Sample records for solar reflectance built-up

  1. Built-up structure criticality

    Vasata, Daniel; Seba, Petr


    The built-up land represents an important type of overall landscape. In this paper the built-up land structure in the largest cities in the Czech Republic and selected cities in the U.S.A. is analysed using the framework of statistical physics. We calculate the variance of the built-up area and the number variance of built-up landed plots in discs. In both cases the variance as a function of a disc radius follows a power law. The obtained values of power law exponents are comparable through different cities. The study is based on cadastral data from the Czech Republic and building footprints from GIS data in the U.S.A.

  2. Lighting outside built-up areas.

    Asmussen, E.


    Lezing gehouden op 21/26 september in London 1964 handelend over verlichting buiten de bebouwde kom. (Engelse versie). Shortened version of the paper on Lighting of roads outside built-up areas prepared for theme III, Ways of reducing the Frequency of accidents, discussed at the International Study

  3. Statistics tolerances on built up guns.

    J. P. Sirpal


    Full Text Available The strength of built up guns depends on the shrinkages allowed between cylinders and therefore for a given strength, the assembly is either selective or the nominal sizes are so chosen as to give the required shrinkage for a worst combination, it can be seen from the analysis that with little disadvantage tolerances can be greatly increased assuming random assemblies of parts whose sizes follow a normal pattern. This can bring down production costs considerably.

  4. Built-up Land Expansion in Urban China

    Chen, Yi; Chen, Zhigang; Huang, Xianjin


    Since the implementation of the reform and opening-up, rapid expansion of built-up land has caused a rapid reduction of arable land. The Ministry of Land and Resources of the People' s Republic of China has strengthened the management of built-up land through the basic arable land protection and the quota allocation of built-up land to control the urban sprawl. In addition, the general land use planning and the annual land use plan have been used to further ensure the effectiveness of land use management and control. However, the trend of built-up land expansion has not been effectively restrained. The built-up land expansion increased from 31.92 × 106 hm2 in 2005 to 38.89 × 106 hm2 in 2012. The rapid expansion of built-up land has been the major feature of land use changes in China and has led to built-up land vacancy and inefficient land use. This paper used a Data Envelopment Analysis (DEA) model to analyze the changes in built-up land efficiency in 336 cities in China from 2005 to 2012 during the implementation of National General Land Use Plan (2006-2020) (NGLUP). The results showed that the built-up land input-output efficiency of most cities declined, and more than half of the cities had excessive inputs of built-up land. Even in the most developed region of China, the built-up land efficiency was relatively low. The paper argues that the NGLUP failed to control the expansion of built-up land and to promote intensive land use. The allocation of built-up land designated by the Plan was not reasonable, and economic development has greatly relied on land inputs, which need to be improved. The paper finally suggests that the built-up land indices should be appropriately directed toward economically underdeveloped regions in central and western China, and the establishment of a withdrawal mechanism for inefficient land would better promote the efficient allocation of built-up land.

  5. Enhanced Built-Up and Bareness Index (EBBI for Mapping Built-Up and Bare Land in an Urban Area

    I Wayan Arthana


    Full Text Available Remotely sensed imagery is a type of data that is compatible with the monitoring and mapping of changes in built-up and bare land within urban areas as the impacts of population growth and urbanisation increase. The application of currently available remote sensing indices, however, has some limitations with respect to distinguishing built-up and bare land in urban areas. In this study, a new index for transforming remote sensing data for mapping built-up and bare land areas is proposed. The Enhanced Built-Up and Bareness Index (EBBI is able to map built-up and bare land areas using a single calculation. The EBBI is the first built-up and bare land index that applies near infrared (NIR, short wave infrared (SWIR, and thermal infrared (TIR channels simultaneously. This new index was applied to distinguish built-up and bare land areas in Denpasar (Bali, Indonesia and had a high accuracy level when compared to existing indices. The EBBI was more effective at discriminating built-up and bare land areas and at increasing the accuracy of the built-up density percentage than five other indices.

  6. VT Built Up Lands in Grand Isle County - 1977

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  7. VT Built Up Lands in Grand Isle County - 1941

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  8. VT Built Up Lands in Grand Isle County - 1995

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  9. VT Built Up Lands in Grand Isle County - 1962

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  10. VT Built Up Lands in Grand Isle County - 1980

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  11. VT Built Up Lands in Grand Isle County - 1986

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  12. VT Built Up Lands in Grand Isle County - 1974

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  13. VT Built Up Lands in Grand Isle County - 2003

    Vermont Center for Geographic Information — (Link to Metadata) NRCS mapped historical and current-day built-up lands for Grand Isle County, VT using several vintages of aerial photography: 1941, 1962, 1974,...

  14. Implementation of solar-reflective surfaces: Materials and utility programs

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.


    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  15. In situ built-up air collector with glass cover

    Kristiansen, Finn Harken; Engelmark, Jesper


    as an absorber. Efficiency and aair pressure drop were measured. The efficiency of the two air solar collectors was almost similar and at the same level as other corresponding air solar collectors. The air pressure drop was somewhat larger in the case of the solar collector where the air flows behind...... with a cover of glass where the horizontal joints were made by means of different methods and materials. As a general principle a water-damming border at the horizontal glass joints was avoided. The test box was built as a solar collector with 14 different horizontal joints between the glasses. The box...... the absorber. This is due to the narrower air gap behind the absorber. Condensation has been observed in both the solar collectors, this has not been investigated more explicitly,...

  16. The On Line Management of the Degraded Locations within Built Up Areas

    Eugenia Iancu


    Full Text Available The present work presents the accomplishmentswithin the research project CEEX „Telematic system for theon line management of the degraded within built up areas –ZoneMAP” in the program INFOSOC between 15.09.2006-31.10.2007. The authors of the present article are part of thecommittee of accomplishment of the project. The generalobjective of the project ZoneMAP consists of the system forthe management and the on line monitoring of the degradedwithin the built up areas due to the uncontrolled wastestoring, by elaborating an electronic system of geographicalpositioning GPS/GIS.The general objective of the ZoneMAP project consists indrawing up a telematic system regarding the monitoring ofthe areas affected by the uncontrollable waste storing byusing the newest informational and communicationaltechnologies through the elaboration of a GPS/GIS electronicgeographical positioning system.The system for on-line management of the affectedlocations within the built up areas are defined the followingdata categories: data regarding the waste management(monitored locations within the built up areas, waste,pollution sources, waste stores, waste processing stations,data regarding the environment protection (environmentalquality parameters: water, air, soil, spatial data (thematicmaps.Through the automatic collection of the data regarding theenvironment, the meteorology and the ecology it is aiming atthe realization of a monitoring system, equipped with sensorsand/or translators capable of measuring and translating (intoelectrical signals measures with meteorological character(such as: the intensity of the solar radiation, temperature,humidity but also state measures of the ecological system(such as: the concentration of nutrients in water and soil, thepollution in water, air and soil, biomasses. The collectedmeasures will have to be converted into numerical valuesthat will be stored in the database of the system.The system’s database is distributed on

  17. Population Growth and Its Expression in Spatial Built-up Patterns: The Sana’a, Yemen Case Study

    Gunter Zeug


    Full Text Available In light of rapid global urbanisation, monitoring and mapping of urban and population growth is of great importance. Population growth in Sana’a was investigated for this reason. The capital of the Republic of Yemen is a rapidly growing middle sized city where the population doubles almost every ten years. Satellite data from four different sensors were used to explore urban growth in Sana’a between 1989 and 2007, assisted by topographic maps and cadastral vector data. The analysis was conducted by delineating the built-up areas from the various optical satellite data, applying a fuzzy-rule-based composition of anisotropic textural measures and interactive thresholding. The resulting datasets were used to analyse urban growth and changes in built-up density per district, qualitatively as well as quantitatively, using a geographic information system. The built-up area increased by 87 % between 1989 and 2007. Built-up density has increased in all areas, but particularly in the northern and southern suburban districts, also reflecting the natural barrier of surrounding mountain ranges. Based on long-term population figures, geometric population growth was assumed. This hypothesis was used together with census data for 1994 and 2004 to estimate population figures for 1989 and 2007, resulting in overall growth of about 240%. By joining population figures to district boundaries, the spatial patterns of population distribution and growth were examined. Further, urban built-up growth and population changes over time were brought into relation in order to investigate changes in population density per built-up area. Population densities increased in all districts, with the greatest density change in the peripheral areas towards the North. The results reflect the pressure on the city’s infrastructure and natural resources and could contribute to sustainable urban planning in the city of Sana’a.

  18. Multilayer reflective coating for solar energy concentrators

    Hernandez, Perla; Almanza, Rafael [Inst. de Ingenieria, Univ. Nacional Autonoma de Mexico, Mexico (Mexico); Cruz-Manjarrez, Hector [Inst. de Fisica, Univ. Nacional Autonoma de Mexico, Mexico (Mexico)


    The central objective of this work is determine the optimal parameters for the preparation of compound mirrors of first surface of high reflectance by the magnetron sputtering method that will have a direct application in parabolic trough solar concentrators to use in a hybrid solar-geothermal Geothermal Plant at Cerro Prieto, located to the South-eastern of Mexicali City at the Northwest of Mexico. (orig.)

  19. Monitoring the expansion of built-up areas in Seberang Perai region, Penang State, Malaysia

    Samat, N.


    Rapid urbanization has caused land use transformation and encroachment of built environment into arable agriculture land. Uncontrolled expansion could bring negative impacts to society, space and the environment. Therefore, information on expansion and future spatial pattern of built-up areas would be useful for planners and decision makers in formulating policies towards managing and planning for sustainable urban development. This study demonstrates the usage of Geographic Information System in monitoring the expansion of built-up area in Seberang Perai region, Penang State, Malaysia. Built-up area has increased by approximately 20% between 1990 and 2001 and further increased by 12% between 2001 and 2007. New development is expected to continue encroach into existing open space and agriculture area since those are the only available land in this study area. The information on statistics of the expansion of built-up area and future spatial pattern of urban expansion were useful in planning and managing urban spatial growth.

  20. Seismic Behavior of concrete filled steel Tubular Built-up columns

    Huang, Yufan


    With the advantages of CFST built-up columns, including the higher confinement in the concrete, delay of the steel local buckling, higher compressive and flexural strength, earthquake and fire resistance, rapid construction, savings in the construction costs, etc. CFST built-up columns are increasing adopted in structural members with larger load eccentricity ratio and slenderness ratio, such as stadium, industrial buildings, bridge pier and pillar, and electrical transmission tower. However,...

  1. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele


    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (pcities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot-Spots) that would benefit most from mitigation actions by local authorities, land-use decision

  2. A method for extracting urban built-up area based on RS indexes

    Qin, Ruijiao; Li, Jiansong; Tang, Huijun


    Within administrative regions, urban built-up areas are vast stretches of constructed areas equipped with basic public facilit ies. Human act ivit ies most frequently take place within urban regions and the dynamic evolution of urbanization has caused profound variations in urban spatial structures. Conventional boundary extraction methods are complicated and require human intervention. This article innovatively proposes a vector method that combines a data-dimension compression index known as an Index-based Built -up Index (IBI) with aggregate analysis to extract vector boundaries of urban built-up areas automatically by setting a threshold value and the parameters for aggregate analysis. Datadimension compression technology is used to extract urban built-up areas using thematic bands (rather than original bands) to build indexes, which improves the precision of extraction. Areas ext racted by the methods above contains urban built-up areas, rural built-up areas, independent houses and fully bare areas. Aggregate analysis aggregates a certain range of non-adjacent plots into a new polygon section. This method has made it easy to analyze the spatial expansion of Wuhan city from 2003 to 2013. This method avoids cumbersome process es of outlining vector boundaries by artificial visual interpretation with a better working efficiency and reduced costs than other methods, which cannot accurately determine vector boundaries to an accurate degree by manual vector quantizat ion without depending on other data or expert knowledge. Compared with t raditional boundary extraction methods, this vector method is more efficient, precise, objective, and exquisite.

  3. Practical issues for using solar-reflective materials to mitigate urban heat islands

    Bretz, Sarah; Akbari, Hashem; Rosenfeld, Arthur

    Solar-reflective or high-albedo, alternatives to traditionally absorptive urban surfaces such as rooftops and roadways can reduce cooling energy use and improve urban air quality at almost no cost. This paper presents information to support programs that mitigate urban heat islands with solar-reflective surfaces: estimates of the achievable increase in albedo for a variety of surfaces, issues related to the selection of materials and costs and benefits of using them. As an example, we present data for Sacramento, California. In Sacramento, we estimate that 20% of the 96 square mile area is dark roofing and 10% is dark pavement. Based on the change in albedo that is achievable for these surfaces, the overall albedo of Sacramento could be increased by 18%, a change that would produce significant energy savings and increase comfort within the city. Roofing market data indicate which roofing materials should be targeted for incentive programs. In 1995, asphalt shingle was used for over 65% of residential roofing area in the U.S. and 6% of commercial. Built-up roofing was used for about 5% of residential roofing and about 30% of commercial roofing. Single-ply membranes covered about 9% of the residential roofing area and over 30% of the commercial area. White, solar-reflective alternatives are presently available for these roofing materials but a low- first-cost, solar-reflective alternative to asphalt shingles is needed to capture the sloped-roof market. Since incoming solar radiation has a large non-visible component, solar-reflective materials can also be produced in a variety of colors.

  4. Solar photovoltaic reflective trough collection structure

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.


    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  5. Target-driven extraction of built-up land changes from high-resolution imagery

    Zhang, Ying; Guindon, Bert; Li, Xinwu; Lantz, Nicholas; Sun, Zhongchang


    Information on land conversion to modern urban use is needed for many studies such as the impact of urbanization on environmental quality. Although extensive remote sensing research has been undertaken to detect conversion of nonurban to urban lands, little effort has been directed at assessing modernization of existing built-up land. Detection and quantification of this class of urban growth present significant challenges since the difference between radiometric signatures before and after "land modernization" is much more subtle and complicated than the case of conversion from typical rural to impervious urban land surfaces. A target-driven approach is presented for an efficient extraction of built-up land change distribution that provides superior results to those based on the traditional data-driven land cover approaches. The extraction strategy, integrating pixel- and object-based methodologies, is comprised of three components: delineation of the baseline built-up areas, detection of the areas that have undergone change, and integration of targeted change features to generate a final built-up land change map. A case study was carried out using RapidEye and SPOT5 images over suburban Beijing, China. The overall accuracy of built-up change mapping is about 91% and exceeds accuracies achievable by pixel or segment processing used in isolation.

  6. Open Street Map Data as Source for Built-Up and Urban Areas on Global Scale

    Brinkhoff, Thomas


    Many types of applications require information about built-up areas and urban areas. Thus, there is a need for a global, vector-based, up-to-date, and free dataset of high resolution and accuracy. The OpenStreetMap (OSM) dataset fulfills those demands in principle. However, its focus is not land use or land cover. These observations lead to following questions: (1) Which OSM features can be used for computing built-up areas on global scale? (2) How can we derive built-up and urban areas on global scale in sufficient accuracy and performance by using standard software and hardware? (3) Is the quality of the result sufficient on global scale? In this paper, we investigate the first two questions in detail and give some insights into the third question.

  7. Built-up Al-Li structures for cryogenic tank and dry bay applications

    Lisagor, W. Barry


    The objectives are: (1) to demonstrate the cost benefits of built-up cryotank and dry bay structures; (2) to study of benefits of using Al alloys; (3) to study of benefit of using Al-Li alloys; (4) to evaluate alternative low-cost stiffener and joining concepts.

  8. Built-up Al-Li structures for cryogenic tank and dry bay applications

    Lisagor, W. Barry


    The objectives are: (1) to demonstrate the cost benefits of built-up cryotank and dry bay structures; (2) to study of benefits of using Al alloys; (3) to study of benefit of using Al-Li alloys; (4) to evaluate alternative low-cost stiffener and joining concepts.

  9. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    Hobson, Joseph W.


    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  10. Built-up edge investigation in vibration drilling of Al2024-T6.

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A


    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling.

  11. A Supervised Approach to Delineate Built-Up Areas for Monitoring and Analysis of Settlements

    Oliver Harig


    Full Text Available Monitoring urban growth and measuring urban sprawl is essential for improving urban planning and development. In this paper, we introduce a supervised approach for the delineation of urban areas using commonly available topographic data and commercial GIS software. The method uses a supervised parameter optimization approach along with buffer-based quality measuring method. The approach was developed, tested and evaluated in terms of possible usage in monitoring built-up areas in spatial science at a very fine-grained level. Results show that built-up area boundaries can be delineated automatically with higher quality compared to the settlement boundaries actually used. The approach has been applied to 166 settlement bodies in Germany. The study shows a very efficient way of extracting settlement boundaries from topographic data and maps and contributes to the quantification and monitoring of urban sprawl. Moreover, the findings from this study can potentially guide policy makers and urban planners from other countries.

  12. The properties and microstructure of padding welds built up on the surface of forging dies

    S. Pytel


    Full Text Available The study presents selected results of the examinations of the properties and microstructure of weld overlays built up with the UTOP38,F-812 and F-818 welding wires on a substrate of the 42CrMo4 structural steel. Among others, the following investigations were carriedout: bend tests, hardness measurements and determination of ferrite content in a bainitic-martensitic microstructure of UTOP38 and F-812layers.

  13. Measuring solar reflectance Part II: Review of practical methods

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul


    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23{sup o}], and to within 0.02 for surface slopes up to 12:12 [45{sup o}]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R*{sub g,0}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R*{sub g,0} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R*{sub g,0} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R*{sub g,0} to within about 0.01.


    LÁZÁR I.


    Full Text Available his study is concerned with the examination of roughness factor affecting wind potential in low built-up urban areas (e.g. subdivision, light industrial area. The test interval is the transition between summer and winter, as a secondary wind maximum period. The ten-minute data-pairs empirical distribution was approached by several theoretical distributions where a fitting test research was also performed. Extrapolation to higher levels is possible by defining the Hellmann exponent. The wind speed in respective height and the specific wind power are derived from it. Knowing the daily progress of the Hellmann exponent value, more accurate estimation can be given of the wind potential calculated to different heights according to the measuring point. The results were compared to the surface cover of the surrounding area as well as to the literary alpha values.

