WorldWideScience

Sample records for solar reflectance part

  1. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  2. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  3. Measuring solar reflectance - Part II: Review of practical methods

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23 ], and to within 0.02 for surface slopes up to 12:12 [45 ]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R{sub g,0}{sup *}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R{sub g,0}{sup *} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R{sub g,0}{sup *} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R{sub g,0}{sup *} to within about 0.01. (author)

  4. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  5. Applying measured reflection from the ground to simulations of thermal perfromance of solar collectors

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    2009-01-01

    representation of the reflection from the ground. In this study a more accurate description of the albedo is obtained based on detailed measurements from a solar hat, installed at ASIAQ’s climate station in Sisimiut, Greenland. The solar hat measures the global radiation on horizontal, the total radiation......Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate...... on vertical surfaces facing north, south, east and west, and radiation reflected from the ground on vertical surfaces facing north, south, east and west. Based on measured data from 2004-2007 the albedo is determined for each month of the year as a function of the difference between the solar azimuth...

  6. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    Science.gov (United States)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  7. Procedure for measuring the solar reflectance of flat or curved roofing assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen [Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stern, Stephanie [Cool Roof Rating Council, Oakland, CA 94612 (United States)

    2008-07-15

    The widely used methods to measure the solar reflectance of roofing materials include ASTM standards E903 (spectrometer), C1549 (reflectometer), and E1918 (pyranometer). Standard E903 uses a spectrometer with an integrating sphere to measure the solar spectral reflectance of an area approximately 0.1 cm{sup 2}. The solar spectral reflectance is then weighted with a solar spectral irradiance to calculate the solar reflectance. Standard C1549 uses a reflectometer to measure the solar reflectance of an area approximately 5 cm{sup 2}. Both E903 and C1549 are best suited to measurement of the solar reflectance of flat, homogeneous surfaces. Standard E1918 uses a pyranometer to measure the solar reflectance of an area approximately 10 m{sup 2}, and is best applied to large surfaces that may also be rough and/or non-uniform. We describe a technique that uses a pyranometer to measure the solar reflectance of a uniform or variegated sample with diffusely reflective surface of an area of approximately 1 m{sup 2}, and use this technique (referred to as E1918A) to measure the solar reflectances of low- and high-profile tile assemblies. For 10 large (10 m{sup 2}) tile assemblies whose E1918 solar reflectances ranged from 0.10 to 0.50, the magnitude of the difference between the E1918A and E1918 measurements did not exceed 0.02 for unicolor assemblies, and did not exceed 0.03 for multicolor assemblies. (author)

  8. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, V. [Department of Mechanical Engineering, Sathyabama University, Chennai, 600 119 (India); Natarajan, E. [Institute for Energy Studies, College of Engineering, Anna University, Chennai, 600 025 (India)

    2007-06-15

    An indirect forced convection with desiccant integrated solar dryer has been built and tested. The main parts are: a flat plate solar air collector, a drying chamber, desiccant bed and a centrifugal blower. The system is operated in two modes, sunshine hours and off sunshine hours. During sun shine hours the hot air from the flat plate collector is forced to the drying chamber for drying the product and simultaneously the desiccant bed receives solar radiation directly and through the reflected mirror. In the off sunshine hours, the dryer is operated by circulating the air inside the drying chamber through the desiccant bed by a reversible fan. The dryer is used to dry 20 kg of green peas and pineapple slices. Drying experiments were conducted with and without the integration of desiccant unit. The effect of reflective mirror on the drying potential of desiccant unit was also investigated. With the inclusion of reflective mirror, the drying potential of the desiccant material is increased by 20% and the drying time is reduced. The drying efficiency of the system varies between 43% and 55% and the pick-up efficiency varies between 20% and 60%, respectively. Approximately in all the drying experiments 60% of moisture is removed by air heated using solar energy and the remainder by the desiccant. The inclusion of reflective mirror on the desiccant bed makes faster regeneration of the desiccant material. (author)

  9. Gradient SiNO anti-reflective layers in solar selective coatings

    Science.gov (United States)

    Ren, Zhifeng; Cao, Feng; Sun, Tianyi; Chen, Gang

    2017-08-01

    A solar selective coating includes a substrate, a cermet layer having nanoparticles therein deposited on the substrate, and an anti-reflection layer deposited on the cermet layer. The cermet layer and the anti-reflection layer may each be formed of intermediate layers. A method for constructing a solar-selective coating is disclosed and includes preparing a substrate, depositing a cermet layer on the substrate, and depositing an anti-reflection layer on the cermet layer.

  10. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Science.gov (United States)

    Jorgensen, Gary; Gee, Randall C.; White, David

    2017-05-02

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  11. Research Needs: Glass Solar Reflectance and Vinyl Siding

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  12. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  13. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  14. Design of multi-layer anti-reflection coating for terrestrial solar panel ...

    Indian Academy of Sciences (India)

    To date, there is no ideal anti-reflection (AR) coating available on solar glass which can effectively transmit the incident light within the visible wavelength range. However, there is a need to develop multifunctional coatingwith superior anti-reflection properties and self-cleaning ability meant to be used for solar glass panels.

  15. Soiling of building envelope surfaces and its effect on solar reflectancePart II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  16. Analysis of an anti-reflecting nanowire transparent electrode for solar cells

    Science.gov (United States)

    Zhao, Zhexin; Wang, Ken Xingze; Fan, Shanhui

    2017-03-01

    Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this paper, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry-Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.

  17. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    Science.gov (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  18. TURBULENCE IN THE SUB-ALFVENIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVEN WAVES

    International Nuclear Information System (INIS)

    Verdini, A.; Velli, M.; Buchlin, E.

    2009-01-01

    We study the formation and evolution of a turbulent spectrum of Alfven waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvenic critical point. The background solar wind is assigned and two-dimensional shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves, respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.

  19. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    Science.gov (United States)

    Sun, Junqiang; Wang, Menghua

    2014-11-01

    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  20. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  1. Improvement in greenhouse solar drying using inclined north wall reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)

    2009-09-15

    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  2. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  3. Enhancement of the CIGS solar cell's efficiency by anti-reflection coating with teflon AF

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong-Sub; Kim, Chan; Rhee, Il-Su [Kyungpook National University, Daegu (Korea, Republic of); Jo, Hyun-Jun; Kim, Dae-Hwan [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Hong, Sung-Wook [Daegu University, Gyeongsan (Korea, Republic of)

    2014-11-15

    An anti-reflection (AR) layer of Teflon AF was deposited on the front surface of a Cu(In,Ga)Se{sub 2} (CIGS) solar cell with a structure of grid/TCO/ZnO/CdS/Cu(In,Ga)Se{sub 2}/Mo/glass by using the spin coating method. This AR layer reduced the front-surface reflection, which resulted in high efficiency for the CIGS solar cell. The thickness of the Teflon AF layer was varied to determine the thickness that gave the highest transmittance of incident light into the active absorber of the CIGS solar cell. The optimum thickness of the Teflon AF layer was found to be 105 nm. CIGS solar cells with a Teflon AF layer of 105 nm were constructed, and their efficiencies were compared with those of solar cells without a Teflon AF layer. The average increase in the relative efficiency of the solar cells was 2.63% due to the inclusion of an anti-reflection layer of Teflon AF.

  4. Solar Energy Education. Reader, Part IV. Sun schooling

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  5. Fixed Nadir Focus Concentrated Solar Power Applying Reflective Array Tracking Method

    Science.gov (United States)

    Setiawan, B.; DAMayanti, A. M.; Murdani, A.; Habibi, I. I. A.; Wakidah, R. N.

    2018-04-01

    The Sun is one of the most potential renewable energy develoPMent to be utilized, one of its utilization is for solar thermal concentrators, CSP (Concentrated Solar Power). In CSP energy conversion, the concentrator is as moving the object by tracking the sunlight to reach the focus point. This method need quite energy consumption, because the unit of the concentrators has considerable weight, and use large CSP, means the existence of the usage unit will appear to be wider and heavier. The addition of weight and width of the unit will increase the torque to drive the concentrator and hold the wind gusts. One method to reduce energy consumption is direct the sunlight by the reflective array to nadir through CSP with Reflective Fresnel Lens concentrator. The focus will be below the nadir direction, and the position of concentrator will be fixed position even the angle of the sun’s elevation changes from morning to afternoon. So, the energy concentrated maximally, because it has been protected from wind gusts. And then, the possibility of dAMage and changes in focus construction will not occur. The research study and simulation of the reflective array (mechanical method) will show the reflective angle movement. The distance between reflectors and their angle are controlled by mechatronics. From the simulation using fresnel 1m2, and efficiency of solar energy is 60.88%. In restriction, the intensity of sunlight at the tropical circles 1KW/peak, from 6 AM until 6 PM.

  6. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  7. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    Science.gov (United States)

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  8. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    Science.gov (United States)

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  9. Design of a Solar Greenhouse with Energy Delivery by the Conversion of Near Infrared Radiation - Part 1 Optics and PV-cells

    NARCIS (Netherlands)

    Gert-Jan Swinkels; Piet Sonneveld; G.P.A. Bot

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  10. Design of a Solar Greenhouse with energy Delivery by the Conversion of Near Infrared Radiation. Part 1. Optics and PV-Cells

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Bot, G.P.A.

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  11. Shaded Spacecraft Radiators to Be Used on the Daytime Surface of the Mercury Planet, the Moon, and Asteroids of the Solar System Inner Part

    Directory of Open Access Journals (Sweden)

    V. A. Igrickii

    2016-01-01

    Full Text Available During the daytime a surface of the Moon, Mercury planet, and asteroids of the Solar system inner part, significantly heats up, and infrared radiation of the local soil becomes essential. At the same time direct solar radiation and reflected from the surface solar radiation reach the maximum too. These radiation fluxes can significantly decrease the efficiency of spacecraft radiators in the daytime. This effect is especially strong on the Mercury surface where direct solar radiation is 10 times stronger than solar radiation near the Earth. As a result, on the daytime surface of the Mercury the conventional low-temperature radiators become completely disabled.The article describes the development of the special shaded spacecraft radiators to be used in daytime on the Mercury and other atmosphereless bodies of the Solar system inner part. To solve this task are used mirror shades. The shape of these shades is developed to improve operation conditions of the spacecraft radiator through the appropriate scheme of radiation reflection. The task is discussed in 2D and 3D cases. A new design of shaded spacecraft radiators is proposed, and reasonable proportions of radiators are determined. The performance capability of proposed radiators for environments of the Mercury and the Moon is estimated using the zonal method in view of partial mirror reflection. The calculations showed that the developed shaded spacecraft radiators are capable to work on the Mercury surface as the low-temperature radiators even during the daytime. New radiators provide minimum accepted operating temperature of 241К (-32°С, meanwhile radiators of common design have minimum operating temperature of 479К (206°С. Using such radiators on the Moon enables us to increase effectiveness of spacecraft radiators and to decrease their minimum operating temperature from 270К (-3°С to 137К (-136°С.

  12. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  13. Solar Energy Education. Reader, Part I. Energy, Society, and the Sun

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which were selected for information on solar energy is presented in this booklet. This booklet is the first of a four part series of the Solar Energy Reader. The articles provide brief discussions on topics such as the power of the sun, solar energy developments for homes, solar energy versus power plants, solar access laws, and the role of utilities with respect to the sun's energy. (BCS)

  14. Solar reflection panels

    Science.gov (United States)

    Diver, Jr., Richard B.; Grossman, James W [Albuquerque, NM; Reshetnik, Michael [Boulder, CO

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  15. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  16. Ultra-low reflection porous silicon nanowires for solar cell applications

    KAUST Repository

    Najar, Adel

    2012-01-01

    High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measurements show that the 35% reflectivity of the starting silicon wafer drops to 0.1% recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix Formalism (TMF) of the PSiNWs layer. Using TMF, the Bruggeman model was used to calculate the refractive index of PSiNWs layer. The calculated reflectance using circular cone shape fits better the measured reflectance for PSiNWs. The remarkable decrease in optical reflectivity indicates that PSiNWs is a good antireflective layer and have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection. ©2012 Optical Society of America.

  17. View Factor of Solar Chimneys by Monte Carlo Method

    DEFF Research Database (Denmark)

    Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    in the chimney base to generate electricity or ventilation of buildings. A part of the solar radiation is absorbed by solar collector directly, which is greater than which reflected by collector to the tower. But this amount of reflection can enhance the efficiency of the system. Determining more precise view......A typical solar chimney power plant (SCPP) system mainly contains three components, namely, solar collector, tower and turbine. The collector heats up ambient air entering to the system by buoyancy force. Updraft airflow is then generated in the chimney and drives the pressure-staged turbine...

  18. Reflection of the solar wind ions at the earth's bow shock: energization

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.; Russell, C.T.

    1983-01-01

    The energies of the field-aligned proton beams observed upstream of the earth's bow shock are tested, on a statistical basis, against a simple reflection model. The comparison is carried out using both plasma and magnetic field data collected by the ISEE 2 spacecraft. The observations refer to the period from November 5 to December 20, 1977. According to this model, some of the solar wind protons incident upon the earth's shock front when reflected upstream gain energy by displacement parallel to the interplanetary electric field. The energy gained in the reflection can be described as a function of the angles between the interplanetary magnetic field, the solar wind bulk velocity, and the local shock normal. The task of finding these angles, i.e., the expected source point of the reflected ions at the earth's shock front, has been resolved using both the measured magnetic field direction and actual beam trajectory. The latter method, which takes into account the ion drift velocity, leads to a better agreement between theory and observations when far from the shock. In particular, it allows us to check the energies of the field-aligned beams even when they are observed far from the earth's bow shock (at distances up to 10-15 R/sub E/). We confirm, on a statistical basis, the test of the model recently carried out using the Los Alamos National Laboratory/Max-Planck-extraterrestrische observations on ISEE 1 and 2. We infer that reflected beams can sometimes propagate far upstream of the earth's bow shock without changing their energy properties

  19. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink Devices will increase the efficiency of multi-junction solar cells by designing and demonstrating advanced anti-reflection coatings (ARCs) that will...

  20. Solar power conversion system with directionally- and spectrally-selective properties based on a reflective cavity

    Science.gov (United States)

    Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth; Weinstein, Lee A.; Chen, Gang

    2018-03-13

    Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.

  1. Sun-view angle effects on reflectance factors of corn canopies

    Science.gov (United States)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  2. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink and its subcontractor Magnolia Solar will develop and demonstrate advanced anti-reflection coating (ARC) designs that will provide a better broadband and...

  3. ALFVEN WAVE REFLECTION AND TURBULENT HEATING IN THE SOLAR WIND FROM 1 SOLAR RADIUS TO 1 AU: AN ANALYTICAL TREATMENT

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.; Hollweg, Joseph V.

    2009-01-01

    We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.

  4. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  5. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  6. Combined effect of bottom reflectivity and water turbidity on steady state thermal efficiency of salt gradient solar pond

    International Nuclear Information System (INIS)

    Husain, M.; Patil, P.S.; Patil, S.R.; Samdarshi, S.K.

    2004-01-01

    In salt gradient solar ponds, the clarity of water and absorptivity of the bottom are important concerns. However, both are practically difficult to maintain beyond a certain limit. The reflectivity of the bottom causes the loss of a fraction of the incident radiation flux, resulting in lower absorption of flux in the pond. Turbidity hinders the propagation of radiation. Thereby it decreases the flux reaching the storage zone. Both these factors lower the efficiency of the pond significantly. However, the same turbidity also prevents the loss of radiation reflected from the bottom. Hence, the combined effect is compensatory to some extent. The present work is an analysis of the combined effect of the bottom's reflectivity and water turbidity on the steady state efficiency of solar ponds. It is found that in the case of a reflective bottom, turbidity, within certain limits, improves the efficiency of pond. This is apparently contradictory to the conventional beliefs about the pond. Nevertheless, this conclusion is of practical importance for design and maintenance of solar ponds

  7. Modelling of solar cells with down-conversion of high energy photons, anti-reflection coatings and light trapping

    International Nuclear Information System (INIS)

    Vos, Alexis de; Szymanska, Aleksandra; Badescu, Viorel

    2009-01-01

    In classical solar cells, each absorbed photon gives rise to one electron-hole pair, irrespective of the photon energy. By applying an appropriate photoluminescent layer in front of the solar cell semiconductor, one can convert one high energy photon into two low energy photons (so-called down-conversion). In the present study, we do not consider photoluminescent layers that merely shift down photon energies (without enhancing the number of photons). In principle, these two photons can then generate two electron-hole pairs in the solar cell, thus increasing the efficiency of the device. However, the two photons emitted by the converter, are not necessarily emitted in the direction of the semiconductor: they can also be emitted in the direction 'back to the sun'. As most semiconductors have a high refractive index, in case the luminescent material has a low refractive index, more than half of the photoluminescence emission is lost in the sun direction, resulting in a net loss of light current generated by the solar cell instead of an increase. On the other hand, a high refractive index of the conversion layer (e.g. equal to the solar cell refractive index) will lead to a bad optical coupling with the air and a good optical coupling with the semiconductor, and therefore, more than 50% of the emitted low energy photons will actually reach the solar cell. However, in the latter case, many solar photons do not reach the converter in the first place because of reflection at the air-converter interface. As a result, it turns out that, in the absence of any anti-reflection coating, a refractive index n 2 of the converting layer in the range between n 1 1/2 and n 1 is optimal, where n 1 is the refractive index of the solar cell material. If, however, an anti-reflection coating is applied between air and the converter, the best choice for n 2 is n 1 . Finally, if two anti-reflection coatings are applied (the former between air and the converter, the latter between the

  8. Performance of "Moth Eye" Anti-Reflective Coatings for Solar Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.; Kane, M.; Jiang, P.

    2011-03-14

    An inexpensive, effective anti-reflective coating (ARC) has been developed at the University of Florida to significantly enhance the absorption of light by silicon in solar cells. This coating has nano-scale features, and its microstructure mimics that of various night active insects (e.g. a moth's eye). It is a square array of pillars, each about 700 nm high and having a diameter of about 300 nm. Samples of silicon having this coating were exposed either to various combinations of either elevated temperature and humidity or to gamma irradiation ({sup 60}Co) at the Savannah River National Laboratory, or to a broad spectrum ultraviolet light and to a 532 nm laser light at the University of Florida. The anti-reflective properties of the coatings were unaffected by any of these environmental stresses, and the microstructure of the coating was also unaffected. In fact, the reflectivity of the gamma irradiated ARC became lower (advantageous for solar cell applications) at wavelengths between 400 and 1000 nm. These results show that this coating is robust and should be tested in actual systems exposed to either weather or a space environment. Structural details of the ARCs were studied to optimize their performance. Square arrays performed better than hexagonal arrays - the natural moth-eye coating is indeed a square array. The optimal depth of the templated nanopillars in the ARC was investigated. A wet etching technology for ARC formation was developed that would be less expensive and much faster than dry etching. Theoretical modeling revealed that dimple arrays should perform better than nipple arrays. A method of fabricating both dimple and nipple arrays having the same length was developed, and the dimple arrays performed better than the nipple arrays, in agreement with the modeling. The commercial viability of the technology is quite feasible, since the technology is scalable and inexpensive. This technology is also compatible with current industrial

  9. Broad-band anti-reflection coupler for a : Si thin-film solar cell

    International Nuclear Information System (INIS)

    Lo, S.-S.; Chen, C.-C.; Garwe, Frank; Pertch, Thomas

    2007-01-01

    This work numerically demonstrates a new anti-reflection coupler (ARC) with high coupling efficiency in a Si substrate solar cell. The ARC in which the grating is integrated on a glass encapsulation and a three-layer impedance match layer is proposed. A coupling efficiency of 90% is obtained at wavelengths between 350 and 1200 nm in the TE and TM modes when the incident angle is less than 30 0 . In comparison with a 1μm absorber layer, the integrated absorption of an a-Si thin-film solar cell without a new ARC is doubled, at long wavelengths (750 nm ≤ λ ≤ 1200 nm), as calculated by FDTD method

  10. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  11. Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    International Nuclear Information System (INIS)

    Wang, Shichao; Zhang, Jun

    2014-01-01

    Highlights: • HDPE/TiO 2 composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO 2 composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO 2 ) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO 2 particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO 2 particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO 2 particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO 2 particles in HDPE matrix. It was found the rutile TiO 2 could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result

  12. Interior design for passive solar homes

    Science.gov (United States)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  13. Interior design for passive solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  14. ZnO/Al{sub 2}O{sub 3} core/shell nanorods array as excellent anti-reflection layers on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Chun-Ming; Wang, Wei-Cheng [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 106, Taiwan (China); Chen, Liang-Yih, E-mail: sampras@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 106, Taiwan (China); Chen, Miin-Jang, E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)

    2016-09-01

    A simple, low-temperature hydrothermal method and atomic layer deposition (ALD) were used to fabricate ZnO nanostructures as subwavelength-structure antireflection layers (SWS ARLs) on Si solar cells. ZnO seed layers with wafer-scale uniformity were prepared, and ALD was used to reproduce two types of ZnO-based structures, nanorod arrays (NRAs) and nanotip arrays (NTAs). The study examined diammonium phosphate concentrations during growth, conducted simulations based on three-dimensional finite-difference time-domain and reflection analyses, performed X-ray diffractometer, field-emission scanning electron microscope, and high-resolution transmission electron microscope characterizations, measured total reflectance spectra by using a spectrophotometer with integrated spheres, and ran solar simulations to determine the efficiency of the Si solar cells. Coating the ZnO NTAs on the Si solar cells yielded a low total reflectance over a broad band range and produced omnidirectional light scattering on the cells, causing incident light to have a shallow penetration depth near the p–n junction and leading to an increase in short current density ({sub Jsc}). Coating the ZnO NTAs with an Al{sub 2}O{sub 3} shell induced continuous variation in the refractive index, further decreasing the total reflectance to approximately 5.5%, and protected the ZnO NTAs from the harmful acidic environment. Significantly increasing the J{sub sc} and η levels of the Si solar cells, the Al{sub 2}O{sub 3}@ZnO-NTA antireflection structure produced a high efficiency of 17.79%. Its superior performance, including low and wideband reflectance, a low process temperature, and a significant increase in efficiency, indicates the potential of this antireflective structure for enhancing solar cell efficiency in photovoltaic devices. - Highlights: • ZnO nanotip arrays were synthesized by hydrothermal methods as antireflection layer. • The total reflectance is low around 7.8% from 400 nm to 1000

  15. The Solar Reflectance Index as a Tool to Forecast the Heat Released to the Urban Environment: Potentiality and Assessment Issues

    Directory of Open Access Journals (Sweden)

    Alberto Muscio

    2018-02-01

    Full Text Available Overheating of buildings and urban areas is a more and more severe issue in view of global warming combined with increasing urbanization. The thermal behavior of urban surfaces in the hot seasons is the result of a complex balance of construction and environmental parameters such as insulation level, thermal mass, shielding, and solar reflective capability on one side, and ambient conditions on the other side. Regulations makers and the construction industry have favored the use of parameters that allow the forecasting of the interaction between different material properties without the need for complex analyses. Among these, the solar reflectance index (SRI takes into account solar reflectance and thermal emittance to predict the thermal behavior of a surface subjected to solar radiation through a physically rigorous mathematical procedure that considers assigned air and sky temperatures, peak solar irradiance, and wind velocity. The correlation of SRI with the heat released to the urban environment is analyzed in this paper, as well as the sensitivity of its calculation procedure to variation of the input parameters, as possibly induced by the measurement methods used or by the material ageing.

  16. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  17. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART 1. CANDIDATE MATERIALS LABORATORY TESTS

    Science.gov (United States)

    A space power system of the type envisioned by the ASTEC program requires the development of a lightweight solar collector of high reflectance...capable of withstanding the space environment for an extended period. A survey of the environment of interest for ASTEC purposes revealed 4 potential...developed by the solar-collector industry for use in the ASTEC program, and to test the effects of space environment on these materials. Of 6 material

  18. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shichao; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2014-12-25

    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.

  19. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  20. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  1. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection.

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-06

    If dark matter (DM) particles are lighter than a few   MeV/c^{2} and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {m_{e},σ_{e}}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10-10^{3}  eV. After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σ_{e} in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  2. Directly Detecting MeV-Scale Dark Matter Via Solar Reflection

    Science.gov (United States)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2018-04-01

    If dark matter (DM) particles are lighter than a few MeV /c2 and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {me,σe}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10 -103 eV . After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σe in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

  3. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target

    Science.gov (United States)

    MacMartin, Douglas G.; Ricke, Katharine L.; Keith, David W.

    2018-05-01

    Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  4. Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target.

    Science.gov (United States)

    MacMartin, Douglas G; Ricke, Katharine L; Keith, David W

    2018-05-13

    Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).

  5. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    Science.gov (United States)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  6. Anti-reflecting and passivating coatings for silicon solar cells on a basis of SO2 and TiO2 layers

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Nikulin, V.Eh.; Shorin, V.F.; Topanov, B.G.; Dikhanbaev, K.K.

    2002-01-01

    An analysis of influence of passivating layer on performance of anti-reflection coating of solar cells is carried out. The introduction of passivating SiO 2 layer between a frontal surface of the solar cell and TiO 2 +SiO 2 anti-reflection coating increase total reflection. If a thickness of a passivating layer no more than 20 Angstrom an increase of reflection does not exceed 0.5 %. However, for effective passivation the thickness of the passivating layer has to be within 100-1000 Angstrom region, thus the interference contribution of the passivating layer becomes essential and the AC is necessary to calculate as triple system SiO 2 -TiO 2 -SiO 2 . Such the three layers system ensuring average coefficient of reflection less of 3.5 % in a range 0.4-1.1 μm if the thickness of passivating SiO 2 layer no more 200 Angstrom. For solar cells with passivating SiO 2 layer thickness of 100 Angstrom and protective glass of non-interference thickness the single layer AC from TiO 2 allows to receive average value of reflection coefficient for a spectral range 0.4-1.1 μm no more than 9.5 %. The introduction of two additional layers SiO 2 and TiO 2 allows to reduce this value on 2.0-3.0 %. The comparison of calculation and experimental results is given. (author)

  7. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  8. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    Science.gov (United States)

    Cunningham, Fred G.

    1963-01-01

    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  9. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    Science.gov (United States)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  10. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  11. Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema.

    Science.gov (United States)

    Chang, Yin-Jung; Lai, Chi-Sheng

    2013-09-01

    The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%-53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.

