi-transparency, quasi-solid-state constructions and low-cost realization of serially connected modules. DSSCs with a transparency of 50% in the visible region, moderate...
Optimization of Organic Solar Cells: Materials, Devices and Interfaces
Zhou, Nanjia
Due to the increasing demand for sustainable clean energy, photovoltaic cells have received intensified attention in the past decade in both academia and industry. Among the types of cells, organic photovoltaic (OPV) cells offer promise as alternatives to conventional inorganic-type solar cells owning to several unique advantages such as low material and fabrication cost. To maximize power conversion efficiencies (PCEs), extensive research efforts focus on frontier molecular orbital (FMO) energy engineering of photoactive materials. Towards this objective, a series of novel donor polymers incorporating a new building block, bithiophene imide (BTI) group are developed, with narrow bandgap and low-lying highest occupied molecular orbital (HOMO) energies to increase short circuit current density, Jsc, and open circuit voltage, Voc.. Compared to other PV technologies, OPVs often suffer from large internal recombination loss and relatively low fill factors (FFs) thin film morphology, OPVs with PCEs up to 8.7% and unprecedented FF approaching 80% are obtained. Such high FF are close to those typically achieved in amorphous Si solar cells. Systematic variations of polymer chemical structures lead to understanding of structure-property relationships between polymer geometry and the resulting blend film morphology characteristics which are crucial for achieving high local mobilities and long carrier lifetimes. Instead of using fullerene as the acceptors, an alternative type of OPV is developed employing a high electron mobility polymer, P(NDI2OD-T2), as the acceptor. To improve the all-polymer blend film morphology, the influence of basic solvent properties such as solvent boiling point and solubility on polymer phase separation and charge transport properties is investigated, yielding to a high PCE of 2.7% for all-polymer solar cells. To take advantages of the inherent mechanical flexibility associated with organic materials, the development of transparent, flexible
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun;
2016-01-01
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar pa...... to minimize the global line losses of the feeder. The mathematical model is presented in details. Further, case studies are completed with simulations involving a 15-bus radial distribution system. These simulations are run for 24 hour periods, with actual solar data and demand data....
Tsekouras, Georgios; Ioannou, Christos; Efstratiadis, Andreas; Koutsoyiannis, Demetris
2013-04-01
The drawbacks of conventional energy sources including their negative environmental impacts emphasize the need to integrate renewable energy sources into energy balance. However, the renewable sources strongly depend on time varying and uncertain hydrometeorological processes, including wind speed, sunshine duration and solar radiation. To study the design and management of hybrid energy systems we investigate the stochastic properties of these natural processes, including possible long-term persistence. We use wind speed and sunshine duration time series retrieved from a European database of daily records and we estimate representative values of the Hurst coefficient for both variables. We conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. To this we use the Castalia software system which performs multivariate stochastic simulation. Using these time series as input, we perform stochastic simulation of an autonomous hypothetical hybrid renewable energy system and optimize its performance using genetic algorithms. For the system design we optimize the sizing of the system in order to satisfy the energy demand with high reliability also minimizing the cost. While the simulation scale is the daily, a simple method allows utilizing the subdaily distribution of the produced wind power. Various scenarios are assumed in order to examine the influence of input parameters, such as the Hurst coefficient, and design parameters such as the photovoltaic panel angle.
Computer simulation of ground coupled storage in a series solar assisted heat pump system
Andrews, John W.; Metz, Philip D.
1979-01-01
A quantitative study of the effect of thermal coupling between the ground and the heat storage element of a series solar assisted heat pump system is presented. The transient simulation computer program TRNSYS is used to simulate the solar portion of this system. A program to simulate the thermal interaction of the storage element with the ground is incorporated into TRNSYS as a sub-routine. This program calculates heat flow through the ground in discrete steps over space and time. Boundary conditions are established. The ground coupled storage is driven by thermal inputs from the solar portion of the system and from the changing ambient and ground temperatures.
Wind Solar Hybrid System Rectifier Stage Topology Simulation
Anup M. Gakare
2014-06-01
Full Text Available This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of the energy sources maximum power from the sun when it is available. An adaptive MPPT algorithm with a standard perturbs and observed method will be used for the Photo Voltaic system. The main advantage of the hybrid system is to give continuous power supply to the load. The gating pulses to the inverter switches are implemented with conventional and fuzzy controller. This hybrid wind-photo voltaic system is modeled in MATLAB/ SIMULINK environment. Simulation circuit is analyzed and results are presented for this hybrid wind and solar energy system.
Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares
Reep, Jeffrey; Alexander, David
2015-01-01
In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...
Evaluation and optimization of silicon sheet solar cells
Yoo, H.; Iles, P.; Tanner, D.; Pollock, G.; Uno, F.
1980-01-01
This paper describes the results and procedures to evaluate and improve the efficiency of solar cells made from various unconventional silicon sheets. The performance parameters included photovoltaic characteristics, spectral response, dark I-V characteristics, and diffusion length. The evaluation techniques used provided accurate and reliable information on sheet performance, and self-consistent results were obtained from the various measurement techniques used. Minority carrier diffusion length (L) was shown to be the ultimate limiting factor for the sheet cell performance (efficiency) and other back-up measurements confirmed this L-dependence. Limited efforts were made to identify defects which influence cell performance, and to use some improved process methods to increase cell efficiency.
Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint
Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang
2015-08-07
Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.
Optimized molecular force field for sulfur hexafluoride simulations.
Olivet, Aurelio; Vega, Lourdes F
2007-04-14
An optimized molecular force field for sulfur hexafluoride (SF6) simulations is presented in this work. The new force field for SF6 contains two parts: a Lennard-Jones potential that deals with F-F intermolecular interactions and the second term dealing with the intramolecular forces. In this second part the flexibility of the molecule is explicitly considered by 6 harmonic stretch terms, modeling the S-F chemical bonds, and 12 harmonic bending terms, modeling the F-S-F angular deformations. The parameters of the new force field have been obtained by a multivariable optimization procedure, whose main feature is the simultaneous fitting of all force field parameters, using as reference data several equilibrium properties (vapor pressure, saturated liquid density, and surface tension) and shear viscosity. The new force field clearly improves the description of the phase envelope and the rest of the properties as compared to previous simulations for a rigid model for the same molecule [A. Olivet et al., J. Chem. Phys. 123, 194508 (2005)]. Results for the optimized force field concerning the vapor-liquid coexistence curve, several thermodynamics states at the homogeneous gas and liquid region, and transport coefficients of SF6 are in good agreement with available experimental data.
Numerical simulations of multi-shell plasma twisters in the solar atmosphere
Murawski, K; Musielak, Z E; Dwivedi, B N
2015-01-01
We perform numerical simulations of impulsively generated Alfv\\'en waves in an isolated photospheric flux tube, and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube which is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreov...
Simulation of Tunnel Junction in Cascade Solar Cell (GaAs/Ge Using AMPS-1D
Benmoussa Dennai
2014-11-01
Full Text Available The development of the tunnel junction interconnect was key the first two-terminal monolithic, multi-junction solar cell development. This paper describes simulation for the tunnel junction (GaAs between top cell (GaAs and bottom cell (Ge. This solar cell cascade was simulated when using one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D. In the simulation, the thickness of the tunnel junction layer was varied from 10 to 50 nm. By varying thickness of tunnel junction layer the simulated device performance was demonstrate in the form of current-voltage(I-V characteristics and quantum efficiency (QE.
Assessing recovery feasibility for piping plovers using optimization and simulation
Larson, M.A.; Ryan, M.R.; Murphy, R.K.
2003-01-01
Optimization and simulation modeling can be used to account for demographic and economic factors simultaneously in a comprehensive analysis of endangered-species population recovery. This is a powerful approach that is broadly applicable but underutilized in conservation biology. We applied the approach to a population recovery analysis of threatened and endangered piping plovers (Charadrius melodus) in the Great Plains of North America. Predator exclusion increases the reproductive success of piping plovers, but the most cost-efficient strategy of applying predator exclusion and the number of protected breeding pairs necessary to prevent further population declines were unknown. We developed a linear programming model to define strategies that would either maximize fledging rates or minimize financial costs by allocating plover pairs to 1 of 6 types of protection. We evaluated the optimal strategies using a stochastic population simulation model. The minimum cost to achieve a 20% chance of stabilizing simulated populations was approximately $1-11 million over 50 years. Increasing reproductive success to 1.24 fledglings/pair at minimal cost in any given area required fencing 85% of pairs at managed sites but cost 23% less than the current approach. Maximum fledging rates resulted in >20% of simulated populations reaching recovery goals in 30-50 years at cumulative costs of <$16 million. Protecting plover pairs within 50 km of natural resource agency field offices was sufficient to increase simulated populations to established recovery goals. A range-wide management plan needs to be developed and implemented to foster the involvement and cooperation among managers that will be necessary for recovery efforts to be successful. We also discuss how our approach can be applied to a variety of wildlife management issues.