  15. Modelling the propagation of smoke from a tanker fire in a built-up area.

    Brzozowska, Lucyna


    The paper presents the application of a Lagrangian particle model to problems connected with safety in road transport. Numerical simulations were performed for a hypothetical case of smoke emission from a tanker fire in a built-up area. Propagation of smoke was analysed for three wind directions. A diagnostic model was used to determine the air velocity field, whereas the dispersion of pollutants was analysed by means of a Lagrangian particle model (Brzozowska, 2013). The Idrisi Andes geographic information system was used to provide data on landforms and on their aerodynamic roughness. The presented results of computations and their analysis exemplify a possible application of the Lagrangian particle model: evaluation of mean (averaged over time) concentrations of pollutants and their distribution in the considered area (especially important due to the protection of people, animals and plants) and simulation of the propagation of harmful compounds in time as well as performing computations for cases of the potential effects of road incidents.

  16. A Novel Technique Based on the Combination of Labeled Co-Occurrence Matrix and Variogram for the Detection of Built-up Areas in High-Resolution SAR Images

    Na Li


    Full Text Available Interests in synthetic aperture radar (SAR data analysis is driven by the constantly increased spatial resolutions of the acquired images, where the geometries of scene objects can be better defined than in lower resolution data. This paper addresses the problem of the built-up areas extraction in high-resolution (HR SAR images, which can provide a wealth of information to characterize urban environments. Strong backscattering behavior is one of the distinct characteristics of built-up areas in a SAR image. However, in practical applications, only a small portion of pixels characterizing the built-up areas appears bright. Thus, specific texture measures should be considered for identifying these areas. This paper presents a novel texture measure by combining the proposed labeled co-occurrence matrix technique with the specific spatial variability structure of the considered land-cover type in the fuzzy set theory. The spatial variability is analyzed by means of variogram, which reflects the spatial correlation or non-similarity associated with a particular terrain surface. The derived parameters from the variograms are used to establish fuzzy functions to characterize the built-up class and non built-up class, separately. The proposed technique was tested on TerraSAR-X images acquired of Nanjing (China and Barcelona (Spain, and on a COSMO-SkyMed image acquired of Hangzhou (China. The obtained classification accuracies point out the effectiveness of the proposed technique in identifying and detecting built-up areas.

  17. Standardization of Solar Mirror Reflectance Measurements - Round Robin Test: Preprint

    Meyen, S.; Lupfert, E.; Fernandez-Garcia, A.; Kennedy, C.


    Within the SolarPaces Task III standardization activities, DLR, CIEMAT, and NREL have concentrated on optimizing the procedure to measure the reflectance of solar mirrors. From this work, the laboratories have developed a clear definition of the method and requirements needed of commercial instruments for reliable reflectance results. A round robin test was performed between the three laboratories with samples that represent all of the commercial solar mirrors currently available for concentrating solar power (CSP) applications. The results show surprisingly large differences in hemispherical reflectance (sh) of 0.007 and specular reflectance (ss) of 0.004 between the laboratories. These differences indicate the importance of minimum instrument requirements and standardized procedures. Based on these results, the optimal procedure will be formulated and validated with a new round robin test in which a better accuracy is expected. Improved instruments and reference standards are needed to reach the necessary accuracy for cost and efficiency calculations.

  18. Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection

    Zhongwen Hu


    Full Text Available The accurate extraction and mapping of built-up areas play an important role in many social, economic, and environmental studies. In this paper, we propose a novel approach for built-up area detection from high spatial resolution remote sensing images, using a block-based multi-scale feature representation framework. First, an image is divided into small blocks, in which the spectral, textural, and structural features are extracted and represented using a multi-scale framework; a set of refined Harris corner points is then used to select blocks as training samples; finally, a built-up index image is obtained by minimizing the normalized spectral, textural, and structural distances to the training samples, and a built-up area map is obtained by thresholding the index image. Experiments confirm that the proposed approach is effective for high-resolution optical and synthetic aperture radar images, with different scenes and different spatial resolutions.

  19. Losses in a built-up conductor for large pulsed coils

    Thompson, J.D.; Wollan, J.J.; Turck, B.; Schermer, R.I.


    Hysteretic and pulsed-field loss measurements have been performed on cables built up from a basic Nb-Ti composite conductor. Measurements were performed on the basic composite; on first-level cables, consisting of six soft copper wires twisted tightly around the basic composite; and on second-level cables, fabricated by twisting six first-level cables around either a bare or formvar-insulated center copper wire. Results of the measurements were analyzed in terms of a recent theory by Turck for losses in multifilamentary wires. We found from this analysis that contact resistances between constituent conductors in both first- and second-level cables play an important role in determining the pulsed-field loss values. We have been able to vary the degree of interstrand resistive coupling by compacting the cables and by solder-filling them. When the contact is good, as for solder-filled cables, the losses increase by about a factor of 7.5 for long pulse times relative to non-solder-filled, non-compacted cables. For relatively high contact resistances, as for unsoldered cables, the constituent conductors are more nearly decoupled from each other and the losses are low. From the study we have found that it is possible to produce, in a simple manner, fully-stabilized, high-current cables that exhibit low pulsed-field losses. Such conductors are attractive for application in Tokomak induction heating and energy storage magnets.

  20. Regional differences and determinants of built-up area expansion in China


    Based on remote sensing data on land use provided by the Chinese Academy of Sciences and socioeconomic data collected by the authors, this paper analyzes the trends and regional differences in built-up area (BUA) expansion in China from the late 1980s to 2000, and empirically estimates the major determinants of BUA expansion in different regions in 1996-2000. In 1989-2000, although China's overall BUA expansion accelerated, the trends differed significantly among regions. BUA expansion in the central and western regions accelerated significantly, but it slowed down considerably in the eastern region. The estimation results from our econometric analysis reveal that BUA expansion in the eastern region reached a period when economic growth had no further significant impact on per capita BUA, the land utilization in this region has become more intensive with further expansion of the economy. In the central and western regions, the BUA has expanded remarkably due to the relatively more flexible land development policies and the relatively cheap land prices. Therefore, as the economy continues to grow rapidly, policies relating to BUA expansion and cultivated land reductions may face more serious challenges in the central and western regions.

  1. Cyclic performance of concrete-filled steel batten built-up columns

    Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.


    Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.

  2. Seismic vulnerability evaluation of axially loaded steel built-up laced members II: evaluations

    Lee, Kangmin; Bruneau, Michel


    The test results described in Part 1 of this paper (Lee and Bruneau, 2008) on twelve steel built-up laced members (BLMs) subjected to quasi-static loading are analyzed to provide better knowledge on their seismic behavior. Strength capacity of the BLM specimens is correlated with the strength predicted by the AISC LRFD Specifications. Assessments of hysteretic properties such as ductility capacity, energy dissipation capacity, and strength degradation after buckling of the specimen are performed. The compressive strength of BLMs is found to be relatively well predicted by the AISC LRFD Specifications. BLMs with smaller kl/r were ductile but failed to reach the target ductility of 3.0 before starting to fracture, while those with larger kl/r could meet the ductility demand in most cases. The normalized energy dissipation ratio, E C/ E T and the normalized compressive strength degradation, C r″/ C r of BLMs typically decrease as normalized displacements δ/ δ b,exp increase, and the ratios for specimens with larger kl/r dropped more rapidly than for specimens with smaller kl/r; similar trends were observed for the monolithic braces. The BLMs with a smaller slenderness ratio, kl/r, and width-to-thickness ratio, b/t, experienced a larger number of inelastic cycles than those with larger ratios.

  3. Seismic vulnerability evaluation of axially loaded steel built-up laced members Ⅱ: evaluations

    Kangmin Lee; Michel Bruneau


    The test results described in Part 1 of this paper (Lee and Bruneau, 2008) on twelve steel built-up laced members(BLMs) subjected to quasi-static loading are analyzed to provide better knowledge on their seismic behavior. Strengthcapacity of the BLM specimens is correlated with the strength predicted by the AISC LRFD Specifications. Assessmentsof hysteretic properties such as ductility capacity, energy dissipation capacity, and strength degradation after buckling of thespecimen are performed. The compressive strength of BLMs is found to be relatively well predicted by the AISC LRFDSpecifications. BLMs with smaller kl/r were ductile but failed to reach the target ductility of 3.0 before starting to fracture,while those with larger kl/r could meet the ductility demand in most cases. The normalized energy dissipation ratio, ECETand the normalized compressive strength degradation, Cr"/Cr of BLMs typically decrease as normalized displacements δ/δbexpincrease, and the ratios for specimens with larger kl/r dropped more rapidly than for specimens with smaller kl/r; similartrends were observed for the monolithic braces. The BLMs with a smaller slenderness ratio, kl/r, and width-to-thickness ratio,b/t, experienced a larger number of inelastic cycles than those with larger ratios.

  4. Studies of two lanthanide coordination polymers built up from dinuclear units

    B.Benmerad; K.Aliouane; N.Rahahlia; A.Guehria-La(i)doudi; S.Dahaoui; C.Lecomtc


    The two three-dimensional oxo-bridged lanthanides {[Ln2 (C4H2O4)3 (H2O)4]· 3H2O}3x,with Ln=Ho3+ (1); Gd3-(2),are isomorphous.They have layer-type structures built up from non-centrosymmetric dinuclear unit Ln2O12(H2O)4,beside three lattice H2O molecules stabilizing the 3D open-framework.The building entities are linked through one classical syn-anti μ2-carboxylato-κ1O:κ1O' bridge.Within the bi-polyhedra,two double μ2-O'; K2O,O' bridges and a syn-syn classical one,support the magnetic measurements carried out on holmium compound indicating relatively weak anti-ferromagnetic interactions.The comparison with magnetic studies on the almost similar reported Gd(Ⅲ) compound,suggested that concomitant antiferromagnetic and ferromagnetic properties could not be excluded.The two distinct thermal behaviors evidenced the higher metal-water bond strength with the smaller cation,and revealed the great supramolecular effects generated by hydrogen-bonding patterns.

  5. Black Nitrogen as a source for the built-up of microbial biomass in soils

    López-Martín, María; Milter, Anja; Knicker, Heike


    In areas with frequent wildfires, soil organic nitrogen (SON) is sequestered in pyrogenic organic matter (PyOM) due to heat-induced transformation of proteinaceous compounds into N-heterocycles, i.e. pyrrole, imidazole and indole compounds. These newly formed structures, known as Black Nitrogen (BN), have been assumed to be hardly degradable by microorganisms, thus being efficiently sequestered from the N cycle. On the other hand, a previous study showed that nitrogen of BN can be used by plants for the built-up of their biomass (de la Rosa and Knicker 2011). Thus, BN may play an important role as an N source during the recovery of the forest after a fire event. In order to obtain a more profound understanding of the role of BN within the N cycle in soils, we studied the bioavailability and incorporation of N derived from PyOM into microbial amino acids. For that, pots with soil from a burnt and an unburnt Cambisol located under a Mediterranean forest were covered with different amendments. The toppings were mixtures of unlabeled KNO3 with 15N labeled grass or 15N-labeled PyOM from burned grass and K15NO3 mixed with unlabeled grass material or PyOM. The pots were kept in the greenhouse under controlled conditions for 16 months and were sampled after 0.5, 1, 5, 8 and 16 months. From all samples the amino acids were extracted after hydrolysis (6 M HCl, 22 h, 110 °C) and quantified via gas chromatography mass spectrometry (GC/MS). The fate of 15N was followed by isotopic ratio mass spectrometry (IRMS). The results show that the contribution of extractable amino acids to total soil organic matter was always higher in the unburnt than in the burnt soil. However, with ongoing incubation their amount decreased. Already after 0.5 months, some PyOM-derived 15N was incorporated into the extractable amino acids and the amount increased with experiment time. Since this can only occur after prior microbial degradation of PyOM our results clearly support a lower biochemical

  6. Impact of urbanization on plant diversity: A case study in built-up areas of Beijing

    LIANG Yao-qin; LI Jing-wen; LI Jing; Sanna Katrina VALIMAKI


    Urbanization is developing rapidly in the world, which seriously changes the habitat of organisms and has clearly a negative effect on biodiversity. Preservation of biodlversity is crucial in urban planning and management, which is also an important symbol for the level of greening. Problems such as scarcity of urban green space and plant species have become obstacles to the establishment of ecological friendly cities. However, coexistence of nature and modernization, as well the coordination of economic development and biodiversity, are goals that people are seeking. We have taken the built-up areas of Beijing as a study case and discussed the impacts of urbanization on plant diversity, with the support of fieldwork and SPOT remote sensing data. The results are as follows: 1) in the process of urbanization, exotic plants have been widely introduced, which has affected species composition and the proportion of native plants; it is clear that artificial green spaces always will have a lower level of plant diversity than natural green spaces; 2) functional differences of green space types partially decide their species abundance, so that plant diversity in greenbelts and streets is generally lower than in parks; 3) the spatial variety of plant diversity contributes much to the imbalance of district development and the planning of different functional zones; this variation is embodied in different ring-belts and directions; 4) habitat fragmentation also affects plant diversity to a great extent; there is a significant positive correlation between high fragmentation and low plant diversity. According our results, some suggestions are proposed, which would be suitable for the preservation of plant diversity and ecological improvement during urbanization.

  7. Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using Spectral Information and Multivariate Texture

    Jun Zhang


    Full Text Available Urban built-up area information is required by various applications. However, urban built-up area extraction using moderate resolution satellite data, such as Landsat series data, is still a challenging task due to significant intra-urban heterogeneity and spectral confusion with other land cover types. In this paper, a new method that combines spectral information and multivariate texture is proposed. The multivariate textures are separately extracted from multispectral data using a multivariate variogram with different distance measures, i.e., Euclidean, Mahalanobis and spectral angle distances. The multivariate textures and the spectral bands are then combined for urban built-up area extraction. Because the urban built-up area is the only target class, a one-class classifier, one-class support vector machine, is used. For comparison, the classical gray-level co-occurrence matrix (GLCM is also used to extract image texture. The proposed method was evaluated using bi-temporal Landsat TM/ETM+ data of two megacity areas in China. Results demonstrated that the proposed method outperformed the use of spectral information alone and the joint use of the spectral information and the GLCM texture. In particular, the inclusion of multivariate variogram textures with spectral angle distance achieved the best results. The proposed method provides an effective way of extracting urban built-up areas from Landsat series images and could be applicable to other applications.

  8. Characterizing Factors Associated with Built-Up Land Expansion in Urban and Non-Urban Areas from a Morphological Perspective

    Zhonghao Zhang


    Full Text Available In this paper, built-up land expansion patterns and the associated factors were characterized in urban and non-urban areas across the Wen-Tai region of eastern China. Fractal dimension can be used as a reliable indicator of the complexity of built-up land form, and the increasing trend of fractal dimension indicated a more complex, dispersed pattern of built-up land in urban areas. Spatial regression models were quantitatively implemented to identify the indicators influencing the variation of fractal dimensions. Our findings suggested that the fractal dimension of built-up land forms was positively correlated to the patch density and elevation when built-up land expansion was more concentrated. Both landscape shape index and Gross Domestic Product (GDP were positively correlated with fractal dimension in urban areas, and total edge, edge density, and connective index had impacts on fractal dimension in non-urban areas. Slope and agricultural population also showed an influence on fractal dimension. This study provided a new way for urban studies in interpreting the complex interactions between fractal dimension and related factors. The combined approach of fractal dimension and spatial analysis can provide the government planners with valuable information that can be efficiently used to realize the influences of land use policies in urban and non-urban areas.

  9. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry.

    Chuai, Xiaowei; Huang, Xianjin; Lu, Qinli; Zhang, Mei; Zhao, Rongqin; Lu, Junyu


    China is undergoing rapid urbanization, enlarging the construction industry, greatly expanding built-up land, and generating substantial carbon emissions. We calculated both the direct and indirect carbon emissions from energy consumption (anthropogenic emissions) in the construction sector and analyzed built-up land expansion and carbon storage losses from the terrestrial ecosystem. According to our study, the total anthropogenic carbon emissions from the construction sector increased from 3,905×10(4) to 103,721.17×10(4) t from 1995 to 2010, representing 27.87%-34.31% of the total carbon emissions from energy consumption in China. Indirect carbon emissions from other industrial sectors induced by the construction sector represented approximately 97% of the total anthropogenic carbon emissions of the sector. These emissions were mainly concentrated in seven upstream industry sectors. Based on our assumptions, built-up land expansion caused 3704.84×10(4) t of carbon storage loss from vegetation between 1995 and 2010. Cropland was the main built-up land expansion type across all regions. The study shows great regional differences. Coastal regions showed dramatic built-up land expansion, greater carbon storage losses from vegetation, and greater anthropogenic carbon emissions. These regional differences were the most obvious in East China followed by Midsouth China. These regions are under pressure for strong carbon emissions reduction.

  10. Observed winds, turbulence, and dispersion in built-up downtown areas of Oklahoma City and Manhattan

    Hanna, Steven; White, John; Zhou, Ying


    Wind and tracer data from the Oklahoma City Joint Urban 2003 (JU2003) and the Manhattan Madison Square Garden 2005 (MSG05) urban field experiments are being analyzed to aid in understanding air flow and dispersion near street-level in built-up downtown areas. The mean winds are separately calculated for groups of anemometers having similar exposures such as “near street level” and “on building top”. Several general results are found, such as the scalar wind speed at street level is about 1/3 of that at building top. Turbulent standard deviations of wind speed components and temperature, and vertical fluxes of momentum and sensible heat, are calculated from sonic anemometers near street level at 20 locations in JU2003 and five locations in MSG05, and from two rooftop locations in MSG05. The turbulence observations are consistent with observations in the literature at other cities, although the JU2003 and MSG05 data are unique in that many data are available near street level. For example, it is found that the local (i.e., at the measuring height) σw/u_{ast} averages about 1.5 and the local u_{ast}/u averages about 0.25 in the two cities, where σw is the standard deviation of vertical velocity fluctuations, u_{ast} is the friction velocity, and u is the wind speed. The ratio of temperature fluctuations to temperature scale, σT/T_{ast} , averages about -3 in both cities, consistent with similarity theory for slightly unstable conditions, where σT is the standard deviation of temperature fluctuations, and T_{ast} is the temperature scale. The calculated Obukhov length, L, is also consistent with slightly unstable conditions near street level, even at night during JU2003. The SF6 tracer concentration observations from JU2003 are analyzed. Values of uC_{max}/Q for the continuous releases are calculated for each release and arc distance, where C_{max} is the 30-min average arc maximum concentration, Q is the continuous source emission rate, and u is the

  11. Study on the Built-up Effect of Inorganic Compounds to Flame Retardant Containing Organophosphorus in Suppression of Smoke

    LIN Miao; XIAN Chun-ying; YANG Yong


    The built-up effect of inorganic compounds containing more active metal ions, such as Ca2+ , Al3+ , Cu2+ , and Zn2+ , as additives adding to phosphorus-containing flame retarding systems in suppression of smoke was studied. The data presented herein suggested that the amount of smoke in the burning process can be better suppressed after the cotton fabric finishing with built- up system was burnt. Some general principles were identified, and the likely causes of the observed effects were analyzed according to test data.