  12. New mounting improves solar-cell efficiency

    Science.gov (United States)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  13. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  14. Reflected and diffuse ions backstreaming from the earth's bow shock 2. Origin

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    The morphology of the foreshock region and the origin of the 'reflected' and 'diffuse' ion populations are investigated for the first time through an extended statistical analysis. Data are supplied by the solar wind experiment on the satellite ISEE 2 in the period November 5 to December 20, 1977. It is confirmed, on a statistical basis, that quasi-perpendicular shock structures generate beams of reflected ions which propagate along the interplanetary magnetic field lines against the incoming solar wind. Diffuse ions are at least in part originated by the disruption of the reflected beams due to some plasma instability, having a growth time of the order of a few tens of seconds. A preliminary energy balance appears to be consistent with the proposed picture of the phenomena occurring in the foreshock region

  15. Statistical Analysis of the Reflectivity of a Heliostats Field. Application to the CRS Heliostats Field of the Plataforma Solar de Almeria

    International Nuclear Information System (INIS)

    Fernandez Reche, J.

    2003-01-01

    Reflectivity measuring in a heliostats field of a solar central tower is a task that should be performed periodically. The reflectivity of the field is a value that should be known to evaluate the system, moreover it plays an important role in several simulation codes which are useful for the daily operation of the system. When the size of the heliostats field increases (tens of heliostats) it is necessary to find a method, due to operability reasons, that allows us to offer a reflectivity value measuring only in few facets guaranteeing that the statistical error of this value is within a reasonable range. In this report a statistical analysis of the reflectivity in a heliostats field is presented. The analysis was particularized for the CRS heliostats field of the Plataforma Solar de Almeria. The results of the present study allow us to guarantee a reflectivity value of the heliostats field with a statistical error below 1% measuring only 12 facets (instead of the 1116 facets that compose the field). (Author) 6 refs

  16. Dependence on Solar Phase Angle and Grain Size of the Spectral Reflectance of the Railroad Valley Playa for GOSAT/GOSAT-2 Vicarious Calibration

    Science.gov (United States)

    Arai, T.; Matsunaga, T.

    2017-12-01

    GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.

  17. Solar neutrino oscillation parameters after SNO Phase-III and SAGE Part-III

    International Nuclear Information System (INIS)

    Yang Ping; Liu Qiuyu

    2009-01-01

    We analyse the recently published results from solar neutrino experiments SNO Phase-III and SAGE Part-III and show their constraints on solar neutrino oscillation parameters, especially for the mixing angle θ 12 . Through a global analysis using all existing data from SK, SNO, Ga and Cl radiochemical experiments and long base line reactor experiment KamLAND , we obtain the parameters Δm 12 2 =7.684 -0.208 +0.212 x 10 -5 eV 2 , tan 2 θ 12 =0.440 -0.057 +0.059 . We also find that the discrepancy between the KamLAND and solar neutrino results can be reduced by choosing a small non-zero value for the mixing angle θ 13 . (authors)

  18. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  19. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod

    2017-01-01

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  20. Cool roofs with high solar reflectance for the welfare of dairy farming animals

    Science.gov (United States)

    Santunione, G.; Libbra, A.; Muscio, A.

    2017-01-01

    Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.

  1. Cool roofs with high solar reflectance for the welfare of dairy farming animals

    International Nuclear Information System (INIS)

    Santunione, G; Libbra, A; Muscio, A

    2017-01-01

    Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer. (paper)

  2. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  3. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  4. Fast solar radiation pressure modelling with ray tracing and multiple reflections

    Science.gov (United States)

    Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart

    2018-05-01

    Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The

  5. Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 These test methods cover the measurement of solar energy transmittance and reflectance (terrestrial) of materials in sheet form. Method A, using a spectrophotometer, is applicable for both transmittance and reflectance and is the referee method. Method B is applicable only for measurement of transmittance using a pyranometer in an enclosure and the sun as the energy source. Specimens for Method A are limited in size by the geometry of the spectrophotometer while Method B requires a specimen 0.61 m2 (2 ft2). For the materials studied by the drafting task group, both test methods give essentially equivalent results. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    Science.gov (United States)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  7. Improved opto-electronic properties of silicon heterojunction solar cells with SiO x /Tungsten-doped indium oxide double anti-reflective coatings

    Science.gov (United States)

    Yu, Jian; Zhou, Jie; Bian, Jiantao; Zhang, Liping; Liu, Yucheng; Shi, Jianhua; Meng, Fanying; Liu, Jinning; Liu, Zhengxin

    2017-08-01

    Amorphous SiO x was prepared by plasma enhanced chemical vapor deposition (PECVD) to form SiO x /tungsten-doped indium oxide (IWO) double anti-reflective coatings for silicon heterojunction (SHJ) solar cell. The sheet resistance of SiO x /IWO stacks decreases due to plasma treatment during deposition process, which means thinner IWO film would be deposited for better optical response. However, the comparisons of three anti-reflective coating (ARC) structures reveal that SiO x film limits carier transport and the path of IWO-SiO x -Ag structure is non-conductive. The decrease of sheet resistance is defined as pseudo conductivity. IWO film capping with SiO x allows observably reduced reflectance and better response in 300-400 and 600-1200 nm wavelength ranges. Compared with IWO single ARC, the average reflection is reduced by 1.65% with 70 nm SiO x /80 nm IWO double anti-reflective coatings (DARCs) in 500-1200 nm wavelength range, leading to growing external quantum efficiency response, short circuit current density (J sc), and efficiency. After well optimization of SiO x /IWO stacks, an impressive efficiency of 23.08% is obtained with high J sc and without compromising open circuit voltage (V oc) and fill factor. SiO x /IWO DARCs provide better anti-reflective properties over a broad range of wavelength, showing promising application for SHJ solar cells.

  8. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  9. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    Science.gov (United States)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  10. Study of the capability for rapid warnings of solar flare radiation hazards to aircraft. Part I. Forecasts and warnings of solar flare radiation hazards. Part II. An FAA polar flight solar cosmic radiation forecast/warning communication system study. Technical memo

    International Nuclear Information System (INIS)

    Sauer, H.H.; Stonehocker, G.H.

    1977-04-01

    The first part of the report provides background information on the occurrence of solar activity and the consequent sporadic production of electromagnetic and particle emissions from the sun. A summary is given of the current procedures for the forecasting of solar activity together with procedures used to verify these forecasts as currently available. A summary of current forecasting of radiation hazards as provided in support of the Concorde SST program is also given. The second part of the report describes a forecast message distribution system developed in conjunction with solar cosmic radiation forecasts and warnings of the Space Environment Laboratory of NOAA for the Federal Aviation Administration's (FAA) Office of Aviation Medicine. The study analyzes the currently available and future aeronautical telecommunication system facilities to determine an optimum system to distribute forecasts to the preflight planning centers in the international flight service stations for polar-flying subsonic and supersonic transport (SST) type aircraft. Also recommended for the system are timely and reliable distribution of warnings to individual in-flight aircraft in polar areas by the responsible air traffic control authority

  11. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  12. Three-Axis Attitude Control of Solar Sails Utilising Reflectivity Control Devices

    Science.gov (United States)

    Theodorou, Theodoros

    Solar sails are spacecraft that utilise the Solar Radiation Pressure, the force generated by impinging photons, to propel themselves. Conventional actuators are not suitable for controlling the attitude of solar sails therefore specific attitude control methods have been devised to tackle this. One of these methods is to change the centre of pressure with respect to the center of mass thus creating a torque. Reflectivity Control Devices (RCDs) have been proposed and successfully used to change the centre of pressure. Current methods that utilise RCDs have control authority over two axis only with no ability to control the torque about the normal of the sail surface. This thesis extends the state of the art and demonstrates 3-axis control by generating arbitrary torque vectors within a convex polyhedron. Two different RCD materials are considered, transmission and diffusion technologies both compatible with the proposed concept. A number of metrics have been developed which facilitate the comparison of different sail configurations. One of these metics is the sun map which is a graphic representation of the sun angles for which control authority is maintained. An iterative design process is presented which makes use of the metrics developed and aids in the design of a sail which meets the mission requirements and constraints. Moreover, the effects of different parameters on the performance of the proposed control concept are discussed. For example it is shown that by alternating the angle between the edge and middle RCDs the control authority increases. The concept's scalability has been investigated and a hybrid control scheme has been devised which makes use of both RCDs and reaction wheels. The RCDs are complemented by the reaction wheels to achieve higher slew rates while in turn the RCDs desaturate the reaction wheels. Finally, a number of simulations are conducted to verify the validity of the proposed concept.

  13. Reflectance spectrophotometry (about 0.5-1.0 micron) of oute-belt asteroids - Implications for primitive, organic solar system material

    Science.gov (United States)

    Vilas, F.; Smith, B. A.

    1985-01-01

    The surface compositions of outer-belt asteroids were used to obtain information about the origin of these asteroids. High-resolution CCD reflectance spectra of 21 asteroids, primarily P class, were examined for compositional information. Distinct slope changes are observed that suggest that these asteroids are the remnants of a compositional gradation of planetesimals in the outer solar system, which were retained selectively in location when other material was ejected from the solar system. Other data suggest that this gradation could extend through the orbits of Uranus and Neptune.

  14. NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.

  15. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  16. Solar reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, J

    1983-01-15

    The reflector in the form of part of a cylindrical surface delimited by two envelopes is installed on a platform which can move on an inclined curvilinear path. The angle of inclination of the path depends on the latitude of the locality. The reflected rays are focused on the tubular absorber. One of the axes of the platform is linked to a brake controlled by a sensor for intensity of solar radiation. The sensor is a pipe filled with liquid with high value of the temperature expansion coefficient, for example alcohol. The pipe is insulated from one side and is accessible to the solar rays from the opposite. One end of the pipe is equipped with a bending end or piston. In order to expand the fluid in the sensor, the pipe acts on the brake, and the reflector is installed in a position corresponding to the maximum radiation intensity.

  17. THE USE OF PASSIVE SOLAR HEATING SYSTEMS AS PART OF THE PASSIVE HOUSE

    Directory of Open Access Journals (Sweden)

    Bryzgalin Vladislav Viktorovich

    2018-05-01

    Full Text Available Subject: systems of passive solar heating, which can, without the use of engineering equipment, capture and accumulate the solar heat used for heating buildings. Research objectives: study of the possibility to reach the passive house standard (buildings with near zero energy consumption for heating in climatic conditions of Russia using the systems of passive solar heating in combination with other solutions for reduction of energy costs of building developed in the past. Materials and methods: search and analysis of literature, containing descriptions of various passive solar heating systems, examples of their use in different climatic conditions and the resulting effect obtained from their use; analysis of thermophysical processes occurring in these systems. Results: we revealed the potential of using the solar heating systems in the climatic conditions of parts of the territories of the Russian Federation, identified the possibility of cheaper construction by the passive house standard with the use of these systems. Conclusions: more detailed analysis of thermophysical and other processes that take place in passive solar heating systems is required for creation of their computational models, which will allow us to more accurately predict their effectiveness and seek the most cost-effective design solutions, and include them in the list of means for achieving the passive house standard.

  18. VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen

    2016-01-01

    This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality

  19. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica; Usman, Anwar; Gereige, Issam; Duren, Jeroen Van; Lyssenko, Vadim; Leo, Karl; Mohammed, Omar F.

    2015-01-01

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  20. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  1. Applying spaceborne reflectivity measurements for calculation of the solar ultraviolet radiation at ground level

    Directory of Open Access Journals (Sweden)

    P. N. den Outer

    2012-12-01

    Full Text Available Long-term analysis of cloud effects on ultraviolet (UV radiation on the ground using spaceborne observations requires the use of instruments that have operated consecutively. The longest data record can be built from the reflectivity measurements produced by the instruments Total Ozone Mapping Spectrometers (TOMS flown on Nimbus 7 from 1979 to 1992, TOMS on Earth Probe from 1996 to 2005, and the Ozone Monitoring Instrument (OMI flown on EOS Aura since 2004. The reflectivity data produced by TOMS on Earth Probe is only included until 2002. A comparison is made with cloud effects inferred from ground-based pyranometer measurements at over 83 World Radiation Data Centre stations. Modelled UV irradiances utilizing the standard reflectivity are compared with measurements of UV irradiances at eight European low-elevation stations. The reflectivity data of the two TOMS instruments shows a consistent agreement, and the required corrections are of low percentage, i.e. 2–3%. In contrast, the reflectivity product of OMI requires correction of 7–10%, and a solar angle dependency therein is more pronounced. These corrections were inferred from a comparison with pyranometer data, and tested using the UV measurements. The average reduction of UV radiation due to clouds for all sites together indicates a small trend: a diminishing cloudiness, in line with ground-based UV observations. Uncorrected implementation of the reflectivity data would have indicated the opposite.

    An optimal area was established for reflectivity data for the calculation of daily sums of UV radiation. It measures approximately 1.25° in latitudinal direction for square-shaped areas overhead the ground-based UV stations. Such an area can be traversed within 5 to 7 h at the average wind speeds found for the West European continent.

  2. Analysis of grid connected solar PV system in the Southeastern Part of Bangladesh

    International Nuclear Information System (INIS)

    Ariful Islam; Fatema Akther Shima; Akhera Khanam

    2013-01-01

    Bangladesh is a potential site of implementing renewable energy system to reduce the severe power crisis throughout the year. According to this, Chittagong is the southeastern part of Bangladesh is also a potential site for implementing renewable energy system such as grid-connected photovoltaic (PV) system. Financial viability and green-house gas emission reduction of solar PV as an electricity generation source are assessed for 500 kW grid connected solar PV system at University of Chittagong, Chittagong. Homer simulation soft-ware and monthly average solar radiation data from NASA is used for this task. In the proposed system monthly electricity generation varies between 82.65 MW h and 60.3 MW h throughout the year with a mean value of 68.25 MW h depending on the monthly highest and lowest solar radiation data. It is found that per unit electricity production cost is US$ 0.20 based on project lifetime 25 years. The IRR, equity payback and benefit-cost ratio shows favorable condition for development of the proposed solar PV system in this site. A minimum 664 tones of green-house gas emissions can be reduced annually utilizing the proposed system. (authors)

  3. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    Science.gov (United States)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-01-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  4. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  5. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  6. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon

    Science.gov (United States)

    Das, Debajyoti; Banerjee, Amit

    2015-08-01

    Aiming towards a specific application as antireflection coatings (ARC) in Si solar cells, the growth of hydrogenated diamond like carbon (HDLC) films, by RF magnetron sputtering, has been optimized through comprehensive optical and structural studies. Various physical properties of the films e.g., (ID/IG) ratio in the Raman spectra, percentage of sp3 hybridization in XPS spectra, H-content in the network, etc., have been correlated with different ARC application properties e.g., transmittance, reflectance, optical band gap, refractive index, surface roughness, etc. The ARC properties have been optimized on unheated substrates, through systematic variations of RF power, gas flow rate, gas pressure and finally controlled introduction of hydrogen to the DLC network at its most favorable plasma parameters. The optimum HDLC films possess (T700)max ∼ 95.8%, (R700)min ∼ 3.87%, (n700)min ∼ 1.62 along with simultaneous (Eg)max ∼ 2.53 eV and ∼75.6% of sp3 hybridization in the C-network, corresponding to a bonded H-content of ∼23 at.%. Encouraging improvements in the ARC properties over the optimized DLC film were obtained with the controlled addition of hydrogen, and the optimum HDLC films appear quite promising for applications in Si solar cells. Systematic materials development has been performed through comprehensive understanding of the parameter space and its optimization, as elaborately discussed.

  7. Optical coherence tomography and autofluorescence findings in chronic phototoxic maculopathy secondary to snow-reflected solar radiation

    Directory of Open Access Journals (Sweden)

    Dhananjay Shukla

    2015-01-01

    Full Text Available A professional mountain trekker presented with gradual, moderate visual decline in one eye. The subnormal vision could not be explained by the examination of anterior and posterior segment of either eye, which was unremarkable. Optical coherence tomography and autofluorescence imaging revealed subtle defects in the outer retina, which correlated with the extent of visual disturbance. A novel presentation of retinal phototoxicity due to indirect solar radiation reflected from snow in inadequately protected eyes of a chronically exposed subject is reported.

  8. Optical coherence tomography and autofluorescence findings in chronic phototoxic maculopathy secondary to snow-reflected solar radiation.

    Science.gov (United States)

    Shukla, Dhananjay

    2015-05-01

    A professional mountain trekker presented with gradual, moderate visual decline in one eye. The subnormal vision could not be explained by the examination of anterior and posterior segment of either eye, which was unremarkable. Optical coherence tomography and autofluorescence imaging revealed subtle defects in the outer retina, which correlated with the extent of visual disturbance. A novel presentation of retinal phototoxicity due to indirect solar radiation reflected from snow in inadequately protected eyes of a chronically exposed subject is reported.

  9. MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock

    Science.gov (United States)

    Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.

    2018-01-01

    Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.

  10. 1991 SOLAR WORLD CONGRESS - VOLUME 1, PART I

    Science.gov (United States)

    The four-volume proceedings document the 1991 Solar World Congress (the biennial congress of the International Solar Energy Society) in Denver, CO, August 19-23, 1991. Volume 1 is dedicated to solar electricity, biofuels, and renewable resources. Volume 2 contains papers on activ...

  11. Application of porous silicon in solar cell

    Science.gov (United States)

    Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.

    2018-05-01

    Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.

  12. AntiReflection Coating D

    International Nuclear Information System (INIS)

    AIKEN, DANIEL J.

    1999-01-01

    Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub sc)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices

  13. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  14. Statistical Analysis of the Reflectivity of a Heliostats Field. Application to the CR S Heliostats Field of the Plataforma Solar de Almeria; Analisis Estadistico de la Reflectividad de un Campo de Heliostatos CRS de la Plataforma Solar de Almeria

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Reche, J.

    2003-07-01

    Reflectivity measuring in a heliostats field of a solar central tower is a task that should performed periodically. The reflectivity of the field is a value that should be known to evaluate the system, moreover it plays an important role in several simulation codes which are useful for the daily operation of the system. When the size of the heliostats field increases (terns of heliostats) it is necessary to find a method, due to operability reasons, that allows us to offer a reflectivity value measuring only in fe facets guaranteeing that the statistical error of this value is within a reasonable range. In this report a statistical analysis of the reflectivity in a heliostats field is presented. The analysis was particularized for the CRS heliostats field of the Plataforma Solar de Almeria. The results of the present study allow us to guarantee a reflectivity value of the heliostats field with a statistical error below 1% measuring only 12 facets (instead of the 1116 facets that compose the field). (Author) 6 refs.

  15. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huang, Q.Z.; Shi, J.F.; Wang, L.L.; Li, Y.J.; Zhong, L.W.; Xu, G.

    2016-01-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO_2/Na_2O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO_2/Na_2O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  16. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q.Z. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, J.F., E-mail: shijf@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Wang, L.L.; Li, Y.J.; Zhong, L.W. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Xu, G., E-mail: xugang@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China)

    2016-07-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO{sub 2}/Na{sub 2}O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO{sub 2}/Na{sub 2}O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  17. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  18. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...

  19. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    Science.gov (United States)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  20. Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2014-04-24

    ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

  1. Mechanical grooving of oxidized porous silicon to reduce the reflectivity of monocrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zarroug, A.; Dimassi, W.; Ouertani, R.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre des Recherches et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we are interested to use oxidized porous silicon (ox-PS) as a mask. So, we display the creating of a rough surface which enhances the absorption of incident light by solar cells and reduces the reflectivity of monocrystalline silicon (c-Si). It clearly can be seen that the mechanical grooving enables us to elaborate the texturing of monocrystalline silicon wafer. Results demonstrated that the application of a PS layer followed by a thermal treatment under O2 ambient easily gives us an oxide layer of uniform size which can vary from a nanometer to about ten microns. In addition, the Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer illustrates the possibility to realize oxide layer as a mask for porous silicon. We found also that this simple and low cost method decreases the total reflectivity (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  3. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  4. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  5. Near zero reflection by nanostructured anti-reflection coating design for Si substrates

    Science.gov (United States)

    Al-Fandi, Mohamed; Makableh, Yahia F.; Khasawneh, Mohammad; Rabady, Rabi

    2018-05-01

    The nanostructure design of near zero reflection coating for Si substrates by using ZnO Nanoneedles (ZnONN) is performed and optimized for the visible spectral range. The design investigates the ZnONN tip to body ratio effect on the anti-reflection coating properties. Different tip to body ratios are used on Si substrates. Around zero reflection is achieved by the Nanoneedles structure design presented in this work, leading to minimal reflection losses from the Si surface. The current design evolves a solution to optical losses and surface contamination effects associated with Si solar cells.

  6. Low cost sol–gel derived SiC–SiO{sub 2} nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Azmira [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Solar Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Lee, Woojin [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Akhtar, M. Shaheer, E-mail: shaheerakhtar@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Li, Zhen Yu [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Yang, O.-Bong, E-mail: obyang@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of)

    2016-04-30

    Graphical abstract: - Highlights: • Sol–gel derived SiC–SiO{sub 2} nanocomposite was prepared. • It effectively coated as AR layer on p-type Si-wafer. • SiC–SiO{sub 2} layer on Si solar cells exhibited relatively low reflectance of 7.08%. • Fabricated Si solar cell attained highly comparable performance of 16.99% to commercial device. - Abstract: This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol–gel derived SiC–SiO{sub 2} nanocomposite. The prepared SiC–SiO{sub 2} nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol–gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO{sub 2} phases, which noticeably confirmed the formation of SiC–SiO{sub 2} nanocomposite. The SiC–SiO{sub 2} layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC–SiO{sub 2} nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional Si{sub x}N{sub x} AR coated Si solar cell. New and effective sol–gel derived SiC–SiO{sub 2} AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  7. Solar energy in building construction practice. Solar architecture and solar engineering - fundamentals and uses. Sonnenenergie in der Baupraxis. Solar-Architektur und Solar-Technik - Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Weik, H.; Hahn, G.; Marschall, F.; Meister, H.; Peters, W.; Ranft, F.

    1991-01-01

    This anthology presents a number of overall suggestions for modern, trend-setting building construction. Details are given about active in addition to passive solar energy utilization, i.e. combinations of solar architecture and solar engineering. In an intelligible way accessible to non-physicist readers, part one discusses the related physicotechnical and town-planning fundamentals. Parts two and three are dedicated to building construction practice. They discuss the various problems of solar energy utilization from the point of view of architects, and refer to economic aspects and thermal insulation. Numerous pictures, diagrams and tables complete the book. (BWI) With 59 figs.

  8. Solar--geophysical data number 381. Part II. (Comprehensive reports). Data for November 1975-October 1975 and miscellanea. Explanation of data reports issued as number 378 (supplement) February 1976

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1976-05-01

    This is part two (comprehensive reports) of a two part report on Solar--Geophysical Data. Included in this report are data for the months of October and November. The data recorded include solar flares, solar radio waves, energetic solar particles and plasma, and magnetograms of geomagnetic storms

  9. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  10. DIY Solar Market Analysis Webinar Series: Solar Resource and Technical

    Science.gov (United States)

    Series: Solar Resource and Technical Potential DIY Solar Market Analysis Webinar Series: Solar Resource and Technical Potential Wednesday, June 11, 2014 As part of a Do-It-Yourself Solar Market Analysis Potential | State, Local, and Tribal Governments | NREL DIY Solar Market Analysis Webinar

  11. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  12. Behavioral study solar boilers 1994. Summary. Part 2 (households)

    International Nuclear Information System (INIS)

    Visser, J.M.

    1995-04-01

    The aim of the Dutch national solar boiler campaign of NOVEM and Holland Solar is to realize the installation of 300,000 solar boilers in the Netherlands in the year 2010. In 1995 10,000 boilers were installed. More knowledge of the decision making process and the backgrounds and motives of (potential) buyers is required. From September 1994 to March 1995 a survey has been carried out of the decision making processes in households and housing corporations. The most important results, conclusions and recommendations of the survey are summarized in this report. The parameters that can influence the decision whether to purchase a solar boiler or not are knowledge about the solar boiler, the attitude towards the solar boiler and towards the use of energy and the environment, risk perception, social aspects, information retrieval behavior, constraints, and socio-economic aspects. 44 tabs

  13. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  14. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  15. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  16. Wide angle light collection with ultralow reflection and super scattering by silicon micro-nanostructures for thin crystalline silicon solar cell applications

    International Nuclear Information System (INIS)

    Das, Sonali; Kundu, Avra; Saha, Hiranmay; Datta, Swapan K

    2016-01-01

    Conventional c-Si solar cells employ micron-sized pyramids for achieving reduced reflection (∼10%) and enhanced light trapping by multiple bounces (maximum 3) of the incident light. Alternatively, bio-mimetic, moth-eye sub-wavelength nanostructures offer broadband antireflection properties (∼3%) suitable for solar cell applications in the optical regime. However, such structures do not provide any advantage in the charge carrier extraction process as radial junctions cannot be formed in such sub-wavelength dimensions and they have high surface area causing increased charged carrier recombination. The choice of the geometry for achieving optimum photon–electron harvesting for solar applications is therefore very critical. Cross-fertilization of the conventional solar cell light-trapping techniques and the sub-wavelength nanostructures results in unique micro-nanostructures (structures having sub-wavelength dimensions as well as dimensions of the order of few microns) which provide advanced light management capabilities along with the ability of realizing radial junctions. It is seen that an ultralow reflection along with wide angle light collection is obtained which enables such structures to overcome the morning, evening and winter light losses in solar cells. Further, super-scattering in the structures offer enhanced light trapping not only in the structure itself but also in the substrate housing the structure. Ray and wave optics have been used to understand the optical benefits of the structures. It is seen that the aspect ratio of the structures plays the most significant role for achieving such light management capabilities, and efficiencies as high as 12% can be attained. Experiments have been carried out to fabricate a unique micro-nanomaze-like structure instead of a periodic array of micro-nanostructures with the help of nanosphere lithography and the MacEtch technique. It is seen that randomized micro-nanomaze geometry offers very good

  17. Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection

    International Nuclear Information System (INIS)

    Narasimhan, Vinayak; Jiang, Dongyue; Park, Sung-Yong

    2016-01-01

    Highlights: • We present an arrayed tunable prism panel enabling wide tracking and high solar concentration. • A microfluidic technology allows a low-cost, lightweight and precise solar tracking system. • Our prism panel enables high solar concentration up to 2032× factor. • Various liquid prism configurations (stacked prism arrays) and optical materials are considered. • Their impacts on solar beam steering, reflection losses and beam concentration are studied. - Abstract: We present the design and optical analyses of an arrayed microfluidic tunable prism panel that enables wide solar tracking and high solar concentration while minimizing energy loss. Each of the liquid prism modules is implemented by a microfluidic (i.e. non-mechanical) technology based on electrowetting for adaptive solar beam steering. Therefore the proposed platform offers a low-cost, lightweight and precise solar tracking system while obviating the need for bulky and heavy mechanical moving parts essentially required for a conventional motor-driven solar tracker. In this paper, various liquid prism configurations in terms of design (single, double, triple and quad-stacked prism arrays) as well as optical materials are considered and their impact on optical performance aspects such as solar beam steering, reflection losses and beam concentration is studied. Our system is able to achieve a wide solar tracking covering the whole-day movement of the Sun and a reflection loss below 4.4% with a Rayleigh’s film for a quad-stacked prism configuration. Furthermore, an arrayed prism panel is proposed to increase the aperture area and thus allows for the collection of large amounts of sunlight. Our simulation study based on the optical design software, ZEMAX, indicates that the prism panel is capable of high solar concentration up to 2032× factor even without conventional solar tracking devices. We also deal with dispersion characteristics of the materials and their corresponding effect on

  18. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  19. Effect of reflection losses on stationary dielectric-filled nonimaging concentrators

    Science.gov (United States)

    Madala, Srikanth; Boehm, Robert F.