Process Optimization with Simulation Modeling in a Manufacturing System
Akbel Yildiz
2011-04-01
Full Text Available Computer simulation has become an important tool in modeling systems in the last ten years due to parallel improvement in computer technologies. Companies tend to computer based system modeling and simulation not to lose any extra income or time to their competitors but to make future investments while they both have the same labor force, resources and technology. This study is an implementation of a machine spare parts manufacturer factory located in city of Turkey. The purpose of the study depends on increasing the utilization rates and optimizing the manufacture process to decrease prouction costs via identifying the bottlenecks in manufacture system. Therefore, ProModel simulation software was used to model the production line of the factory. Production line consists of nineteen work stations and was modeled for the most manufactured two products. The manufacture in the factory is divided into two weeks of batch production time and simulation model was demonstrated and replicated for ten times to get results. Thus, statistics including existing capacity usages of work stations in the whole production line were found to identify the bottlenecks of the critical work stations and machines. With the use of the simulation model, creating scenarios while making changes of the system parameters, taking the cycle times of the work stations, total production quantity, batch sizes and the shifts of the factory in hand helped to make suggestions.
Membrane Material-Based Rigid Solar Array Design and Thermal Simulation for Stratospheric Airships
Kangwen Sun
2014-01-01
Full Text Available In order to improve effective utilization of rigid solar array used in stratospheric airships here, the flexible connection design and light laminated design were introduced to rigid solar array. Based on the analysis of the design scheme, firstly, the equivalent coefficient of thermal conductivity was calculated by the theoretical formula. Subsequently, the temperature variation characteristics of the solar cell module were accurately modeled and simulated by using Computational Fluid Dynamics (CFD software. Compared to the results of test samples, the solar cell module described here guaranteed effective output as well as good heat insulating ability, effectively improving the feasibility of the stratospheric airship design. In addition, the simulation model can effectively simulate the temperature variation characteristics of the solar cell, which, therefore, provides technical support for the engineering application.
Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion
P. Janhunen
2007-03-01
Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10^{−8} N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.
Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging
Mehdad, E.; Kleijnen, Jack P.C.
2014-01-01
In this paper we investigate global optimization for black-box simulations using metamodels to guide this optimization. As a novel metamodel we introduce intrinsic Kriging, for either deterministic or random simulation. For deterministic simulation we study the famous `efficient global optimization'
Optimal control and quantum simulations in superconducting quantum devices
Egger, Daniel J.
2014-10-31
Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.
Organic solar cells theory, experiment, and device simulation
Tress, Wolfgang
2014-01-01
This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on
Stochastic simulation and robust design optimization of integrated photonic filters
Weng Tsui-Wei
2017-01-01
Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.
A performance optimization and analysis of graphene based schottky barrier GaAs solar cell
Jolson Singh, Khomdram; Chettri, Dhanu; Jayenta Singh, Thokchom; Thingujam, Terirama; Sarkar, Subir kumar
2017-06-01
Performance optimization of Graphene-GaAs schottky barrier solar cell have been performed by considering variables such as substrate thickness, Graphene thickness, dependence between graphene work function and transmittance. The optimized parameter was extensively used to numerically model the design using TCAD Atlas. The results show the enhanced performance of the design with the optimized thickness of Graphene (0.3μm) and GaAs (10μm), resulting in significant increase in power conversion efficiency from 0.732% to 2.581% and reasonable fill factor up to 70%. It was further analysed that maximum potential was developed in the vicinity of the anode, which results in better charge collection hence improving the overall performance of the solar cell. The results are validated with the reported experimental work.