  12. Error Analysis of p-Version Discontinuous Galerkin Method for Heat Transfer in Built-up Structures

    Kaneko, Hideaki; Bey, Kim S.


    The purpose of this paper is to provide an error analysis for the p-version of the discontinuous Galerkin finite element method for heat transfer in built-up structures. As a special case of the results in this paper, a theoretical error estimate for the numerical experiments recently conducted by James Tomey is obtained.

  13. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul


    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  14. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing

    Slawomir Blonski


    Full Text Available Radiometric calibration coefficients for the VIIRS (Visible Infrared Imaging Radiometer Suite reflective solar bands have been reprocessed from the beginning of the Suomi NPP (National Polar-orbiting Partnership mission until present. An automated calibration procedure, implemented in the NOAA (National Oceanic and Atmospheric Administration JPSS (Joint Polar Satellite System operational data production system, was applied to reprocess onboard solar calibration data and solar diffuser degradation measurements. The latest processing parameters from the operational system were used to include corrected solar vectors, optimized directional dependence of attenuation screens transmittance and solar diffuser reflectance, updated prelaunch calibration coefficients without an offset term, and optimized Robust Holt-Winters filter parameters. The parameters were consistently used to generate a complete set of the radiometric calibration coefficients for the entire duration of the Suomi NPP mission. The reprocessing has demonstrated that the automated calibration procedure can be successfully applied to all solar measurements acquired from the beginning of the mission until the full deployment of the automated procedure in the operational processing system. The reprocessed calibration coefficients can be further used to reprocess VIIRS SDR (Sensor Data Record and other data products. The reprocessing has also demonstrated how the automated calibration procedure can be used during activation of the VIIRS instruments on the future JPSS satellites.

  15. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.


    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  16. Total Internal Reflection for Effectively Transparent Solar Cell Contacts

    Jahelka, Phillip; Atwater, Harry


    A new strategy for eliminating photocurrent losses due to the metal contacts on the front of a solar cell was proposed, simulated, and tested. By placing triangular cross-section lines of low refractive index on top of the contacts, total-internal reflection at the interface of the low-index triangles and the surrounding material can direct light away from the metal and into the photoactive absorber. Simulations indicated that losses can be eliminated for any incident angle, and that yearly energy production improvements commensurate with the metallized area are possible. Proof of principle experiments were carried out to eliminate the reflective losses of a commercial solar cell's busbar contact. Spatially resolved laser beam induced current measurements demonstrated that reflection losses due to the busbar were reduced by voids with triangular cross-section.

  17. Research Needs: Glass Solar Reflectance and Vinyl Siding

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen


    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  18. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Jorgensen, Gary; Gee, Randall C.; White, David


    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  19. On reflection of Alfven waves in the solar wind

    Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.


    We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the



    With the astounding development and gradual improvement of remote sensing technology, as an advancedscience technology, it is used to provide multi-temporal, large scope real-time information for land-use dynamic change,and also is one of the best efficient methods for studying the earth resources and environment. Remote sensing image hasits characteristics of ample information and reflecting the objective realities. The paper uses multi-temporal TM inages in1986, 1996 and 2000, and relevant statistic data to analyze land-use changes of Dalian City in Liaoning Province of Chi-na over ten years by means of the correlation analysis method. The results have shown that two methods could con-formably reflect the present land-use change. Urbanization is closely correlative to natural factors and economic develop-ment. Especially in recent 20 years, under the influence of the reform and open-up policy, Dalian, as a specific coastcity, is becoming an international metropolis.

  1. Description of Dogs and Owners in Outdoor Built-Up Areas and Their More-Than-Human Issues

    Gaunet, Florence; Pari-Perrin, Elodie; Bernardin, Geneviève


    Tensions are generated by the inevitable presence of dogs accompanying humans in cities. Built-up outdoor areas, spaces that are "in between" the home and dog parks, are widely frequented by dogs and their owners. The present case study, performed in Lyon (France), is the first to provide a description of these dyads in areas that vary according to terrain, district, dog legislation and use in three areas: a busy street where dogs are allowed and a park and a square where dogs are forbidden. Dog-owner profiles were identified. They adjusted their presence differently across areas and according to anthropogenic and ecological pressures, such as day of the week, time of day, weather, frequentation, and legislation. They mutually adapted their behaviors. Interactions between dogs or owners and other social agents were few; dogs primarily sniffed and urinated. There was little barking, no aggression, minor impact on the environment, and, despite instances of dogs appropriating forbidden areas and dogs off their leashes, the dogs seemed to go virtually unnoticed. The study shows how the need for more-than-human areas is evident in outdoor built-up areas (for instance, the results on types of interaction and activity across areas, absence of a leash, and appropriation of forbidden areas) as well as how the cultural and natural aspects of dogs play out. The results suggest that dog regulations should be adjusted in outdoor built-up areas and that dog parks should be developed.

  2. Medium Resolution SAR Image Time-series Built-up Area Extraction Based on Multilayer Neural Network

    Du Kangning


    Full Text Available To improve the accuracy and stability of built-up area extraction from Synthetic Aperture Radar (SAR image time series, in this paper, we propose a multilayer neural-network-based built-up area extraction method that combines the characters of time-series images. The proposed method coarsely tags single images and obtains a large number of samples from time-series images that have been processed by a histogram specification procedure. To generate a training sample dataset, we use samples generated from one image to determine network depth and select samples with higher accuracy from the sample set taken from the timeseries images. The final model is trained by the selected large and high quality training dataset. We perform two comparison experiments with 38 25-m resolution ENVISAT ASAR images. Using the proposed method, we achieved 90.2% minima accuracy and a 0.725 minima Kappa coefficient, which are much higher than those of the three conventional methods. Thus, the accuracy and stability of built-up area extraction are significantly improved. In addition, the method proposed in this paper has the advantages of requiring minimal manual operation, well generalization, and training efficiency.

  3. Built-up of the continental margin offshore Central Mozambique from marine geophysical investigations

    Heyde, I.; Block, M.; Ehrhardt, A.; Reichert, C. J.; Schreckenberger, B.


    In September/October 2007, along with institutes from Germany, France and Portugal BGR conducted the cruise MoBaMaSis (Mozambique Basin Marine Seismic Survey) using RV MARION DUFRESNE. The goal of the marine geophysical measurements offshore central Mozambique was the investigation of the continental margin in terms of its structure and formation history with special focus on the opening history of Eastern Gondwana and the hydrocarbon potential. A total of four long transects (450 to 225 km long) and a number of connection lines were acquired from the shelf and the slope into the deep Mozambique Basin. The data comprises multichannel seismic reflection (MCS), magnetic, gravimetric and swath bathymetry. On the eastern two transects two on-/offshore seismic refraction studies were carried out. Apart from results of the MCS and the magnetic work, in particular the results of the gravity data are presented. A 3D density model was developed. In the Mozambique Basin a large thick sedimentary succession of up to 8 km thickness from Jurassic to present is observed. Two deep reaching wells supported, at least in part, the identification of stratigraphy. Faint indications for SDR sequences related to volcanic flows are found in the northern part of the study area. In the south, the Beira High represents a prominent structure. The basement high with sediments of considerable reduced thickness is characterized by a distinct gravity minimum. A possible explanation is that the high is formed by a continental fragment. In addition, no clear magnetic chrons are identifiable. Thus, stretched continental crust is assumed underlying this part of the Mozambique Basin.

  4. Materials for solar-transmitting heat-reflecting coatings

    Karlsson, B.; Valkonen, E.; Karlsson, T.; Ribbing, C.G.


    A coating for solar energy applications which combines heat reflection with transparency to solar radiation may be of four different types: a metallic film which is sufficiently thin to be transparent; a metal-based multilayer coating; a wide band gap heavily doped semiconductor such as SnO/sub 2/ or In/sub 2/O/sub 3/; a conducting microgrid. We prepared such coatings on glass by evaporating thin films of silver, copper, gold, aluminium, cobalt, iron, chromium and nickel of various thicknesses and by spraying SnO/sub 2/ films. The spectral variations in the transmittance, and the front side and back side reflectances were measured in the wavelength range The properties of a three-layer coating of the dielectric/metal/dielectric type were calculated with a multilayer program using known bulk optical constants. The effect of these films when coated onto a domestic window was demonstrated with a heat transfer calculation using an equivalent thermal net. When a large transmittance over a broad range of the solar spectrum is required, gold is an equally good, or a slightly better, choice than silver as the metal in a three-layer coating. In general, an SnO/sub 2/ film exhibits a higher solar transmittance as well as a higher emittance than a coating containing metals. This implies that the oxide is to be preferred as a coating on a window when the maximum passive solar heating is sought. However, a metal-based coating could be better when a very low Usub(L) value is the most important requirement.

  5. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review

    Abhijith, K. V.; Kumar, Prashant; Gallagher, John; McNabola, Aonghus; Baldauf, Richard; Pilla, Francesco; Broderick, Brian; Di Sabatino, Silvana; Pulvirenti, Beatrice


    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.

  6. On-Orbit Noise Characterization for MODIS Reflective Solar Bands

    Xiong, X.; Xie, X.; Angal, A.


    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre

  7. Analysis of cumulus solar irradiance reflectance (CSIR) events

    Laird, John L.; Harshvardhan

    Clouds are extremely important with regard to the transfer of solar radiation at Earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When Sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using UVA and UVB pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Win -2 and 0.0169 Wm -2 were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of Sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed. C 1997 Elsevier Science B.V.

  8. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    Sun, Junqiang; Chu, Mike; Wang, Menghua


    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  9. Optical and THz reflectance investigations of organic solar cells

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Galagan, Yulia


    Two Organic Photovoltaic devices having a photoactive layer containing Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM, 99%), and the layer sequences - glass/ITO/ZnO/PAL/PEDOT:PSS/Ag/encapsulation were non-destructively investigated by diffuse optical spectral reflectance, THz spectroscopy and THz imaging. The proposed methods proved to be powerful tools to support quality assurance in organic solar cells development, facilitating both the localization of manufacturing defects and the device degradation, as they are combined with "classical" evaluation means.

  10. Improvement in greenhouse solar drying using inclined north wall reflection

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)


    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  11. Labeled co-occurrence matrix for the detection of built-up areas in high-resolution SAR images

    Li, Na; Bruzzone, Lorenzo; Chen, Zengping; Liu, Fang


    The characterization of urban environments in synthetic aperture radar (SAR) images is becoming increasingly challenging with the increased spatial ground resolutions. In SAR images having a geometrical resolution of few meters (e.g. 3 m), urban scenes are roughly speaking characterized by three main types of backscattering: low intensity, medium intensity, and high intensity, which correspond to different land-cover types. Based on the observations of the behavior of the backscattering, in this paper we propose the labeled co-occurrence matrix (LCM) technique to detect and extract built-up areas. Two textural features, autocorrelation and entropy, are derived from LCM. The image classification is based on a similarity classifier defined in the general Lukasiewicz structure. Experiments have been carried out on TerraSAR-X images acquired on Nanjing (China) and Barcelona (Spain), respectively. The obtained classification accuracies point out the effectiveness of the proposed technique in identifying and detecting built-up areas compared with the traditional grey level co-occurrence matrix (GLCM) texture features.

  12. Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition

    Xiao, Pengfeng; Zhang, Xueliang; Wang, Dongguang; Yuan, Min; Feng, Xuezhi; Kelly, Maggi


    This study proposed a new framework that combines pixel-level change detection and object-level recognition to detect changes of built-up land from high-spatial resolution remote sensing images. First, an adaptive differencing method was designed to detect changes at the pixel level based on both spectral and textural features. Next, the changed pixels were subjected to a set of morphological operations to improve the completeness and to generate changed objects, achieving the transition of change detection from the pixel level to the object level. The changed objects were further recognised through the difference of morphological building index in two phases to indicate changed objects on built-up land. The transformation from changed pixels to changed objects makes the proposed framework distinct with both the pixel-based and the object-based change detection methods. Compared with the pixel-based methods, the proposed framework can improve the change detection capability through the transformation and successive recognition of objects. Compared with the object-based method, the proposed framework avoids the issue of multitemporal segmentation and can generate changed objects directly from changed pixels. The experimental results show the effectiveness of the transformation from changed pixels to changed objects and the successive object-based recognition on improving the detection accuracy, which justify the application potential of the proposed change detection framework.

  13. On-Orbit Noise Characterization of MODIS Reflective Solar Bands

    Angal, Amit; Xiong, Xiaoxiong; Sun, Junqiang; Geng, Xu


    The Moderate Resolution Imaging Spectroradiometer (MODIS), launched on the Terra and Aqua spacecrafts, was designed to collect complementary and comprehensive measurements of the Earth's properties on a global scale. The 20 reflective solar bands (RSBs), covering a wavelength range from 0.41 to 2.1 micrometers, are calibrated on-orbit using regularly scheduled solar diffuser (SD) observations. Although primarily used for on-orbit gain derivation, the SD observations also facilitate the characterization of the detector signal-to-noise ratio (SNR). In addition to the calibration requirement of 2% for the reflectance factors and 5% for the radiances, the required SNRs are also specified for all RSB at their typical scene radiances. A methodology to characterize the on-orbit SNR for the MODIS RSB is presented. Overall performance shows that a majority of the RSB continue to meet the specification, therefore performing well. A temporal decrease in the SNR, observed in the short-wavelength bands, is attributed primarily to the decrease in their detector responses. With the exception of the inoperable and noisy detectors in band 6 identified prelaunch, the detectors of AquaMODIS RSB perform better than TerraMODIS. The approach formulated for on-orbit SNR characterization can also be used by other sensors that use on-board SDs for their on-orbit calibration (e.g., Suomi National Polar-Orbiting Partnership [SNPP]-Visible Infrared Imaging Radiometer Suite).

  14. Mapping and Assessment of Ethno-Medicinal Trees in Built Up Areas - University of Port Harcourt, Nigeria

    Olatunde Sunday Eludoyin


    Full Text Available Background and Purpose: Several urban tree species are important in ethno-medicine, especially in the developing tropical regions. Their assessment in urban landscapes is becoming an important issue. The study assessed and mapped the ethno-medicinal trees in the built up area land use type of the University of Port Harcourt, Nigeria, with a view to examining their spatial variation in terms of composition and diversity between the residential and non-residential areas of the University Park. Materials and Methods: The study employed the use of geographic information system (ArcGIS 9.3 for the mapping. Built up area land use was subdivided into residential and non-residential where the ethno-medicinal trees were recorded, identified and enumerated. Global positioning system was used to determine the coordinates of each tree. The species composition and diversity were calculated and a comparison was made between the residential and non- residential land use types. The pattern of spread of the ethno-medicinal trees was determined by the nearest neighbour analysis. Results: A total of 37 ethno-medicinal trees species were found in the study area, while the species composition was 499 in the residential area and 438 in the non-residential area. Azadirachta indica was the highest (233 in composition. Ethno-medicinal tree species in the study area consist of 19 families of which Anacardiaceae, Rutaceae, Moraceae and Combretaceae were the highest. Species diversity was higher in the non-residential land use (2.698 than in the residential land use (2.222. Conclusion: The nearest neighbour analysis reveals that the z-score value was higher in the non-residential area (-23.06 than in the residential area (-0.30, but the pattern of distribution in both areas were clustered. The study recommended periodic monitoring and the assessment of ethno-medicinal trees in the study area for conservation purposes.

  15. Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity

    Younha Kim


    Full Text Available Many studies have found that larger parks might be needed to counteract the Urban Heat Island effects typical in densely populated Asian megacities. However, it is not easy to establish large parks to serve as urban cool islands in Asian megacities, where little space exists for large urban neighborhood parks. Officials in these cities would rather use small areas by replacing heat-absorbing artificial land cover with natural cover. The main objective of this study was to understand the cooling effect of changes in land cover on surface and air temperatures in urban micro-scale environments for supporting sustainable green-space planning and policy in densely built-up areas. This was achieved using measurements at different heights (ground surface, 0.1 m, and 1.5 m for five land cover types (LCTs and modeling with the micro-scale climate model ENVI-met. At all vertical measuring points, the average temperature over the entire measurement period had the same hot-to-cold order: asphalt > soil > grass > water > forest. However, the value dramatically decreased as the measuring points became higher. The intensity of hot and cool spots showed the highest value at surface by 18.2 °C, and declined with the height, showing 4.1 °C at 0.1 m and 3.1 °C at 1.5 m. The modeling results indicated that the well-known diurnal variation in surface insolation also occurred in our small domain, among the various LCTs. Based on these findings, providing small-scale green infrastructure in densely built-up areas could be an effective way to improve urban micro-scale thermal conditions.

  16. Surface roughness effects on the solar reflectance of cool asphalt shingles

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem; Jacobs, Jeffry; Klink, Frank


    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with small corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.

  17. Asphalt fume dermal carcinogenicity potential: II. Initiation-promotion assay of Type III built-up roofing asphalt.

    Freeman, James J; Schreiner, Ceinwen A; Beazley, S; Burnett, Donald M; Clark, Charles R; Mahagaokar, Suneeta; Parker, Craig M; Stewart, Christopher W; Swanson, Mark S; Arp, Earl W


    Clark et al. (accepted for publication) reported that a sample of field-matched fume condensate from a Type III built-up roofing asphalt (BURA) resulted in a carcinogenic response in a mouse skin bioassay, with relatively few tumor-bearing animals, long tumor latency and chronic skin irritation. This mouse skin initiation/promotion study was conducted to assess possible mechanisms, i.e., genotoxic initiation vs. tumor promotion subsequent to repeated skin injury and repair. The same Type III BURA fume condensate sample was evaluated in groups of 30 male Crl:CD1® mice by skin application twice per week (total dose of 50 mg/week) for 2 weeks during the initiation phase and for 26 weeks during the promotion phase. Positive control substances were 7,12-dimethylbenz(a)anthracene (DMBA, 50 μg applied once) as an initiator and 12-O-tetradecanoyl-13-acetate (TPA, 5 μg, applied twice weekly) during the promotion phase. During the 6 months of study with the asphalt fume condensate, eight skin masses were observed when tested for initiation, five of which were confirmed microscopically to be benign squamous cell papillomas. Only two papillomas were observed when tested for promotion. There was no apparent relationship between skin irritation and tumor development in this study. These results are more indicative of genotoxicity rather than a non-genotoxic mode of action.