    2016-10-01

    The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.

  20. World Solar Challenge 1993 Technical Report. Part 1. Darwin to Adelaide. (November 7-November 16, 1993)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This is a report of the above-named solar car race from Darwin to Adelaide, Australia. On January 7, 1983, an Australian adventurer Mr. Hans Tholstrup succeeded in running from the Australian west coast to Sydney in a car driven solely by solar energy. The travel took 20 days, at an average speed of 23km per hour. The technology has made remarkable advances since his success and, in the World Solar Challenge 1993 held in November 1993, a Honda team crossed the Australian Continent at an average speed of 85km per hour. Technical challenges included the development of maximum-output solar cell panels, a car designed to make full use of such power, and a run at the maximum possible speed, all these dependent solely on the sun as energy source. This report Part I contains the details of the race, analysis, aerodynamics, car body structure, manufacture, materials, and so forth. (NEDO)

  1. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  2. Design, Analysis, and On-Sun Evaluation of Reflective Strips Under Controlled Buckling

    Science.gov (United States)

    Jaworske, Donald A.; Sechkar, Edward A.; Colozza, Anthony J.

    2014-01-01

    Solar concentrators are envisioned for use in a variety of space-based applications, including applications involving in situ resource utilization. Identifying solar concentrators that minimize mass and cost are of great interest, especially since launch cost is driven in part by the mass of the payload. Concentrators must also be able to survive the wide temperature excursions on the lunar surface. Identifying smart structures which compensate for changes in concentrator geometry brought about by temperature extremes are of interest. Some applications may benefit from the ability to change the concentrators focal pattern at will. This paper addresses a method of designing a single reflective strip to produce a desired focal pattern through the use of controlled buckling. Small variations in the cross section over the length of the reflective strip influence the distribution of light in the focal region. A finite element method of analysis is utilized here which calculates the curve produced for a given strip cross section and axial load. Varying axial force and strip cross section over the length of the reflective strip provide a means of optimizing ray convergence in the focal region. Careful selection of a tapered cross section yields a reflective strip that approximates a parabola. An array of reflective strips under controlled buckling produces a light weight concentrator and adjustments in the compression of individual strips provide a means of compensating for temperature excursions or changing the focal pattern at will.

  3. Novel concept of nonimaging single reflection solar energy concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovsky, D.

    2004-07-01

    Many solar applications require temperatures higher than those that can be achieved by common flat-plate collectors. Temperatures over 100 C are necessary e.g. for industrial process heat. Such temperatures can be obtained by means of solar energy concentrators. Advantages of concentrating the solar radiation can bring in addition to higher temperatures also decrease in heat losses and material savings due to smaller size of absorber, if taking into account that costs for material absorber per square meter can be possibly higher than costs for e.g. concentrating mirrors. On the other hand, using the concentration, two other kinds of losses will raise: losses of diffuse radiation and optical losses. There exist a variety of solar energy concentrators for different purposes. For lowtemperature applications, inexpensive concentrators of diffuse radiation can be used. For these concentrators, acceptance angle A defines the ability to concentrate the diffuse radiation and also its concentration factor C. To this class of concentrators belongs e.g. nonimaging types like CPC (Compound Parabolic Concentrator), V-trough types, cylindrical concentrators etc. This paper deals with development of a new type of concentrator, novel concept of which is based on functionality of CPC by means of flat mirrors, primarily designed for needs of SME's (Small and Medium Enterprises). The CLON project is being ellaborated under the 5th Framework Programme of the EU. (orig.)

  4. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    Science.gov (United States)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  5. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing

    Directory of Open Access Journals (Sweden)

    A. Hind

    2012-08-01

    Full Text Available The statistical framework of Part 1 (Sundberg et al., 2012, for comparing ensemble simulation surface temperature output with temperature proxy and instrumental records, is implemented in a pseudo-proxy experiment. A set of previously published millennial forced simulations (Max Planck Institute – COSMOS, including both "low" and "high" solar radiative forcing histories together with other important forcings, was used to define "true" target temperatures as well as pseudo-proxy and pseudo-instrumental series. In a global land-only experiment, using annual mean temperatures at a 30-yr time resolution with realistic proxy noise levels, it was found that the low and high solar full-forcing simulations could be distinguished. In an additional experiment, where pseudo-proxies were created to reflect a current set of proxy locations and noise levels, the low and high solar forcing simulations could only be distinguished when the latter served as targets. To improve detectability of the low solar simulations, increasing the signal-to-noise ratio in local temperature proxies was more efficient than increasing the spatial coverage of the proxy network. The experiences gained here will be of guidance when these methods are applied to real proxy and instrumental data, for example when the aim is to distinguish which of the alternative solar forcing histories is most compatible with the observed/reconstructed climate.

  6. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  7. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  8. Solar--geophysical data number 378. Part I. (Prompt reports). Data for January 1976--December 1975. Explanation of data reports issued as number 366 (supplement) February 1975

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1976-02-01

    The January 1976 data for Solar--Geophysical Data, prompt reports for January 1976--December 1975, Part 1, include sections on alert period, daily solar indices, solar flares, solar radio waves, solar wind measurement, spacecraft observations, solar x radiation, coronal holes, and inferred IP magnetic field polarities. The December 1975 data include daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  9. Layout of heating units for solar-heated gas turbine systems with paraboloid collectors. Die Auslegung von Erhitzern Solar beheizter Gasturbinenanlagen mit Paraboloidkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, P

    1983-07-04

    Solar energy is converted in a gas turbine plant, with solar radiation collected in a parabolic collector and reflected into a hollow receiver. The receiver, which is rigidly connected to the collector, consists of a conical bottom part and a cylindrical upper part. The highly focussed radiation enters through the aperture of the conus. The cool, compressed working fluid of the gas turbine flows through pipes arranged in front of the cylindrical inner wall. The distribution of the radiation was studied as well as the resulting receiver wall temperature, radiation losses and useful heat absorbed by the working fluid. Temperature distributions and three-dimensional fields of thermal stresses were calculated. The influence of geometric and thermodynamic parameters on the stresses inside the pipes was studied in consideration of thermal stresses and stresses due to working fluid pressure. The findings will help to optimize the heating surface load, material utilisation, and efficiency of the receiver. The interdependences between receiver characteristics and gas turbine operation are explained.

  10. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  11. Solar--geophysical data number 372. Part I (prompt reports). Data for June 1975--July 1975. Explanation of data reports issued as number 366 (supplement) February 1975

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1975-08-01

    This is Part 1 (Prompt reports) of Solar--Geophysical Data for July 1975 and June 1975. The July 1975 Data include sections on Alert Period, Daily Solar Indices, Solar Flares, Solar Radio Waves, Solar Wind Measurements, Spacecraft Observations, Solar X-ray Radiation, and Inferred IP Magnetic Field Polarities. The June 1975 Data includes sections on Daily Solar Activity Centers, Sudden Ionospheric Disturbances, Solar Radio Waves, Cosmic Waves, Geomagnetic Indices, and Radio Propagation Indices

  12. Solar--geophysical data number 375. Part I (prompt reports). Data for October 1975--September 1975. Explanation of data reports issued as number 366 (supplement) February 1975

    International Nuclear Information System (INIS)

    Leighton, H.I.

    1975-11-01

    This is Part I, Prompt reports, of Solar--Geophysical Data for October 1975 and September 1975. The October 1975 data includes sections on alert period, daily solar indices, solar flares, solar radio waves, solar wind measurements, spacecraft observations, solar x-ray radiation, and inferred IP magnetic polarities. The September 1975 data includes sections on daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  13. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  14. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  15. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  16. Correction for reflected sky radiance in low-altitude coastal hyperspectral images.

    Science.gov (United States)

    Kim, Minsu; Park, Joong Yong; Kopilevich, Yuri; Tuell, Grady; Philpot, William

    2013-11-10

    Low-altitude coastal hyperspectral imagery is sensitive to reflections of sky radiance at the water surface. Even in the absence of sun glint, and for a calm water surface, the wide range of viewing angles may result in pronounced, low-frequency variations of the reflected sky radiance across the scan line depending on the solar position. The variation in reflected sky radiance can be obscured by strong high-spatial-frequency sun glint and at high altitude by path radiance. However, at low altitudes, the low-spatial-frequency sky radiance effect is frequently significant and is not removed effectively by the typical corrections for sun glint. The reflected sky radiance from the water surface observed by a low-altitude sensor can be modeled in the first approximation as the sum of multiple-scattered Rayleigh path radiance and the single-scattered direct-solar-beam radiance by the aerosol in the lower atmosphere. The path radiance from zenith to the half field of view (FOV) of a typical airborne spectroradiometer has relatively minimal variation and its reflected radiance to detector array results in a flat base. Therefore the along-track variation is mostly contributed by the forward single-scattered solar-beam radiance. The scattered solar-beam radiances arrive at the water surface with different incident angles. Thus the reflected radiance received at the detector array corresponds to a certain scattering angle, and its variation is most effectively parameterized using the downward scattering angle (DSA) of the solar beam. Computation of the DSA must account for the roll, pitch, and heading of the platform and the viewing geometry of the sensor along with the solar ephemeris. Once the DSA image is calculated, the near-infrared (NIR) radiance from selected water scan lines are compared, and a relationship between DSA and NIR radiance is derived. We then apply the relationship to the entire DSA image to create an NIR reference image. Using the NIR reference image

  17. Review and summary of Solar Thermal Conversion Program planning assistance

    Energy Technology Data Exchange (ETDEWEB)

    1975-06-01

    The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

  18. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  19. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  20. Effect of reflective surfaces on a greenhouse lettuce crop

    Energy Technology Data Exchange (ETDEWEB)

    Warman, P.R.; Mayhew, W.J.

    1979-01-01

    The Canadian greenhouse industry is an important segment of horticultural production, providing employment for thousands of people. Continuing increases in the costs of conventional fuel supplies, however, has placed the industry in some jeopardy since the cost of heating during the winter months is also escalating. In response to this problem the Brace Research Institute has developed a single roofed greenhouse designed to capture and store the sun's energy, and to increase the amount of downward solar radiation inside the greenhouse through the use of specularly-reflecting back and side walls. The research investigated the effect of a reflective surface on plant growth, development, and nutritional uptake during fall and the early months of winter. The inside walls of the greenhouse were lined with aluminized polyester to act as a reflective surface and flat black roofing felt paper to provide a non-reflecting surface. Grand Rapids Forcing lettuce was planted from seed into a peat-vermiculite bed and total solar radiation was monitored on the horizontal. Over the duration of the experiment, the reflective side of the greenhouse received more than twice as much solar radiation as the non-reflective side leading to significantly larger plant yields on the reflective side. There were no significant differences in the uptake of the plant macronutrients, N, P, K, Ca, and Mg.

  1. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  2. Assessment of stability of the response versus scan angle for the S-NPP VIIRS reflective solar bands using pseudo-invariant desert and Dome C sites

    Science.gov (United States)

    Wu, Aisheng; Xiong, Xiaoxiong J.; Cao, Changyong

    2017-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite has been in operation for over five years. VIIRS has 22 bands with a spectral range from 0.4 μm to 2.2 μm for the reflective solar bands (RSB). The Earth view swath covers a distance of 3000 km over scan angles of +/- 56.0° off nadir. The on-board calibration of the RSB relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability, particularly at the short wavelengths (blue) where the most degradation occurs. In this study, the RVS stability is examined based on reflectance trends collected at various scan angles over the selected pseudo-invariant desert sites in Northern Africa and the Dome C snow site in Antarctica. These trends are corrected by the site dependent BRDF (bi-directional reflectance function) model to reduce seasonally related fluctuations. The BRDF corrected trends are examined so any systematic drifts in the scan angle direction would indicate a potential change in RVS. The results of this study provide useful information on VIIRS RVS on-orbit stability performance.

  3. Solar receiver heliostat reflector having a linear drive and position information system

    Science.gov (United States)

    Horton, Richard H.

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  4. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    Science.gov (United States)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  5. Employment from Solar Energy: A Bright but Partly Cloudy Future.

    Science.gov (United States)

    Smeltzer, K. K.; Santini, D. J.

    A comparison of quantitative and qualitative employment effects of solar and conventional systems can prove the increased employment postulated as one of the significant secondary benefits of a shift from conventional to solar energy use. Current quantitative employment estimates show solar technology-induced employment to be generally greater…

  6. Performance analysis of conventional and sloped solar chimney power plants in China

    International Nuclear Information System (INIS)

    Cao Fei; Zhao Liang; Li Huashan; Guo Liejin

    2013-01-01

    The solar chimney power plant (SCPP) has been accepted as one of the most promising approaches for future large-scale solar energy applications. This paper reports on a heat transfer model that is used to compare the performance of a conventional solar chimney power plant (CSCPP) and two sloped solar chimney power plants (SSCPPs) with the collector oriented at 30° and 60°, respectively. The power generation from SCPPs at different latitudes in China is also analyzed. Results indicate that the larger solar collector angle leads to improved performance in winter but results in lower performance in summer. It is found that the optimal collector angle to achieve the maximum power in Lanzhou, China, is around 60°. Main factors that influence the performance of SCPPs also include the system height and the air thermophysical characteristics. The ground energy loss, reflected solar radiation, and kinetic loss at the chimney outlet are the main energy losses in SCPPs. The studies also show SSCPPs are more suitable for high latitude regions in Northwest China, but CSCPPs are suggested to be built in southeastern and eastern parts of China with the combination to the local agriculture. - Highlights: ► The optimum collector angle for maximum power generation is 60° in Lanzhou. ► Main parameters influencing performances are the system height and air property. ► Ground loss, reflected loss and outlet kinetic loss are the main energy losses. ► The sloped styles are suitable for Northwest China. ► The conventional styles are suitable for Southeast and East China.

  7. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  8. Towards legitimacy of the solar geoengineering research enterprise

    Science.gov (United States)

    Frumhoff, Peter C.; Stephens, Jennie C.

    2018-05-01

    Mounting evidence that even aggressive reductions in net emissions of greenhouse gases will be insufficient to limit global climate risks is increasing calls for atmospheric experiments to better understand the risks and implications of also deploying solar geoengineering technologies to reflect sunlight and rapidly lower surface temperatures. But solar geoengineering research itself poses significant environmental and geopolitical risks. Given limited societal awareness and public dialogue about this climate response option, conducting such experiments without meaningful societal engagement could galvanize opposition to solar geoengineering research from civil society, including the most climate vulnerable communities who are among its intended beneficiaries. Here, we explore whether and how a solar geoengineering research enterprise might be developed in a way that promotes legitimacy as well as scientific credibility and policy relevance. We highlight the distinctive responsibilities of researchers and research funders to ensure that solar geoengineering research proposals are subject to legitimate societal review and scrutiny, recommend steps they can take to strive towards legitimacy and call on them to be explicitly open to multiple potential outcomes, including the societal rejection or considerable alteration of the solar geoengineering research enterprise. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  9. Towards legitimacy of the solar geoengineering research enterprise.

    Science.gov (United States)

    Frumhoff, Peter C; Stephens, Jennie C

    2018-05-13

    Mounting evidence that even aggressive reductions in net emissions of greenhouse gases will be insufficient to limit global climate risks is increasing calls for atmospheric experiments to better understand the risks and implications of also deploying solar geoengineering technologies to reflect sunlight and rapidly lower surface temperatures. But solar geoengineering research itself poses significant environmental and geopolitical risks. Given limited societal awareness and public dialogue about this climate response option, conducting such experiments without meaningful societal engagement could galvanize opposition to solar geoengineering research from civil society, including the most climate vulnerable communities who are among its intended beneficiaries. Here, we explore whether and how a solar geoengineering research enterprise might be developed in a way that promotes legitimacy as well as scientific credibility and policy relevance. We highlight the distinctive responsibilities of researchers and research funders to ensure that solar geoengineering research proposals are subject to legitimate societal review and scrutiny, recommend steps they can take to strive towards legitimacy and call on them to be explicitly open to multiple potential outcomes, including the societal rejection or considerable alteration of the solar geoengineering research enterprise.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  10. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  12. Solar energy converters based on multi-junction photoemission solar cells.

    Science.gov (United States)

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  13. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  14. Solar radiation in Germany - observed trends and an assessment of their causes. Pt. 1; Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Liepert, B [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Fabian, P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-02-01

    The possible longterm variation of daily sums of global solar radiation (direct plus diffuse solar radiation) in West-Germany was analysed for twelve stations of the German Weather Service (DWD). The global solar radiation decreased remarkably at seven stations (List/Sylt, Norderney, Hamburg, Braunlage, Wuerzburg, Weihenstephan, Hohenpeissenberg) and showed no significant variations at the remaining five stations (Braunschweig, Bocholt, Gelsenkirchen, Trier and Freiburg). The average decline is 3.7[+-]1.3% per decade in the last 15 to 39 years. The locally varying causes for the decline are changes in cloud parameters, fog occurrence and tropospheric aerosol. In this part of the article some possible causes, such as solar variability, increased number of contrails, decreased surface reflectivity, increased volcanic aerosol load in the 1980's or increased water vapour column content could be excluded. With a more sophisticated statistical procedure the effect of changes in cloud parameters and the effect of changed clear sky turbidity could not only be separated for each month for Hohenpeissenberg and Wuerzburg but also made mainly responsible for the observed trend. In Part II (Grabbe, Grassl), more detailed observations of solar radiation hourly averages of Hamburg were analysed. (orig.)

  15. Solar-pumped fiber laser with transverse-excitation geometry

    Science.gov (United States)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori

    2018-02-01

    In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.

  16. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  17. Reflection and Reflective Practice Discourses in Coaching: A Critical Analysis

    Science.gov (United States)

    Cushion, Christopher J.

    2018-01-01

    Reflection and reflective practice is seen as an established part of coaching and coach education practice. It has become a "taken-for-granted" part of coaching that is accepted enthusiastically and unquestioningly, and is assumed to be "good" for coaching and coaches. Drawing on sociological concepts, a primarily Foucauldian…

  18. Solar radiation and thermal performance of solar collectors for Denmark

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark.......This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark....

  19. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  20. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    Science.gov (United States)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  1. 3D Cloud Radiative Effects on Polarized Reflectances

    Science.gov (United States)

    Cornet, C.; Matar, C.; C-Labonnote, L.; Szczap, F.; Waquet, F.; Parol, F.; Riedi, J.

    2017-12-01

    As recognized in the last IPCC report, clouds have a major importance in the climate budget and need to be better characterized. Remote sensing observations are a way to obtain either global observations of cloud from satellites or a very fine description of clouds from airborne measurements. An increasing numbers of radiometers plan to measure polarized reflectances in addition to total reflectances, since this information is very helpful to obtain aerosol or cloud properties. In a near future, for example, the Multi-viewing, Multi-channel, Multi-polarization Imager (3MI) will be part the EPS-SG Eumetsat-ESA mission. It will achieve multi-angular polarimetric measurements from visible to shortwave infrared wavelengths. An airborne prototype, OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), is also presently developed at the Laboratoire d'Optique Atmospherique and had already participated to several measurements campaigns. In order to analyze suitably the measured signal, it it necessary to have realistic and accurate models able to simulate polarized reflectances. The 3DCLOUD model (Szczap et al., 2014) was used to generate three-dimensional synthetic cloud and the 3D radiative transfer model, 3DMCPOL (Cornet et al., 2010) to compute realistic polarized reflectances. From these simulations, we investigate the effects of 3D cloud structures and heterogeneity on the polarized angular signature often used to retrieve cloud or aerosol properties. We show that 3D effects are weak for flat clouds but become quite significant for fractional clouds above ocean. The 3D effects are quite different according to the observation scale. For the airborne scale (few tens of meter), solar illumination effects can lead to polarized cloud reflectance values higher than the saturation limit predicted by the homogeneous cloud assumption. In the cloud gaps, corresponding to shadowed areas of the total reflectances, polarized signal can also be enhanced

  2. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 1. Bibliography on solar radiation; 1974 nendo taiyo hosha ni kansuru bunken mokuroku. 1. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report is the 1st one among 3 reports 'Bibliography on solar radiation', 'Guideline for using weather data' and 'Observation data on global solar radiation and sunshine duration'. This report is composed of the part 1 'Present state and view of researches on solar radiation' including (1) view of researches on short-wave radiation, (2) atmospheric radiation, (3) scattering of solar radiation, (4) global net radiation and (5) radiometer, and the part 2 including the bibliography and its commentary. (1) describes researches on incident short-wave radiation (solar radiation) and some current issues, (2) describes the basis for quantitative measurement of atmospheric radiation transfer, based on the premise that atmospheric radiation is infrared radiation between the ground surface and atmospheric system. (3) describes scattering of solar radiation in the air, and its effect. (4) describes that the global profile of net radiation of the air-earth system and its seasonal change can be observed directly from the weather satellite roughly, and research on global net radiation is approaching a new era. (NEDO)

  3. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 1. Bibliography on solar radiation; 1974 nendo taiyo hosha ni kansuru bunken mokuroku. 1. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report is the 1st one among 3 reports 'Bibliography on solar radiation', 'Guideline for using weather data' and 'Observation data on global solar radiation and sunshine duration'. This report is composed of the part 1 'Present state and view of researches on solar radiation' including (1) view of researches on short-wave radiation, (2) atmospheric radiation, (3) scattering of solar radiation, (4) global net radiation and (5) radiometer, and the part 2 including the bibliography and its commentary. (1) describes researches on incident short-wave radiation (solar radiation) and some current issues, (2) describes the basis for quantitative measurement of atmospheric radiation transfer, based on the premise that atmospheric radiation is infrared radiation between the ground surface and atmospheric system. (3) describes scattering of solar radiation in the air, and its effect. (4) describes that the global profile of net radiation of the air-earth system and its seasonal change can be observed directly from the weather satellite roughly, and research on global net radiation is approaching a new era. (NEDO)

  4. Orbiter radiator panel solar focusing test

    Science.gov (United States)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  5. STUDY OF REFLECTION COEFFICIENT DISTRIBUTION FOR ANTI-REFLECTION COATINGS ON SMALL-RADIUS OPTICAL PARTS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2015-03-01

    Full Text Available The paper deals with findings for the energy reflection coefficient distribution of anti- reflection coating along the surface of optical elements with a very small radius (2-12 mm. The factors influencing the magnitude of the surface area of the optical element, in which the energy reflection coefficient is constant, were detected. The main principles for theoretical models that describe the spectral characteristics of the multilayer interference coatings were used to achieve these objectives. The relative size of the enlightenment area is defined as the ratio of the radius for the optical element surface, where the reflection is less than a certain value, to its radius (ρ/r. The result of research is the following: this size is constant for a different value of the curvature radius for the optical element made of the same material. Its value is determined by the refractive index of material (nm, from which the optical element was made, and the design of antireflection coatings. For single-layer coatings this value is ρ/r = 0.5 when nm = 1.51; and ρ/r = 0.73 when nm = 1.75; for two-layer coatings ρ/r = 0.35 when nm = 1.51 and ρ/r = 0.41 when nm = 1.75. It is shown that with increasing of the material refractive index for the substrate size, the area of minimum reflection coefficient is increased. The paper considers a single-layer, two-layer, three-layer and five-layer structures of antireflection coatings. The findings give the possibility to conclude that equal thickness coverings formed on the optical element surface with a small radius make no equal reflection from the entire surface, and distribution of the layer thickness needs to be looked for, providing a uniform radiation reflection at all points of the spherical surface.

  6. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  7. Black silicon solar cells with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  8. Pasteurization of naturally contaminated water with solar energy.

    Science.gov (United States)

    Ciochetti, D A; Metcalf, R H

    1984-02-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested.

  9. Development of paints with infrared radiation reflective properties

    Directory of Open Access Journals (Sweden)

    Eliane Coser

    2015-06-01

    Full Text Available AbstractLarge buildings situated in hot regions of the Globe need to be agreeable to their residents. Air conditioning is extensively used to make these buildings comfortable, with consequent energy consumption. Absorption of solar visible and infrared radiations are responsible for heating objects on the surface of the Earth, including houses and buildings. To avoid excessive energy consumption, it is possible to use coatings formulated with special pigments that are able to reflect the radiation in the near- infrared, NIR, spectrum. To evaluate this phenomenon an experimental study about the reflectivity of paints containing infrared-reflective pigments has been made. By irradiating with an IR source and by measuring the surface temperatures of the samples we evaluated: color according to ASTM D 2244-14, UV/VIS/NIR reflectance according to ASTM E 903-12 and thermal performance. Additionally, the spectral reflectance and the IR emittance were measured and the solar reflectance of the samples were calculated. The results showed that plates coated with paints containing IR-reflecting pigments displayed lower air temperature on the opposite side as compared to conventional coatings, indicating that they can be effective to reflect NIR and decrease the temperature of buildings when used in roofs and walls.

  10. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  11. Reflections of ions in electrostatic analyzers: A case study with New Horizons/Solar Wind Around Pluto

    International Nuclear Information System (INIS)

    Randol, B. M.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Schwadron, N. A.

    2010-01-01

    Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10 -3 of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of ≤10 -3 of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method

  12. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  13. Reflecting Equity and Diversity. Part I: Guidelines and Procedure for Evaluating Bias in Instructional Materials. Part II: Bias Awareness Training Worksheets. Part III: Bias Awareness and Procedure Training Course.

    Science.gov (United States)

    Bebermeyer, Jim; Edmond, Mary, Ed.

    Reflecting a need to prepare students for working in diverse organizations, this document was developed to increase school officials' awareness of bias in instructional materials and help them select bias-free materials. A number of the examples illustrate situations dealing with diversity in the workplace. The guide is divided into three parts:…

  14. Calculation of heat balance considering the reflection, refraction of incident ray and salt diffusion on solar pad; Hikari no hansha kussetsu oyobi shio no kakusan wo koryoshita solar pond no netsukeisan

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Li, X; Baba, H; Endo, N [Kitami Institute of Technology, (Japan)

    1997-11-25

    In calculating heat balance of solar pond, calculation was made considering things except quality of the incident ray and physical properties of pond water which were conventionally considered. The real optical path length was determined from the reflection ratio of ray on the water surface based on the refraction ratio of pond water and the locus of water transmitted ray in order to calculate a total transmission rate. The rate of absorption of monochromatic lights composing of solar light in their going through the media is different by wavelength, and therefore, calculation was made in each monochromatic light. As to four kinds of salt water solution, NaCl, KCl, MgCl2 and CaCl2, these phenomena seen in solar pond are taken in, and a total transmission rate based on reality can be calculated by the wavelength integration method. Moreover, in the salt gradient layer, there are gradients in both concentration and temperature, and thermal physical values of each layer change. Accordingly, mass transfer and thermal transfer by both gradients were considered at the same time. An analytic solution was introduced which analyzes salt diffusion in the temperature field in the gradient layer and determines the concentration distribution. By these, concentration and physical values of each layer were calculated according to phenomena, and thermal balance of each layer of the solar pond was able to be accurately calculated. 6 refs., 5 figs., 2 tabs.