Optimal low-thrust trajectories for nuclear and solar electric propulsion
Genta, G.; Maffione, P. F.
2016-01-01
The optimization of the trajectory and of the thrust profile of a low-thrust interplanetary transfer is usually solved under the assumption that the specific mass of the power generator is constant. While this is reasonable in the case of nuclear electric propulsion, if solar electric propulsion is used the specific mass depends on the distance of the spacecraft from the Sun. In the present paper the optimization of the trajectory of the spacecraft and of the thrust profile is solved under the latter assumption, to obtain optimized interplanetary trajectories for solar electric spacecraft, also taking into account all phases of the journey, from low orbit about the starting planet to low orbit about the destination one. General plots linking together the travel time, the specific mass of the generator and the propellant consumption are obtained.
Thermo-economic Optimization of Solar Assisted Heating and Cooling (SAHC System
A. Ghafoor
2014-12-01
Full Text Available The energy demand for cooling is continuously increasing due to growing thermal loads, changing architectural modes of building, and especially due to occupants indoor comfort requirements resulting higher electricity demand notably during peak load hours. This increasing electricity demand is resulting higher primary energy consumption and emission of green house gases (GHG due to electricity generation from fossil fuels. An exciting alternative to reduce the peak electricity consumption is the possible utilization of solar heat to run thermally driven cooling machines instead of vapor compression machines utilizing high amount of electricity. In order to widen the use of solar collectors, they should also be used to contribute for sanitary hot water production and space heating. Pakistan lying on solar belt has a huge potential to utilize solar thermal heat for heating and cooling requirement because cooling is dominant throughout the year and the enormous amount of radiation availability provides an opportunity to use it for solar thermal driven cooling systems. The sensitivity analysis of solar assisted heating and cooling system has been carried out under climatic conditions of Faisalabad (Pakistan and its economic feasibility has been calculated using maximization of NPV. Both storage size and collector area has been optimized using different economic boundary conditions. Results show that optimum area of collector lies between 0.26m2 to 0.36m2 of collector area per m2 of conditioned area for ieff values of 4.5% to 0.5%. The optimum area of collector increases by decreasing effective interest rate resulting higher solar fraction. The NPV was found to be negative for all ieff values which shows that some incentives/subsidies are needed to be provided to make the system cost beneficial. Results also show that solar fraction space heating varies between 87 and 100% during heating season and solar fraction cooling between 55 and 100% during
Optimization of hydrogen vehicle refueling via dynamic simulation
Rothuizen, Erasmus Damgaard; Mérida, W.; Rokni, Masoud
2013-01-01
A dynamic model has been developed to analyze and optimize the thermodynamics and design of hydrogen refueling stations. The model is based on Dymola software and incorporates discrete components. Two refueling station designs were simulated and compared. The modeling results indicate that pressure...... loss in the vehicle's storage system is one of the main factors determining the mass flow and peak cooling requirements of the refueling process. The design of the refueling station does not influence the refueling of the vehicle when the requirements of the technical information report J2601 from...
Reid, R. L.; Murphy, L. M.; Ward, D. S.
Progress made toward the commercialization of solar energy technologies as of 1981 is assessed, and attention is given to the future uses and impacts of solar energy. Attention is given to the results of several years of monitoring and modifying solar heating and cooling on residential and commercial structures. Solar system simulation and analysis methods are reviewed, covering the performance and operations of passive and active systems, thermosyphon systems, heat pumps and phase change systems. Simulations of system components are discussed, as are means to validate existing computer simulation codes, particularly the TRNSYS program. Control systems and logic for collector systems are explored, including analyses of building loads and climates, and numerical models of the economics of solar heating systems are presented. Performance simulations and economic analyses are also outlined for wind and photovoltaic systems, and for industrial solar heating systems. Finally, fundamental studies of corrosion, steam flow, wind loading, and scaling in solar systems are described.
Optimizing Grippers for Compensating Pose Uncertainties by Dynamic Simulation
Wolniakowski, Adam; Kramberger, Aljaž; Gams, Andrej
2016-01-01
Gripper design process is one of the interesting challenges in the context of grasping within industry. Typically, simple parallel-finger grippers, which are easy to install and maintain, are used in platforms for robotic grasping. The context switches in these platforms require frequent exchange......, we have presented a method to automatically compute the optimal finger shapes for defined task contexts in simulation. In this paper, we show the performance of our method in an industrial grasping scenario. We first analyze the uncertainties of the used vision system, which are the major source...... of grasping error. Then, we perform the experiments, both in simulation and in a real setting. The experiments confirmed the validity of our approach. The computed finger design was employed in a real industrial assembly scenario....