  18. 利用伪归一化差异水体指数提取城镇周边细小河流信息%Information Extraction of Thin Rivers around Built-up Lands with False NDWI

    周艺; 谢光磊; 王世新; 王峰; 王福涛


    通过对归一化差异水体指数NDWI中的绿波段修正,提出了不依赖于中红外波段的伪归一化差异水体指数FNDWI(False NDWI)。使用NDWI和FNDWI分别在背景地物为城市、城郊、乡镇、村落和山区的遥感影像上进行河流水体提取,实验表明,FNDWI影像中城镇建筑用地与河流水体的可分离性较NDWI有所提升,提升率为116%~335%不等;相关性分析表明,河流宽度与可分离性提升率具有明显的负相关关系,相关系数为-0.82;分类结果显示,在城市和城郊区域,NDWI提取的水体中混杂有较多城镇建筑用地信息,而FNDWI提取的水体中基本未见混杂。总体上,FNDWI提高了2种地物的可分离性,剔除了NDWI影像混入的城镇建筑用地信息,较好地解决了NDWI城镇建筑用地与河流水体的混淆问题,尤其适用于城镇周边的细小河流。%The normalized difference water index (NDWI), (Green-NIR)/(Green+NIR), proposed by Mcfeeter, is widely used but easily to mix built-up land and water body due to the spectrum similarity on these two bands (green and near infrared reflection) between the two features (water body and built-up land). It is proposed by water indexes such as MNDWI, CIWI and NWI that importing mid-infrared (MIR) band could help solve the problem, as built-up lands have a higher value on MIR compared with NIR. However, more than half of the satel-lites have not a MIR band, such as Beijing-1 satellite, HJ-1A/B satellites, QuickBird, IKONOS, SPOT1-3 satel-lites and so on. A false normalized difference water index (FNDWI) has been proposed to fix the problem with-out access to MIR band. FNDWI replaces the green band in NDWI with a new FGreen (false green) band, which is created by adjusting the original green band with NIR band value. FNDWI has been tested with NDWI on five different typical regions, including urban, suburb, town, village, and non-built-up lands. The experiments reveal that

  19. Reflective solar coatings. (Latest citations from the NTIS bibliographic database). Published Search



    The bibliography contains citations concerning the research and development of solar reflective coatings. The use of reflective and antireflective coatings in solar mirrors, collectors, cells, and laser windows is discussed. Corrosion protection and protective coatings are emphasized. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Modeling reduction of the Urban Heat Island effect to counter-act the effects of climate change in densely built-up areas

    Andre, Konrad; Zuvela-Aloise, Maja; Lettmayer, Gudrun; Schwaiger, Hannes Peter; Kaltenegger, Ingrid; Bird, David Neil; Woess-Gallasch, Susanne


    The phenomenon of Urban Heat Islands (UHIs) observed in cities, caused by changes in energy balance due to the structural development of the city as well as by sealed surfaces and a lack of vegetation, is expected to strengthen in the future and will further contribute to heat stress, creating an increased need for energy for cooling and ventilation as well as lowering human comfort. Due to a changing climate, rising heat stress, pronounced by an increased intensity or frequency of heat waves, could have far reaching implications for major Austrian cities in the near future. Simultaneous to this expected increasing of the already existing UHI-effect, it is observable, that continuous densification of the core parts of cities is being intensified through implemented traditional urban planning measures. This is particular relevant for high densely populated districts of the city. Several possible counteractions how to address this challenge are already known, partly investigated in urban modeling studies on the effects of modifying the reflective properties of buildings and urban areas for the city of Vienna. On this experience, within the Austrian FFG and KLIEN Smart Cities project JACKY COOL CHECK (Project Nr. 855554), a wide set of measures to reduce heat stress, consisting of e.g. unsealed surfaces, green areas, green roofs, improve reflective properties of different surfaces etc., for the densely built-up residential and business district of Jakomini in the city of Graz/Styria is investigated, to gain decisive data pointing out the peculiarities of UHIs and the potential cooling effects of these target measures for this local specific area. These results serving as a basis for the selection of sustainable measures that will be implemented, in coordination with local stakeholders and considering their interests.

  1. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell

    Ho Huh, Yoon; Park, Byoungchoo


    We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13-15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17-19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices.

  2. Quantitative cancer risk assessment for occupational exposures to asphalt fumes during built-up roofing asphalt (BURA) operations.

    Rhomberg, Lorenz R; Mayfield, David B; Goodman, Julie E; Butler, Eric L; Nascarella, Marc A; Williams, Daniel R


    The International Agency for Research on Cancer qualitatively characterized occupational exposure to oxidized bitumen emissions during roofing as probably carcinogenic to humans (Group 2A). We examine chemistry, exposure, epidemiology and animal toxicity data to explore quantitative risks for roofing workers applying built-up roofing asphalt (BURA). Epidemiology studies do not consistently report elevated risks, and generally do not have sufficient exposure information or adequately control for confounders, precluding their use for dose-response analysis. Dermal carcinogenicity bioassays using mice report increased tumor incidence with single high doses. In order to quantify potential cancer risks, we develop time-to-tumor model methods [consistent with U.S. Environmental Protection Agency (EPA) dose-response analysis and mixtures guidelines] using the dose-time-response shape of concurrent exposures to benzo[a]pyrene (B[a]P) as concurrent controls (which had several exposure levels) to infer presumed parallel dose-time-response curves for BURA-fume condensate. We compare EPA relative potency factor approaches, based on observed relative potency of BURA to B[a]P in similar experiments, and direct observation of the inferred BURA dose-time-response (scaled to humans) as means for characterizing a dermal unit risk factor. We apply similar approaches to limited data on asphalt-fume inhalation and respiratory cancers in rats. We also develop a method for adjusting potency estimates for asphalts that vary in composition using measured fluorescence. Overall, the various methods indicate that cancer risks to roofers from both dermal and inhalation exposure to BURA are within a range typically deemed acceptable within regulatory frameworks. The approaches developed may be useful in assessing carcinogenic potency of other complex mixtures of polycyclic aromatic compounds.

  3. Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Chen, Bangqian; Liu, Fang; Zhang, Geli; Zhang, Yao; Wang, Jie; Wu, Xiaocui


    Built-up area supports human settlements and activities, and its spatial distribution and temporal dynamics have significant impacts on ecosystem services and global environment change. To date, most of urban remote sensing has generated the maps of impervious surfaces, and limited effort has been made to explicitly identify the area, location and density of built-up in the complex and fragmented landscapes based on the freely available datasets. In this study, we took the lower Yangtze River Delta (Landsat Path/Row: 118/038), China, where extensive urbanization and industrialization have occurred, as a case study site. We analyzed the structure and optical features of typical land cover types from (1) the HH and HV gamma-naught imagery from the Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), and (2) time series Landsat imagery. We proposed a pixel- and rule-based decision tree approach to identify and map built-up area at 30-m resolution from 2007 to 2010, using PALSAR HH gamma-naught and Landsat annual maximum Normalized Difference Vegetation Index (NDVImax). The accuracy assessment showed that the resultant annual maps of built-up had relatively high user (87-93%) and producer accuracies (91-95%) from 2007 to 2010. The built-up area was 2805 km2 in 2010, about 16% of the total land area of the study site. The annual maps of built-up in 2007-2010 show relatively small changes in the urban core regions, but large outward expansion along the peri-urban regions. The average annual increase of built-up areas was about 80 km2 per year from 2007 to 2010. Our annual maps of built-up in the lower Yangtze River Delta clearly complement the existing maps of impervious surfaces in the region. This study provides a promising new approach to identify and map built-up area, which is critical to investigate the interactions between human activities and ecosystem services in urban-rural systems.

  4. Gradient SiNO anti-reflective layers in solar selective coatings

    Ren, Zhifeng; Cao, Feng; Sun, Tianyi; Chen, Gang


    A solar selective coating includes a substrate, a cermet layer having nanoparticles therein deposited on the substrate, and an anti-reflection layer deposited on the cermet layer. The cermet layer and the anti-reflection layer may each be formed of intermediate layers. A method for constructing a solar-selective coating is disclosed and includes preparing a substrate, depositing a cermet layer on the substrate, and depositing an anti-reflection layer on the cermet layer.

  5. Pitting corrosion behaviour of built-up welds - Effects of welding layers and tarnish; Lochkorrosionsverhalten von Auftragschweissungen - Schweisslagen- und Oberflaecheneffekte

    Heyn, A.; Schilling, K.; Boese, E.; Spieler, S.; Altendorf, S. [Otto-von-Guericke-Universitaet Magdeburg, IWW, PF 4120, 39016 Magdeburg (Germany); Burkert, A. [BAM, Berlin, Fachgruppe VII.3, Unter den Eichen 87, 12205 Berlin (Germany); Schultze, S. [LMPA Sachsen-Anhalt, Grosse Steinernetischstrasse 4, 39104 Magdeburg (Germany)


    The pitting corrosion resistance of nickel based deposition welds on a superduplex steel made by active-gas metal pulsed-arc welding was studied. Therefore the determination of the CPT (Critical Pitting Temperature) should be carried out corresponding to ASTM G 48 C. However an unexpectedly low resistance of the built-up welds also at multilayer order was noticed. After visual assessment of the examined specimens a significant effect of the surface condition was assumed. Because the CPT determination according to ASTM does not allow any statement about the corrosion process, this method was not suitable to characterize the corrosion system. For this reason a new method was applied to clarify the causes of the low corrosion resistance. This method determines the CPT with the help of the electrochemical current noise under the same conditions demanded in ASTM G 48 C. The temperature is increased continuously and the characteristic parameters of the system are recorded and evaluated objectively within short time. So it was possible to see the influence of the surface condition on the pitting corrosion behaviour of the examined specimens. The required parameters to the post-processing of the deposition welds were determined. The comparison of the results show that the surface tarnish formed after the shielded arc welding process influences the pitting corrosion resistance negatively. After its elimination the CPT could be determined in dependence of the welding layers. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Zur vergleichenden Einschaetzung der Lochkorrosionsbestaendigkeit von verschiedenen, mehrlagigen MAGp-auftraggeschweissten Nickelbasis-Schweissguetern auf einem Superduplexstahl wurden kritische Lochkorrosionstemperaturen (critical pitting temperature, CPT) nach ASTM G 48 C ermittelt. Es zeigte sich eine unerwartet niedrige Bestaendigkeit der Auftragschweissungen, als dessen Ursache ein unguenstiger Oberflaechenzustand angenommen wurde. Da die

  6. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space

    Wieser, Martin; Futaana, Yoshifumi; Holmström, Mats; Bhardwaj, Anil; Sridharan, R; Dhanya, MB; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1016/j.pss.2009.09.012


    We report on measurements of extremely high reflection rates of solar wind particles from regolith-covered lunar surfaces. Measurements by the Sub-keV Atom Reflecting Analyzer (SARA) instrument on the Indian Chandrayaan-1 spacecraft in orbit around the Moon show that up to 20% of the impinging solar wind protons are reflected from the lunar surface back to space as neutral hydrogen atoms. This finding, generally applicable to regolith-covered atmosphereless bodies, invalidates the widely accepted assumption that regolith almost completely absorbs the impinging solar wind.

  7. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    National Aeronautics and Space Administration — MicroLink Devices will increase the efficiency of multi-junction solar cells by designing and demonstrating advanced anti-reflection coatings (ARCs) that will...

  8. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    National Aeronautics and Space Administration — MicroLink and its subcontractor Magnolia Solar will develop and demonstrate advanced anti-reflection coating (ARC) designs that will provide a better broadband and...

  9. Laser processing of solar cells with anti-reflective coating

    Harley, Gabriel; Smith, David D.; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John


    Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.

  10. Applying measured reflection from the ground to simulations of thermal perfromance of solar collectors

    Dragsted, Janne; Furbo, Simon


    Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate represe...

  11. Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban Built-Up Areas

    Xiaolong Ma


    Full Text Available The accuracy of training samples used for data classification methods, such as support vector machines (SVMs, has had a considerable positive impact on the results of urban area extractions. To improve the accuracy of urban built-up area extractions, this paper presents a sample-optimized approach for classifying urban area data using a combination of the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS for nighttime light data, Landsat images, and GlobeLand30, which is a 30-m global land cover data product. The proposed approach consists of three main components: (1 initial sample generation and data classification into built-up and non-urban built-up areas based on the maximum and minimum intervals of digital numbers from the DMSP-OLS data, respectively; (2 refined sample selection and optimization by the probability threshold of each pixel based on vegetation-cover, using the Landsat-derived normalized differential vegetation index (NDVI and artificial surfaces extracted from the GlobeLand30 product as the constraints; (3 iterative classification and urban built-up area data extraction using the relationship between these three aspects of data collection together with the training sets. Experiments were conducted for several cities in western China using this proposed approach for the extraction of built-up areas, which were classified using urban construction statistical yearbooks and Landsat images and were compared with data obtained from traditional data collection methods, such as the threshold dichotomy method and the improved neighborhood focal statistics method. An analysis of the empirical results indicated that (1 the sample training process was improved using the proposed method, and the overall accuracy (OA increased from 89% to 96% for both the optimized and non-optimized sample selection; (2 the proposed method had a relative error of less than 10%, as calculated by an accuracy assessment; (3 the

  12. Absorption to reflection transition in selective solar coatings.

    Olson, Kyle D; Talghader, Joseph J


    The optimum transition wavelength between high absorption and low emissivity for selective solar absorbers has been calculated in several prior treatises for an ideal system, where the emissivity is exactly zero in the infrared. However, no real coating can achieve such a low emissivity across the entire infrared with simultaneously high absorption in the visible. An emissivity of even a few percent radically changes the optimum wavelength separating the high and low absorption spectral bands. This behavior is described and calculated for AM0 and AM1.5 solar spectra with an infrared emissivity varying between 0 and 5%. With an emissivity of 5%, solar concentration of 10 times the AM1.5 spectrum the optimum transition wavelength is found to be 1.28 µm and have a 957K equilibrium temperature. To demonstrate typical absorptions in optimized solar selective coatings, a four-layer sputtered Mo and SiO₂ coating with absorption of 5% across the infrared is described experimentally and theoretically.

  13. Influence of Reflectivity and Cloud Cover on the Optimal TiltAngle of Solar Panels

    David J. Torres


    Full Text Available Determining the optimum angle for a solar panel is important if tracking systems are not used and a tilt angle remains constant. This article determines the sensitivity of the optimum angle to surface reflectivity at different latitudes using a mathematical model that accounts for direct, diffuse and reflected radiation. A quadratic correlation is also developed to compute the optimal angle and maximum energy as a function of latitude and reflectivity. We also seek to determine how sensitive the optimal tilt angle is to cloud cover using the 35° latitude of the Prosperity solar facility in Albuquerque, NM.

  14. A new improved structure of dye-sensitized solar cells with reflection film

    LIU Yong; SHEN Hui; HUANG Xiaorui; DENG Youjun


    A new improved structure of dye- sensitized nanocrystalline solar cells (DSSC) for utilizing reflected light was introduced in this paper. Typical DSSC is based on a sandwich structure, which consists of photoanode, electrolyte and cathode. For the improved structure of DSSC in this paper, a sliver reflection film was attached to the back of transparent conducting glass of cathode. In this way, the residual light passing through photoanode was reflected to it to be used again. The photocurrent-voltage characteristics of DSSC fabricated by two different thickness of TiO2 film were measured to illustrate the effects of utilizing reflected light. As a result, the improved DSSC with reflection film exhibited higher photocurrent and solar-to-electric conversion efficiency than DSSC without reflection film.

  15. Modeling the Effects of the Urban Built-Up Environment on Plant Phenology Using Fused Satellite Data

    Norman Gervais


    Full Text Available Understanding the effects that the Urban Heat Island (UHI has on plant phenology is important in predicting ecological impacts of expanding cities and the impacts of the projected global warming. However, the underlying methods to monitor phenological events often limit this understanding. Generally, one can either have a small sample of in situ measurements or use satellite data to observe large areas of land surface phenology (LSP. In the latter, a tradeoff exists among platforms with some allowing better temporal resolution to pick up discrete events and others possessing the spatial resolution appropriate for observing heterogeneous landscapes, such as urban areas. To overcome these limitations, we applied the Spatial and Temporal Adaptive Reflectance Model (STARFM to fuse Landsat surface reflectance and MODIS nadir BRDF-adjusted reflectance (NBAR data with three separate selection conditions for input data across two versions of the software. From the fused images, we derived a time-series of high temporal and high spatial resolution synthetic Normalized Difference Vegetation Index (NDVI imagery to identify the dates of the start of the growing season (SOS, end of the season (EOS, and the length of the season (LOS. The results were compared between the urban and exurban developed areas within the vicinity of Ogden, UT and across all three data scenarios. The results generally show an earlier urban SOS, later urban EOS, and longer urban LOS, with variation across the results suggesting that phenological parameters are sensitive to input changes. Although there was strong evidence that STARFM has the potential to produce images capable of capturing the UHI effect on phenology, we recommend that future work refine the proposed methods and compare the results against ground events.

  16. Influence of Reflectivity and Cloud Cover on the Optimal TiltAngle of Solar Panels

    Torres, David J.; Jorge Crichigno


    Determining the optimum angle for a solar panel is important if tracking systems are not used and a tilt angle remains constant. This article determines the sensitivity of the optimum angle to surface reflectivity at different latitudes using a mathematical model that accounts for direct, diffuse and reflected radiation. A quadratic correlation is also developed to compute the optimal angle and maximum energy as a function of latitude and reflectivity. We also seek to determine how sensitive ...