  15. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  16. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Science.gov (United States)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  17. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    International Nuclear Information System (INIS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-01-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a ∼50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  18. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    OpenAIRE

    Reames, Donald V.

    2018-01-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances o...

  19. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  20. SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.

    2014-12-01

    SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of definition has been completed (platform and payload AIT are possible in 24 months). SUMO is proposed for the nanosatellite program of Polytechnic School and CNES (following QB50) for a flight in 2018. Follow-up is 2 fold: on one part more complete measurements using SUMO miniaturized instruments on a larger satellite; on the other part, increase of the coverage in local time and latitude using a constellation of SUMO nanosatellites around the Earth to further geolocalize the Sun influence on our planet. Nanosatellites, with cost and risk limited, are also excellent platforms to evaluate technologies for future missions, e.g. nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R

  1. A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, E.F.; Rubio, F.R. [Universidad de Sevilla, Escuela Superior de Ingenieros, Departamento de Ingenieria de Sistemas y Automatica, Camino de Los Descubrimientos s/n, E-41092 Sevilla (Spain); Berenguel, M. [Universidad de Almeria, Departamento de Lenguajes y Computacion, Area de Ingenieria de Sistemas y Automatica, Carretera Sacramento s/n, E-04120 La Canada, Almeria (Spain); Valenzuela, L. [Plataforma Solar de Almeria - CIEMAT, Carretera Senes s/n, P.O. Box 22, E-04200 Tabernas (Almeria) (Spain)

    2007-10-15

    This article presents a survey of the different advanced automatic control techniques that have been applied to control the outlet temperature of solar plants with distributed collectors during the last 25 years. A classification of the modeling and control approaches described in the first part of this survey is used to explain the main features of each strategy. The treated strategies range from classical advanced control strategies to those with few industrial applications. (author)

  2. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART A: TUTORIAL

    Science.gov (United States)

    Amory-Mazaudier, C.; Menvielle, M.; Curto, J-J.; Le Huy, M.

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern Solar Terrestrial Physics, Atmospheric Physics and Space Weather. In this part A, we introduce knowledge on the Sun-Earth system. We consider the physical process of the dynamo which is present in the Sun, in the core of the Earth and also in the regions between the Sun and the Earth, the solar wind-magnetosphere and the ionosphere. Equations of plasma physics and Maxwell's equations will be recalled. In the Sun-Earth system there are permanent dynamos (Sun, Earth's core, solar wind - magnetosphere, neutral wind - ionosphere) and non-permanent dynamos that are activated during magnetic storms in the magnetosphere and in the ionosphere. All these dynamos have associated electric currents that affect the variations of the Earth's magnetic field which are easily measurable. That is why a part of the tutorial is also devoted to the magnetic indices which are indicators of the electric currents in the Sun-Earth system. In order to understand some results of the part B, we present some characteristics of the Equatorial region and of the electrodynamics coupling the Auroral and Equatorial regions.

  3. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  4. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  5. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  6. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  7. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  8. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi

  9. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  10. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  11. Prey-predator dynamics driven by the solar radiation - Part 1

    International Nuclear Information System (INIS)

    Sertorio, L.

    2000-01-01

    In this paper is studied a model ecosystem represented by two components: prey and predator. The predator feeds only on the prey, the prey, in turn, feeds on the solar radiation. In this scheme the two-species dynamics is no longer independent of the external physical conditions. Such independence was instead postulated in the Lotka-Volterra scheme. In this paper is considered the growth of the prey not unbounded (exponential), but logistic, where the saturation factor is governed by the available solar flux, more precisely by the percent of the solar flux that contains the photon frequencies which can drive the photosynthesis. In this way the solar flux represents the driving term of the dynamics, as it is expected in general for a realistic ecosystem. The system is asymptotically stable. The equilibrium values of the prey and predator numbers depend on several parameters. The system contains two nonlinear coupling terms and two coupling parameters. The dependence of the equilibrium point on the coupling parameters is studied in detail. According to this model, it can be defined a predator efficiency and a global solar efficiency. It is discussed the relationship between these two functions of the coupling parameters and the maximum value that the predator population can reach

  12. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  13. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  14. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    International Nuclear Information System (INIS)

    Zuzuarregui, Ana; Gregorczyk, Keith E.; Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier; Rodríguez, Jorge; Knez, Mato

    2015-01-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur

  15. Solar desalination using humidification dehumidification processes. Part I. A numerical investigation

    International Nuclear Information System (INIS)

    Nafey, A.S.; Fath, H.E.S.; El-Helaby, S.O.; Soliman, A.M.

    2004-01-01

    A numerical investigation of a humidification dehumidification desalination (HDD) process using solar energy is presented. The HDD system consists mainly of a concentrating solar water heating collector, flat plate solar air heating collector, humidifying tower and dehumidifying exchanger. Two separate circulating loops constitute the HDD system, the first for heating the feed water and the second for heating air. A mathematical model is developed, simulating the HDD system, to study the influence of the different system configurations, weather and operating conditions on the system productivity. The model validity is examined by comparing the theoretical and experimental results of the same authors. It is found that the results of the developed mathematical model are in good agreement with the experimental results and other published works. The results show also that the productivity of the unit is strongly influenced by the air flow rate, cooling water flow rate and total solar energy incident through the day. Wind speed and ambient temperature variations show a very small effect on the system productivity. In addition, the obtained results indicate that the solar water collector area strongly affects the system productivity, more so than the solar air collector area

  16. Preparation and performance evaluation of epoxy-based heat reflective coating for the pavement

    Science.gov (United States)

    Hu, B.; Liang, Y. H.; Guo, L. Y.; Jiang, T.

    2017-04-01

    According to the basic characteristics and composition of heat-reflective coating, combining with the functional requirements of road materials, the experiment selects the epoxy resin with good wear resistance and adhesive force as a film forming material, with TiO2, SiO2 and extinction powder as the main functional filler. The experiment gets a good formula with suitable viscosity, low glossiness and good cooling effect, optimizes by orthogonal experiment. The experiment evaluates the indoor and outdoor cooling effect of heat-reflective coating, and analyses the road performance of the coating. The results shows that the better heat-reflective coating formula included 12% of titanium dioxide, 4% of silica and 4% of extinction powder. When the dosage of coating is 0.8kg/m2, the indoor specimen of heat-reflective coating decrease the temperature of 12 ˜ 14°C, and the specimen under solar radiation can reduce the temperature of 7 ˜ 9°C. The pavement of heat-reflective coating has good wear resistance, but the road slip resistance partly declines. Therefore, it needs to add the anti-sliding particles to meet the safe driving requirements.

  17. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  18. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  19. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    Science.gov (United States)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  20. Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 1: a new theoretical procedure and comparison with other methodologies

    Science.gov (United States)

    Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio

    2018-04-01

    A new proposal for the extraction of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is given. First, the Cheung method is extended to obtain the series resistance (R s ), the ideality factor (n) and an upper limit for I sat . In this article which is Part 1 of two parts, two procedures are proposed to obtain fitting values for R sh and I sat within some voltage range. These two procedures are used in two simulated I-V curves (one in darkness and the other one under illumination) to recover the known solar cell parameters R sh , R s , n, I sat and the light current I lig and test its accuracy. The method is compared with two different common parameter extraction methods. These three procedures are used and compared in Part 2 in the I-V curves of CdS-CdTe and CIGS-CdS solar cells.

  1. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    Science.gov (United States)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region downstream from the lunar dawn and dusk regions and

  2. Solar desalination using humidification-dehumidification processes. Part II. An experimental investigation

    International Nuclear Information System (INIS)

    Nafey, A.S.; Fath, H.E.S.; El-Helaby, S.O.; Soliman, A.

    2004-01-01

    An experimental investigation of a humidification-dehumidification desalination (HDD) process using solar energy at the weather conditions of Suez City, Egypt, is presented. A test rig is designed and constructed to conduct this investigation under different environmental and operating conditions. The test rig consists of a solar water heater (concentrator solar collector type), solar air heater (flat plate solar collector type), humidifier tower and dehumidifier exchanger. Different variables are examined including the feed water flow rate, the air flow rate, the cooling water flow rate in the dehumidifier and the weather conditions. Comparisons between the experimental results and other published results are presented. It is found that the results of the developed mathematical model by the same authors are in good agreement with the experimental results. The tested results show that the productivity of the system is strongly affected by the saline water temperature at the inlet to the humidifier, dehumidifier cooling water flow rate, air flow rate and solar intensity. The wind speed and ambient temperature variation were found to have a very small effect on the system productivity. A general correlation is developed to predict the unit productivity under different operating conditions. The results of this correlation have a reasonable confidence level (maximum error ±6%)

  3. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  4. Characteristics of reflected and diffuse ions upstream from the earth's bow shock

    International Nuclear Information System (INIS)

    Paschmann, G.; Sckopke, N.; Papamastorakis, I.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1981-01-01

    The distinction between two types of upstream ion populations has been made on the basis of pronounced differences in their distribution functions. The 'reflected' ions represent a fast beam with temperatures typically 1 to 5 times 10 6 K and speeds up to five times the solar wind speed. An important feature of the reflected ion distributions in their strong temperature anisotropy, with T/sub perpendicular/ exceeding T/sub parallel/ by a factor of two to three. In contrast, the 'diffuse' ions occupy a much larger region of phase space, both in energy and angle; their distribution function generally has the form roughly of a circular ridge in 2 dimensions and a spherical shell in 3 dimensions. Accordingly, their temperature is much larger (> or approx. =10 7 K), and their bulk speed typically is smaller than the solar wind speed. Both ion populations have densities of the order of 0.1 cm -3 . At times transitions between the two extremes, represented by the reflected and diffuse ion populations, are observed. These 'intermediate' distributions are cresent shaped, with the center of curvature near the solar wind velocity. This property suggests that the intermediate distributions result from pitch angle scattering of the reflected beams in the solar wind frame and supports the idea that the reflected ions are the origin of the diffuse ions. At times the diffuse ion distributions exhibit considerable structure and rapid temporal variations. Reflected and diffuse ions can also be distinguished by their occurrence as a function of the angle theta between the local shock normal and the interplanetary magnetic field. Whereas the diffuse ions occur predominantly for small theta, the reflected ions are observed most frequently for theta> or approx. =45 0

  5. 3D Visualization of Solar Data: Preparing for Solar Orbiter and Parker Solar Probe

    Science.gov (United States)

    Mueller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; Ireland, J.; Fleck, B.

    2017-12-01

    Solar Orbiter and Parker Solar Probe will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Combined with the several petabytes of data from NASA's Solar Dynamics Observatory, the scientific community will soon have access to multi­dimensional remote-sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project.

  6. Solar cells for space applications (part 2)

    International Nuclear Information System (INIS)

    Gomez, T.J.

    1992-01-01

    This lecture focusses on qualification and verification tests and procedures on solar cells designed for space applications. The series of tests should produce orbital performance under determined illumination, temperature and irradiance. Tests are divided in outdoor and laboratory experiments. Environmental tests include durability, qualification (mechanical and electrical), I-V curves, Spectral response

  7. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  8. Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/Thermal collector

    International Nuclear Information System (INIS)

    Kostic, Ljiljana T.; Pavlovic, Tomislav M.; Pavlovic, Zoran T.

    2010-01-01

    In this paper the results of the influence of reflectance from flat plate solar radiation concentrators made of Al sheet and Al foil on energy efficiency of PV/Thermal collector are presented. The total reflectance from concentrators made of Al sheet and Al foil is almost the same, but specular reflectance which is bigger in concentrators made of Al foil results in increase of solar radiation intensity concentration factor. With the increase of solar radiation intensity concentration factor, total daily thermal and electrical energy generated by PV/Thermal collector with concentrators increase. In this work also optimal position of solar radiation concentrators made of Al sheet and Al foil and appropriate thermal and electrical efficiency of PV/Thermal collector have been determined. Total energy generated by PV/Thermal collector with concentrators made of Al foil in optimal position is higher than total energy generated by PV/Thermal collector with concentrators made of Al sheet.

  9. System and method for aligning heliostats of a solar power tower

    Science.gov (United States)

    Convery, Mark R.

    2013-01-01

    Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

  10. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  11. Design Multilayer Antireflection Coatings for Terrestrial Solar Cells

    Directory of Open Access Journals (Sweden)

    Feng Zhan

    2014-01-01

    Full Text Available In order to analyze the influence of methods to design antireflection coatings (ARCs on reflectivity of broadband solar cells, we provide detailed analyses about the ARC coupled with a window layer and the refractive index dispersion effect of each layer. By multidimensional matrix data simulation, two methods were employed to measure the composite reflection of a SiO2/ZnS double-layer ARC within the spectral ranges of 300–870 nm (dual junction and 300–1850 nm (triple junction under AM1.5 solar radiation. A comparison study, between the results obtained from the commonly used weighted average reflectance method (WAR and that from the introduced effective average reflectance method (EAR, shows that the optimization of ARC by EAR method is convenient and feasible.

  12. Optimal Design of a Solar Desalination Unit with Heliostats

    Directory of Open Access Journals (Sweden)

    M. Abidi

    2017-01-01

    Full Text Available The objective is to improve the yield of a solar desalination cell using concentration of solar rays by means of automatically controlled heliostats. The vertical cell is orientated towards the north. It is mainly composed of two plates; the one being heated by the solar rays reflected by the mirrors is used for evaporation of a falling water film; the other one is used for water vapor condensation. Each heliostat consists of an altitude-azimuth mount having two degrees of freedom and supporting a plane mirror. The heliostat permanently follows the sun trajectory and reflects the solar rays on the cell by means of automatic control implemented in a control card based on a microcontroller. Model predictive control allows us to maximize the distilled water production.

  13. Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses.

    Science.gov (United States)

    Baquedano, Estela; Torné, Lorena; Caño, Pablo; Postigo, Pablo A

    2017-12-14

    We investigated the fabrication of large-area (cm²) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D and 2D nanopatterns (nanowires and nanocones) and the effect of introducing disorder in the nanostructures. We observed an increase in the transmitted light for ordered nanostructures with a maximum value of 99% for wavelengths >600 nm when ordered nanocones are fabricated on the two sides of the solar glass. They produced an increment in the efficiency of the packaged solar cell with respect to the glass without nanostructures. On the one hand, the wettability properties showed that the ordering of the nanostructures improved the hydrophobicity of the solar glasses and increased their self-cleaning capacity. On the other hand, the disordered nanostructures improved the hydrophilic properties of solar glasses, increasing their anti-fogging capacity. The results show that by selecting the appropriate nanopattern, the wettability properties (hydrophobic or hydrophilic) can be easily improved without decreasing the efficiency of the solar cell underneath.

  14. Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures.

    Science.gov (United States)

    Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm

    2014-05-05

    The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

  15. Designing a Reflective Teacher Education Course and Its Contribution to ELT Teachers' Reflectivity

    Science.gov (United States)

    Tajik, Leila; Pakzad, Kazem

    2016-01-01

    Researchers in the present study planned a reflective teacher education course and documented the contribution of such a course to improving teachers' reflectivity. Five English teachers took part in the reflective teacher education course designed by the researchers. To record how the course could help improve reflective teaching, researchers…

  16. Directional reflectance factor distributions of a cotton row crop

    Science.gov (United States)

    Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.

    1984-01-01

    The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.

  17. Optical design of a solar flux homogenizer for concentrator photovoltaics

    Science.gov (United States)

    Kreske, Kathi

    2002-04-01

    An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.

  18. Solar wind radiation damage in lunar dust grains and the characteristics of the ancient solar wind

    International Nuclear Information System (INIS)

    Borg, J.; Chaumont, J.

    1980-01-01

    Current understanding of the exposure history of lunar dust grains to the ancient solar wind is reviewed, the work being based mostly on a Monte Carlo statistical code, describing the 'gardening' effects of the meteorite bombardment in the lunar regolith, and on analytical models, yielding the lifetimes of the grains against various types of destruction processes. Families of lunar dust grains are identified, and evidence is presented showing that lunar dust grains were not partially shielded from solar wind ions. Results of solar wind simulation experiments are used to interpret the thickness distribution of the amorphous coatings of solar wind radiation-damaged material observed on 1-micron lunar dust grains. It is argued that such distributions reflect the speed distribution of the ancient solar wind as averaged over periods of approximately 5000 years in duration, and that the ancient solar wind is less energetic than the present day solar wind

  19. Seguidor Solar, optimizando el aprovechamiento de la energía solar ; Solar tracker, optimizing ofimprovementof the solar energy

    Directory of Open Access Journals (Sweden)

    Noel Machado Toranzo

    2015-06-01

    Full Text Available En este trabajo se realizó el diseño e implementación de un dispositivo encargado de obtener las coordenadas del Sol en cualquier momento del día, es decir, un seguidor solar a dos ejes por punto luminoso. Este seguidor consta de dos bloques principales: la tarjeta controladora y la parte mecánica. Su diseño se basó en el uso de fotorresistencias, microcontroladores y motores de pasos, el mismo posee altas prestaciones y bajo costo. El prototipo construido es utilizado en las investigaciones de aprovechamiento de la energía solar que se realizan en el Grupo de Energía Renovable Aplicadas (GERA de la Universidad de Oriente, particularmente en los paneles fotovoltaicos y los calentadores de agua. Se realizó una prueba experimental en los laboratorios y en el polígono de dicho grupo y se comprobó que el seguidor solar funciona adecuadamente, cumpliendo con las expectativas deseadas.The design and implementation of a device for obtaining the coordinates of the sun at any time during the day, it means, a solar tracker of type two axis by luminous point is developed in this paper. This tracker consists of two main blocks: the controller board and the mechanical part. The design is based on the use of photoresistences, microcontrollers and stepper motors. The prototype is used on investigations about solar energy developed at the GERA (Grupo de Energía Renovable Aplicada of Universidad de Oriente, particularly in photovoltaic panels and water heaters. An experimental test was conducted in the laboratories and at the site of the group and it was found that the solar tracker is functioning properly, meeting the desired expectations.

  20. Reflection as Self-Assessment

    Science.gov (United States)

    Pappas, Marjorie L.

    2010-01-01

    In this article, the author discusses how reflection can be used as self-assessment. Reflection involves not only thinking about a learning experience, but also questioning parts of the experience. Reflection is thinking about what one knows from the learning experience, what one might do differently the next time. Reflection is wondering about…

  1. Solar renovation demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Joergensen, O [ed.

    1998-10-01

    In the framework of the IEA SHC Programme, a Task on building renovation was initiated, `Task 20, Solar Energy in Building Renovation`. In a part of the task, Subtask C `Design of Solar Renovation Projects`, different solar renovation demonstration projects were developed. The objective of Subtask C was to demonstrate the application of advanced solar renovation concepts on real buildings. This report documents 16 different solar renovation demonstration projects including the design processes of the projects. The projects include the renovation of houses, schools, laboratories, and factories. Several solar techniques were used: building integrated solar collectors, glazed balconies, ventilated solar walls, transparent insulation, second skin facades, daylight elements and photovoltaic systems. These techniques are used in several simple as well as more complex system designs. (au)

  2. We'd rather be solar sailing

    Science.gov (United States)

    Kuznik, Frank

    1994-06-01

    On 4 Feb. 1993 a solar sail that traveled piggyback on a Progress resupply rocket to the Mir Space Station was deployed after undocking from the Mir. It was the first sun-propelled spacecraft, and it attempted to reflect a patch of sunlight onto the night side of Earth, but wasn't very successful because of extensive cloud cover. Solar sail technology and its historical development are briefly discussed. NASA'a views and the World Space Foundation's involvement in solar sail development are presented.

  3. Effect of retro-reflective materials on temperature environment in tents

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-03-01

    Full Text Available Due to the low thermal inertia and poor thermal insulation of ultrathin envelope in tents, its indoor temperature environment is extremely bad and its occupants are tormented. Especially under the high solar radiation, both indoor air temperature and inner surface radiation temperature increase rapidly. And thereby, decreasing radiation heat gain in summer is necessary to refine indoor temperature environment in tents. Retro-reflective materials make it a reasonable choice due to their high reflectivity for solar radiation. To reveal the temperature environment improvement of tents by integrating with retro-reflective materials, a comparative experiment is carried out under the summer climatic conditions of Chengdu city, China. Experimental results show that due to integrating with retro-reflective materials, indoor air peak temperature in the tent can be reduced by more than 7.7 °C, while inner surface radiant temperature can be lowered up to 4.8 °C in the day time. It shows retro-reflective materials could refine indoor temperature environment in tents. Through a comparison of the walls in different orientations, on which retro-reflective materials are covered, the top, east and north walls are found to be better choices, while the north wall is the worst one for retro-reflective materials.

  4. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  5. Surface reflectance of Antarctic bryophytes and protection from UV and visible light

    International Nuclear Information System (INIS)

    Robinson, S.A.; Wasley, J.; Turnbull, J.

    2000-01-01

    Full text: As well as determining the amount of solar radiation available for photosynthesis, the surface reflectance and absorptance characteristics of plants are their first defence against damaging effects of solar radiation. The solar spectrum can be damaging to plants in many ways. At shorter wavelengths, UV-B (280-320 nm) radiation can cause lesions in nucleic acid and proteins. Excess levels of visible radiation (400-750) can cause photoinhibition whilst high absorbtance of longer wavelengths (>750) leads to increases in temperature that can be detrimental in some environments. The adaptation of surface reflectance properties of vascular plants to particular environments are well known in some ecosystems. For example in desert ecosystems pubescent leaf surfaces that increase reflectance are common and have been demonstrated to be important to protection from photoinhibition. The epidermal characteristics of some plants are also known to change in absorptance, due to the accumulation of specific compounds. For example flavonoids which are effective screens against UV-B radiation, increase upon exposure to UV-B radiation. In this study we surveyed the natural variability in surface reflectance in mosses growing in continental Antarctica. Antarctica is experiencing large increases in incident UV-B radiation due to reductions in concentrations of stratospheric ozone. Additionally over the summer months (November January), when moss is exposed to direct sunlight, levels of visible solar radiation are also high, increasing the likelihood of photoinhibitory damage in moss. Our aim in this study is to describe the natural variability in the surface reflectance characteristics of moss, such that we have a baseline with which to assess future changes in response to changes in global climate, and imposed experimental treatments, and also to develop hypotheses with respect to how mosses have adapted to the cold and arid antarctic environment. Variability in surface

  6. Light trapping with plasmonic back contacts in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich Wilhelm

    2013-02-08

    Trapping light in silicon solar cells is essential as it allows an increase in the absorption of incident sunlight in optically thin silicon absorber layers. This way, the costs of the solar cells can be reduced by lowering the material consumption and decreasing the physical constraints on the material quality. In this work, plasmonic light trapping with Ag back contacts in thin-film silicon solar cells is studied. Solar cell prototypes with plasmonic back contacts are presented along with optical simulations of these devices and general design considerations of plasmonic back contacts. Based on three-dimensional electromagnetic simulations, the conceptual design of plasmonic nanostructures on Ag back contacts in thin-film silicon solar cells is studied in this work. Optimizations of the nanostructures regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells are presented. Geometrical parameters as well as the embedding dielectric layer stack of the nanostructures on Ag layers are varied. Periodic as well as isolated hemispherical Ag nanostructures of dimensions above 200 nm are found to scatter incident light at high efficiencies and low optical losses. Hence, these nanostructures are of interest for light trapping in solar cells. In contrast, small Ag nanostructures of dimension below 100 nm are found to induce optical losses. At the surface of randomly textured Ag back contacts small Ag nanostructures exist which induce optical losses. In this work, the relevance of these localized plasmon induced optical losses as well as optical losses caused by propagating plasmons are investigated with regard to the reflectance of the textured back contacts. In state-of-the-art solar cells, the plasmon-induced optical losses are shifted out of the relevant wavelength range by incorporating a ZnO:Al interlayer of low refractive index at the back contact. The additional but

  7. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optical study of solar tower power plants

    International Nuclear Information System (INIS)

    Eddhibi, F; Amara, M Ben; Balghouthi, M; Guizani, A

    2015-01-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature

  9. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  10. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  11. Ultra-low reflection porous silicon nanowires for solar cell applications

    KAUST Repository

    Najar, Adel; Charrier, Joë l; Pirasteh, Parastesh; Sougrat, Rachid

    2012-01-01

    % reflectivity of the starting silicon wafer drops to 0.1% recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix

  12. Dielectric compound parabolic concentrating solar collector with frustrated total internal reflection absorber

    Science.gov (United States)

    Hull, J. R.

    Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.

  13. Solar-geophysical data number 391. Part I. Prompt reports. Data for February 1977--January 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-03-01

    This prompt report provides data for February 1977 on alert periods, daily solar indices, solar flares, solar radio waves, solar X-ray radiation, coronal holes, solar wind measurements, spacecraft observations, inferred IP magnetic field polarities and mean solar magnetic field. It also provides data for January 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  14. Specular reflectance of soiled glass mirrors - Study on the impact of incidence angles

    Science.gov (United States)

    Heimsath, Anna; Lindner, Philip; Klimm, Elisabeth; Schmid, Tobias; Moreno, Karolina Ordonez; Elon, Yehonatan; Am-Shallem, Morag; Nitz, Peter

    2016-05-01

    The accumulation of dust and soil on the surface of solar reflectors is an important factor reducing the power output of solar power plants. Therefore the effect of accumulated dust on the specular reflectance of solar mirrors should be understood well in order to improve the site-dependent performance prediction. Furthermore, an optimization of the CSP System maintenance, in particular the cleaning cycles, can be achieved. Our measurements show a noticeable decrease of specular reflectance when the angle of incidence is increased. This effect may be explained by shading and blocking mechanisms caused by dirt particles. The main physical causes of radiation loss being absorption and scattering, the near-angle scattering leads to a further decrease of specular reflectance for smaller angles of acceptance. Within this study mirror samples were both outdoor exposed and indoor artificially soiled. For indoor soiling, the mirror samples were artificially soiled in an in-house developed dusting device using both artificial-standardized dust and real dust collected from an arid outdoor test field at the Negev desert. A model function is proposed that approximates the observed reduction of specular reflectance with the incidence angle with a sufficient accuracy and by simple means for this soil type. Hence a first step towards a new approach to improve site dependent performance prediction of solar power plants is taken.

  15. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  16. Is Ocean Reflectance Acquired by Citizen Scientists Robust for Science Applications?