Efficient thermal cycling of solar panels in solar simulation facilities with a multi-panel test rig
Brinkmann, P. W.; Reimann, J.
1980-06-01
It is shown that efficient thermal cycling tests under vacuum can be performed at reduced costs to cover the requirements for qualifications and acceptance testing of solar panels. A suitable test rig was developed which allows simultaneous testing of up to 3 solar panels with a dimension of 1.3 m x 1.7 m each. The tests can be performed in an existing solar simulation facility with a beam diameter of only 2.4 m. This means that a close simulation of orbital conditions can be achieved, including severe eclipse conditions with rapid temperature changes. Chamber dimensions, descriptions of suspension devices, and other data needed by potential users are given.
Simulations of the Solar Wind Interaction with the Atmosphere/Ionosphere of Venus
Ledvina, Stephen; Brecht, Stephen H.; Bougher, Stephen W.
2016-10-01
The latest results of high resolution 3-D hybrid particle code simulations of the solar wind interacting with the atmosphere/ionosphere of Venus will be presented. The research is focused on understanding the how the solar wind interaction with Venus results in the subsequent ionospheric losses. In addition, the simulations focus on structures caused by the interaction particularly on the pole of the planet where the convection electric field points. A variety of simulation results will be presented each with varying solar wind parameters. The hybrid particle code HALFSHEL contains a variety of physical and chemical models which will also be discussed. These include a chemistry package that produces the ionosphere on grid resolution of 10 km altitude, atmospheric densities and dynamics from the VTGCM code and the Hall and Pedersen conductivities associated with plasma neutral collisions. The specific simulations to be presented trace solar wind protons, and ionospheric O+ and O2+.
Perez, Marc J. R.
With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north
Design optimization of thin-film/wafer-based tandem junction solar cells using analytical modeling
Davidson, Lauren; Toor, Fatima
2016-03-01
Several research groups are developing solar cells of varying designs and materials that are high efficiency as well as cost competitive with the single junction silicon (Si) solar cells commercially produced today. One of these solar cell designs is a tandem junction solar cell comprised of perovskite (CH3NH3PbI3) and silicon (Si). Loper et al.1 was able to create a 13.4% efficient tandem cell using a perovskite top cell and a Si bottom cell, and researchers are confident that the perovskite/Si tandem cell can be optimized in order to reach higher efficiencies without introducing expensive manufacturing processes. However, there are currently no commercially available software capable of modeling a tandem cell that is based on a thin-film based bottom cell and a wafer-based top cell. While PC1D2 and SCAPS3 are able to model tandem cells comprised solely of thin-film absorbers or solely of wafer-based absorbers, they result in convergence errors if a thin-film/wafer-based tandem cell, such as the perovskite/ Si cell, is modeled. The Matlab-based analytical model presented in this work is capable of modeling a thin-film/wafer-based tandem solar cell. The model allows a user to adjust the top and bottom cell parameters, such as reflectivity, material bandgaps, donor and acceptor densities, and material thicknesses, in order to optimize the short circuit current, open circuit voltage, and quantum efficiency of the tandem solar cell. Using the Matlab-based analytical model, we were able optimize a perovskite/Si tandem cell with an efficiency greater than 30%.
Mathematical and computational modeling simulation of solar drying Systems
Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...