  17. Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation

    Badis Haddag


    Full Text Available In this paper, machining aeronautical aluminum alloy AA2024-T351 in dry conditions was investigated. Cutting forces, chip segmentation, and built-up edge formation were analyzed. Machining tests revealed that the chip formation process depends on cutting conditions and tool geometry. So continuous and segmented chips are generated. Under some cutting conditions, built-up edge formation occurs. A predictive machining theory, based on a finite elements method (FEM, was applied to reproduce and explain these phenomena. Thermomechanical behaviors of the work material and the tool-work material interface were considered. Results of the proposed modelling were compared to experimental data for a wide range of cutting speed. It was shown that the feed force is well reproduced by the ALE-FE (arbitrary lagrangian-eulerian finite element formulation and highly underestimated by the lagrangian finite element (LAG-FE one. While, the periodic localized shear band, leading to a chip segmentation, is well reproduced with the Lagrangian FE formulation. It was found that the chip segmentation can be correlated to the cutting force evolution using the defined chip segmentation intensity parameter. For the built-up edge (BUE phenomenon, it was shown that it depends on the contact/friction at the tool-chip interface, and this is possible to simulate by making the friction coefficient time-dependent.

  18. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan


    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  19. Photochromic And Thermochromic Pigments For Solar Absorbing-Reflecting Coatings

    Novinson, Thomas


    Both photochromic and thermochromic compounds were synthesized and physical measurements were made to determine coefficients of relectance, absorbance and emission. The most interesting group of thermochromic compounds are related to silver tctraiodomercurate and the most interesting photochromic compounds are substituted benzoindolinopyrospirans. The synthesis and optical reflectance and absorbance properties of other classes of compounds are also reported.

  20. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason


    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  1. An effective reflectance method for designing broadband antireflection films coupled with solar cells

    Zhan Feng; He Ji-Fang; Shang Xiang-Jun; Li Mi-Feng; Ni Hai-Qiao; Xu Ying-Qiang; Niu Zhi-Chuan


    The solar spectrum covers a broad wavelength range,which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell.In this paper,we present two methods to measure the composite reflection of SiO2/ZnS double-layer ARC in the wavelength ranges of 300-870 nm (dualjunction) and 300-1850 nm (triple-junction),under the solar spectrum AM0.In order to give sufficient consideration to the ARC coupled with the window layer and the dispersion effect of the refractive index of each layer,we use multidimensional matrix data for reliable simulation.A comparison between the results obtained from the weighted-average reflectance (WAR) method commonly used and that from the effective-average reflectance (EAR) method introduced here shows that the optimized ARC through minimizing the effective-average reflectance is convenient and available.

  2. Study on the SiN_x/Al rear reflectance performance of crystalline silicon solar cells


    The performance of internal rear surface reflectance of crystalline silicon solar cells is becoming more and more important with the decrease of thickness of the silicon wafers. In this paper PC1D was used to simulate the correlations between the rear surface reflectance and the electrical as well as optical properties of the solar cells. The results showed that the short circuit current, open circuit voltage and quantum efficiency were all enhanced with the increase of the rear reflectance. When the rear reflectance increased from 60% to 100%, the short circuit current, open circuit voltage and maximum output power were improved by about 0.128 A, 0.007 V, and 0.066 W, respectively. The internal quantum efficiency was improved by 39.9%, the external quantum increased by 17.4%, and the efficiency of the solar cells was enhanced by 0.4% at 1100 nm wavelength. The screen-printing was selected to prepare SiNx/Al reflector, and experimental results showed that the SiNx/Al reflector has desired characteristic of internal rear reflectance, with the reflectivity of 15% higher than that of conventional aluminum BSF at 1100 nm wavelength.

  3. Study on sustainable redevelopment of a densely built-up area in Tokyo by introducing a distributed local energy supply system

    Chen, Hong; Ooka, Ryozo; Huang, Hong [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Iwamura, Kazuo [Musashi Institute of Technology, UIA, JIA, Tokyo (Japan); Yoshizawa, Nobufusa; Miisho, Kiyoshi [IWAMURA Atelier Co. Ltd., Tokyo (Japan); Yoshida, Satoshi [Yokohama National University, Yokohama (Japan); Namatame, Sanae; Sakakura, Atsushi; Tanaka, Syunichi [Tokyo Gas Co. Ltd., Tokyo (Japan)


    'Distributed local energy systems' had been expected to rationalize the supply of energy to built-up areas, but until now very little research has been performed to estimate the effect of their application to actual cities. In this research, therefore, a future vision for the year 2030 in the Sancha Area (SANCHA VISION 2030), a typical densely built-up area in Tokyo, has been elaborated including a simulation to estimate benefits from the application of distributed energy systems in terms of reduced energy consumption and CO{sub 2} emissions as well as mitigation of the heat-island phenomenon. As a result, it was demonstrated that a 'distributed local energy system', which provides a district with both electrical power and heat through an integrated distribution system, may contribute to a considerable improvement in energy efficiency for those areas. In addition, it may also provide other benefits, including enhancement of living amenity and urban security in times of emergency. (author)

  4. Built-up Area Change Analysis in Hanoi Using Support Vector Machine Classification of Landsat Multi-Temporal Image Stacks and Population Data

    Duong H. Nong


    Full Text Available In 1986, the Government of Vietnam implemented free market reforms known as Doi Moi (renovation that provided private ownership of farms and companies, and encouraged deregulation and foreign investment. Since then, the economy of Vietnam has achieved rapid growth in agricultural and industrial production, construction and housing, and exports and foreign investments, each of which have resulted in momentous landscape transformations. One of the most evident changes is urbanization and an accompanying loss of agricultural lands and open spaces. These rapid changes pose enormous challenges for local populations as well as planning authorities. Accurate and timely data on changes in built-up urban environments are essential for supporting sound urban development. In this study, we applied the Support Vector Machine classification (SVM to multi-temporal stacks of Landsat Thematic Mapper (TM and Enhanced Thematic Mapper Plus (ETM+ images from 1993 to 2010 to quantify changes in built-up areas. The SVM classification algorithm produced a highly accurate map of land cover change with an overall accuracy of 95%. The study showed that most urban expansion occurred in the periods 2001–2006 and 2006–2010. The analysis was strengthened by the incorporation of population and other socio-economic data. This study provides state authorities a means to examine correlations between urban growth, spatial expansion, and other socio-economic factors in order to not only assess patterns of urban growth but also become aware of potential environmental, social, and economic problems.

  5. A comprehensive ray tracing study on the impact of solar reflections from glass curtain walls.

    Wong, Justin S J


    To facilitate the investigation of the impact of solar reflection from the façades of skyscrapers to surrounding environment, a comprehensive ray tracing model has been developed using the International Commerce Centre (ICC) in Hong Kong as an example. Taking into account the actual physical dimensions of buildings and meteorological data, the model simulates and traces the paths of solar reflections from ICC to the surrounding buildings, assessing the impact in terms of hit locations, light intensity and the hit time on each day throughout the year. Our analyses show that various design and architectural features of ICC have amplified the intensity of reflected solar rays and increased the hit rates of surrounding buildings. These factors include the high reflectivity of glass panels, their upward tilting angles, the concave profile of the 'Dragon Tail' (glass panels near the base), the particular location and orientation of ICC, as well as the immense height of ICC with its large reflective surfaces. The simulation results allow us to accurately map the date and time when the ray projections occur on each of the target buildings, rendering important information such as the number of converging (overlapping) projections, and the actual light intensity hitting each of the buildings at any given time. Comparisons with other skyscrapers such as Taipei 101 in Taiwan and 2-IFC (International Finance Centre) Hong Kong are made. Remedial actions for ICC and preventive measures are also discussed.

  6. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)


    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  7. High performance anti-reflection coatings for broadband multi-junction solar cells



    The success of bandgap engineering has made high efficiency broadband multi-junction solar cells possible with photo-response out to the band edge of Ge. Modeling has been conducted which suggests that current double layer anti-reflection coating technology is not adequate for these devices in certain cases. Approaches for the development of higher performance anti-reflection coatings are examined. A new AR coating structure based on the use of Herpin equivalent layers is presented. Optical modeling suggests a decrease in the solar weighted reflectance of over 2.5{percent} absolute as a result. This structure requires no additional optical material development and characterization because no new optical materials are necessary. Experimental results and a sensitivity analysis are presented.

  8. Effect of bottom reflectivity on the performance of a solar pond

    Srinivasan, J.; Suha, A.


    The reflectivity of the bottom of a solar pond increases on account of the accumulation of dirt or the presence of undissolved salt. The effect of the reflection of the solar radiation at the bottom of the pond on the seasonal performance of the pond has been studied using a three zone model. The spectral reflectivity of dirt and common salt were measured in the laboratory and used in the analysis. The results obtained from the analysis show that the presence of dirt at the bottom of the pond does not affect the performance of the pond substantially. On the other hand, the presence of undissolved salt at the bottom of the pond results in substantial deterioration of the pond performance.

  9. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    Munday, Jeremy


    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  10. VIIRS Reflective Solar Bands Calibration Progress and Its Impact on Ocean Color Products

    Junqiang Sun


    Full Text Available The radiometric calibration for the reflective solar bands (RSB of the Visible Infrared Imaging Radiometer Suite (VIIRS on board the Suomi National Polar-orbiting Partnership (SNPP platform has reached a mature stage after four years since its launch. The characterization of the vignetting effect of the attenuation screens, the bidirectional reflectance factor of the solar diffuser, the degradation performance of the solar diffuser, and the calibration coefficient of the RSB have all been made robust. Additional investigations into the time-dependent out-of-band relative spectral response and the solar diffuser degradation non-uniformity effect have led to newer insights. In particular, it has been demonstrated that the solar diffuser (SD degradation non-uniformity effect induces long-term bias in the SD-calibration result. A mitigation approach, the so-called Hybrid Method, incorporating lunar-based calibration results, successfully restores the calibration to achieve ~0.2% level accuracy. The successfully calibrated RSB data record significantly impacts the ocean color products, whose stringent requirements are especially sensitive to calibration accuracy, and helps the ocean color products to reach maturity.

  11. Second-surface silvered glass solar mirrors of very high reflectance

    Butel, Guillaume P.; Coughenour, Blake M.; Macleod, H. Angus; Kennedy, Cheryl E.; Olbert, Blain H.; Angel, J. Roger P.


    This paper reports methods developed to maximize the overall reflectance second-surface silvered glass. The reflectance at shorter wavelengths is increased with the aid of a dielectric enhancing layer between the silver and the glass, while at longer wavelengths it is enhanced by use of glass with negligible iron content. The calculated enhancement of reflectance, compared to unenhanced silver on standard low-iron float glass, corresponds to a 4.4% increase in reflectance averaged across the full solar spectrum, appropriate for CSP, and 2.7% for CPV systems using triple junction cells. An experimental reflector incorporating these improvements, of drawn crown glass and a silvered second-surface with dielectric boost, was measured at NREL to have 95.4% solar weighted reflectance. For comparison, non-enhanced, wetsilvered reflectors of the same 4 mm thickness show reflectance ranging from 91.6 - 94.6%, depending on iron content. A potential drawback of using iron-free drawn glass is reduced concentration in high concentration systems because of the inherent surface errors. This effect is largely mitigated for glass shaped by slumping into a concave mold, rather than by bending.

  12. Analysis of an anti-reflecting nanowire transparent electrode for solar cells

    Zhao, Zhexin; Wang, Ken Xingze; Fan, Shanhui


    Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this paper, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry-Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.

  13. Deriving polarization properties of desert-reflected solar spectra with PARASOL data

    Sun, W.; Baize, R. R.; Lukashin, C.; Hu, Y.


    One of the major objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) is to conduct highly accurate spectral observations to provide an on-orbit inter-calibration standard for relevant Earth-observing sensors with various channels. To calibrate an Earth-observing sensor's measurements with the highly accurate data from the CLARREO, errors in the measurements caused by the sensor's sensitivity to the polarization state of light must be corrected. For correction of the measurement errors due to the light's polarization, both the instrument's dependence on the incident polarization state and the on-orbit knowledge of the polarization state of light as a function of observed scene type, viewing geometry, and solar wavelength are required. In this study, an algorithm for deriving the spectral polarization state of solar light from the desert is reported. The desert/bare land surface is assumed to be composed of two types of areas: fine sand grains with diffuse reflection (Lambertian non-polarizer) and quartz-rich sand particles with facets of various orientations (specular-reflection polarizer). The Adding-Doubling Radiative Transfer Model (ADRTM) is applied to integrate the atmospheric absorption and scattering in the system. Empirical models are adopted in obtaining the diffuse spectral reflectance of sands and the optical depth of the dust aerosols over the desert. The ratio of non-polarizer area to polarizer area and the angular distribution of the facet orientations are determined by fitting the modeled polarization states of light to the measurements at three polarized channels (490, 670, and 865 nm) by the Polarization and Anisotropy of Reflectances for Atmospheric Science instrument coupled with Observations from a Lidar (PARASOL). Based on this physical model of the surface, the desert-reflected solar light's polarization state at any wavelength in the whole solar spectra can be calculated with the ADRTM.

  14. Observation of Built-up Edge Formation on a Carbide Cutting Tool with Machining Aluminium Alloy under Dry and Wet Conditions

    Azlan U.A.A.


    Full Text Available This paper presents the morphology of built-up edge (BUE formation under wet and dry conditions with low and high cutting speeds. The workpiece materials and cutting tools selected for this work were aluminium alloy and canela carbide inserts graded PM25. The cutting tools underwent turning operation machining tests and their performance was evaluated by the flank wear and observation of the tool wear area. The machining tests were conducted at different spindle speeds and feed rates while the cut depth was kept constant. The analysis showed that formation of the BUE was dominant at low cutting speeds in dry conditions, but in wet conditions at high cutting speeds, a better performance was exhibited in terms of wear analysis.

  15. Conversion of traditional agricultural land to built-up areas. Land use/cover changes in the municipality of Valencia (1956-2012

    Antonio Valera Lozano


    Full Text Available The aim of this study is to understand the land use-cover dynamics from the mid- 1950s to 2012 in the municipality of Valencia, eastern Spain. The study area is a very interesting example of the many land use and land cover changes in the landscape of Mediterranean alluvial plains. The analysis was based on photo interpretation of aerial photographs (1956, 1984, 2006 and 2012 and GIS based methodology. At a detailed scale (1:10,000, results show that there has been a highly dynamic process produced by the extent of land developed as urban area. In 1956 11,112 hectares were occupied by agricultural land and natural areas. During fifty five years, the sealed surface was 2,396 hectares. In 2012 the built-up extent was around 33% of the studied area. In the municipality of Valencia much of the land converted to urban use was once highly productive agricultural land.

  16. Hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties

    Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan


    Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.

  17. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo


    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  18. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators

    Philipp Good


    Full Text Available The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300−2500 nm at incidence angles 15–60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0–60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350–1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article “Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators” in Solar Energy Materials and Solar Cells.

  19. Design of multi-layer anti-reflection coating for terrestrial solar panel glass



    To date, there is no ideal anti-reflection (AR) coating available on solar glass which can effectively transmit the incident light within the visible wavelength range. However, there is a need to develop multifunctional coatingwith superior anti-reflection properties and self-cleaning ability meant to be used for solar glass panels. In spite of self-cleaning ability of materials like TiO2 and ZnO, these coatings on glass substrate have tendency to reduce lighttransmission due to their high refractive indices than glass. Thus, to infuse the anti-reflective property, a low refractive index, SiO$_2$ layer needs to be used in conjunction with TiO$_2$ and ZnO layers. In such case, the optimization ofindividual layer thickness is crucial to achieve maximum transmittance of the visible light. In the present study, we propose an omni-directional anti-reflection coating design for the visible spectral wavelength range of 400–700 nm,where the maximum intensity of light is converted into electrical energy. Herein, we employ the quarter wavelength criteria using SiO$_2$, TiO$_2$ and ZnO to design the coating composed of single, double and triple layers. The thicknessof individual layers was optimized for maximum light transmittance using essential Mcleod simulation software to produce destructive interference between reflected waves and constructive interference between transmitted waves.

  20. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  1. Space qualification of UV and IR reflecting coverslides for GaAs solar cells

    Meulenberg, Andrew


    As part of the space qualification effort for blue-red reflecting coverslides designed for use with GaAs solar cells, the first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with 4 types of multilayer-coated coverslides to reduce operating temperature, has produced some unexpected results. Important conclusions from this study, which includes two parallel tests, are as follows: (1) All of the GaAs solar cells with multilayer-coated coverslides display UV degradation. The laboratory data, extrapolated to 10 years in orbit, point to a significant loss mechanism from a combination of absorption and a reduction in optical match in such coatings from this portion of the space environment; (2) The effects of contamination in a vacuum system, on the measured degradation in solar-cell short-circuit current during a UV test, depend upon the type of coverslide coatings present on the coverslide surfaces. This has implications for both coated coverslides and optical solar reflectors (OSR's) in space; and (3) Because of the observed trends in this test and uncertainties in the extrapolation of data for multilayer coated coverslides, the use of any multilayer-coated coverslides for extended missions (greater than 1 year) cannot be recommended without prior flight testing.

  2. Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells

    Diedenhofen, Silke L; Haverkamp, Erik; Bauhuis, Gerard; Schermer, John; Rivas, Jaime Gómez; 10.1016/j.solmat.2012.02.022


    We report a novel graded refractive index antireflection coating for III/V quadruple solar cells based on bottom-up grown tapered GaP nanowires. We have calculated the photocurrent density of an InGaP-GaAs-InGaAsP-InGaAs solar cell with a MgF2/ZnS double layer antireflection coating and with a graded refractive index coating. The photocurrent density can be increased by 5.9 % when the solar cell is coated with a graded refractive index layer with a thickness of 1\\mu m. We propose to realize such a graded refractive index layer by growing tapered GaP nanowires on III/V solar cells. For a first demonstration of the feasibility of the growth of tapered nanowires on III/V solar cells, we have grown tapered GaP nanowires on AlInP/GaAs substrates. We show experimentally that the reflection from the nanowire coated substrate is reduced and that the transmission into the substrate is increased for a broad spectral and angular range.

  3. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    Jagadamma, Lethy Krishnan


    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  4. CLARREO: Reference Inter-Calibration on Orbit With Reflected Solar Spectrometer

    Lukashin, C.; Roithmayr, C.; Currey, C.; Wielicki, B.; Goldin, D.; Sun, W.


    The CLARREO approach for reference intercalibration is based on obtaining coincident highly accurate spectral reflectance and reflected radiance measurements, and establish an on-orbit reference for existing Earth viewing reflected solar radiation sensors: CERES and VIIRS on JPSS satellites, AVHRR and follow-on imagers on MetOp, and imagers on GEO platforms. The mission goal is to be able to provide CLARREO RS reference observations that are matched in space, time, and viewing angles with measurements from the aforementioned instruments, with sampling sufficient to overcome the random error sources from imperfect data matching and instrument noise. The intercalibration method is to monitor over time changes in targeted sensor response function parameters: effective offset, gain, nonlinearity, spectral degradation, and sensitivity to polarization of optics.