    Directory of Open Access Journals (Sweden)

    Yuyan Yang

    2018-05-01

    Full Text Available Monitoring the dynamics of the productivity of ocean water and how it affects fisheries is essential for management. It requires data on proper spatial and temporal scales, which can be provided by operational ocean colour satellites. However, accurate productivity data from ocean colour imagery is only possible with proper validation of, for instance, the atmospheric correction applied to the images. In situ water reflectance data are of great value due to the requirements for validation and reflectance is traditionally measured with the Surface Acquisition System (SAS solar tracker system. Recently, an application for mobile devices, “HydroColor”, was developed to acquire water reflectance data. We examined the accuracy of the water reflectance measures acquired by HydroColor with the help of both trained and untrained citizens, under different environmental conditions. We used water reflectance data acquired by SAS solar tracker and by HydroColor onboard the BC ferry Queen of Oak Bay from July to September 2016. Monte Carlo permutation F tests were used to assess whether the differences between measurements collected by SAS solar tracker and HydroColor with citizens were significant. Results showed that citizen HydroColor measurements were accurate in red, green, and blue bands, as well as red/green and red/blue ratios under different environmental conditions. In addition, we found that a trained citizen obtained higher quality HydroColor data especially under clear skies at noon.

  17. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    Science.gov (United States)

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation

  18. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. Summary of models for the implementation of solar home systems in developing countries - Part 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    This first part of a two-part report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This summary outlines various models for the implementation of small domestic photovoltaic (PV) systems (Solar Home Systems, SHS) in developing countries. Part 1 of this two-part document discusses three generic models. The second, separate part of the document provides a number of examples demonstrating the models described. This report focuses on the implementation of SHS. However, a considerable amount of the PV market in developing countries is stated as consisting of large systems providing electricity for social services, such as light for schools, mosques, churches, communal centres, refrigeration for health centres and drinking water for communities. It is noted that there are considerable differences between the 'social market' and the 'private market' for SHS. The 'social market' generally consists of large systems but fewer in number. The guide does not cover the detailed technical aspects of a Solar Home System or the issue of recycling old batteries.

  19. New temperable solar coatings: Tempsol

    Science.gov (United States)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  20. Solar-geophysical data number 389. Part I. Prompt reports. Data for December 1976--November 1976

    International Nuclear Information System (INIS)

    Leighton, H.

    1977-01-01

    This prompt report provides December 1976 and November 1976 data on alert periods, daily solar indices, solar flares, solar radio waves, solar wind measurements, solar x-ray radiation, coronal holes, and inferred IP magnetic field polarities for December. It also provides data on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices for November

  1. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan; Hu, Hanlin; Kim, Taesoo; Ngongang Ndjawa, Guy Olivier; Mansour, Ahmed; El Labban, Abdulrahman; Faria, Jorge C.D.; Munir, Rahim; Anjum, Dalaver H.; McLachlan, Martyn A.; Amassian, Aram

    2016-01-01

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top

  2. Optimizing analysis of W-AlN cermet solar absorbing coatings

    International Nuclear Information System (INIS)

    Zhang Qichu

    2001-01-01

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al 2 O 3 ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350 0 C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al 2 O 3 anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal infrared reflector

  3. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qichu [School of Physics, University of Sydney, NSW (Australia)

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup 0}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  4. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [University of Sydney, NSW (Australia). School of Physics

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup o}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350{sup o}C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  5. You're a What? Solar Photovoltaic Installer

    Science.gov (United States)

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  6. Orbital Dynamics of a Simple Solar Photon Thruster

    OpenAIRE

    Guerman, Anna D.; Smirnov, Georgi V.; Pereira, Maria Cecilia

    2009-01-01

    We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  7. Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel

    Science.gov (United States)

    Johnson, Les

    2015-01-01

    NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.

  8. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  9. CVD molybdenum films of high infrared reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Carver, G. E.

    1979-01-01

    Molybdenum thin films of high infrared reflectance have been deposited by pyrolytic decomposition of molybdenum carbonyl (Mo(CO)/sub 6/), and by hydrogen reduction of molybdenum pentachloride (MoCl/sub 5/). Reflectance values within 0.7% of the reflectance of supersmooth bulk molybdenum have been attained by annealing films of lower reflectance in both reducing and non-reducing atmospheres. All depositions and anneals proceed at atmospheric pressure, facilitating a continuous, flow-through fabrication. These reflectors combine the high temperature stability of molybdenum thin films with the infrared reflectance of a material such as aluminum. Deposition from Mo(CO)/sub 6/ under oxidizing conditions, and subsequent anneal in a reducing atmosphere, results in films that combine high solar absorptance with low thermal emittance. If anti-reflected, black molybdenum films can serve as highly selective single layer photothermal converters. Structural, compositional, and crystallographic properties have been measured after both deposition and anneal.

  10. Tuning the colors of c-Si solar cells by exploiting plasmonic effects

    Science.gov (United States)

    Peharz, G.; Grosschädl, B.; Prietl, C.; Waldhauser, W.; Wenzl, F. P.

    2016-09-01

    The color of a crystalline silicon (c-Si) solar cell is mainly determined by its anti-reflective coating. This is a lambda/4 coating made from a transparent dielectric material. The thickness of the anti-reflective coating is optimized for maximal photocurrent generation, resulting in the typical blue or black colors of c-Si solar cells. However, for building-integrated photovoltaic (BiPV) applications the color of the solar cells is demanded to be tunable - ideally by a cheap and flexible coating process on standard (low cost) c-Si solar cells. Such a coating can be realized by applying plasmonic coloring which is a rapidly growing technology for high-quality color filtering and rendering for different fields of application (displays, imaging,…). In this contribution, we present results of an approach for tuning the color of standard industrial c-Si solar cells that is based on coating them with metallic nano-particles. In particular, thin films (green and brownish/red. The position of the resonance peak in the reflection spectrum was found to be almost independent from the angle of incidence. This low angular sensitivity is a clear advantage compared to alternative color tuning methods, for which additional dielectric thin films are deposited on c-Si solar cells.

  11. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  12. MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona

    Science.gov (United States)

    Huang, Y.; Song, P.; Vasyliunas, V. M.

    2017-12-01

    We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.

  13. Observed solar near UV variability: A contribution to variations of the solar constant

    International Nuclear Information System (INIS)

    London, J.; Pap, J.; Rottman, G.J.

    1989-01-01

    Continuous Measurements of the Solar UV have been made by an instrument on the Solar Mesosphere Explorer (SME) since October 1981. The results for the wavelength interval 200 to 300 nm show an irradiance decrease to a minimum in early 1987 and a subsequent increase to mid-April 1989. The observed UV changes during part of solar cycles 21 to 22 represent approx. 35 percent (during the decreasing phase) and 25 percent (during the increasing phase) of the observed variations of the solar constant for the same time period as the SME measurements

  14. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  15. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    ´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark...

  16. MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2015-11-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.

  17. A replaceable reflective film for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The 3M Company manufactures a silvered acrylic film called ECP-305 that is regarded as the preferred reflective film for use on stretched-membrane heliostats. However, ECP-305 will degrade in time, due to both corrosion of the silver layer and delamination at the film's silver-to-acrylic interface, and will eventually need to be replaced. 3M uses a very aggressive adhesive on this film, and once it is laminated, replacement is very difficult. The purpose of this investigation was the development of a replaceable reflector, a reflective film that can be easily removed and replaced. A replaceable reflector was successfully configured by laminating ECP-305 to the top surface of a smooth, dimensionally stable polymer film, with a removable adhesive applied to the underside of the polymer film. Several stages of screening and testing led to the selection of a 0.010-inch thick polycarbonate (GE 8030) as the best polymer film and a medium tack tape (3M Y-9425) was selected as the best removable adhesive. To demonstrate the feasibility of the replaceable reflector concept and to provide a real-time field test, the chosen construction was successfully applied to the 50-m{sup 2} SKI heliostat at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque. 4 refs., 13 figs., 7 tabs.

  18. Relationship of transpiration and evapotranspiration to solar radiation and spectral reflectance in soybean [Glycine max] canopies: A simple method for remote sensing of canopy transpiration

    International Nuclear Information System (INIS)

    Choi, E.N.; Inoue, Y.

    2004-01-01

    Abstract The study investigated diurnal and seasonal dynamics of evapotranspiration (ET) and transpiration (Tr) in a soybean canopy, as well as the relationships among ET, Tr, solar radiation and remotely sensed spectral reflectance. The eddy covariance method (ECM) and stem heat balance method (SHBM) were used for independent measurement of ET and Tr, respectively. Micrometeorological, soil, and spectral reflectance data were acquired for the entire growing season. The instantaneous values of canopy-Tr estimated by SHBM and ET by ECM were well synchronized with each other, and both were strongly affected by the solar radiation. The daily values canopy-Tr increased rapidly with increasing leaf area index (LAI), and got closer to the ET even at a low value of LAI such as 1.5-2. The daily values of ET were moderately correlated with global solar radiation (Rs), and more closely with the potential evapotranspiration (ETp), estimated by the 'radiation method.' This fact supported the effectiveness of the simple radiation method in estimation of evapotranspiration. The ratio of Tr/ET as well as the ratio of ground heat flux (G) to Rs (G/Rs) was closely related to LAI, and LAI was a key variable in determining the energy partitioning to soil and vegetation. It was clearly shown that a remotely sensed vegetation index such as SAVI (soil adjusted vegetation index) was effective for estimating LAI, and further useful for directly estimating energy partitioning to soil and vegetation. The G and Tr/ET were both well estimated by the vegetation index. It was concluded that the combination of a simple radiation method with remotely sensed information can provide useful information on energy partitioning and Tr/ET in vegetation canopies

  19. THE PRECAMBRIAN HISTORY OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM AND EARTH. PART 1

    Directory of Open Access Journals (Sweden)

    M. I. Kuz’min

    2014-01-01

    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was

  20. Reflected and diffuse ions backstreaming from the earth's bow shock 1. Basic properties

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    Plasma data supplied by the ISEE 2 solar wind experiment are used to perform the first extended statistical analysis of the basic moments of the ions backstream from the earth's bow shock. The analysis is based on 3253 ion spectra, corresponding to a total observation time of approx. =87 hours. It turns out that the density and total energy density of the backstream ions are, on the average, equal to approx. =1% and approx. =10% of those of the solar wind, respectively. The distinction between the 'reflected' and 'diffuse' populations has been confirmed and put on a quantitive basis using the ratio A = V /sub B/P/w/sub B/P between the bulk velocity and the rms thermal speed of the ions. The reflected ions are characterized by a bulk velocity V/sub B/P of the order of 2 times the solar wind velocity and by a temperature of approx.7 x 10 6 K. In contrast, the diffuse ions have, on the average, a bulk velocity 1.2 times the solar wind velocity and a temperature of 40 x 10 6 K. Therefore the total energy density of the diffuse ions is approx. =30% larger than that of the reflected ions. Finally, the kinetic and thermal energy densities are distributed quite differently in the two ion populations: in fact, approx. =70% of the total energy density is kinetic for the reflected ions, while this percentage decreases to approx. =20% for the diffuse ions

  1. New ideas for the design of optical devices with applications in solar energy collection

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio; Pereira, Manuel Collares

    2001-07-01

    New ideas for the design of optical devices and some applications to solar energy collection are presented. These are mainly solar concentrators resulting from the combination of known anidoloc (nonimaging) optics devices and known curves such as parabolic, elliptical, hyperbolic, circular arcs or flat mirrors. Other tailored curves are also used in some cases. Two possible applications are in compact high concentration devices for solar energy and ideal concentrators having a gap between the optics and the receiver. Only two dimensional solutions are explored in these cases. Due to the high number of internal reflections, the use of high reflectivity mirrors is mandatory or, alternatively, the use of total internal reflection. Combinations of 3D CPCs and torus are also presented. The obtained devices allow tracking of the sun without the need to move the receiver. An application to solar cooking is presented.

  2. Orbital Dynamics of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2009-01-01

    Full Text Available We study orbital dynamics of a compound solar sail, namely, a Simple Solar Photon Thruster and compare its behavior to that of a common version of sailcraft. To perform this analysis, development of a mathematical model for force created by light reflection on all sailcraft elements is essential. We deduce the equations of sailcraft's motion and compare performance of two schemes of solar propulsion for two test time-optimal control problems of trajectory transfer.

  3. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu

    2014-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9

  4. Midmarket Solar Policies in the United States: A Guide for Midsized Solar Customers

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The midscale market for solar photovoltaics (PV) has not experienced the same high growth rate as residential- or utility-scale market segments in the past five years when solar PV deployment increased rapidly. Midscale solar can be defined as behind-the-meter solar PV between 50 kilowatts and 2 megawatts adopted by multi-housing residential, commercial, industrial, non-profit, and other entities. A number of challenges face the midscale segment, including difficulties in contracting, mismatch between tenant lease and PV financing terms, high transaction costs relative to project sizes, and inefficiencies in matching prospective projects with capital. The changing policy landscape across U.S. states provides both opportunities and challenges to midmarket solar. Some states, such as California, are expanding system capacity limits for policies such as net metering, thus enabling a wider range of customers to benefit from excess generation. A number of states and utilities are making changes to rate design to introduce new or higher user fees for solar customers or reduced tariffs for net metering, which decrease the value of solar generation. An understanding of these policies relative to project feasibility and economics is important for prospective customers to make informed decisions to adopt solar PV. This guide complements existing solar policy resources to help potential customers navigate through the policy landscape in order to make informed decisions for their solar investment. The first part of this guide introduces the key solar policies necessary for policy-based decision-making, which involves using knowledge of a solar policy to improve project economics and efficiency. Policies that could result in policy-based decisions include interconnection standards, net metering, user fees, incentives, and third-party ownership policies. The goal of this section is to equip prospective customers and project developers with the tools necessary to understand and

  5. Theoretical contributions to solar wind research - a review

    International Nuclear Information System (INIS)

    Cuperman, S.

    1977-01-01

    The theoretical work on the solar wind phenomena done since 1958 can be divided into two main parts: Part I - development and refinement of Parker's initial macroscopic model, the emphasis being placed upon steady state, spherically symmetric flow and the identification of the structure-less background solar wind plasma with the low speed flow. It is in this part that much progress in understanding the solar wind phenomenon has been achieved; Part II - generalization of Parker's initial model such as to include microscopic (kinetic) aspects, temporal variations, deviations from spherically symmetric conditions, complex local magnetic configurations, etc. The last two aspects, in particular, have received considerable attention with the discovery of the coronal holes, their association with high-speed flows and the tentative identification of these flows with the structure-less background solar wind plasma. This review is confined to Part I, as defined above. However, for completeness, several important aspects connected with the subjects enumerated under Part II and which represent the objects of the most recent investigation are also briefly reviewed. (Auth.)

  6. Northeast Solar Energy Market Coalition (NESEMC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, Karl R. [Pace Energy and Climate Center Pace University School of Law

    2018-03-31

    The Northeast Solar Energy Market Coalition (NESEMC) brought together solar energy business associations and other stakeholders in the Northeast to harmonize regional solar energy policy and advance the solar energy market. The Coalition was managed by the Pace Energy and Climate Center, a project of the Pace University Elisabeth Haub School of Law. The NESEMC was funded by the U.S. Department of Energy SunShot Initiative as a cooperative agreement through 2017 as part of Solar Market Pathways.

  7. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  8. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  9. Joint Soviet-French studies of the solar corona. II - Photometry of the solar corona on June 30, 1973

    Science.gov (United States)

    Vsekhsvyatsky, S. K.; Dzyubenko, N. I.; Ivanchuk, V. I.; Popov, O. S.; Rubo, G. A.; Koutchmy, S.; Koutchmy, O.; Shtelmacher, G.

    1981-04-01

    Results are presented of a study of negatives obtained on June 30, 1973 during the total solar eclipse in Africa; the study was part of a joint Soviet-French experiment on white corona dynamics, carried out by expeditions of Kiev University (Atar, Mauritania) and the Paris Astrophysical Institute (Moussoro, Chad). The distribution of total corona brightness up to 4.5 solar radii and its K and F corona components for east and north directions were found on the basis of novel methods of photometry and colorimetry using star images up to 8.5m as the photometry standards. Neither the color effect nor flattening is found in the inner part (less than 2.5 solar radii) of the F corona. Integral corona brightness in the standard zone of 1.03-6.00 solar radii was found to be 0.64 x 10 to the -6th solar-E.

  10. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-10-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  11. Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data

    OpenAIRE

    Li, Danny H. W.; Lam, Tony N. T.

    2007-01-01

    A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces ...

  12. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. Summary of models for the implementation of solar home systems in developing countries - Part 2: Practical experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    This second part of a report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home Systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This summary outlines various models for the implementation of small domestic photovoltaic (PV) systems (Solar Home Systems, SHS) in developing countries. The first part of this two-part document discussed three generic models. Part 2 of the document is based on work prepared for the Renewable Energy Supply Models (RESUM) project. Examples are quoted which describe the operations of a number of companies supplying solar home systems in developing countries. These examples of practical experience provide a description of businesses, highlighting the success and failure factors of the organisations. They are only a sample of the many PV companies operating internationally and are not to be considered as a critical evaluation of the implementation models; they attempt to give the reader an idea of the realities of using the models in practice.

  13. 3D-Printed external light traps for solar cells

    NARCIS (Netherlands)

    van Dijk, L.; Paetzold, U.W.; Blab, Gerhard; Marcus, E.A.P.; Oostra, A.J.; van de Groep, J.; Polman, A.; Schropp, R.E.I.; Di Vece, M.

    2015-01-01

    We demonstrate a universally applicable 3D-printed external light trap for solar cells. We placed a macroscopic external light trap made of smoothened, silver coated plastic at the sun-facing surface of different types of solar cells. The trap consists of a reflective parabolic concentrator on top

  14. Procedure to decouple reflectance and down-shifting effects in luminescent down-shifting enhanced photovoltaics.

    Science.gov (United States)

    Gabr, Ahmed M; Walker, Alexandre W; Wilkins, Matthew M; Kleiman, Rafael; Hinzer, Karin

    2017-06-12

    The down-shifting (DS) process is a purely optical approach used to improve the short-wavelength response of a solar cell by shifting high-energy photons to the visible range, which can be more efficiently absorbed by the solar cell. In addition to the DS effect, coupling a DS layer to the top surface of a solar cell results in a change in surface reflectance. The two effects are intermixed and therefore, usually reported as a single effect. Here we propose a procedure to decouple the two effects. Analytical equations are derived to decouple the two effects, that consider the experimentally measured quantum efficiency of the solar cell with and without the DS layer, in addition to transfer matrix simulations of the parasitic absorption in the device structure. In this work, an overall degradation of 0.46 mA/cm 2 is observed when adding a DS layer composed of silicon nanocrystals embedded in a quartz matrix to a silicon solar cell of 11% baseline efficiency. To fully understand the contribution from each effect, the surface reflectance and DS effects are decoupled and quantified using the described procedure. We observe an enhancement of 0.27 mA/cm 2 in short-circuit current density due to the DS effect, while the surface reflectance effect leads to a degradation of 0.73 mA/cm 2 in short-circuit current density.

  15. Low cost thermal solar collector

    International Nuclear Information System (INIS)

    Abugderah, M. M.; Schneider, E. L.; Tontini, M. V.

    2006-01-01

    Solar energy is a good alternative in the economy of the electric energy mainly for the water heating. However, the solar heaters used demand a high initial investment, becoming the warm water from solar energy inaccessible to a large part of the society. Thus, a low cost solar heater was developed, constructed and tested in the chemical engineering department of West Parana State University-Unioeste. This equipment consists of 300 cans, divided in 30 columns of 10 cans each, all painted in black to enhance the obsorption of the solar radiation. The columns are connected to a pipe of pvc of 8 liters with 0.085m of external diameter. The equipment is capable to heat 120 liters of water in temperatures around 60 degree centigrade. The heater is insolated in its inferior part with cardboard and aluminum, covered with a transparent plastic in its superior. The system still counts with a insulated thermal reservoir, which can conserve the water in temperatures adjusted for the night non-solar days domestic use. The advantage of the constructed is it low cost material. The results are given an graphical tabular from showing acceptable efficiencies.(Autho

  16. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, the European solar thermal market put on a strong spurt only to mark time in 2009 with about 4.2 million m 2 installed, which is 450000 m 2 less year-on-year. The main reasons of the decrease is the financial crisis and the low oil price, other reasons more specific to the country exist, for instance the property crisis has dragged the Spanish market down. In 2009, the solar thermal collector surface area in service in the European Union is of the magnitude of 32.6 million m 2 , equivalent to a capacity of 22.8 GWTh. The solar thermal sector is one of the renewable sectors that creates the highest number of jobs and wealth, partly because the vast majority of the system components sold in Europe are produced in Europe and partly because the sale, installation fitting and maintenance are labour-intensive. In 2009, there were 50000 direct or indirect jobs in the European solar thermal sector. The main European actors in this sector are GREENoneTEC, Bosch-Thermotechnik, Viessmann, Vaillant and Solvis. No clear recovery is expected before 2011. (A.C.)

  17. Reflective Practice for Psychology Students: The Use of Reflective Journal Feedback in Higher Education

    Science.gov (United States)

    Bruno, Andreina; Dell'Aversana, Giuseppina

    2017-01-01

    Reflective journals have emerged as an effective means of monitoring and developing reflective practice in higher education, as part of a wider metacognitive strategy to transform traditional learning approaches. In addition, assessment procedures of reflective journals appear to be an important factor in enhancing commitment to learning and…

  18. Purchase aspects playing a part in the broad selection of solar boiler types

    International Nuclear Information System (INIS)

    Van Amerongen, G.A.H.

    1996-01-01

    Because of the large variety of solar water heaters in the Netherlands and abroad the arguments to purchase such boilers have to be reconsidered. In this article a few practical guidelines are given, focusing on solar boilers equipped with thermosyphon collector circuits or enamel steel storage tanks, and some typical aspects of imported solar water heaters. 3 figs., 1 tab., 1 refs

  19. The value of solar: Prices and output from distributed photovoltaic generation in South Australia

    International Nuclear Information System (INIS)

    Maine, Tony; Chapman, Paul

    2007-01-01

    The Australian government's Solar Cities Program sees great value in so-called 'cost-reflective pricing', code for valuing solar at pool prices. We test that proposition in South Australia where pool prices and insolation are often high and we show that there were few days in 2004 when the pool price gives better outcomes than if the solar is valued at the regulated and fixed, so-called standing contract price. We also find that the illustrative day used in the Solar Cities Program literature to promote the notion of cost-reflective pricing is highly atypical. Finally, we consider ways in which the incentive to install distributed photovoltaic generation might be improved

  20. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Lee, Naeun; Kim, Jonghun; Jang, Cheolyong; Sung, Yoondong; Jeong, Hakgeun

    2015-01-01

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  1. Lower reflectivity and higher minority carrier lifetime of hand-tailored porous silicon

    International Nuclear Information System (INIS)

    Zhang Nansheng; Ma Zhongquan; Zhou Chengyue; He Bo

    2009-01-01

    Solar cell grade crystalline silicon with very low reflectivity has been obtained by electrochemically selective erosion. The porous silicon (PS) structure with a mixture of nano- and micro-crystals shows good antireflection properties on the surface layer, which has potential for application in commercial silicon photovoltaic devices after optimization. The morphology and reflectivity of the PS layers are easily modulated by controlling the electrochemical formation conditions (i.e., the current density and the anodization time). It has been shown that much a lower reflectivity of approximately 1.42% in the range 380-1100 nm is realized by using optimized conditions. In addition, the minority carrier lifetime of the PS after removing the phosphorus silicon layer is measured to be ∼3.19 μs. These values are very close to the reflectivity and the minority carrier lifetime of Si 3 N 4 as a passivation layer on a bulk silicon-based solar cell (0.33% and 3.03 μs, respectively).

  2. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  3. Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media

    KAUST Repository

    Wang, Tengfei; Cheng, Jiubing

    2017-01-01

    Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual

  4. Reflective writing: the student nurse's perspective on reflective writing and poetry writing.

    Science.gov (United States)

    Coleman, Dawn; Willis, Diane S

    2015-07-01

    Reflective writing is a mandatory part of nurse education but how students develop their skills and use reflection as part of their experiential learning remains relatively unknown. Understanding reflective writing in all forms from the perspective of a student nurse is therefore important. To explore the use of reflective writing and the use of poetry in pre-registered nursing students. A qualitative design was employed to explore reflective writing in pre-registered nursing students. A small university in Scotland. BSc (Hons) Adult and Mental Health Pre-registration Student Nurses. Two focus groups were conducted with 10 student nurses during March 2012. Data was analysed thematically using the framework of McCarthy (1999). Students found the process of reflective writing daunting but valued it over time. Current educational methods, such as assessing reflective accounts, often lead to the 'narrative' being watered down and the student feeling judged. Despite this, reflection made students feel responsible for their own learning and research on the topic. Some students felt the use of models of reflection constricting, whilst poetry freed up their expression allowing them to demonstrate the compassion for their patient under their care. Poetry writing gives students the opportunity for freedom of expression, personal satisfaction and a closer connection with their patients, which the more formal approach to reflective writing did not offer. There is a need for students to have a safe and supportive forum in which to express and have their experiences acknowledged without the fear of being judged. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Solar Geoengineering as part of an overall strategy for meeting the 1.5C Paris target

    Science.gov (United States)

    Ricke, K.; MacMartin, D. G.; Keith, D.

    2017-12-01

    If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies, and solar geoengineering to meet climate goals. Since few climate model simulations have considered these limited deployment scenarios, we use a climate emulator trained from GeoMIP output to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5C above preindustrial in an overshoot scenario that would otherwise peak near 3C. The resulting climate is much closer in many respects to a climate where the 1.5C target is achieved through mitigation alone than either is to the 3C climate with no geoengineering, although there are some important differences. In this limited deployment scenario, there is no "over-compensation" of global-mean precipitation changes, nor are there any regions where a majority of models project that the use of geoengineering would lead to a statistically-significant change in precipitation further away from preindustrial than would have occurred without using geoengineering. This highlights the importance of evaluating geoengineering impacts in the context of specific policy-relevant scenarios.

  6. A solar vehicle based on sustainable design concept

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Sah, J.M.; Passarella, R.; Ghazilla, R.A.R.; Ahmad, N.; Jen, Y.H.; Khai, T.T.; Kassim, Z.; Hasanuddin, I.; Yunus, M. [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering, Centre for Product Design and Manufacture

    2009-07-01

    This paper described a newly constructed solar vehicle that was built specifically for the 2009 World Solar Challenge (WSC) using off-the-shelf parts. Researchers at the Centre for Product Design and Manufacture at the University of Malaya designed and built the solar car which uses solar energy to charge its batteries. Although the total investment for this sustainable product concept is small compared to other solar vehicles, the car's performance has met expectations. Most of the electrical and mechanical parts can be recycled and reused after the WSC event. The photovoltaic (PV) and maximum power point trackers (MPPT) can be re-used for home applications. The DC motor and the controller can be attached to a bicycle and the aluminium parts which make-up the main body structure can be recycled. The design will result in nearly zero waste. The study showed that the process of combining mechanical and electrical components is not an easy task, particularly at the design stage because of the specific characteristics and functions of the individual parts. This paper described how readily available, off-the-shelf mechanical and electrical components were integrated for the solar vehicle. The conceptual design and the performance of the prototype were also presented. 11 refs., 5 tabs., 11 figs.