Cheimets, Peter; Bookbinder, Jay; Freeman, Mark; Gates, Richard; Gauron, Thomas; Guth, Giora; Kasper, Justin; McCracken, Kenneth; Podgorski, William
2013-09-01
This paper describes the implementation of a solar simulator, know as the Solar Environment Simulator (SES), that can simulate solar flux levels up to those encountered at 9.8 solar radii. The paper outlines the design, and the challenges of realizing the SES. It also describes its initial uses for proving out the design of the Solar Winds Electrons, Alphas, and Protons (SWEAP) Faraday cup. The upcoming Solar Probe Plus (SPP) mission requires that its in-situ plasma instrument (the Faraday Cup) survive and operate over an unprecedented range of temperatures. One of the key risk mitigation activities during Phase B has been to develop and implement a simulator that will enable thermal testing of the Faraday Cup under flight-like conditions. While still in the initial start-up, the SES has proven to be an instrumental component in the process of predicting the inflight performance of the SWEAP Faraday Cup. With near continuously variable power control above the threshold of 1.6kW/lamp up to approximately 6.5kW/lamp, the SES has been used to determine the system response to a wide range of incoming flux, thereby making it possible to correlate detailed thermal models to a high degree of certainty (see Ref. [1], Figure 1.1). The SES consists of a set of repurposed, and slightly re-designed standard movie projectors. The projectors have proven to be an economical and effective means to safely hold and control the xenon short-arc lamps that are the basis of the SES. This paper outlines the key challenges controlling the extremely high flux levels (~70w/cm^2) necessary to make the SES a useful test facility.
聂慧军; 刘淑平; 吕雁文; 杨大洋
2015-01-01
运用afors-het软件对β-FeSi2(n)/a-Si (i)/c-Si(p)结构的太阳能电池进行模拟，依次讨论了本征层、发射层、界面态对电池性能的影响。结果表明：添加本征层电池性能提高，但随着本征层厚度的增加载流子收集率下降、串联电阻增大，造成电池光电转化效率下降；发射层厚度的增加使得载流子的收集率下降造成光电转化效率下降，同时发射层掺杂浓度增大虽然使得内建电场强度增大，但载流子的复合也会加大，最终使得电池性能保持稳定；界面态使得电池性能下降，为使电池获得较好性能，界面态密度应尽可能小于1011 cm–2·eV–1。通过优化，最终使得该结构的太阳能电池光电转化效率达到17.00%。%The performance of β-FeSi2(n)/c-Si(p) HIT solar cell was simulated by using the afors-het. At the same time, the influences of the intrinsic layer, an emission layer, and the interface states on the battery performance were discussed. The results show that, the performance of battery is improved after adding the intrinsic layer. However, with the increasing of the intrinsic layer thickness, carrier collection rate decreases and the series resistance increases so that the photoelectric conversion efficiency of cell decreases. Increasing the thickness of the emission layer makes the collection rate of carrier decrease, causing that the photoelectric conversion efficiency reduces. Although the increasing of emission layer doping concentration leads to increasing of built-in electric field intensity, the carrier compound increases simultaneously. So the battery performance remains stable. Interface states degrade battery performance, so the density of interface states should be less than 1011cm–2·eV–1 in order to obtain the better performance for the cell. By optimizing the various parameters of the cell, the photoelectricconversion efficiency of β-FeSi2(n)/a-Si(i)/c-Si(p) solar cell can
Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 x 10...
Bettonvil, B.W.M.; Del Castillo, E.; Kleijnen, Jack P.C.
2005-01-01
This paper derives a novel procedure for testing the Karush-Kuhn-Tucker (KKT) first-order optimality conditions in models with multiple random responses.Such models arise in simulation-based optimization with multivariate outputs.This paper focuses on expensive simulations, which have small sample
SIMULATING MODEL OF SYSTEM FOR MAXIMUM OUTPUT POWER OF SOLAR BATTERY
Abdul Majid Al-Khatib
2005-01-01
Full Text Available Simulating model and algorithm for control of electric power converter of a solar battery are proposed in the paper. Control device of D.C. step-down converter with pulse-width modulation is designed on microprocessor basis. Simulating model permits to investigate various operational modes of a solar battery, demonstrates a process with maximum power mode and is characterized by convenient user’s interface.
Design, simulation, and testing of a new concentrating type solar cooker
Khalifa, A.M.A.; Taha, M.M.A.; Akyurt, M.
1987-01-01
Oven type solar cookers were studied. A new oven cooker that permitted heating from the bottom and sides was developed. Simulation studies were conducted for predicting the thermal behavior of this cooker for which concentrated solar energy would be supplied via a spiral concentrator. Oil and water heating as well as actual cooking experiments showed that the new cooker holds promise. Results of simulation studies were in reasonable agreement with the experimental findings.