  5. Single-material multilayer ZnS as anti-reflective coating for solar cell applications

    Salih, Ammar T.; Najim, Aus A.; Muhi, Malek A. H.; Gbashi, Kadhim R.


    Multilayer Zinc Sulfide (ZnS) is a promising low cost antireflective coating for solar cell applications, in this work; thin films with novel structure containing cubic and hexagonal phases were successfully deposited by thermal evaporation technique with three different layers. XRD analysis confirms the existence of both phases and high specific surface area. AFM analysis reveals that films with three layers have lower roughness and average grain size than other films. The optical measurements obtained by UV-vis, the calculated values of refractive index and reflectivity using some well known refractive index-band gap relations indicate that thin films with triple layer TL-ZnS have lower refractive index and reflectivity than other films, empirical equations were suggested and show the quantum confinement effects on band gap and reflectivity.

  6. Cost/performance of solar reflective surfaces for parabolic dish concentrators

    Bouquet, F.


    Materials for highly reflective surfaces for use in parabolic dish solar concentrators are discussed. Some important factors concerning performance of the mirrors are summarized, and typical costs are treated briefly. Capital investment cost/performance ratios for various materials are computed specifically for the double curvature parabolic concentrators using a mathematical model. The results are given in terms of initial investment cost for reflective surfaces per thermal kilowatt delivered to the receiver cavity for various operating temperatures from 400 to 1400 C. Although second surface glass mirrors are emphasized, first surface, chemically brightened and anodized aluminum surfaces as well as second surface, metallized polymeric films are treated. Conventional glass mirrors have the lowest cost/performance ratios, followed closely by aluminum reflectors. Ranges in the data due to uncertainties in cost and mirror reflectance factors are given.

  7. Ultra-low reflection porous silicon nanowires for solar cell applications

    Najar, Adel


    High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measurements show that the 35% reflectivity of the starting silicon wafer drops to 0.1% recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix Formalism (TMF) of the PSiNWs layer. Using TMF, the Bruggeman model was used to calculate the refractive index of PSiNWs layer. The calculated reflectance using circular cone shape fits better the measured reflectance for PSiNWs. The remarkable decrease in optical reflectivity indicates that PSiNWs is a good antireflective layer and have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection. ©2012 Optical Society of America.

  8. Non-inductive current built-up by local electron cyclotron heating and current drive with a 28 GHz focused beam on QUEST

    Onchi, Takumi; Idei, Hiroshi; Hasegawa, Makoto; Ohwada, Hiroaki; Zushi, Hideki; Hanada, Kazuaki; Kariya, Tsuyoshi; Mishra, Kishore; Shikama, Taichi; Quest Team


    The plasma current can be driven solely by injecting electron cyclotron waves (ECWs) in spherical tokamak (ST) configuration. A system of 28 GHz gyrotron (maximum power: 270 kW) is renewed and reinstalled on QUEST. A focused ECW beam, whose diameter is about 5 cm at the second harmonic resonance, is injected for local ECW heating and current drive. The local power density at resonance exceeds 75 MW/m2 at an injection power of 150 kW. The incident ECW polarization can be adjusted employing the phase shifter consisting of two corrugated plates. During 1.25 second pulse of ECH, plasma current is built up to Ip = 70 kA fully non-inductively with a core electron density of ne > 1018 m-3. The closed flux in such ST plasma is determined at the inboard limiter on the center stack. Energetic electrons are also responsible for the pressure and equilibrium. This work is supported by JSPS KAKENHI (15H04231, 15K17800), NIFS Collaboration Research program (NIFS13KUTR085, NIFS11KUTR069, NIFS16KUTR114).

  9. Contrasting glass and plastic material requirements for reflective and refractive CPV solar systems

    Horne, Steve; Krevor, David


    Concentrator PhotoVoltaic (CPV) solar energy systems concentrate the sun 500 - 1,000 times or more, in order to take economic advantage of the most advanced and efficient solar cells. The two prevalent system architectures use either reflective glass optics - such as based on a Cassegrain telescope design - or a refractive plastic system - either an acrylic or silicone-on-glass Fresnel lens - for concentration. Both systems have their advantages in areas of performance and durability. Both system designs manufacture their optics by low-cost processes that are unavailable to the other material system. These contrasts are reviewed. The refractive system embodies a simpler optical concept, requiring a single Fresnel lens rather than two concentrating mirrors. However, the reflective, glass system uses the greater design sophistication to provide a greater acceptance angle, which yields tolerance benefits in both manufacture and installation; and also provides faster optics without suffering the spectral aberrations of the refractive systems. Both glass and plastics are low-cost commodity materials. The long-term durability of optical glass is more firmly established than for optical plastics. And light transmission through optical plastics is attenuated by absorbance in both the UV and IR regions, in regions where such light is harvested by efficient multi-junction solar cells.

  10. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    Sun, Junqiang; Wang, Menghua


    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  11. An Evaluation of Total Solar Reflectance and Spectral Band Ratioing Techniques for Estimating Soil Water Content

    Reginato, R. J.; Vedder, J. F.; Idso, S. B.; Jackson, R. D.; Blanchard, M. B.; Goettelman, R.


    For several days in March of 1975, reflected solar radiation measurements were obtained from smooth and rough surfaces of wet, drying, and continually dry Avondale loam at Phoenix, Arizona, with pyranometers located 50 cm above the ground surface and a multispectral scanner flown at a 300-m height. The simple summation of the different band radiances measured by the multispectral scanner proved equally as good as the pyranometer data for estimating surface soil water content if the multispectral scanner data were standardized with respect to the intensity of incoming solar radiation or the reflected radiance from a reference surface, such as the continually dry soil. Without this means of standardization, multispectral scanner data are most useful in a spectral band ratioing context. Our results indicated that, for the bands used, no significant information on soil water content could be obtained by band ratioing. Thus the variability in soil water content should insignificantly affect soil-type discrimination based on identification of type-specific spectral signatures. Therefore remote sensing, conducted in the 0.4- to 1.0-micron wavelength region of the solar spectrum, would seem to be much More suited to identifying crop and soil types than to estimating of soil water content.

  12. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells


    Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver...Aluminum Gallium Arsenide (AlGaAs) Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kimberley A Olver

  13. Fabricating omnidirectional low-reflection films by nano-imprinting method for boosting solar power generation of silicon-based solar cells

    Gao, Mengyu; Zhan, Xinghua; Chen, Fei; Si, Yang; Tie, Shengnian; Gao, Wei


    Low-reflection polyethylene terephthalate (PET) films are fabricated with nano-imprinting method. The films are then used to cover polycrystalline silicon solar cells. The morphological and optical properties of films are investigated. The films have periodic cylinder-like nanostructures and relatively low reflectivity in light incident angle ranging from 30∘ to 60∘. The nanostructures are with a period of 600 nm and height of 90 nm. Besides, the polycrystalline Si solar cells covered with the films exhibit 12% more power generation than the cells covered with glass. Nano-imprinting method offers a cost-effective approach to fabricate omnidirectional anti-reflection films, which could boost the power generation of Si solar cells. Additionally, the films also have potential applications in different types of solar cells due to its facile fabricating process.

  14. Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon inventories

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.


    The diversity of oxalate formation mechanisms suggests that significant concentrations of oxalic acid and oxalate minerals could be widely distributed in the Solar System. We have carried out a systematic study of the reflectance spectra of oxalate minerals and oxalic acid, covering the 0.2-16 μm wavelength region. Our analyses show that oxalates exhibit unique spectral features that enable discrimination between oxalate phases and from other commonly occurring compounds, including carbonates, in all regions of the spectrum except for the visible. Using these spectral data, we consider the possible contribution of oxalate minerals to previously observed reflectance spectra of many objects throughout the Solar System, including satellites, comets, and asteroids. We find that polycarboxylic acid dimers and their salts may explain the reflectance spectra of many carbonaceous asteroids in the 3 μm spectral region. We suggest surface concentration of these compounds may be a type of space weathering from the photochemical and oxidative decomposition of the organic macromolecular material found in carbonaceous chondrites. The stability and ubiquity of these minerals on Earth, in extraterrestrial materials, and in association with biological processes make them useful for many applications in Earth and planetary sciences.

  15. Cool roofs with high solar reflectance for the welfare of dairy farming animals

    Santunione, G.; Libbra, A.; Muscio, A.


    Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.

  16. Reflected radiance distribution law for a 1000 kW thermal solar furnace system

    Sammouda, H.; Belghith, A. [Laboratory of Heat Mass Transfer, Tunis (Tunisia); Royere, C. [CNRS Institute of Sciences and Genius Material Process, Romeu (France); Maalej, M. [INRST Institute National of Science and Technical Research, Hammam-Lif (Tunisia)


    In this study, a theoretical and experimental analysis are presented in the aim to determine the reflected radiance distribution law (brightness) for paraboloid concentrator solar system. Among the characteristic parameters of this law, we consider the variation of the direct radiance of the solar disk, the variation of the apparent sun diameter, the atmospheric conditions and all the errors types or failures of the optic system. Here, we analyse the influence of these parameters on the energy power distribution in focal space. The experimental results, obtained in a 1000 kW thermal concentration system at Odeillo, are then compared to the theoretical results in order to determine the optimal values of the characteristic parameters corresponding to such installation. In the aim to exhibit the utility of this analysis, the irradiance distribution in focal plane is presented for different positions of receiver surface and for different intensities of concentrated flux. (author)

  17. Performance of "Moth Eye" Anti-Reflective Coatings for Solar Cell Applications

    Clark, E.; Kane, M.; Jiang, P.


    An inexpensive, effective anti-reflective coating (ARC) has been developed at the University of Florida to significantly enhance the absorption of light by silicon in solar cells. This coating has nano-scale features, and its microstructure mimics that of various night active insects (e.g. a moth's eye). It is a square array of pillars, each about 700 nm high and having a diameter of about 300 nm. Samples of silicon having this coating were exposed either to various combinations of either elevated temperature and humidity or to gamma irradiation ({sup 60}Co) at the Savannah River National Laboratory, or to a broad spectrum ultraviolet light and to a 532 nm laser light at the University of Florida. The anti-reflective properties of the coatings were unaffected by any of these environmental stresses, and the microstructure of the coating was also unaffected. In fact, the reflectivity of the gamma irradiated ARC became lower (advantageous for solar cell applications) at wavelengths between 400 and 1000 nm. These results show that this coating is robust and should be tested in actual systems exposed to either weather or a space environment. Structural details of the ARCs were studied to optimize their performance. Square arrays performed better than hexagonal arrays - the natural moth-eye coating is indeed a square array. The optimal depth of the templated nanopillars in the ARC was investigated. A wet etching technology for ARC formation was developed that would be less expensive and much faster than dry etching. Theoretical modeling revealed that dimple arrays should perform better than nipple arrays. A method of fabricating both dimple and nipple arrays having the same length was developed, and the dimple arrays performed better than the nipple arrays, in agreement with the modeling. The commercial viability of the technology is quite feasible, since the technology is scalable and inexpensive. This technology is also compatible with current industrial

  18. Mechanical grooving of oxidized porous silicon to reduce the reflectivity of monocrystalline silicon solar cells

    Zarroug, A.; Dimassi, W.; Ouertani, R.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre des Recherches et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)


    In this work, we are interested to use oxidized porous silicon (ox-PS) as a mask. So, we display the creating of a rough surface which enhances the absorption of incident light by solar cells and reduces the reflectivity of monocrystalline silicon (c-Si). It clearly can be seen that the mechanical grooving enables us to elaborate the texturing of monocrystalline silicon wafer. Results demonstrated that the application of a PS layer followed by a thermal treatment under O2 ambient easily gives us an oxide layer of uniform size which can vary from a nanometer to about ten microns. In addition, the Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer illustrates the possibility to realize oxide layer as a mask for porous silicon. We found also that this simple and low cost method decreases the total reflectivity (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo.

    Dawson, Terence J; Maloney, Shane K


    Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s(-1)) and high (6 m s(-1)) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased

  20. Theoretical analysis of reflected ray error from surface slope error and their application to the solar concentrated collector

    Huang, Weidong


    Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.

  1. The design of broad band anti-reflection coatings for solar cell applications

    Siva Rama Krishna, Angirekula; Sabat, Samrat Lagnajeet; Ghanashyam Krishna, Mamidipudi


    The design of broadband anti-reflection coatings (ARCs) for solar cell applications using multiobjective differential evolutionary (MODE) algorithms is reported. The effect of thickness and refractive index contrast within the layers of the ARC on the bandwidth of reflectance is investigated in detail. In the case of the hybrid plasmonic ARC structures the effect of size, shape and filling fraction of silver (Ag) nanoparticles on the reflectance is studied. Bandwidth is defined as the spectral region of wavelengths over which the reflectance is below 2%. Single, two and three layers ARCs (consisting of MgF2, Al2O3, Si3N4, TiO2 and ZnS or combinations of these materials) were simulated for performance evaluation on an a-Si photovoltaic cell. It is observed that the three layer ARC consisting of MgF2/Si3N4/TiO2(ZnTe) of 81/42/36 nm thicknesses, respectively, exhibited a weighted reflectance of 1.9% with a bandwidth of 450 nm over the wavelength range of 300-900 nm. The ARC bandwidth could be further improved by embedding randomly distributed Ag nanoparticles of size between 100 and 120 nm on a two layer ARC consisting of Al2O3/TiO2 with thickness of 42 nm and 56 nm respectively. This plasmon-dielectric hybrid ARC design exhibited a weighted reflectance of 0.6% with a bandwidth of 560 nm over the wavelength range of 300-900 nm.

  2. Infrared Studies of the Reflective Properties of Solar Cells and the HS376 Spacecraft

    Frith, James; Reyes, Jacqueline; Cowardin, Heather; Anz-Meador, Phillip; Buckalew, Brent; Lederer, Susan


    In 2015, a selection of HS-376 buses were observed photometrically with the United Kingdom Infrared Telescope (UKIRT) to explore relationships between time-on-orbit and Near Infrared (NIR) color. These buses were chosen because of their relatively simple shape, for the abundance of similar observable targets, and their surface material being primarily covered by solar cells. While the HS-376 spacecraft were all very similar in design, differences in the specific solar cells used in the construction of each model proved to be an unconstrained variable that could affect the observed reflective properties. In 2016, samples of the solar cells used on various models of HS-376 spacecraft were obtained from Boeing and were analyzed in the Optical Measurements Center at the Johnson Space Center using a visible-near infrared field spectrometer. The laboratory-based spectra are convolved to match the photometric bands previously obtained using UKIRT and compared with the on-orbit photometry. The results and future work are discussed here.

  3. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    Cunningham, Fred G.


    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  4. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)


    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  5. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem


    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  6. Method and tool to reverse the charges in anti-reflection films used for solar cell applications

    Sharma, Vivek; Tracy, Clarence


    A method is provided for making a solar cell. The method includes providing a stack including a substrate, a barrier layer disposed on the substrate, and an anti-reflective layer disposed on the barrier layer, where the anti-reflective layer has charge centers. The method also includes generating a corona with a charging tool and contacting the anti-reflective layer with the corona thereby injecting charge into at least some of the charge centers in the anti-reflective layer. Ultra-violet illumination and temperature-based annealing may be used to modify the charge of the anti-reflective layer.

  7. Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun


    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.

  8. CLARREO Approach for Reference Intercalibration of Reflected Solar Sensors: On-Orbit Data Matching and Sampling

    Roithmayr, Carlos; Lukashin, Constantine; Speth, Paul W.; Kopp, Gregg; Thome, Kurt; Wielicki, Bruce A.; Young, David F.