  7. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  8. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  9. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  10. Experience with building integrated solar collectors; Erfaring med bygningsintegrerte solfangere

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Ingeborg; Time, Berit; Andresen, Inger

    2011-07-01

    The main objective of the research 'Zero Emission Buildings' ZEB is to develop products and solutions that provide buildings with zero greenhouse gas emissions associated with the production, operation and disposal. Can we make this happen must the building produce more energy than it needs to compensate for greenhouse gas emissions from the production of materials and the actual construction.To build up knowledge on experience with building integrated solar collectors in Norway, we have in this study made interviews with suppliers and manufacturers of solar collectors and some building owners. Since the focus is on climate shell, we have limited the study to include solar collectors to replace a part of the cladding or roofing. Construction upstairs roofing, outside facade or freestanding rack is not considered as building integrated in this context. The providers we have been in contact with appeals to slightly different parts of the market. This is reflected in the product's development, assembly and approach to the calculation of energy delivery. Overall, providers may offer a range of products suitable for both the professional and skilled carpenter, the interested 'man in the street' . The feedback we have received shows generally good experiences with the product and the installation. Because of the preliminary short operating periods of the investigated plants we have little data on energy supply from these plants. In summary, we can say that the knowledge and the products are available and it is up to use to use them.(Author)

  11. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  12. Studies in biogas technology. Part 4. A noval biogas plant incorporating a solar water-heater and solar still

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A K.N. [Indian Inst. of Science, Bangalore; Prasad, C R; Sathyanarayan, S R.C.; Rajabapaiah, P

    1979-09-01

    A reduction in the heat losses from the top of the gas holder of a biogas plant has been achieved by the simple device of a transparent cover. The heat losses thus prevented have been deployed to heat a water pond formed on the roof of the gas holder. This solar-heated water is mixed with the organic input for hot-charging of the biogas plant. To test whether the advantages indicated by a thermal analysis can be realized in practice, a biogas plant of the ASTRA design was modified to incorporate a roof-top water-heater. The operation of such a modified plant, even under worst case conditions, shows a significant improvement in the gas yield compared to the unmodified plant. Hence, the innovation reported here may lead to drastic reductions in the sizes and therefore costs of biogas plants. By making the transparent cover assume a tent-shape, the roof-top solar heater can serve the additional function of a solar still to yield distilled water. The biogas plant-cum-solar still described here is an example of a spatially integrated hybrid device which is extremely cost-effective.

  13. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor

    International Nuclear Information System (INIS)

    Narayanan, Remya; Kumar, P. Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-01-01

    Graphical abstract: - Highlights: • A plasmonic TiO_2/CdS/Au fibers photoanode is fabricated for the first time. • The efficiency of the plasmonic cell is greater by 1.35 times than the non-plasmonic one. • A solar powered supercapacitor is developed with plasmonic photoanode and multiwalled carbon nanotubes. • The solar cell current charges the supercapacitor. • A specific capacitance of 150 F g"−"1 is achieved under sunlight without any external bias. - Abstract: A solar powered supercapacitor wherein a plasmonic quantum dot solar cell (QDSC) sources the photocurrent for charging/discharging a conjoined supercapacitor based on multiwalled carbon nanotubes (MWCNTs) is demonstrated. Gold or Au fibers are integrated into a titanium dioxide/cadmium sulfide (TiO_2/CdS) electrode to yield a TiO_2/CdS/Au photoanode. The plasmonic effect of Au fibers is reflected in the higher incident photon to current conversion efficiency (IPCE = 55%) and an improved overall power conversion efficiency (3.45%) produced by the TiO_2/CdS/Au photoanode relative to the non-plasmonic TiO_2/CdS photoanode. A Janus type bi-functional electrode composed of MWCNTs on either face separated by glass is prepared and it is coupled with the TiO_2/CdS/Au electrode and another MWCNT electrode to yield the tandem solar powered supercapacitor. By channelling the photocurrent produced by the QDSC part, under 0.1 sun illumination, the capacitance of the symmetric supercapacitor, without the application of any external bias is 150 F g"−"1 which compares well with reported values of electrically powered MWCNT supercapacitors. Our innovative design for a photo-supercapacitor offers a new paradigm for combining low cost photovoltaics with energy storage to yield a technologically useful device that needs nothing else other than solar energy to run.

  14. Longitudinal distribution of recurrent solar activity sources and its reflection in geomagnetic variations

    International Nuclear Information System (INIS)

    Letfus, V.; Apostolov, E.M.

    1980-01-01

    By analysing the autocorrelation function of the geomagnetic Asup(p)-index, a series of subsidiary maxima were found which seem to indicate that they correspond to periods considerably different from the solar rotation period. It was found that these subsidiary maxima are located symmetrically around the maxima of the first and second recurrences of the solar rotation period (and probably also around the subsequent ones). This fact leads to a model of two or more geoactive longitudes on the Sun. (author)

  15. Electrostatic protection of the solar power satellite and rectenna. Part 1: Protection of the solar power satellite

    Science.gov (United States)

    1980-01-01

    Several features of the interactions of the Solar Power Satellite (SPS) with its space environment are examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets are calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Lastly, magnetic shielding of the satellite is considered to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. Subsequent design changes will substantially alter the basic conclusions.

  16. Solar Water Heater

    Science.gov (United States)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  17. Use of solar energy in agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Nordaunet, L.; Vassbotn, T.; Naavik, G.; Lillevik, O.

    1982-04-01

    The report discusses some materials for utilization of solar energy in agriculture. Accessible data on solar radiation are prepared with a view to practical use in different parts of the country. Physical conditions regarding the mode of operation of different solar collectors are examined, and some methods of transitory storage of solar energy are described. Fields in which practical use of solar energy can be urgent are discussed. These are: water heating and drying of hay and grain. Some practical examples are given. 53 drawings, 9 tables.

  18. Colored solar collectors - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2007-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause an excessive degradation of the collector efficiency. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation, and are manufactured by sol-gel dip-coating or magnetron sputtering. The novel colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. Due to the tunability of the refractive index, nanostructured materials such as SiO{sub 2}:TiO{sub 2} composites and porous SiO{sub 2} are very useful for application in multilayer interference stacks. Novel quaternary Mg-F-Si-O films exhibit a surprisingly low refractive index and are therefore promising candidates for highly transparent coatings on solar collector glazing. The nanostructure of these thin films is studied by transmission electron microscopy, while the optical constants are measured precisely by ellipsometry. For a convincing demonstration, sufficiently large samples of high quality are imperatively needed. The fabrication of nanocomposite SiO{sub 2}:TiO{sub 2} films has been demonstrated by sol-gel dip-coating of A4-sized glass panes. The produced coatings exhibit a colored reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure will result in speeding up the sol-gel process and saving energy, thereby reducing costs significantly. The infrastructure for UV-curing has been established. A UV C radiation source can now be attached to the

  19. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John [3M Company, St. Paul, MN (United States)

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or other material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.

  20. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  1. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  2. Measurement of the solar neutrino capture rate with gallium metal, part III

    International Nuclear Information System (INIS)

    Elliott, Steven Ray

    2008-01-01

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keY of 65.4 +3.1 3.0 (stat) +2.6 -2.8 (syst) SNU. The weighted average of the results of all three Ga solar neUlrino experiments, SAGE, Gallex, and GNO, is now 66.1 ± 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced 37 Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior 51 Cr neutrino-source experiments with Ga, is 0.88 ± 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71 Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63--67 SNU with an uncertainly of about 5%, in good agreement with experiment. We derive the current value of the pp neutrino flux produced in the Sun to be φ · pp = (6.1 ± 0.8) x 10 10 /(cm 2 s), which agrees well with the flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  3. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  4. Comparison of selective transmitters for solar thermal applications.

    Science.gov (United States)

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar

  5. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    Science.gov (United States)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  6. Advanced reflector materials for solar concentrators

    Science.gov (United States)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  7. Characterization of extra-solar planets with direct-imaging techniques

    NARCIS (Netherlands)

    Tinetti, G.; Cash, W.; Glassman, T.; Keller, C.U.; Oakley, P.; Snik, F.; Stam, D.; Turnbull, M.

    2009-01-01

    In order to characterize the physical properties of an extra-solar planet one needs to detect planetary radiation, either visible (VIS) to near-infrared (NIR) reflected starlight or infrared (IR) thermal radiation. Both the reflected and thermal flux depend on the size of the planet, the distance

  8. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  9. Determination of space charge region width and diffusion length in Cu(In,Ga)(S,Se)2 absorber from solar cell spectral characteristic

    International Nuclear Information System (INIS)

    Tivanov, M.; Mazanik, A.; Drozdov, N.; Zaretskaya, E.

    2010-01-01

    Full text : The space-charge region width and diffusion length of minority charge carriers in the base region (Cu(In,Ga)(S,Se) 2 absorber) are the most important parameters of the solar cell. These parameters determine the efficiency of a solar cell therefore the problem of their control is essential. In this work it is present simple non-destructive method of extracting the parameters of Cu(In,Ga)(S,Se) 2 -based solar cell (space-charge region width and diffusion length of minority charge carriers in Cu(In,Ga)(S,Se) 2 absorber) from the analysis of solar cell spectral photoresponse. The method is based on one-dimensional model of a solar cell and on the change of in-depth distribution of the photogenerated carriers in the solar cell and, hence, on the change of its photoresponse with the wave-length variation. The following assumptions are accepted: the reflection of charge carriers from a back contact and the ''drawing'' field in the quasi-neutral area of the absorber layers are absent, window and buffer layers are transparent in the analyzed part of photoresponse spectrum, the injection level of minority charge carriers is low, the recombination losses at the metallurgical p-n-junction interface of the studied photosensitive structure linearly depend on the photocurrent density. For the calculation it is necessary to obtain the following set of the experimental data: the spectral density of incident radiation, the spectral dependence of photocurrent or photovoltage of the studied photosensitive structure, the spectral dependences of optical absorption coefficient and reflectance.

  10. Solar energy - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. [PA Energy A/S, Malling (Denmark)

    2007-05-15

    Solar energy in terms of thermal Solar Hot Water systems and electricity producing Photovoltaics contribute at present only to the global energy supply at a fraction of 1 %. However, the potential for solar energy is immense: the earth receives in 1 hour from the sun the equivalent of the present annual global energy supply. Solar energy is one of the emerging renewable energy technologies still not competitive, but exhibiting both technical and economic potential to be so inside 10-15 years. There is basically no necessary 'technology jumps' as prerequisites, but such a development will demand a favorable political climate. Growing political awareness, driven partly by environmental concerns partly by concerns about security of energy supply, of the need to promote solar energy and renewables, e.g. on global level spurred on by the recent UN/IPCC report and on an EU level by the EC commitment to reach 20 % renewables in the electricity supply by 2010 and 20 % renewables in the overall energy production by 2020, appears to ensure the necessary future political support for renewables, but not necessarily for solar energy technologies, in particular photovoltaics's, which is still not yet competitive to other renewables although exhibiting a tremendous potential. (au)

  11. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    Science.gov (United States)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  12. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  13. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  14. Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 2: application to experimental IV measurements and comparison with other methods

    Science.gov (United States)

    Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; Jiménez-Olarte, Daniel; Sastré-Hernández, Jorge; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio

    2018-04-01

    In this Part 2 of this series of articles, the procedure proposed in Part 1, namely a new parameter extraction technique of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is applied to CdS-CdTe and CIGS-CdS solar cells. First, the Cheung method is used to obtain the series resistance (R s ) and the ideality factor n. Afterwards, procedures A and B proposed in Part 1 are used to obtain R sh and I sat . The procedure is compared with two other commonly used procedures. Better accuracy on the simulated I-V curves used with the parameters extracted by our method is obtained. Also, the integral percentage errors from the simulated I-V curves using the method proposed in this study are one order of magnitude smaller compared with the integral percentage errors using the other two methods.

  15. Solar-Geophysical Data Number 514, June 1987. Part 2 (comprehensive reports). Data for December 1986

    International Nuclear Information System (INIS)

    Coffey, H.E.; McKinnon, J.A.

    1987-06-01

    Contents include: Detailed index for 1986-1987; Data for December 1986--Meudon carte synoptique; Solar flares, Solar radio bursts at fixed frequencies, Solar x-ray radiation from GOES satellite graphs, Mass ejections from the sun, Active prominences and filaments, Miscellaneous data--Chinese solar-geophysical data (CSGD) (Explanation of Data Reports)

  16. Solar-geophysical data number 408, August 1978, Part I. (Prompt reports). Data for July 1978, June 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-08-01

    This prompt report provides data for July 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, spacecraft observations, Boulder geomagnetic substorm log, and energetic solar particles. It also provides data for June 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  17. Shape control of slack space reflectors using modulated solar pressure.

    Science.gov (United States)

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R

    2015-07-08

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.

  18. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  19. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  20. Solar--geophysical data number 406, June 1978, Part I. (prompt reports). Data for May 1978, April 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-06-01

    This prompt report provides data for May 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, inferred IP Magnetic field polarities, mean solar magnetic field, solar wind measurements, geomagnetic substorms, magnetograms of geomagnetic storm 30 April - 4 May, and energetic solar particles. It also provides data for April 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation

  1. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  2. Solar--geophysical data number 398, October 1977. Part I. (Prompt reports). Data for September 1977--August 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-10-01

    This prompt report provides data for September 1977 on alert period, daily solar indices, solar flares, solar radio waves, coronal holes, solar x-ray radiation, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, and solar proton event (Provisional). It also provides data for August 1977 on daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  3. Project 'Colored solar collectors' - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J. -L.

    2005-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause excessive performance degradation. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation and shall be manufactured by the sol-gel dip-coating process. The proposed colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. The availability of thin film materials with a refractive index lower than that of silicon favors a higher solar transmission at a given value of visible reflectance. The feasibility of the sol-gel deposition of such low refractive index materials has been demonstrated. For the development of nanostructured materials, analytical methods such as electron microscopy are extremely helpful. Important techniques of substrate pretreatment, sample cleaving, polishing, mounting, and microscope handling have been acquired. First measurements yield images of nanostructures produced by the sol-gel dip-coating process. Nanocomposite Ti{sub x}Si{sub 1-x}O{sub 2} thin films provide a large range of refractive indices. Aiming a high efficiency of the colored reflection, Ti{sub x}Si{sub 1-x}O{sub 2} based multilayered coatings have been designed and subsequently prepared by sol-gel dip-coating. The energy efficiency M = R{sub VIS}/(100%-T{sub sol}) of the obtained colored reflection amounts up to 2.4. For a convincing demonstration sufficiently large samples of high quality are imperatively needed. An infrastructure for the handling of A4 sized samples has been established

  4. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  5. Survey of coherent ion reflection at the quasi-parallel bow shock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Russell, C.T.

    1990-01-01

    Ions coherently reflected off the Earth's bow shock have previously been observed both when the upstream geometry is quasi-perpendicular and when it is quasi-parallel. In the case of quasiperpendicular geometry, the ions are reflected in a nearly specular manner and are quickly carried back into the shock by the convecting magnetic field. In the quasi-parallel geometry, however, near-specularly reflected ions' guiding center velocities would on the average be directed away from the shock, allowing the ions to escape into the upstream region. The conditions under which coherent reflection occurs and the subsequent coupling of the reflected ions to the incoming solar wind plasma are important factors when assessing the contribution of the reflected ions to the downstream temperature increase and the shock structure. The survey presented in this paper, along with previously reported observations, suggests that near-specularly reflected ions are indeed an important aspect of energy dissipation at the Earth's quasi-parallel bow shock. The authors find that (1) cool, coherent, near-specularly reflected ion beams are detected over nearly the full range of upstream plasma paraameters commonly found at the Earth's bow shock; (2) the beams are typically observed only near the shock ramp or some shock-like feature; and (3) the observed beam velocities are almost always consistent with what one would expect for near-specularly reflected ions after only a small fraction of a gyroperiod following reflection. The second and third points indicate that the beams spread very quickly in velocity space. This spread in velocities could be due either to interactions between the beam and incoming solar wind ions or to some initially small velocity spread in the beam

  6. Concentrated Solar Power as part of the European energy supply. The realization of large-scale solar power plants. Options, constraints and recommendations

    International Nuclear Information System (INIS)

    Bouwmans, I.; Carton, L.J.; Dijkema, G.P.J.; Stikkelman, R.M.; De Vries, L.J.

    2006-01-01

    Next to solar cells and solar collectors for decentralized power generation Concentrated Solar Power (CSP) technology is available and proven for large-scale application of solar energy. However, after 20 years of demonstration projects and semi-commercial installations, CSP is still not widely used. In this quick-scan an overview is given of strong and weak points of CSP, as well as its' options and constraints with regard to a sustainable energy supply, focusing on technical, economical and administrative constraints and chances in Europe and European Union member states [nl

  7. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  8. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  9. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Solar-geophysical data number 410, October 1978, Part I (Prompt reports). Data for September 1978, August 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-10-01

    This prompt report provides data for September 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field and Boulder geomagnetic substorm log. It also provides data for August 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  11. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    Science.gov (United States)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  12. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    Science.gov (United States)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  13. Catalog of solar particle events 1955--1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This catalog, which is a common enterprise of solar physicists and space scientists, consists of three parts. The first part contains a complete list of 732 particle events of solar origin recorded at the Earth or in space from the first PCA observation in 1955 up to the end of 1969; it thus covers two solar cycle maxima. Each particle event is described in detail by using many unpublished data, kindly made available by more than 20 space scientists. A group of solar experts has tried to look up the source, or alternative sources, of each particle event on the Sun. These sources (with estimates of ''certainty'') are presented, and all the flares which have been considered to be obvious or probable sources of the particle events are summarized in the second part of the catalog, with a description of their characteristic features in the optical, radio, and X-ray spectral range. Finally, the third part describes the active regions in which these flares occurred, including magnetic field maps, plage and sunspot group configurations, flare positions (often with flare photographs), data on the active region development, and bibliography

  14. Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Agustinus G. Admiranto

    2016-09-01

    Full Text Available We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave. In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

  15. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  16. Design of an Experimental PCM Solar Tank

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Istvan Peter

    2010-09-15

    The one of the most important part of a solar collector system is the solar tank. The relevant type and capacity of the solar tank is a requirement of the good operation of the system. According the current architectural tendencies the boiler rooms are smaller, so the putting of the currently available solar tanks is very difficult. It is necessary to store the energy in a little space. The solution of the problem is the solar tank particularly filled with phase change material.

  17. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  18. Solar--geophysical data number 402, February 1978. Part I. Prompt reports. Data for January 1978--December 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-02-01

    This prompt report provides data for January 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, spacecraft observations, inferred IP magnetic field polarities, mean solar magnetic field and solar wind measurements. It also provides data for December 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  19. Functional Form of the Radiometric Equation for the SNPP VIIRS Reflective Solar Bands: An Initial Study

    Science.gov (United States)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager, observing radiative energy from the Earth in 22 spectral bands from 0.41 to 12 microns which include 14 reflective solar bands (RSBs). Extending the formula used by the Moderate Resolution Imaging Spectroradiometer instruments, currently the VIIRS determines the sensor aperture spectral radiance through a quadratic polynomial of its detector digital count. It has been known that for the RSBs the quadratic polynomial is not adequate in the design specified spectral radiance region and using a quadratic polynomial could drastically increase the errors in the polynomial coefficients, leading to possible large errors in the determined aperture spectral radiance. In addition, it is very desirable to be able to extend the radiance calculation formula to correctly retrieve the aperture spectral radiance with the level beyond the design specified range. In order to more accurately determine the aperture spectral radiance from the observed digital count, we examine a few polynomials of the detector digital count to calculate the sensor aperture spectral radiance.

  20. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  1. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  2. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  3. Fabrication of silicon solar cell with >18% efficiency using spin-on-film processing for phosphorus diffusion and SiO{sub 2}/graded index TiO{sub 2} anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yi-Yu; Ho, Wen-Jeng, E-mail: wjho@ntut.edu.tw; Yeh, Chien-Wu

    2015-11-01

    Highlights: • Employed SOF technology for both phosphorus diffusion and multi-layer ARCs. • Optical properties of TiO{sub 2}, SiO{sub 2}, and SiO{sub 2}/TiO{sub 2}/TiO{sub 2} films are characterized. • Photovoltaic performances of the fabricated solar cells are measured and compared. • An impressive efficiency of 18.25% was obtained by using the SOF processes. - Abstract: This study employed spin-on film (SOF) technology for the fabrication of phosphorus diffusion and multi-layer anti-reflective coatings (ARCs) with a graded index on silicon (Si) wafers. Low cost and high efficiency solar cells are important issues for the operating cost of a photovoltaic system. SOF technology for the fabrication of solar cells can be for the achievement of this goal. This study succeeded in the application of SOF technology in the preparation of both phosphorus diffusion and SiO{sub 2}/graded index TiO{sub 2} ARCs for Si solar cells. Optical properties of TiO{sub 2}, SiO{sub 2}, and multi-layer SiO{sub 2}/TiO{sub 2} deposition by SOF are characterized. Electrical and optical characteristics of the fabricated solar cells are measured and compared. An impressive efficiency of 18.25% was obtained by using the SOF processes.

  4. A study of the solar wind deceleration in the Earth's foreshock region

    Science.gov (United States)

    Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.

    1995-01-01

    Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.

  5. Y{sub 2}O{sub 3}: Eu{sup 3+}, Tb{sup 3+} spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Hui [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Ji, Ruonan [School of Physics, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Han, Linzi; Hao, Yuanyuan; Sun, Qian [School of Physics, Northwest University, Xi’an 710069 (China); Zhang, Dekai [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Fan, Jun [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Bai, Jintao [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); and others

    2015-04-25

    Highlights: • Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were successfully prepared. The as prepared particles can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. • Y{sub 2}O{sub 3} is not only a good photoluminescence host material, but also it has high corrosion resistivity, thermal stability, and transparency from violet to infrared light. Cooperated with SiO{sub 2} sols, it could realize a better anti-reflection property. • As a proof-of-concept application, the as prepared bi-functional films could effectively improve the photoelectric conversion efficiency by 0.23% compared to pure SiO{sub 2} AR coating film and 0.55% compared to glass. - Abstract: In this study, Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were prepared via the simple, cost-effective urea homogeneous precipitation method without additives. The chosen particles were added in the SiO{sub 2} sols to get anti-reflection (AR) and wavelength conversion bi-functional films. Careful investigations were carried out to find the optimum preparation conditions and proper morphology. SEM images showed that the particle sizes reduced as metal ion/urea ratio decreased. Additionally, the extracted particles turned from sphere to lamellar type when the deionized water, which was used as solvent, reduced to a certain extent. The mechanisms of the morphology formation and diversification were proposed as well. The as prepared materials can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. The spherical sample showed better luminescence performance than the one with lamellar morphology. In addition, the optical transmittance spectra indicated that the films adding spherical particles had better anti-reflective performance, and the best adding amount was 0.08 g. Finally, As a proof-of-concept application

  6. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Nicolaou, G., E-mail: helliott@swri.edu [Swedish Institute of Space Physics, Box 812, SE-98128, Kiruna (Sweden)

    2016-04-15

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  7. THE NEW HORIZONS SOLAR WIND AROUND PLUTO (SWAP) OBSERVATIONS OF THE SOLAR WIND FROM 11–33 au

    International Nuclear Information System (INIS)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Weidner, S.; Livadiotis, G.; Nicolaou, G.

    2016-01-01

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun

  8. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Volokitin, A. S. [IZMIRAN, Troitsk, 142190, Moscow (Russian Federation); Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, 3A Av. de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France)

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  9. Solar Distillation Practice For Water Desalination Systems

    OpenAIRE

    Mahian, Omid; Kianifar, Ali; Jumpholkul, Chaiwat; Thiangtham, Phubate; Wongwises, Somchai; Srisomba, Raviwat

    2015-01-01

    references, it is suggested to add a chapter concerning CFD simulations of solar stills. In addition, a part can be devoted to using novel technologies such as nanotechnology for productivity enhancement of solar stills

  10. Design and Implementation of Dual Axis Solar Tracking system

    OpenAIRE

    Sirigauri N,; Raghav S

    2015-01-01

    Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino...

  11. Photoelectrochemical solar cells based on Bi{sub 2}WO{sub 6}; Celdas solares fotoelectroquimicas basadas en Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Madriz, Lorean; Tata, Jose; Cuartas, Veronica; Cuellar, Alejandra; Vargas, Ronald, E-mail: lmadriz@usb.ve [Departamento de Quimica, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-04-15

    In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi{sub 2}WO{sub 6} was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO{sub 2} semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi{sub 2}WO{sub 6}-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO{sub 2} electrodes, even without sensitization. These results portray solar cells based on Bi{sub 2}WO{sub 6} as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition. (author)

  12. Guided-mode resonant solar cells and flat-top reflectors: Analysis, design, fabrication and characterization

    Science.gov (United States)

    Khaleque, Tanzina

    to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. In addition, two types of GMR flat-top reflectors have been designed, analyzed, fabricated and experimentally demonstrated. The first one is GMR broadband reflector in the spectral domain whereas the second is a Rayleigh reflector in the angular domain. The designed broadband reflector exhibits more than 99% reflectance over a spectral width of 380 nm ranging from 1440 to 1820 nm wavelength. Experimental reflectance greater than 90% is achieved over a ˜360-nm bandwidth. The reported reflector bandwidth exceeds comparable published results for two-part periodic structures working in transverse electric polarization. In the Rayleigh reflector, the interaction of GMR and Rayleigh anomaly creates an extraordinary photonic response and results in a flat-top angularly delimited optical filter. The physical process of the rapid energy exchange between the reflected zero-order wave and a propagating substrate wave across a small angular change is investigated with numerical computations. An experimental proof of the Rayleigh reflector concept is presented. The combined GMR-Rayleigh anomaly effect holds the potential to portend a new research area of novel photonic devices with interesting and useful attributes.

  13. Optimization of imprintable nanostructured a-Si solar cells: FDTD study.

    Science.gov (United States)

    Fisker, Christian; Pedersen, Thomas Garm

    2013-03-11

    We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.