    The implementation of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission was recommended by the National Research Council in 2007 to provide an on-orbit intercalibration standard with accuracy of 0.3% (k = 2) for relevant Earth observing sensors. The goal of reference intercalibration, as established in the Decadal Survey, is to enable rigorous high-accuracy observations of critical climate change parameters, including reflected broadband radiation [Clouds and Earth's Radiant Energy System (CERES)], cloud properties [Visible Infrared Imaging Radiometer Suite (VIIRS)], and changes in surface albedo, including snow and ice albedo feedback. In this paper, we describe the CLARREO approach for performing intercalibration on orbit in the reflected solar (RS) wavelength domain. It is based on providing highly accurate spectral reflectance and reflected radiance measurements from the CLARREO Reflected Solar Spectrometer (RSS) to establish an on-orbit reference for existing sensors, namely, CERES and VIIRS on Joint Polar Satellite System satellites, Advanced Very High Resolution Radiometer and follow-on imagers on MetOp, Landsat imagers, and imagers on geostationary platforms. One of two fundamental CLARREO mission goals is to provide sufficient sampling of high-accuracy observations that are matched in time, space, and viewing angles with measurements made by existing instruments, to a degree that overcomes the random error sources from imperfect data matching and instrument noise. The data matching is achieved through CLARREO RSS pointing operations on orbit that align its line of sight with the intercalibrated sensor. These operations must be planned in advance; therefore, intercalibration events must be predicted by orbital modeling. If two competing opportunities are identified, one target sensor must be given priority over the other. The intercalibration method is to monitor changes in targeted sensor response function parameters: effective

  9. Effects of composition and exposure on the solar reflectance of Portland cement concrete

    Levinson, Ronnen; Akbari, Hashem


    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance

  10. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    Sun, Junqiang; Wang, Menghua


    The reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite are calibrated by a solar diffuser (SD) panel whose performance is itself monitored by an accompanying solar diffuser stability monitor (SDSM). In this comprehensive work we describe the SD-based calibration algorithm of the RSBs, analyze the calibration data, and derive the performance results-the RSB calibration coefficients or F-factors-for the current three and a half years of mission. The application of the newly derived product of the SD bidirectional reflectance factor and the vignetting function for the SD screen and the newly derived SD degradation, so-called H-factors, effectively minimizes the artificial seasonal patterns in the RSB calibration coefficients due to the errors of these ingredient inputs. The full illumination region, the "sweet spot," during calibration events for SD view is carefully examined and selected to ensure high data quality and to reduce noise owing to non-fully illuminated samples. A time-dependent relative spectral response (RSR), coming from the large out-of-band contribution and the VIIRS optical system wavelength-dependent degradation, is derived from an iterative approach and applied in the SD calibration for each RSB. The result shows that VIIRS RSBs degrade much faster at near-infrared (NIR) and shortwave-infrared (SWIR) wavelength ranges due to the faster degradation of the rotating telescope assembly against the remaining part of the system. The gains of the VIIRS RSBs have degraded 2.0% (410 nm, Band M1), 0.2% (443 nm, Band M2), -0.3% (486 nm, Band M3), 0.2% (551 nm, Band M4), 6.2% (640 nm, Band I1), 11.0% (671 nm, Band M5), 21.3% (745 nm, Band M6), 35.8% (862 nm, Band I2), and 35.8% (862 nm, Band M7), respectively, since launch and 24.8% (1238 nm, Band M8), 18.5% (1378 nm, Band M9), 11.5% (1610 nm, Band I3), 11.5% (1610, Band M10), and 4.0% (2250

  11. Effects of soiling and cleaning on the reflectance and solar heat gain of a light-colored roofing membrane

    Levinson, Ronnen; Berdahl, Paul; Asefaw Berhe, Asmeret; Akbari, Hashem

    A roof with high solar reflectance and high thermal emittance (e.g., a white roof) stays cool in the sun, reducing cooling power demand in a conditioned building and increasing summertime comfort in an unconditioned building. The high initial solar reflectance of a white membrane roof (circa 0.8) can be lowered by deposition of soot, dust, and/or biomass (e.g., fungi or algae) to about 0.6; degraded solar reflectances range from 0.3 to 0.8, depending on exposure. We investigate the effects of soiling and cleaning on the solar spectral reflectances and solar absorptances of 15 initially white or light-gray polyvinyl chloride membrane samples taken from roofs across the United States. Black carbon and organic carbon were the two identifiable strongly absorbing contaminants on the membranes. Wiping was effective at removing black carbon, and less so at removing organic carbon. Rinsing and/or washing removed nearly all of the remaining soil layer, with the exception of (a) thin layers of organic carbon and (b) isolated dark spots of biomass. Bleach was required to clear these last two features. At the most soiled location on each membrane, the ratio of solar reflectance to unsoiled solar reflectance (a measure of cleanliness) ranged from 0.41 to 0.89 for the soiled samples; 0.53 to 0.95 for the wiped samples; 0.74 to 0.98 for the rinsed samples; 0.79 to 1.00 for the washed samples; and 0.94 to 1.02 for the bleached samples. However, the influences of membrane soiling and cleaning on roof heat gain are better gauged by fractional variations in solar absorptance. Solar absorptance ratios (indicating solar heat gain relative to that of an unsoiled membrane) ranged from 1.4 to 3.5 for the soiled samples; 1.1 to 3.1 for the wiped samples; 1.0 to 2.0 for the rinsed samples; 1.0 to 1.9 for the washed samples; and 0.9 to 1.3 for the bleached samples.

  12. Impact of Built-up-Litter and Commercial Antimicrobials on Salmonella and Campylobacter Contamination of Broiler Carcasses Processed at a Pilot Mobile Poultry-Processing Unit

    KaWang Li


    Full Text Available The small-scale mobile poultry-processing unit (MPPU produced raw poultry products are of particular food safety concern due to exemption of USDA poultry products inspection act. Limited studies reported the microbial quality and safety of MPPU-processed poultry carcasses. This study evaluated the Salmonella and Campylobacter prevalence in broiler ceca and on MPPU-processed carcasses and efficacy of commercial antimicrobials against Campylobacter jejuni on broilers. In study I, straight-run Hubbard × Cobb broilers (147 were reared for 38 days on clean-shavings (CS, 75 or built-up-litter (BUL, 72 and processed at an MPPU. Aerobic plate counts (APCs, coliforms, Escherichia coli, and yeast/molds (Y/M of carcasses were analyzed on petrifilms. Ceca and carcass samples underwent microbial analyses for Salmonella and Campylobacter spp. using the modified USDA method and confirmed by API-20e test (Salmonella, latex agglutination immunoassay (Campylobacter, and Gram staining (Campylobacter. Quantitative polymerase chain reaction (CadF gene identified the prevalence of C. jejuni and Campylobacter coli in ceca and on carcasses. In study II, fresh chilled broiler carcasses were spot inoculated with C. jejuni (4.5 log10 CFU/mL and then undipped, or dipped into peroxyacetic acid (PAA (1,000 ppm, lactic acid (5%, lactic and citric acid blend (2.5%, sodium hypochlorite (69 ppm, or a H2O2–PAA mix (SaniDate® 5.0, 0.25% for 30 s. Surviving C. jejuni was recovered onto Brucella agar. APCs, coliforms, and E. coli populations were similar (P > 0.05 on CS and BUL carcasses. Carcasses of broilers raised on BUL contained a greater (P < 0.05 Y/M population (2.2 log10 CFU/mL than those reared on CS (1.8 log10 CFU/mL. Salmonella was not detected in any ceca samples, whereas 2.8% of the carcasses from BUL were present with Salmonella. Prevalence of Campylobacter spp., C. jejuni was lower (P < 0.05, and C. coli was similar (P > 0

  13. VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds

    Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen


    This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality

  14. Reflected solar wind ions and downward accelerated ionospheric ions during the January 1997 magnetic cloud event

    Dempsey, D. L.; Burch, J. L.; Huddleston, M. M.; Pollock, C. J.; Waite, J. H., Jr.; Wüest, M.; Moore, T. E.; Shelley, E. G.

    On January 11, 1997, at 03:40:00 UT, while Polar was traveling up the dusk flank toward apogee, two ion instruments, TIDE and TIMAS, detected upflowing H+ with an energy/pitch-angle dispersion resembling an ionospheric reflection of freshly injected solar wind ions. In the same region of space, TIDE and TIMAS observed cold beams of O+ and H+ traveling down the field line with equal bulk velocities. We interpret these ion signatures as concurrent observations of mirrored solar wind ions and downward accelerated ionospheric ions. By 03:42:00, an energy/pitch-angle dispersion of downward moving ions at very low energies was clearly evident in the TIDE data. This additional signature is interpreted as an indication of reconnection on the same field line in the southern hemisphere. We explain this unique combination of plasma distributions in terms of high-latitude reconnection and magnetic field line convection during northward-IMF conditions associated with the January 1997 magnetic cloud event.

  15. Assessment of Spatial-Temporal Expansion of Built-up and Residential-Commercial Dwellings with Some Economic Implications: A Case Study in the Lower Hunter of Eastern Australia

    Ramita Manandhar


    Full Text Available Built-up areas have been expanding throughout the world. Monitoring and prediction of the build-up is not only important for the economic development but also acts as sentinels of environmental decline important for ecologically sustainable development of a region. The aim of this paper is to model the growth of built-up and residential-commercial dwellings over the recent past and thus predict the near future growth for a popular tourist destination of the Lower Hunter of New South Wales, Australia. The land use and land cover change analysis, based on classification of Landsat imageries from 1985 to 2005 at a 5-yearly interval, indicates that built-up areas increased steadily; it was 2.0% of the total landscape in 1985 but increased to 4.2% by the year 2005. If this trend continues, the built-up area will have grown to over 6.5% by 2025—which is equivalent to growth of over 325% from the 1985 base. In order to further evaluate the residential and commercial growth, orthorectified aerial photographs of nearby periods of 1985, 1995 and 2005 were utilized to manually delineate residential/commercial dwellings, and thereby dwelling densities were derived. The results indicate that the mean dwelling density has more than doubled within a decade.

  16. 冷弯薄壁型钢拼合截面柱轴压承载力计算%Calculation Method for Bearing Capacity of Cold-formed Steel Built-up Columns Under Axial Compression

    周绪红; 李喆; 刘永健; 石宇


    In order to investigate bearing capacity of cold-formed steel built-up columns under axial compression, authors used ANSYS finite element program to analyze the cold-formed steel built-up columns at home and abroad. Compared with experimental results, the validity of the finite element method (FEM) was verified. Furthermore, a detailed parametric study by FEM was carried out to mainly determine the influence of cross-section form, cross-section dimension and slenderness ratio of component for the built-up effect. The simplified calculation method to the bearing capacity of cold-formed steel built-up columns under axial compression was extracted. The analytical results show that with the increase of the slenderness ratio, the built-up effect improves. As for these columns connected with screws through web, when width-thickness ratio of flange is certain, with the increase of width-height ratio of cross-section, the integrity of the built-up web increases, which leads the built-up effect to strengthen. But the influences of different areas of cross-sections are not so obvious.%为了研究冷弯薄壁型钢拼合截面柱的轴压承载力,对各国有关冷弯薄壁型钢拼合截面柱的轴压试验进行了ANSYS有限元模拟分析,有限元计算结果与试验结果吻合良好,从而验证了有限元方法的正确性.采用有限元方法分析了构件截面形式、截面尺寸以及长细比对冷弯薄壁型钢拼合截面柱拼合效应的影响,提出了冷弯薄壁型钢拼合截面柱轴压承载力的简化计算方法.分析结果表明:随着长细比的增大,拼合截面柱的拼合效应随之增大.对于主要通过螺钉将腹板进行拼合的构件,当翼缘宽厚比一定时,随着截面宽高比的增大,腹板拼合的整体性增强,从而使拼合效应增大,而截面面积的改变对拼合效应的影响则不是很明显.

  17. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.

    Chang, Hyo Sik; Jung, Hyun-Chul


    The effect of two-step surface treatment on monocrystalline silicon solar cells was investigated. We changed the nanostructure on pyramidal surfaces by wet nano-texturing so that less light is reflected. The two-step nano-texturing process reduces the average reflectance to about 4% in the 300-1100 nm wavelength region. The use of an antireflection coating resulted in an effective reflectance of 1%. We found that the reflectance obtained by wet nano-texturing was lower than that obtained by conventional alkaline texturing. Thus, we can expect a further increase in the efficiency of silicon solar cells with two-step nano-texturing by a wet chemical process.

  18. Using Reflected Solar Spectra to Test the Concept of Climate Change Fingerprinting

    Jin, Z.


    The key process in the climate change fingerprinting is to attribute the averaged spectral variation in large space and time scales to different climate variables. Using ten years of satellite data, we generate a group of observation-based spectral kernels and a time series of monthly mean reflectance spectra in five large latitude regions and globe. Subsequently, these kernels and the interannual variation spectra are used to retrieve the interannual changes in the relevant climate parameters to test the concept of using fingerprinting approach for climate change attribution. Comparing the fingerprinting retrieval to the observational truth, the RMS differences between the two are less than 2σ of the variance for all variables in all regions. A large error usually corresponds to those variables with large nonlinear radiative response, such as the cloud optical depth and the ice cloud particle size. Taken into account the nonlinear radiative error in the kernels, the retrieval accuracy is significantly higher, so that the RMS errors are reduced to less than 1σ of the variance for nearly all parameters, indicating the profound impact of the nonlinear error on fingerprinting retrieval. Another important finding is that if the cloud fraction is known a priori, the retrieval accuracy in cloud optical depth would be improved substantially. The test results demonstrate that the concept of climate change fingerprinting based on the reflected solar benchmark spectra is viable.

  19. Solar wind reflection from the lunar surface: The view from far and near

    Saul, L; Vorburger, A; M., D F Rodríguez; Fuselier, S A; McComas, D J; Möbius, E; Barabash, S; Funsten, Herb; Janzen, Paul


    The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scatteri...

  20. Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng


    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.

  1. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.


    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  2. Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning laser MACROscope/microscope

    Ribes, A.C.; Damaskinos, S.; Tiedje, H.F.; Dixon, A.E.; Brodie, D.E. [Guelph-Waterloo Program for Graduate Work in Physics, Waterloo Campus, University of Waterloo, Waterloo, ON (Canada)


    This paper describes a confocal scanning beam MACROscope/Microscope which can image specimens up to 7x7 cm in size using reflected light, photoluminescence and optical beam induced current. The MACROscope provides a 10{mu}m spot size at various wavelengths and generates 512x512 pixel images in less than 5 s. When used in combination with a conventional confocal scanning laser microscope sub-micron spot sizes become possible providing resolutions as high as 0.25{mu}m laterally and 0.5{mu}m axially in reflected light. The main function of this imaging system is to spatially resolve any defects within solar cells and similar devices. Several reflected-light, photoluminescence and OBIC images of CdS/CuInSe{sub 2} and CdZnS/CuInSe{sub 2} thin film solar cells are presented

  3. Numerical and experimental analysis of a salt gradient solar pond performance with or without reflective covered surface

    Bezir, Nalan C.; Oezek, Nuri [Department of Physics, Faculty of Art and Science, Sueleyman Demirel University, 32260 Isparta (Turkey); Doenmez, Orhan; Kayali, Refik [Department of Physics, Faculty of Art and Science, Nigde University, 51200 Nigde (Turkey)


    An experimental salt gradient solar pond having a surface area of 3.5 x 3.5 m{sup 2} and depth of 2 m has been built. Two covers, which are collapsible, have been used for reducing the thermal energy loses from the surface of the solar pond during the night and increasing the thermal efficiency of the pond solar energy harvesting during daytime. These covers having reflective properties can be rotated between 0 and 180 by an electric motor and they can be fixed at any angle automatically. A mathematical formulation which calculates the amount of the solar energy harvested by the covers has been developed and it is adapted into a mathematical model capable of giving the temporal temperature variation at any point inside or outside the pond at any time. From these calculations, hourly air and daily soil temperature values calculated from analytical functions are used. These analytic functions are derived by using the average hourly and daily temperature values for air and soil data obtained from the local meteorological station in Isparta region. The computational modeling has been carried out for the determination of the performance of insulated and uninsulated solar ponds having different sizes with or without covers and reflectors. Reflectors increase the performance of the solar ponds by about 25%. Finally, this model has been employed for the prediction of temperature variations of an experimental salt gradient solar pond. Numerical results are in good agreement with the experiments. (author)

  4. A Study of Enhanced Index - based Built - up Index Based on Landsat TM Imagery%基于TM图像的“增强的指数型建筑用地指数”研究

    吴志杰; 赵书河


    以Landsat TM/ETM+图像为数据源,研究城镇和农村建筑用地信息的提取方法.首先利用TM7,4,2波段创建归一化差值裸地与建筑用地指数(normalized difference bareness and built- up index,NDBBI);然后根据裸地在裸土指数(bare doil index,BSI)图像上的亮度值最高、在改进型归一化差值水体指数(modified normalized difference water index,MNDWI)图像的亮度值最低的特征,提出了增强型裸土指数(enhanced baresoilindex,EBSI);最后选用NDBBI,EBSI,MNDWI和SAVI( soil adjustment vegetation index,SAVI)4个指数,构建一种新型的建筑用地指数,称为“增强的指数型建筑用地指数”( enhanced index - based built - up index,EIBI),可快速地提取建筑用地信息.实验结果表明,用EIBI提取的建筑用地信息客观,人为干预少,可信度高,提取精度可达90%以上,适合于同时提取城市和农村建筑用地信息.%A new method for extraction of built - up land information both in suburban area and in urban district by using Landsat TM/ETM ' imagery is proposed in this paper. Firstly, to suppress the information of bare soil with the middle-infrared(TM7) , near-infrared(TM4) and green band (TM2), it is necessary to build a secondary index, which is called normalized difference bareness and built -up index(NDBBI). At the same time, to enhance the information of bare soil from existing indices of bare soil index (BSI) and modified normalized difference water index(MNDWI) , another secondary index is built, which is called enhanced bare soil index(EBSI). Finally, the indices of NDBBI, EBSI, SAVI and MNDWI are applied to constructing a new index for delineating built - up land features in satellite imagery, which is called enhanced index - based built - up index ( EIBI). The new index (EIBI) can be employed to extract the built - up land information both in suburban area and in urban district. This approach has been successful in Fuzhou and Zhangzhou experimental

  5. Development of sheet molding compound solar collectors with molded-in silvered glass reflective surfaces

    Champion, R. L.; Allred, R. E.


    The reflecting concentrator of a parabolic trough solar collector system comprises approximately 40% of initial system cost. The parabolic concentrator structure is also the most influential component in determining overall system efficiency. Parabolic test moldings have been fabricated from a general purpose sheet molding compound with flat chemically strengthened glass, flat annealed glass, and thermally formed glass. The test panel configuration was a 1.22 m x 0.61 m, 45/sup 0/ rim angle (0.762 m focal length) parabola. Attempts to mold with annealed sheet glass (1 mm thick) and thermally formed glass (1.25 mm thick) were unsuccessful; only the chemically strengthened glass (1.25 mm thick) was strong enough to survive molding pressures. Because of the mismatch in thermal expansion between glass and sheet molding compound, the as-molded panels contained a sizeable residual stress. The results are given of dimensional changes taking place in the panels under accelerated thermal cycling and outdoor aging conditions; these results are compared to an analytical model of the laminate. In addition, the sheet molding compound has been examined for thermomechanical properties and flow behavior in the rib sections. Results indicated that lowering the thermal expansion coefficient of the sheet molding compound through material modifications would produce a more stable structure.

  6. Linking solar induced fluorescence and the photochemical reflectance index to carbon assimilation in a cornfield

    Cheng, Y.; Middleton, E.; Zhang, Q.; Corp, L.; Campbell, P. K.; Huemmrich, K. F.; Kustas, W.; Daughtry, C. S.; Dulaney, W. P.; Russ, A.