  14. An estimation of impact of anthropogenic aerosols in atmosphere of Tirana on solar insolation. Part II: Modification of solar energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada; Muda, Valbona [Department of Engineering Physics, FIMIF, PUT, Tirana (Albania); Halili, Daniela [Department of physics, FNS, AXHU, Elbasan (Albania); Berdufi, Irma [Institute of Nuclear Physics, INP, TU, Tirana (Albania)

    2016-03-25

    Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale, considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.

  15. Solar tracking mechanism in two axes; Mecanismo de seguimiento solar en dos ejes

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Benitez, Juan Rafael; Ramos Berumen, Carlos; Beltran Adan, Jose; Lagunas Mendoza, Javier [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jlagunas@iie.org.mx; rramirez@iie.org.mx; cramos@iie.org.mx

    2010-11-15

    The Instituto de Investigaciones Electricas (IIE) has been interested in the Parabolic Dish technology for electricity generation in Mexico, then through its Non Conventional Energy Department has dedicated special tasks concerning to the knowledge and development of such technology. The structural component, reflective surface support and the tracking system which allows concentrate the solar energy into the receiver have been designed and manufactured. For the mechanical device and control of the solar tracking have been projected a set with servomotors, an electronic control as well as an interface for the equipment configuration and follow-up. In order for getting the following of the apparent movement of the sun, information on the sun paths through the year was analyzed and in consequence elevation and azimuth angles were determined. Using that approaches, for fixing the sun position sensors are not used and then only the control algorithm and the electronic device developed at the IIE were implemented. In this paper the sun tracking system and the electronic control device are presented. [Spanish] La tecnologia de plato parabolico para la generacion de electricidad en Mexico, ha sido de gran interes para el Instituto de Investigaciones Electricas, por lo que a traves de la Gerencia de Energias No Convencionales se ha avocado a la tarea de conocer y desarrollar esta tecnologia. Se ha disenado y fabricado la parte estructural, la base de la superficie reflejante y el sistema de seguimiento que permite concentrar la energia solar en el receptor. Para el mecanismo y control del seguidor solar se ha propuesto un mecanismo que utiliza servomotores, un control electronico asi como una interfaz para configurar el equipo y monitorear sus variables. Para lograr el seguimiento del movimiento aparente del sol se analizo la informacion en literatura de las trayectorias del sol a lo largo del ano, logrando asi determinar los angulos de altitud y azimut para acotar el

  16. Reflective article having a sacrificial cathodic layer

    Science.gov (United States)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  17. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    Science.gov (United States)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  18. The use of paraffin wax in a new solar cooker with inner and outer reflectors

    Directory of Open Access Journals (Sweden)

    Arabacigil Bihter

    2015-01-01

    Full Text Available In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30°. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 °C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30° receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.

  19. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART B : Results and Capacity Building

    Science.gov (United States)

    Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.

  20. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  1. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  2. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E.A.P.; Oostra, A.J.; Schropp, R.E.I.; Vece, Di M.

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  3. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  4. Mars Sample Return Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  5. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  6. Design and measured performance of a solar chimney for natural-circulation solar-energy dryers

    International Nuclear Information System (INIS)

    Ekechukwu, O.V.; Norton, B.

    1995-10-01

    The design and construction of a solar chimney which was undertaken as part of a study on natural-circulation solar-energy dryers is reported. The experimental solar chimney consists of a 5.3m high and 1.64m diameter cylindrical polyethylene-clad vertical chamber, supported structurally by steel framework and draped internally with a selectively-absorbing surface. The performance of the chimney which was monitored extensively with and without the selective surface in place (to study the effectiveness of this design option) is also reported. (author). 14 refs, 7 figs

  7. Plasma texturing on large-area industrial grade CZ silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Nordseth, Ørnulf; Schmidt, Michael Stenbæk

    2013-01-01

    We report on an experimental study of nanostructuring of silicon solar cells using reactive ion etching (RIE). A simple mask-less, scalable RIE nanostructuring of the solar cell surface is shown to reduce the AM1.5-weighted average reflectance to a level below 1 % in a fully optimized RIE texturi...

  8. Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics.

    Science.gov (United States)

    Lin, Chenxi; Huang, Ningfeng; Povinelli, Michelle L

    2012-01-02

    We carry out a systematic numerical study of the effects of aperiodicity on silicon nanorod anti-reflection structures. We use the scattering matrix method to calculate the average reflection loss over the solar spectrum for periodic and aperiodic arrangements of nanorods. We find that aperiodicity can either improve or deteriorate the anti-reflection performance, depending on the nanorod diameter. We use a guided random-walk algorithm to design optimal aperiodic structures that exhibit lower reflection loss than both optimal periodic and random aperiodic structures.

  9. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  10. On protection of freedom's solar dynamic radiator from the orbital debris environment. Part 2

    International Nuclear Information System (INIS)

    Rhatigan, J.L.

    1992-01-01

    In this paper, recent progress to better understand the environmental threat of micrometeoroid and space debris to the solar dynamic radiator for the Space Station Freedom power system is reported. The objective was to define a design which would perform to survivability requirements over the expected lifetime of the radiator. A previous paper described the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses were presented to quantify the solar dynamic radiator survivability. These included the type of particle and particle population expected to defeat the radiator bumpering. Results of preliminary hypervelocity impact (HVI) testing performed on radiator panel samples were also presented. This paper presents results of a more extensive test program undertaken to further define the response of the solar dynamic radiator to HVI. Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of particle size, particle density, impact angle, and impact velocity. Target parameters were also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define more rigorously the solar dynamic radiator reliability with respect to HVI. Test data, analyses, and survivability results are presented

  11. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  12. Solar-geophysical data number 420, August 1979. Part II (Comprehensive reports). Data for February 1979, January 1979

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-08-01

    This comprehensive report provides data for February 1979 on active regions, synoptic solar maps, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts and abbreviated calendar record for January 1979. The miscellaneous data include solar radio emission, cosmic rays-April and May 1979, Solar flares-January 1979, and regional flare index - December 1978

  13. Solar-Geophysical Data Number 525, May 1988. Part 2 (comprehensive reports). Data for November 1987, and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1988-05-01

    Contents include: detailed index for 1987 and 1988; data for November 1987 -- (Meudon carte synoptique, solar flares, solar radio bursts at fixed frequencies, solar x-ray radiation from GOES satellite, mass ejections from the sun, active prominences and filaments); miscellaneous data -- interplanetary solar particles and plasma -- (IMP 8 solar wind -- October 1987 - January 1988, IMP 8 solar particles -- September 1985 - May 1986)

  14. Solar-geophysical data number 417, May 1979. Part II. Data for November 1978--October 1978 and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-05-01

    This comprehensive report provides data for November 1978 on active regions, synoptic solar maps, solar flares, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts, abbreviated calendar record and regional flare index for October 1978. The miscellaneous data includes solar radio emission for January and February 1979 and cosmic rays for February 1979

  15. Test of solar dryers in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S. [Teknologisk Institut. SolEnergiCentret, Taastrup (Denmark); Floejgaard Kristensen, E. [Danmarks JordbrugsForskning, Tjele (Denmark); Agyei, F. [FAGOD Ltd. (Ghana); Larsen, T. [Clipper Design Ltd. (Ghana); Nketiah, K.S. [FORIG (Ghana)

    2002-06-01

    The report describes the tests carried out in Ghana on three solar dryers as part of the project 'Test and Research Project into the Drying of Food and Wood Products with Solar Heat' financed by DANIDA. The main objective of the project was to develop and test solar dryers for crop, fish and wood in Ghana. Three dryers were erected: 1. Solar crop dryer: The solar crop dryer was erected at Silwood Farms at Pokuase about 30 km north of Accra. Silwood Farms grows primarily maize for seed and pineapples, 2. Solar fish dryer: The solar fish dryer was erected at Elite Enterprise Ltd. at Tema about 35 km east-north-east of Accra. Elite Enterprise Ltd. buys and dries fish, 3. Solar wood dryer: The solar wood dryers were erected at Clipper Design Ltd. at Mankoadze about 65 km west-south-west of Accra. Clipper Design Ltd. produces mainly doors. (BA)

  16. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  17. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  18. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  19. Advances in photovoltaics part 4

    CERN Document Server

    Willeke, Gerhard P

    2015-01-01

    Advances in Photovoltaics: Part Four provides valuable information on the challenges faced during the transformation of our energy supply system to more efficient, renewable energies. The volume discusses the topic from a global perspective, presenting the latest information on photovoltaics, a cornerstone technology. It covers all aspects of this important semiconductor technology, reflecting on the tremendous and dynamic advances that have been made on this topic since 1975, when the first book on solar cells-written by Harold J. Hovel of IBM-was published as volume 11 in the now famous series on Semiconductors and Semimetals. Readers will gain a behind the scenes look at the continuous and rapid scientific development that leads to the necessary price and cost reductions in global industrial mass-production. Written by leading, internationally known experts on his topic Provides an in-depth overview of the current status and perspectives of thin film PV technologies Discusses the challenges faced during th...

  20. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  1. Parabolic solar concentrator

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.

    2006-08-01

    In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.

  2. Background and evolution of solar control systems in the architecture; Antecedentes y evolucion de los sistemas de control solar en la arquitectura

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Viqueira, Manuel; Fuentes Freixanet Victor [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    2000-07-01

    This paper is a reflection on the tradition and evolution of the use of solar control systems as a solution to the architectonic problem that arises from the solar radiation excess in the inhabitable spaces and its comfort conditions. The study has been structured from a historical-geographic vision of the architecture, showing the universality and the rationality of the solutions before certain environmental and climatologic conditions. That allows to arrive to the conclusion that similar architectonic solutions, as much in the functional aspect as in which refers to the use of the materials, that might not be related among them, and be independent in the space and time. To seat at the shade of a tree in a warm and sunned day, we quickly associated it to the pleasantness sensation, be this in a climate: dry, humid or template. This is the way we must conceive the solar control, as a tool for the bioclimatic design where we look for an increasing of the comfort sensation, in the architectonic spaces, with an optimization of the energy resources. In general terms the solar control devices, (of solarization) can be grouped in those of architectonic type, that is to say, those that are integrated and comprise the same architecture, and those non-architectonic, that is to say, those that do not comprise in it in a direct way. On the basis of this characterization we will enunciate the main devices of each one of the typologies or groups. [Spanish] Este trabajo es una reflexion sobre la tradicion y evolucion del uso de dispositivos de control solar como solucion al problema arquitectonico que surge del exceso de radiacion solar en los espacios habitables y las condiciones de confort en los mismos. El estudio se ha estructurado a partir de una vision historico-geografica de la arquitectura, mostrando la universalidad y la racionalidad de las soluciones ante determinadas condiciones ambientales y climatologicas. Lo que permite llegar a la conclusion de que soluciones

  3. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  4. Light trapping in thin film solar cells using photonic engineering device concepts

    Science.gov (United States)

    Mutitu, James Gichuhi

    of the inclusion of various structures on the front and back surfaces of solar cells are examined. This framework is then adapted as a basis for the development of more advanced topics, such as the inclusion of micro and nano scale surface textures, diffraction gratings and photonic bandgap structures. Analyses of the effects of these light trapping structures is undertaken using performance metrics, such as the short circuit current characteristics and a band-edge enhancement factor, which all serve to quantitatively demonstrate the effects of the optical enhancements. I begin this thesis with an investigation of one dimensional photonic crystals, which are used as selective light filters between vertically stacked tandem multi-junction solar cells. These ideas are then further developed for single junction stand alone thin film solar cells, where the optical enhancement is shown to be very significant. A further investigation on the application of engineered photonic crystal materials as angular selective light filters is then presented; these filters are shown to overcome the physical limitations of light trapping that are imposed by the optical properties of materials; specifically limitations associated with total internal reflection. In the next part of this thesis, I present a fundamental redesign approach to multiple period distributed Bragg reflectors (DBR's) and their applications to solar cell light trapping. As it turns out, multiple period DBR's, which are required for high back surface reflectance - which is especially necessary in thin film solar cells - present formidable challenges in terms of cost and complexity when considered for high volume manufacturing. To this end, I show that when a single period DBR is combined with a phase matching and metallic layer, the combined structure can achieve high back surface reflectance that is comparable to that of a DBR structure with many more layers. This new structure reduces the back reflector complexity

  5. An Update to the NASA Reference Solar Sail Thrust Model

    Science.gov (United States)

    Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.

    2015-01-01

    An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.

  6. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  7. Excellent solar energy absorbing and retaining fabric material. Chikunetsu hoon sen'i sozai

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T. (Unitika Ltd., Osaka (Japan). Central Research Lab.)

    1993-11-10

    Carbides of group IV transition metals such as ZrC, which are used as solar energy selective absorption film for solar energy collectors, has characteristics of absorbing light with a high energy of 0.6eV or more and of converting it to heat when exposed to light, and of not absorbing but reflecting light with a low energy of less than 0.6eV. By using ZrC as fabric materials, therefore, portable and durable heat absorbing and retaining materials can be produced. The authors have developed a solar energy absorbing and retaining fabric material, 'Solar [alpha]' (registered trade mark), which absorbs visible and near infrared rays and converts them to heat, and reflects heat from a human body and confines it. The use of Solar [alpha] has been found in various fields such as clothing as a new material for winter-sportswear, slacks, coats, and swimming suits. In this report, the heat absorbing and retaining mechanisms, basic properties of Solar [alpha], and the results of wearing tests are described. 12 refs., 6 figs., 3 tabs.

  8. 78 FR 63276 - Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports

    Science.gov (United States)

    2013-10-23

    ... the orientation and tilt of the solar energy panels, reflectance, environment, and ocular factors are... energy systems on the airport must attach the SGHAT report, outlining solar panel glare and ocular impact... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Interim Policy, FAA Review of Solar...

  9. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  10. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  11. Variation of reflected radiation from all reflectors of a flat plate solar collector during a year

    International Nuclear Information System (INIS)

    Pavlović, Zoran T.; Kostić, Ljiljana T.

    2015-01-01

    In this paper the impact of flat plate reflectors (bottom, top, left and right reflectors) made of Al, on total solar radiation on a solar collector during a day time over a whole year is analyzed. An analytical model for determining optimum tilt angles of a collector and reflectors for any point on the Earth is proposed. Variations of reflectors' optimal inclination angles with changes of the collector's optimal tilt angle during the year are also calculated. Optimal inclination angles of the reflectors for the South directed solar collector are calculated and compared to experimental data. It is shown that optimal inclination of the bottom reflector is the lowest in December and the highest in June, while for the top reflector the lowest value is in June and the highest value is in December. On the other hand, optimal inclination of the left and right side reflectors for optimum tilt angle of the collector does not change during the year and it is 66°. It is found that intensity of the solar radiation on the collector increases for about 80% in the summer period (June–September) by using optimally inclined reflectors, in comparison to the collector without reflectors. - Highlights: • The impacts of flat plate reflectors on solar radiation on the collector are given. • The results of the optimal inclinations of reflectors during the year are shown. • The solar radiation on the collector with reflectors is 80% higher in the summer. • This model may be applied on thermal, PV, PV/T and energy harvesting systems

  12. Investigation of solar cell radiation damage

    International Nuclear Information System (INIS)

    Bernard, J.; Reulet, R.; Arndt, R.A.

    1974-01-01

    Development of communications satellites has led to the requirement for a greater and longer lived solar cell power source. Accordingly, studies have been undertaken with the aim of determining which solar cell array provides the greatest power at end of life and the amount of degradation. Investigation of the damage done to thin silicon and thin film CdS solar cells is being carried out in two steps. First, irradiations were performed singly with 0.15, 1.0 and 2.0MeV electrons and 0.7, 2.5 and 22MeV proton. Solar cells and their cover materials were irradiated separately in order to locate the sites of the damage. Diffusion length and I.V. characteristics of the cells and transmission properties of the cover materials were measured. All neasurements were made in vacuum immediately after irradiation. In the second part it is intended to study the effect of various combinations of proton, electron and photon irradiation both with and without an electrical load. The results of this part show whether synergism is involved in solar cell damage and the relative importance of each of three radiation sources if synergism is found [fr

  13. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  14. How unprecedented a solar minimum was it?

    Science.gov (United States)

    Russell, C T; Jian, L K; Luhmann, J G

    2013-05-01

    The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.

  15. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  16. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  17. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  18. Nanostructured refractory thin films for solar applications

    Science.gov (United States)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  19. Solar energy in the United States

    International Nuclear Information System (INIS)

    Ochoa, D.; Slaoui, A.; Soler, R.; Bermudez, V.

    2009-01-01

    Written by a group of five French experts who visited several research centres, innovating companies and solar power stations in the United States, this report first proposes an overview of solar energy in the United States, indicating and commenting the respective shares of different renewable energies in the production, focusing on the photovoltaic energy production and its RD sector. The second part presents industrial and research activities in the solar sector, and more specifically photovoltaic technologies (silicon and thin layer technology) and solar concentrators (thermal solar concentrators, photovoltaic concentrators). The last chapter presents the academic research activities in different universities (California Tech Beckman Institute, Stanford, National Renewable Energy Laboratory, Colorado School of Mines)

  20. Estimating the daily solar irradiation on building roofs and facades using Blender Cycles path tracing algorithm

    Directory of Open Access Journals (Sweden)

    Ilba Mateusz

    2016-01-01

    Full Text Available The paper presents the development of an daily solar irradiation algorithm with application of the free software Blender. Considerable attention was paid to the possibilities of simulation of reflections of direct and diffuse solar radiation. For this purpose, the rendering algorithm “Cycles” was used, based on the principle of bi-directional path tracing – tracing random paths of light beams. The value of global radiation in this study is the sum of four components: direct beam radiation, reflected beam radiation, diffuse radiation and reflected diffuse radiation. The developed algorithm allows calculation of solar irradiation for all elements of the 3D model created in Blender, or imported from an external source. One minute is the highest possible time resolution of the analysis, while the accuracy is dependent on the resolution of textures defined for each element of a 3D object. The analysed data is stored in the form of textures that in the algorithm are converted to the value of solar radiance. The result of the analysis is visualization, which shows the distribution of daily solar irradiation on all defined elements of the 3D model.

  1. Do writing and storytelling skill influence assessment of reflective ability in medical students' written reflections?

    Science.gov (United States)

    Aronson, Louise; Niehaus, Brian; DeVries, Charlie D; Siegel, Jennifer R; O'Sullivan, Patricia S

    2010-10-01

    Increasingly, students are asked to write reflections as part of their medical education, but some question the influence of other factors on the evaluation of these reflections. In this pilot study, the investigators determined whether scores from a validated rubric to measure reflective ability were affected by irrelevant variance resulting from writing or storytelling ability. Students in clerkships wrote reflections on professionalism. All were given identical prompts, with half receiving additional structured guidelines on reflection. Sixty reflections, 30 from each group, were randomly chosen and scored for reflection, writing, and storytelling by trained raters using validated rubrics. There was no correlation between reflection and either writing (r = 0.049, P = .35) or storytelling (r = 0.14, P = .13). The guidelines increased reflection, but not writing or storytelling scores. Reflection is a distinct construct unaffected by learners' writing or storytelling skills. These findings support reflective ability as a distinct skill.

  2. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.

    Science.gov (United States)

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-10-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se 2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF 2 coated with a thin atomic layer deposited Al 2 O 3 layer, or direct current magnetron sputtering of Al 2 O 3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al 2 O 3 /CIGS rear interface. (MgF 2 /)Al 2 O 3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.

  3. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-01-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells. PMID:26300619

  4. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    Hill, H.A.; Bos, R.J.

    1982-01-01

    The objective of the project is to detect and monitor climatically significant solar variability by studying the associated variability in solar shape and diameter. The observing program for this project was initiated in 1981, as was the requisite data reduction. These two activities are conducted simultaneously. Theoretical work has also progressed on matters relevant to the interpretation of observed changes in the indirect diagnostics in terms of changes in the solar luminosity. The success of the observing program over long time periods depends in part on the development of a technique to calibrate the scale in the telescope field, and work on this has progressed to the design and construction phase. A proposal is made for the continuation of the work in each of these areas

  5. Solar excitation of CdS/Cu2S photovoltaic cells

    Science.gov (United States)

    Boer, K. W.

    1976-01-01

    Solar radiation of five typical clear weather days and under a variety of conditions is used to determine the spectral distribution of the photonflux at different planes of a CdS/Cu2S solar cell. The fractions of reflected and absorbed flux are determined at each of the relevant interfaces and active volume elements of the solar cell. The density of absorbed photons is given in respect to spectral and spatial distribution. The variance of the obtained distribution, with changes in insolation and absorption spectra of the active solar cell layers, is indicated. A catalog of typical examples is given in the appendix.

  6. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  7. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  8. Solar activity and life. A review

    International Nuclear Information System (INIS)

    Messerotti, M.; Chela-Flores, J.

    2007-09-01

    Recent claims advocate a downward revision of the solar oxygen abundance. This is a reflection of what may be called a 'solar crisis' whereby we mean that previous consensus in our understanding of our nearest star was unfounded. The implications for solar physics, and chemistry, are obvious and much research in the near future will give us a much clearer understanding of the Sun. We wish to review and update recent work concerning the frontier between Space Weather (SpW) and Astrobiology. We argue that the present robust programs of various space agencies reinforce our hope for a better understanding of the bases of Astrobiology. Eventually with a more realistic model of the Sun, more reliable discussions of all the factors influencing the origin of life on Earth will be possible. (author)

  9. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  10. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  11. Satellite-based trends of solar radiation and cloud parameters in Europe

    Science.gov (United States)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  12. Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto

    2016-05-01

    In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  13. Isotopic ratios in the solar system

    International Nuclear Information System (INIS)

    1985-01-01

    This colloquium is aimed at presentation of isotope ratio measurements in different objects of solar system and surrounding interstellar space and evaluation of what information on composition and structure of primitive solar nebula and on chemical evolution of interstellar space in this part of the galaxy can be deduced from it. Isotope ratio in solar system got from laboratory study of extraterrestrial materials is a subject of this colloquium. Then isotope ratio measured in solar wind, planets and comets. Measurements either are made in-situ by mass spectrometry of ions in solar wind or planetery atmosphere gases either are remote measurements of spectra emitted by giant planets and comets. At last, planetology and astrophysics implications are presented and reviewed. Consraints for solar system formation model can be deduced from isotope ratio measurement. Particularly, isotope anomalies are marks of the processes, which have influenced the primitive solar nebula contraction [fr

  14. The wise translator: reflecting on judgement in translator education ...

    African Journals Online (AJOL)

    The question of how one goes about teaching students to be translators is a central area of concern for translation teachers. As a reflective practitioner, I have a hunch about how to solve my problem. This paper is therefore in itself part of a reflective practicum, part of my reflection-in-action. I am in the process of restructuring ...

  15. Research on passive solar energy application in Cyprus. Part 1. Meteorological characteristics of Cyprus

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, O; Savva, M [Kumamoto University, Kumamoto (Japan); Saito, I [Yatsushiro Institute of Technology, Kumamoto (Japan)

    1996-10-27

    For application of passive solar systems to houses in Cyprus, meteorological and geographical characteristics were studied. Solar energy is not yet in wide use in Cyprus. Meteorological subjects are also not yet clarified for application of passive solar systems to houses. Annual temperature difference is estimated to be nearly 10{degree}C between the lowland and highland, and a drop in temperature with altitude is 0.33-0.76{degree}C/100m. Sunshine duration is longer in summer in everywhere showing 10-13.2 hours in August, while it is shorter in winter showing 3.5-6 hours in January. It is shorter in highland than lowland all the year through. Solar radiation intensity is obviously lower in winter than summer. Relative humidity is considerably low in highland, and it is low during the daytime in summer in lowland. In general, the relative humidity remarkably increases in the night all the year through and the daytime in winter. As the survey result, meteorological conditions are more suitable in Cyprus than Tokyo and Kumamoto for application of solar systems to houses. 4 refs., 10 figs., 1 tab.

  16. Reuse of the Reflective Light and the Recycle Heat Energy in Concentrated Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Hsin-Chien Chen

    2013-01-01

    Full Text Available A complex solar unit with microcrystalline silicon solar cells placed around the centered GaAs triple junction solar cell has been proposed and carried out. With the same illumination area and intensity, the total resultant power shows that the excess microcrystalline silicon solar cells increase the total output power by 13.2% by absorbing the reflective light from the surface of optical collimators. Furthermore, reusing the residual heat energy generated from the above-mentioned mechanism helps to increase the output power by around 14.1%. This mechanism provides a simple method to enhance the utility rate of concentrated photovoltaic (CPV system. Such concept can be further applied to the aerospace industry and the development of more efficient CPV solar energy applications.

  17. Assessment of market possibilities for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, S. [Advanced School of Business Novi Sad (Czechoslovakia)

    2004-07-01

    Global heating increases profitability of solar energy application in the Balkans. The most important market segments for wider solar cells utilization in Yugoslavia (Serbia and Montenegro) are solar pumps for irrigation in agriculture, traffic lights, lighting of weekend houses, air-conditioning, telecommunications, electric vehicles, solar hydro-electric power plants, sports centers and schools and orthodox monasteries. In addition to these applications of solar modules of relatively high capacity, a wide scope of applications of mini solar modules in consumer goods is given serious consideration (flashlights, bicycle lights, fan caps, beach hats, solar parasols, toys for children, solar watches, minicomputers, walkmans and alike). In this paper is projected gradually increase of solar cells applications in Yugoslavia, from 772 kW in 2006., to 3,901 kW installed photovoltaic power in 2010. year. The largest parts of this projected 3.9 MW in 2010., ought to be solar pumps (498 kW), telecommunications (470 kW) and traffic lights (468 kW). (orig.)

  18. Round robins of solar cells to evaluate measurement systems of different european research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Van der Brog, N.J.C.M. [ECN Solar, Westerduinweg 3, 1755 LE Petten (Netherlands); Bliss, M.; Mihaylov, B.; Gottschlag, R. [CREST, Holywell Park MBG GJ/Gx, Loughborough Univeristy, Leicestershire, LE11 3TU (United Kingdom); Izzi, M.; Tucci, M. [ENEA CASACCIA, Via Anguillarese 301, 00123 Roma (Italy); Roca, F.; Pellegrino, M.; Romano, A.; Graditi, G. [ENEA PORTICI, P. le E. Fermi Localita Granatello, 80055 Portici Napoli (Italy); Hohl-Ebinger, J.; Warta, W. [Fraunhofer ISE, Berliner Allee 30, 79110 Freiburg (Germany); Debucquoy, M.; El Daif, O.; Gordon, I. [IMEC, Kapeldreef 75, B-3001 Heverlee (Belgium); Champliaud, J.; Jouini, A. [INES, 50 avenue du lac Leman, BP 332, 73377, Le Bourget-du-Lac (France); Glatz-Reichenbach, J. [ISC, Rudolf Diesel Str. 15, D-78467 Konstanz (Germany); Bothe, K. [ISFH, Am Ohrberg 1, 31860 Emmerthal (Germany); Herguth, A. [University of Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany)

    2013-10-15

    Determination of the solar cell efficiency and internal quantum efficiency are standard characterization methods used by the majority of research institutes. Random errors can be assessed by institutes themselves by repeated measurements, but systematic deviations cannot be assessed without comparisons with other institutes. The comparisons were performed for illuminated IV, spectral response and reflection measurements. The results were split into systematic differences between the partners and random differences within an institute for a single measurement session. The total differences are: J{sub sc}: 0.27 A, V{sub oc}: 8.5 mV, FF: 2.4 %, {eta}: 0.6%, spectral response: 0.14 A/W and reflection: 0.08. For all measurement methods, the systematic differences exceeded the random differences. The major component for the systematic differences is likely the reference device, but also temperature control, contacting scheme and setup differences play a part.

  19. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  20. Solar generators in terrestrial communication technology. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, E

    1978-01-01

    To begin with, the basic terms solar cell, solar cell module, solar generator, and solar generator system are defined and illustrated by examples. After this, the advantages and disadvantages of solar generators in power supply for terrestrial communications as compared to dry cell batteries, diesel generators and mains operation are discussed with a view to technical, economic, and ecological aspects. After some hints for an optimum design of systems, a comprehensive, general list of possible applications is given. The second part will give a detailed description of typical and exemplary applications.

  1. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells

    Science.gov (United States)

    Ahmed, Nuha; Zhang, Lei; Sriramagiri, Gowri; Das, Ujjwal; Hegedus, Steven

    2018-04-01

    Electroluminescence (EL) coupled with reflection measurements are used to spatially quantify optical losses in silicon heterojunction solar cells due to plasmonic absorption in the metal back contacts. The effect of indium tin oxide back reflector in decreasing this plasmonic absorption is found to increase the reflection from the back nickel (Ni)-aluminum (Al) and Al metals by ˜12% and ˜41%, respectively, in both bifacial and front junction silicon solar cells. Losses due to back reflection are calculated by comparison between the EL emission signals in high and low back reflection samples and are shown to be in agreement with standard reflection measurements. We conclude that the optical properties of the back contact can significantly influence the EL intensity which complicates the interpretation of EL as being primarily due to recombination especially when comparing two different devices with spatially varying back surface structures.

  2. Exploring the Heliogyro’s Superior Orbital Control Capabilities for Solar Sail Halo Orbits

    NARCIS (Netherlands)

    Heiligers, M.J.; Guerrant, D.; Lawrence, D

    2017-01-01

    Solar sailing is an elegant form of space propulsion that reflects solar photons off a large membrane to produce thrust. Different sail configurations exist, including a traditional fixed polygonal flat sail and a heliogyro, which divides the membrane into a number of long, slender blades. The

  3. Solar PV resource for higher penetration through a combined spatial aggregation with wind

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2016-06-01

    Full Text Available between wind and solar PV and how these would be reflected in the power system. The benefits of spatial distribution of renewables are well understood, but the impact of the combined spatial aggregation of wind and solar PV is central to the design...

  4. Solar neutrino detection

    International Nuclear Information System (INIS)

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  5. The role of helioseismology in the knowledge of the solar interior dynamics and in the solar neutrino puzzle

    International Nuclear Information System (INIS)

    Couvidat, Sebastien

    2002-01-01

    This dissertation focuses on the solar interior dynamics and the neutrino puzzle, using helioseismology and more specifically the SoHO/GOLF data as a tool to probe the radiative interior of the Sun. We show how helioseismology gives us a direct access to the deep-layer dynamics through the solar rotation profile. Our data favor a decrease of the rotation velocity near the nuclear core. This can be used to constrain the angular momentum distribution processes, and to set an upper bound on the intensity of the magnetic field in this part of the Sun. The search for gravity modes with an original method is another topic of this dissertation. Several candidates are detected that need now to be confirmed. Gravity modes will give us a precious insight into the solar core structure and dynamics. We also use the stellar evolution code CESAM. By combining seismic data and solar modelling, we produce solar seismic models. The neutrino flux predictions from these models are partly derived on an observational basis. The comparison of these fluxes with the SNO results gives the solution to the solar neutrino puzzle: neutrinos have masses and they oscillate between different lepton flavors. This explains the deficit of detections observed since the sixties. We also work on the internal magnetic fields that take part to the dynamic processes. In particular, we start to study the impact of these fields on the neutrino production and transport. Finally, we reach the limits of the 1D stellar codes: they cannot take into account the dynamic processes efficiently. This justifies the current development of 2D or 3D codes. (author) [fr

  6. Project 'Colored solar collectors' - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.

    2005-12-15

    The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause excessive performance degradation. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation and shall be manufactured by the sol-gel dip-coating process. The proposed colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. The availability of thin film materials with a refractive index lower than that of silicon favors a higher solar transmission at a given value of visible reflectance. The feasibility of the sol-gel deposition of such low refractive index materials has been demonstrated. For the development of nanostructured materials, analytical methods such as electron microscopy are extremely helpful. Important techniques of substrate pretreatment, sample cleaving, polishing, mounting, and microscope handling have been acquired. First measurements yield images of nanostructures produced by the sol-gel dip-coating process. Nanocomposite Ti{sub x}Si{sub 1-x}O{sub 2} thin films provide a large range of refractive indices. Aiming a high efficiency of the colored reflection, Ti{sub x}Si{sub 1-x}O{sub 2} based multilayered coatings have been designed and subsequently prepared by sol-gel dip-coating. The energy efficiency M = R{sub VIS}/(100%-T{sub sol}) of the obtained colored reflection amounts up to 2.4. For a convincing demonstration sufficiently large samples of high quality are imperatively needed. An infrastructure for the handling of A4 sized samples has been established

  7. Evolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application

    Directory of Open Access Journals (Sweden)

    Tous L.

    2012-08-01

    Full Text Available Bulk crystalline Silicon solar cells are covering more than 85% of the world’s roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF technology has been developed in the 90’s and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating, junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell. While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.

  8. Solar pond design for Arabian Gulf conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hassab, M.A.; Tag, I.A.; Jassim, I.A.; Al-Juburi, F.Y.

    1987-01-01

    Collection and storage of solar energy in salt gradient solar ponds under conditions of high ambient and ground temperatures and all year-round sunny weather are investigated theoretically. A transient model based on measured local environmental conditions is developed to predict solar transmission, temperature distribution and salt distribution inside the pond for any day of the year. In the model the effects of heat dissipation into the ground, bottom reflection, pond dimensions, load extraction and variation of the pond's physical properties with temperature and concentration are investigated. The generated non-linear coupled system of heat and salt concentration equations for the composite media, considered to have isothermal boundary conditions, is solved numerically using the implicit finite-difference scheme.

  9. Concentration solar power optimization system and method of using the same

    Science.gov (United States)

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  10. Solar-Geophysical Data Number 568, December 1991. Part 2 (comprehensive reports), Data for June 1991 and miscellaneous

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1991-06-01

    The contents include: Detailed index for 1991; Data for June 1991--Solar flares, Solar radio bursts at fixed frequencies, Solar x-ray radiation from GOES satellite, Mass ejections from the sun, Active prominences and filaments; Miscellaneous data--GOES solar proton events 1976-Oct 91

  11. Confinement of solar thermal energy by Nesa film; Nesa maku ni yoru taiyo netsu energy no fujikome

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A; Yano, K; Kasuga, M; Daigo, Y [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    This paper reports a Nesa (SnO2) film as selective transmissive film for effective confinement of solar thermal energy. Solar light spectrum ranges from 0.3 to 2.0{mu}m, while thermal radiation from bodies at 100-200degC is infrared ray more than 2{mu}m. Consequently, a solar water heater using the film which can pass rays below 2.0{mu}m while reflect rays over 2.0{mu}m for windows is very efficient. The Nesa film reflects rays with wavelengths more than plasma wavelengths (controllable from 1 to several {mu}m) by plasma action of free electrons. The Nesa films with different carrier densities were fabricated by spraying deposition method at dopant rates (Sb/Sn) from 0 to 2mol%. The solar water heaters were prepared using normal glass and specific glass coated with the Nesa film as selective transmissive film. The heater using the glass coated with the Nesa film of 2{mu}m plasma wavelength for windows could efficiently confine solar heat. The Nesa film of 700nm plasma wavelength which can pass visible light while reflect infrared ray was effective to reduce cooling/heating losses. 3 refs., 6 figs.

  12. Demystifying the reflective clinical journal

    International Nuclear Information System (INIS)

    Milinkovic, Danielle; Field, Nikki

    2005-01-01

    Student learning on clinical placement is a complex issue and cannot be defined solely by just doing things. Reflection during clinical practice is essential if the student is going to learn from the experience. Therefore it is important for educators to include as part of clinical education programs learning strategies that encourage reflection. The reflective clinical journal is an educational tool that is employed by the School of Medical Radiation Sciences at the University of Sydney to encourage reflection of undergraduate radiation therapy students whilst on clinical placement. This discussion paper explores the key concepts of reflection and the reflective clinical journal. Due to the paucity of information about this issue in radiation therapy the literature reviewed is from across all areas of the health sciences

  13. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  14. Solar-geophysical data number 586, June 1993. Part 1 (prompt reports). Data for May, April 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-06-01

    Contents: data for may 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for april 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is relevant to studies in atmospheric/environmental science, solar energy, plasma physics, and communications

  15. An Experimentalist's Overview of Solar Neutrinos

    Science.gov (United States)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  16. An Experimentalist's Overview of Solar Neutrinos

    International Nuclear Information System (INIS)

    Oser, Scott M

    2012-01-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  17. Solar-Geophysical Data Number 521, January 1988. Part 2 (comprehensive reports). Data for July 1987, and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.; McKinnon, J.A.

    1988-01-01

    Contents include: Detailed index for 1987; Data for July 1987--(Meudon Carte Synoptique, Solar flares, Solar radio bursts at fixed frequencies, Solar x-ray radiation from GOES satellite, Mass ejections from the sun, Active prominences and filaments); Miscellaneous data--Solar x-ray flare events May-December 1984

  18. Diffractive flat panel solar concentrators of a novel design.

    Science.gov (United States)

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  19. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  20. Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. 11. Solar longitude dependent circulation

    International Nuclear Information System (INIS)

    Limaye, S.S.

    1988-01-01

    Pioneer Venus Orbiter images obtained in 1982 indicate a marked solar-locked dependence of cloud level circulation in both averaged cloud motions and cloud layer UV reflectivity. An apparent relationship is noted between horizontal divergence and UV reflectivity: the highest reflectivities are associated with regions of convergence at high latitudes, while lower values are associated with equatorial latitude regions where the motions are divergent. In solar-locked coordinates, the rms deviation of normalized UV brightness is higher at 45-deg latitudes than in equatorial regions. 37 references

  1. Numerical modelling of CIGS/CdS solar cell

    Science.gov (United States)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2018-05-01

    In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.

  2. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  3. SolAir. Innovative solar collectors for efficient and cost-effective solar thermal power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, M. C.; Haueter, Ph.; Bader, R.; Steinfeld, A.; Pedretti, A.

    2008-12-15

    This report presents the main results of the project. The project has been started at the end of 2007 and has been successfully finished in December 2008. The present project of ALE AirLight Energy aims at the engineering investigation and design of a novel concept of a solar collector system for efficient and cost-effective solar thermal power generation. The technology exploits an air-inflated reflective structure to concentrate solar radiation. This new arrangement reduces investment costs of the collector field and promises to be economically competitive. A first prototype, built in 2007, has been redesigned and heavily modified during this project. In the new configuration, by using secondary mirrors, the focal area is located close to the main structure and allows the integration of the receiver into the inflated structure. The topics developed in this document are as follows: (i) Design solutions for the concentrated energy receiver suitable for the revised SolAir concentrator concept. (ii) Solar flux simulation via Monte Carlo method. (iii) New version of the ALE AirLight Energy concentrator prototype. (iv) Prototype radiative flux measurements. (author)

  4. Solar-geophysical data number 587, July 1993. Part 1 (prompt reports). data for June, May 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-07-01

    Contents: data for june 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for may 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph - 164 mhz - nancay; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to research in solar energy, plasma physics, communications, and environmental science

  5. Assessing Reflection: Understanding Skill Development through Reflective Learning Journals

    Science.gov (United States)

    Cathro, Virginia; O'Kane, Paula; Gilbertson, Deb

    2017-01-01

    Purpose: The purpose of this paper is to suggest ways in which business educators can interact successfully with reflective learning journals (RLJs). Specifically, the research was interested in how students used RLJs and how educators assessed these RLJs. Design/methodology/approach: In total, 31 RLJs, submitted as part of an international…

  6. Passive solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1980-11-01

    The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  7. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  8. Solar-Geophysical Data Number 538, June 1989. Part 1 (prompt reports). Data for May, April 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-06-01

    Contents include: detailed index for 1988-1989; data for May 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for April 1989--(solar-active regions, sudden ionospheric disturbances, solar radio-spectral observations, geomagnetic indices, radio-propagation indices); late data--(solar active regions--H-alpha synoptic charts 1813 March 1989, solar radio emission--Nancay 169-Mhz solar interferometric chart April 1989, cosmic rays climax and Huancayo--March 1989, geomagnetic indices-sudden commencements/solar flare effects February 1989)

  9. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Science.gov (United States)

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  10. Solids-based concentrated solar power receiver

    Science.gov (United States)

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  11. Solar-geophysical data number 584, April 1993. Part 1 (prompt reports). Data for March, February 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-04-01

    Contents: data for march 1993: solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for february 1993: solar active regions; sudden ionospheric disturbances; solar radio spectral observations; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to studies in communications, environmental science,and solar energy

  12. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    Science.gov (United States)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty

  13. Integrating sphere based reflectance measurements for small-area semiconductor samples

    Science.gov (United States)

    Saylan, S.; Howells, C. T.; Dahlem, M. S.

    2018-05-01

    This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.

  14. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  15. Solar-Geophysical Data Number 539, July 1989. Part 1 (prompt reports). Data for June, May 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-07-01

    Contents include: detailed index for 1988-1989; data for June 1989 -- IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for May 1989 -- solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data -- solar radio emission (Nancay 169-MHz solar interferometric chart, May 1989)

  16. Solar-Geophysical Data Number 551, July 1990. Part 1 (prompt reports). Data for June, May 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-07-01

    ;Contents: Detailed index for 1989-1990; Data for June 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for May 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Geomagnetic indices February-April 1990--sudden commencements/solar flare effects

  17. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  18. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Science.gov (United States)

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  19. Studies of diffuse and direct solar radiation over snow

    International Nuclear Information System (INIS)

    Wesely, M.L.; Everett, R.G.

    1976-01-01

    Two interesting questions can be addressed by examination of solar radiation records obtained while the surface is covered with snow. One concerns the extent to which airborne particulate matter affects solar radiation received at the surface during winter conditions that are typical of those in the northeastern quarter of the United States. The other relates to the importance of complicated light scatterng in the earth-atmosphere system when the surface albedo is large. With the snow surface reflecting 50% or more of the incident radiation, it is likely that a significant addition to diffuse radiation would result from light that is reflected from the surface and then scattered back to the earth by the atmosphere. Preliminary data from measurements made during the winter of 1975 to 1976 are reported

  20. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  1. Organic wavelength selective mirrors for luminescent solar concentrators

    NARCIS (Netherlands)

    Verbunt, P.P.C.; Debije, M.G.; Broer, D.J.; Bastiaansen, C.W.M.; Boer, de D.K.G.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    Organic polymeric chiral nematic liquid crystalline (cholesteric) wavelength selective mirrors can increase the efficiency of luminescent solar concentrators (LSCs) when they are illuminated with direct sunlight normal to the device. However, due to the angular dependence of the reflection band, at

  2. Physics and chemistry of the solar nebula.

    Science.gov (United States)

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  3. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  4. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    International Nuclear Information System (INIS)

    Munji, M.K.; Dyk, E.E. van; Vorster, F.J.

    2009-01-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V oc ) and short circuit current (I sc ) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  5. Spectral curves of surface reflectance in some Antarctic regions

    International Nuclear Information System (INIS)

    Lupi, A.; Tomasi, C.; Orsini, A.; Cacciari, A.; Vitale, V.; Georgiadis, T.; Casacchia, R.; Salvatori, R.; Salvi, S.

    2001-01-01

    Four surface reflectance models of solar radiation were determined by examining several sets of field measurements taken for clear-sky conditions at various sites in Antarctica. Each model consists of the mean spectral curve of surface reflectance in the 0.25-2.7 μm wavelength range and of the dependence curve of total abedo on the solar elevation angle h, within the range from 5 0 to 55 0 . The TNB (Terra Nova Bay) model refers to a rocky terrain where granites are predominant; the NIS (Nansen Ice Sheet) model to a glacier surface made uneven by sastrugi and streaked by irregular fractures; the HAP (High Altitude Plateau) model to a flat ice surface covered by fresh snow and scored by light sastrugi; and the RIS (Ross Ice Shelf) model to an area covered by the sea ice pack presenting many discontinuities in the reflectance features, due to melt water lakes, puddles, refrozen ice and snow pots. The reflectance curve obtained for the TNB model presents gradually increasing values as wavelength increases through the visible spectral range and almost constant values at infrared wavelengths, giving a total albedo value equal to 0.264 at = 30 0 , which increases by about 80% through the lower range of h and decreases by 12% through the upper range. The reflectance curves of the NIS, HAP and RIS models are all peaked at visible wavelengths and exhibit decreasing values throughout the infrared spectral range, giving values of total albedo equal to 0.464, 0.738 and 0.426 at h 30 0 , respectively. These values were estimated to increase by 8-14% as h decreases from 30 0 to 5 0 and to decrease by 2-4% only as h increases from 30 0 to 55 0

  6. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  7. Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media

    KAUST Repository

    Wang, Tengfei

    2017-08-17

    Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual. Since traveltime information relates to the background model more linearly, we use the traveltime residuals as objective function to update background velocity model using wave equation reflected traveltime inversion (WERTI). The reflection kernel analysis shows that mode decomposition can suppress the artifacts in gradient calculation. We design a two-step inversion strategy, in which PP reflections are firstly used to invert P wave velocity (Vp), followed by S wave velocity (Vs) inversion with PS reflections. P/S separation of multi-component seismograms and spatial wave mode decomposition can reduce the nonlinearity of inversion effectively by selecting suitable P or S wave subsets for hierarchical inversion. Numerical example of Sigsbee2A model validates the effectiveness of the algorithms and strategies for elastic WERTI (E-WERTI).

  8. Solar--geophysical data number 410, October 1978. Part II. (Comprehensive reports). Data for April 1978--March 1978 and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-10-01

    This comprehensive report for April 1978, March 1978 and Miscellaneous data provides data on active regions, synoptic solar maps, solar flares, solar radio waves, energetic solar particles and plasma, synoptic chart, abbreviated calendar record, regional flare index, solar x-ray radiation, cosmic rays, energetic solar particles and plasma for March 1978 and solar flares for February 1978

  9. Cost-effectiveness of solar energy in energy-efficient buildings

    International Nuclear Information System (INIS)

    Kessler, S.; Iten, R.; Vettori, A.; Haller, A.; Ochs, M.; Keller, L.

    2005-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed

  10. Performance evaluation and solar radiation capture of optimally inclined box type solar cooker with parallelepiped cooking vessel design

    International Nuclear Information System (INIS)

    Sethi, V.P.; Pal, D.S.; Sumathy, K.

    2014-01-01

    Highlights: • Optimally inclined solar cooker is presented for efficient cooking. • A new parallelepiped shaped cooking vessel for higher solar radiation capture is presented. • Optimum tilt angles of the boosted mirror are computed for maximization of reflected components. • Solar radiation capture ratios show the better cooking performance of inclined cooker. • Standard performance parameters establish the better cooking performance of inclined cooker. - Abstract: An optimally inclined box type solar cooker with single booster mirror is presented along with design and development of a novel parallelepiped shaped cooking vessel design for efficient cooking especially in winter conditions. The main feature of new parallelepiped shaped design is its longer inclined south wall (facing the sun) and a trapezoidal cavity on the vessel lid for greater heat transfer to the food material. The ends of the vessel towards east and west direction are minimized. The cooking performance parameters of proposed inclined cooker coupled with new vessel design were compared with horizontally placed identical cooker of same material and dimensions coupled with conventional cylindrical vessel design during winter month (January) of the year 2010 at Ludhiana climate (30°N 77°E), India. Results showed that the first and the second figures of merit (F 1 and F 2 ) for inclined cooker were 0.16 and 0.54 as compared to 0.14 and 0.43 for horizontally placed cooker. Time taken to boil the water τ boil and standard cooking power P n was 37% less and 40% more respectively in parallelepiped shaped cooking vessel of inclined cooker as compared to conventional cylindrical vessel of horizontally placed cooker. A mathematical model is developed to compute the total solar radiation availability on the absorber plate of inclined as well as horizontal cooker which establishes the better cooking performance of the inclined cooker due to greater width of sun rays intercepting the absorber

  11. The Solar Jobs Book: How to Take Part in the New Movement Toward Energy Self-Sufficiency.

    Science.gov (United States)

    Ericson, Katharine

    Solutions to this country's energy problems can be found through a combination of conservation measures and solar technology. Accordingly, this book provides an overview of employment in the solar energy and energy conservation fields, an analysis of related life styles and working situations, a listing of solar energy programs and agencies, and a…

  12. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  13. A Monte Carlo Ray Tracing Model to Improve Simulations of Solar-Induced Chlorophyll Fluorescence Radiative Transfer

    Science.gov (United States)

    Halubok, M.; Gu, L.; Yang, Z. L.

    2017-12-01

    A model of light transport in a three-dimensional vegetation canopy is being designed and evaluated. The model employs Monte Carlo ray tracing technique which offers simple yet rigorous approach of quantifying the photon transport in a plant canopy. This method involves simulation of a chain of scattering and absorption events incurred by a photon on its path from the light source. Implementation of weighting mechanism helps avoid `all-or-nothing' type of interaction between a photon packet and a canopy element, i.e. at each interaction a photon packet is split into three parts, namely, reflected, transmitted and absorbed, instead of assuming complete absorption, reflection or transmission. Canopy scenes in the model are represented by a number of polygons with specified set of reflectances and transmittances. The performance of the model is being evaluated through comparison against established plant canopy reflectance models, such as 3D Radiosity-Graphics combined model which calculates bidirectional reflectance distribution function of a 3D canopy scene. This photon transport model is to be coupled to a leaf level solar-induced chlorophyll fluorescence (SIF) model with the aim of further advancing of accuracy of the modeled SIF, which, in its turn, has a potential of improving our predictive capability of terrestrial carbon uptake.

  14. Modelling solar radiation interception in row plantation. 3. Application to a traditional vineyard

    International Nuclear Information System (INIS)

    Sinoquet, H.; Valancogne, C.; Lescure, A.; Bonhomme, R.

    1992-01-01

    Modeling solar radiation interception in row plantation. III. Application to a traditional vineyard. A previously described model of solar radiation interception was applied to a spatially discontinuous canopy: that of a traditional vineyard in which the classical terms of the radiative balance and the spatial distribution of the radiation transmitted to the soil were measured. Comparison of measured and simulated data gave satisfactory agreement for reflected radiation (fig 4), but major discrepancies appeared for mean transmitted radiation (fig 5). The use of small stationary sensors for measuring the transmitted radiation explains the latter observation, since most of the time they measured radiation received on the ground in the sunflecks or in the shaded area rather than mean radiation. This was verified by comparing the measured and simulated spatial distribution of transmitted radiation (figs 7, 8). Finally, the influence of the woody parts which were not taken into consideration in the model was clearly identified : it significantly reduced the transmission of incident radiation (fig 9), and to a greater degrees the closer the sensor was to the vegetation row [fr

  15. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  16. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  17. A Three-Year Reflective Writing Program as Part of Introductory Pharmacy Practice Experiences

    Science.gov (United States)

    Vaughn, Jessica; Kerr, Kevin; Zielenski, Christopher; Toppel, Brianna; Johnson, Lauren; McCauley, Patrina; Turner, Christopher J.

    2013-01-01

    Objectives. To implement and evaluate a 3-year reflective writing program incorporated into introductory pharmacy practice experiences (IPPEs) in the first- through third-year of a doctor of pharmacy (PharmD) program. Design. Reflective writing was integrated into 6 IPPE courses to develop students’ lifelong learning skills. In their writing, students were required to self-assess their performance in patient care activities, identify and describe how they would incorporate learning opportunities, and then evaluate their progress. Practitioners, faculty members, and fourth-year PharmD students served as writing preceptors. Assessment. The success of the writing program was assessed by reviewing class performance and surveying writing preceptor’s opinions regarding the student’s achievement of program objectives. Class pass rates averaged greater than 99% over the 8 years of the program and the large majority of the writing preceptors reported that student learning objectives were met. A support pool of 99 writing preceptors was created. Conclusions. A 3-year reflective writing program improved pharmacy students’ reflection and reflective writing skills. PMID:23788811

  18. A review of recent progress in heterogeneous silicon tandem solar cells

    Science.gov (United States)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  19. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  20. IRAC Reflectances of Cold Classical KBOs and Centaurs

    Science.gov (United States)

    Emery, Joshua; Brown, Michael; Cruikshank, Dale; Dalle Ore, Cristina; Fernandez, Yanga; Fraser, Wes; Stansberry, John; Trilling, David

    2009-04-01

    We propose to measure reflected fluxes of 22 Centaurs and 27 cold classical Kuiper belt objects (KBOs) with IRAC in order to determine surface compositions. The small bodies of the outer solar system provide probes of the statistical conditions, history, and interactions in the solar system. We focus in this proposal on two groups that isolate two key aspects of the complicated larger puzzle: starting compositions and physical effects of thermal evolution. The cold classical KBOs are the only dynamical group among the Kuiper belt that remain in (or very near) the region in which they formed (~40 AU), offering insight into the conditions in a known region of the early nebula. The prevailing hypothesis that their surfaces are dominated by complex organic molecules derived from irradiation of originally CH4-rich bodies will be directly tested by searching for strong absorption within the 3.6 micron channel. A subset will also be observed at 4.5 microns as a measure of other volatiles (e.g., residual CH4, CO2, N2) informative of original compositions. The Centaurs have been scattered inward into their unstable orbits among the giant planets. While closer to the Sun, accelerated thermal evolution is hypothesized to replace thin organic mantles with dust coatings through vigorous sublimation, creating the two distinct color groups (less red/gray and ultra-red). We will test this hypothesis by searching for and characterizing absorptions at 3.6 micron due to the hypothesized organics. The IRAC 3.6 and 4.5 micron reflectances will distinguish among multiple surface compositions that could explain the less red/gray group, only one of which (silicate dust) is consistent with the prevailing hypothesis. No other existing or near-term ground or space-based facility can measure reflectances at these critical wavelengths for these faint bodies. Our cycle-2 and cycle-4 programs to observe an initial set of outer solar system objects have been tremendously successful, and this