    Determining the health and vigor of vegetation using high spectral resolution remote sensing techniques is a critical component in monitoring productivity from both natural and managed ecosystems and their feedbacks to climate. This presentation summarizes a field campaign conducted in a USDA-ARS experimental cornfield site located in Beltsville, MD, USA over a five-year period. The site is equipped with an instrumented tower which makes continuous eddy covariance measurements of CO2 along with incoming PAR. Hyperspectral reflectance observations were acquired over corn canopies with a USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at multiple times a day at various stages through the growing season. On all field days, supporting plant information and leaf level data were acquired (e.g., CO2 gas exchange) as well as biophysical field data, including leaf area index (LAI), mid-day canopy PAR transmission, soil reflectivity, and soil moisture. The canopy optical measurements enabled retrievals of the photochemical reflectance index (PRI) and solar induced fluorescence (SIF) centered at O2-A and -B bands. These two spectrally based bio-indicators have been widely utilized in studies to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.). Both SIF and PRI expressed diurnal dynamics and seasonal changes that followed environmental conditions and physiological status of the cornfield. We further investigated the correlation between these two retrievals and the flux tower based carbon assimilation observations (i.e. gross ecosystem production, GEP). We were able to successfully model the variation of GEP (r2=0.81; RMSE=0.18 mg CO2/m2/s) by utilizing both SIF and PRI. Several cross-validation algorithms were applied to the model to demonstrate the robustness and consistency of the model. Our results suggest great

  7. Texturing of the Silicon Substrate with Nanopores and Si Nanowires for Anti-reflecting Surfaces of Solar Cells

    A.A. Druzhinin


    Full Text Available The paper presents the prospects of obtaining a functional multi-layer anti-reflecting coating of the front surface of solar cells by texturing the surface of the silicon by electrochemical etching. The physical model of the "Black Si" coating with discrete inhomogeneity of the refractive index and technological aspects of producing of "Black Si" functional anti-reflecting coatings were presented. The investigation results of the spectral characteristics of the obtained multilayer multiporous "Black Si" coatings for silicon solar cells made by electrochemical etching are presented. The possibility of creating the texture on a silicon wafer surface using silicon nanowires and ordered nanopores obtained by metal-assisted chemical etching was shown.

  8. Optical coherence tomography and autofluorescence findings in chronic phototoxic maculopathy secondary to snow-reflected solar radiation

    Dhananjay Shukla


    Full Text Available A professional mountain trekker presented with gradual, moderate visual decline in one eye. The subnormal vision could not be explained by the examination of anterior and posterior segment of either eye, which was unremarkable. Optical coherence tomography and autofluorescence imaging revealed subtle defects in the outer retina, which correlated with the extent of visual disturbance. A novel presentation of retinal phototoxicity due to indirect solar radiation reflected from snow in inadequately protected eyes of a chronically exposed subject is reported.

  9. 基于中等空间分辨率遥感影像的建筑用地信息提取%Extraction of Built-up Land Information from Medium Spatial Resolution Satellite Image

    代颖懿; 刘辉; 黎启燃; 吴俊伟


    This paper introduces and analyses several domestic and international commonly used built -up land extracted index based on typical surface features′spectral response curves from medium spatial resolution remote sensing images ( such as Landsat TM images ) .Then we select Landsat TM image to extract built-up land information and use QuickBird and Google Earth images of the same period to assist in result validation . It turns out that , the radio resident-area index ( RRI ) has very low extraction accuracy and applicability , due to lacking radiometric correction .Secondly, the normal-ized difference building index ( NDBI ) and the difference built-up index ( DBI ) have a relatively high extraction accuracy , but being mixed with bare soil , contaminated water and other information . Thirdly, the index-based built-up index (IBI) and the enhanced index -based built-up index (EIBI) achieve the highest accuracy of 92%.EIBI intents to improve IBI but could not correct the effects of bare soil, because EIBI′s chosen weights may not be universal to achieve better results .Thus, we recommend to use IBI for the extraction built-up lands information .%本研究从中等空间分辨率遥感影像(如Landsat TM影像)的地物光谱响应曲线入手,介绍分析了国内外几种常用的建筑用地提取指数构建原理.然后选取Landsat TM 影像进行建筑用地提取实验,并用QuickBird 和Google Earth的同期影像辅以验证.实验得出,比值居民地指数RRI,由于其作者构建时并没有对影像进行辐射校正,从而影响了提取精度和模型适用性;归一化建筑指数NDBI和差值建筑覆盖指数DBI,提取精度相对较高,但是会混有裸土、污染水体等信息;指数型建筑用地指数IBI和增强的指数型建筑用地指数EIBI,提取精度最高,达到92%.虽然EIBI期望改进IBI未能很好抑制裸土信息的问题,但实际上所构建指数并没有较好的去除裸土信

  10. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Landini, Barbara; Campman, Ken; Zhang, Yong-Hang


    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In0.49Ga0.51P/GaAs/In0.49Ga0.51P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al0.52In0.48P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF2/ZnS anti-reflective coating demonstrated open-circuit voltages (Voc) up to 1.00 V, short-circuit current densities (Jsc) up to 24.5 mA/cm2, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated Jsc and conversion efficiency of these devices are expected to reach 26.6 mA/cm2 and 20.7%, respectively.

  11. Standard Test Method for Determining Solar or Photopic Reflectance, Transmittance, and Absorptance of Materials Using a Large Diameter Integrating Sphere

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers the measurement of the absolute total solar or photopic reflectance, transmittance, or absorptance of materials and surfaces. Although there are several applicable test methods employed for determining the optical properties of materials, they are generally useful only for flat, homogeneous, isotropic specimens. Materials that are patterned, textured, corrugated, or are of unusual size cannot be measured accurately using conventional spectrophotometric techniques, or require numerous measurements to obtain a relevant optical value. The purpose of this test method is to provide a means for making accurate optical property measurements of spatially nonuniform materials. 1.2 This test method is applicable to large specimens of materials having both specular and diffuse optical properties. It is particularly suited to the measurement of the reflectance of opaque materials and the reflectance and transmittance of semitransparent materials including corrugated fiber-reinforced plastic, ...

  12. Study on the Linkage Between Urban Built-Up Land and Water Quality in the Jiulong River Watershed%九龙江流域城镇建设用地与河流水质关系研究

    孙芹芹; 黄金良; 洪华生; 冯媛


    Band grouping indices combined with single band characteristic were used to extract urban built-up land based on satellite image in the Jiulong River Watershed.Landscape ecology method and statistical analysis were employed to explore the relationship between urban built-up land and permanganate index,NH+4-N,TP concentrations.There were significantly positive correlations between the proportion of urban built-up land and permanganate index,NH+4-N,TP(r= 0.701,0.695,0.789).It indicates the proportion of urban built-up land areas in the sub-watershed could be an effective indicator of water quality.The largest patch index(LPI) was positively correlated to permanganate index,NH+4-N,TP concentrations in the water(r=0.555,0.643,0.722).The landscape shape index(LSI) was positively correlated to permanganate index and TP concentrations in the water(r=0.564,0.553).These means the impacts of urban built-up land on water quality are influenced not only by urban built-up land areas but also by spatial patterns.The seasonally linear correlation results show that water quality deteriorates quickly with urban built-up land during the flood season and dry season,and the water is susceptible to eutrophication in both flood and dry seasons.The water quality in most sub-watersheds are impacted by urban built-up land,while the urban built-up land areas of Longmen stream,Su stream and Xiao stream located in headstreams are intensive,which need to be adjusted and controlled to protect the water quality.%基于波段组合指数与单波段特征相结合的方法对九龙江流域城镇建设用地进行提取,并采用景观生态学与统计分析方法,分别对流域内城镇建设用地的面积百分比及景观格局指数与水体中的高锰酸盐指数、NH 4+-N、TP浓度变化之间的关系进行研究.结果表明,流域内城镇建设用地的面积百分比与高锰酸盐指数、NH 4+-N、TP呈现显著正相关(r为0.701、0.695、0.789

  13. In-flight measurements of space count in the AVHRR solar reflectance bands

    Ignatov, Alexander; Cao, Changyong; Sullivan, Jerry T.; Levin, Robert H.; Wu, Xiangqian; Galvin, Roy P.


    The solar reflectance bands (SRB) of the Advanced Very High Resolution Radiometers (AVHRR) flown onboard NOAA satellites are often referred to as non-calibrated in-flight. In contrast, the Earth emission bands (EEB) are calibrated using two reference points, deep space and the internal calibration target. In the SRBs, measurements of space count (SC) are also available, however, historically they are not used to specify the calibration offset ("zero count", ZC), which does not even appear in the calibration equation. A regression calibration formulation is used instead, equivalent to setting the ZC to a constant, whose value is specified from pre-launch measurements. Our analyses supported by a review of the instrument design and a wealth of historical SC information show that the SC varies in-flight and it differs from its pre-launch value. We therefore suggest that (1) the AVHRR calibration equation in the SRBs be re-formulated to explicitly use the ZC, consistently with the EEBs, and (2) the value of ZC be specified from the onboard measurements of SC. This study emphasizes the importance of clear discrimination between the SC (which is a measured quantity and therefore takes on a range of values, characterized by the empirical probability density function, PDF), from the ZC (which is a parameter in the calibration equation, i.e. a number whose value needs to be estimated from the measured SC as a mean, median or other statistic of the measured PDF). The ZC-formulation of the calibration equation is physically solid, and it minimizes human-induced calibration errors resulting from the use of a regression formulation with an un-constrained intercept. Specifying the calibration offset improves radiances, most notably at the low end of radiometric scale, and subsequently provides for more accurate vicarious determinations of the calibration slope (inverse gain). These calibration improvements are important for the products derived from the AVHRR low-radiances, such

  14. Solar panel tracking control. Tracking the variations caused due to reflection from snow and other factors

    Pandey, Saroj


    This report presents the design and simulations of a dual-axis solar tracker. This solar tracker works solely based on the output power of the PV panel mounted to it. It does not use any photosensors to orient the PV module. Describing the process in short, the position of the Sun is first calculated based on time and location information. Since this solar panel will be mounted here at UiT, Norges Arktiske Universitet, Narvik. So, it’s latitude and longitude is always fixed. ...

  15. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells

    Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.


    It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5

  16. Tracking on-orbit stability of the response versus scan angle for the S-NPP VIIRS reflective solar bands

    Wu, Aisheng; Xiong, Xiaoxiong (Jack); Cao, Changyong


    Built on strong heritage of the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) carried on Suomi NPP (National Polar-orbiting Partnership) satellite ( has been in operation for nearly five fives. The on-board calibration of the VIIRS reflective solar bands (RSB) relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to determine the on orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability. In this study, the RVS stability is examined based on reflectance trends collected from 16-day repeatable orbits over preselected pseudo-invariant desert sites in Northern Africa. These trends cover nearly entire Earth view scan range so that any systematic drifts in the scan angle direction would indicate a change in RVS. This study also compares VIIRS RVS on-orbit stability results with those from Aqua and Terra MODIS over the first four years of mission for a few selected bands, which provides further information on potential VIIRS RVS on-orbit changes.

  17. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)


    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  18. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual technical report, April 1, 1995--March 31, 1996

    Gordon, R.G.; Sato, H.; Liang, H.; Liu, X.; Thornton, J. [Harvard Univ., Cambridge, MA (United States)


    The general objective is to develop methods to deposit materials which can be used to make more efficient solar cells. The work is organized into three general tasks: Task 1. Develop improved methods for depositing and using transparent conductors of fluorine-doped zinc oxide in amorphous silicon solar cells Task 2. Deposit and evaluate titanium oxide as a reflection-enhancing diffusion barrier between amorphous silicon and an aluminum or silver back-reflector. Task 3. Deposit and evaluate electrically conductive titanium oxide as a transparent conducting layer on which more efficient and more stable superstrate cells can be deposited. About one-third of the current project resources are allocated to each of these three objectives.

  19. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    Eid, Jessica


    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  20. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    Huang, Q.Z. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, J.F., E-mail: [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Wang, L.L.; Li, Y.J.; Zhong, L.W. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Xu, G., E-mail: [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China)


    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO{sub 2}/Na{sub 2}O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO{sub 2}/Na{sub 2}O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  1. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection.

    Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez


    A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

  2. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Wang, Shichao; Zhang, Jun, E-mail:


    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.


    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)


    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  4. Reflectance measurement in heliostats field of Solar Thermal Central Receivers Systems; Medida de reflectancia en campos de heliostatos de sistemas de Torre Central

    Fernandez-Reche, J.; Monterreal, R.


    Determination of the mean reflectance of Heliostats field of Solar Thermal Central Receivers Systems takes high relevance, from both the operational point of view and the components evaluation. To calculate the mean reflectance calculation becomes essential to establish a procedure that allows offering its value without measuring all and each one of the facets that constitute the field, since this is a long-time consuming and little operational task. This work presents the results of the statistical reflectance study of the CRS heliostats field of the Plataforma Solar de Almeria. In addition, to validate the results, the obtained average reflectance is introduced in the heliostats field simulation code Fiat{sub L}ux. A comparison between the simulation and real incident solar power measurement was performed. (Author)

  5. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Mahmood DJH


    Full Text Available Deyar Jallal Hadi Mahmood, Ewa H Linderoth, Ann Wennerberg, Per Vult Von Steyern Department of Prosthetic Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden Aim: To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP fixed dental prostheses (FDPs with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods: A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results: There was a significant difference (P<0.05 between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS® (1,806±165 N and e.max® ZirPress (1,854±115 N and the state-of-the-art design with VITA VM® 9 (1,849±150 N demonstrated the highest mean fracture values. Conclusion: The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed

  6. Instrumentation and First Results of the Reflected Solar Demonstration System for the Climate Absolute Radiance and Refractivity Observatory

    McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen


    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.

  7. Impacts of hyperspectral sensor spectral coverage, sampling and resolution on cross-comparison with broadband sensor for reflective solar bands

    Wu, Aisheng; Xiong, Xiaoxiong; Wenny, Brian


    A new generation of hyperspectral imagers requires a much higher absolute accuracy for reflected solar radiation measurements to further improve climate monitoring capabilities. For example, the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission, a future satellite mission led and developed by NASA and partner organizations, is currently considered to consist of two hyperspectral imagers that cover the reflected solar (RS) and infrared radiation. The design of the CLARREO RS instrument operates from 320 to 2300 nm with 4 nm in spectral sampling and 8 nm in spectral resolution. In this study, the sensitivity of spectral coverage, sampling and resolution of the CLARREO RS type instrument is tested for their impacts on integrated radiances using the relative spectral responses (RSR) of existing broadband sensors. As a proxy, our hyperspectral data is based on MODTRAN simulations and SCIAMACHY observations and the RSR data is from those used in MODIS, VIIRS and AVHRR level 1B (L1B) products. The sensitivity is conducted for ocean, forest, desert, snow and cloud.

  8. A novel self-cleaning and anti-reflective multi-layer for thin-film solar PV module

    Wong, K.L.; Shiue, J.D. [Kun-Shan Univ., Yung-Kung City, Taiwan (China). Clean Energy Center; Li, M.; Huang, M.C. [NanoWinTechnology Co., Ltd., Taiwan (China); Fu, Y.S.; Wei, S.S. [National Univ. of Tainan, Tainan, Taiwan (China)


    Titanium dioxide (TiO{sub 2}) acts as a photocatalyst, and can accelerate the decomposition of organic particulates and airborne pollutants that gather on solar arrays. In this study, a TiO{sub 2} film was coated on the outside surface of sodium glass in order to increase the self-cleaning ability of solar cells. DC magnetic sputtering was used to coat multi-layer thin films of silicon nitrides in order to increase their antireflective capabilities. The TiO{sub 2} thin film was fabricated using the sol-gel method. Optical properties of the microstructure and composition of the films were characterized using UV-V spectroscopy. Results showed that the best anti-reflection spectrum of the TiO{sub 2} was between 700 and 800 nm. Average transmission rates were 3.54 per cent higher than those observed in slide glass samples. It was concluded that overlapped titanium dioxide/silicon nitride thin films can achieve a very good anti-reflective effect as well as self-cleaning ability in the range of 400-800 nm. 9 refs., 4 figs.

  9. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    Desjarlais, Andre Omer [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL; Miller, William A [ORNL


    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  10. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan


    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  11. Fabrication of high infrared reflective Al-doped ZnO thin films through electropulsing treatment for solar control

    Miao, Dagang, E-mail:; Hu, Huawen; Gan, Lu


    Highlights: • Rapid electropulsing treatment (EPT) was applied on AZO thin films. • AZO film presented electrical resistivity of 9.03 × 10{sup −4} Ω cm after 4.5 min of EPT. • AZO film presented high infrared reflection rate of 80–85% after 4.5 min of EPT. • The prepared AZO film can be used as solar control film. - Abstract: In this study, Al-doped ZnO (AZO) thin films were finished by low-energy consumed electropulsing treatment (EPT) in a short time. The EPT effect on the resulting AZO films was investigated by X-ray Diffraction (XRD), Hall Effect measurement, UV–visible transmittance spectra, Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy. As compared with the other EPT-treated AZO films, the prepared AZO films corresponding to 4.5 min EPT exhibited higher degree of crystallization, higher visible transmittance with blue shift, smoother surface, lower electrical resistivity of 9.03 × 10{sup −4} Ω cm, and higher infrared reflection rate of 80–85%. By the 4.5 min of EPT, the electrical conductivity of the resulting AZO thin film was increased by approximately 82.3%. Moreover, it was also found that prolonged EPT would degrade the film properties. These results indicate that the fast and low-energy consumed EPT might be a promising substitution for traditional heat annealing, and the prepared high infrared reflective AZO films make them promising candidates for being applied as solar control films.

  12. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo


    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria

  13. On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS

    Angal, Amit; Xiong, Xiaoxiong (Jack); Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake


    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASA's EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 μm to 2.2 μm, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of +/-55° off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in

  14. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng


    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  15. Standard Practice for Calculation of Photometric Transmittance and Reflectance of Materials to Solar Radiation

    American Society for Testing and Materials. Philadelphia


    1.1 This practice describes the calculation of luminous (photometric) transmittance and reflectance of materials from spectral radiant transmittance and reflectance data obtained from Test Method E 903. 1.2 Determination of luminous transmittance by this practice is preferred over measurement of photometric transmittance by methods using the sun as a source and a photometer as detector except for transmitting sheet materials that are inhomogeneous, patterned, or corrugated. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Spectroscopic direct detection of reflected light from extra-solar planets

    Martins, Jorge H C; Santos, Nuno; Lovis, Christophe


    At optical wavelengths, an exoplanet's signature is essentially reflected light from the host star - several orders of magnitude fainter. Since it is superimposed on the star spectrum its detection has been a difficult observational challenge. However, the development of a new generation of instruments like ESPRESSO and next generation telescopes like the E-ELT put us in a privileged position to detect these planets' reflected light as we will have access to extremely high signal-to-noise ratio spectra. With this work, we propose an alternative approach for the direct detection of the reflected light of an exoplanet. We simulated observations with ESPRESSO@VLT and HIRES@E-ELT of several star+planet systems, encompassing 10h of the most favourable orbital phases. To the simulated spectra we applied the Cross Correlation Function to operate in a much higher signal-to-noise ratio domain than when compared with the spectra. The use of the Cross-Correlation Function permitted us to recover the simulated the planet...

  17. Study by simulation of the SnO2 and ZnO anti-reflection layers in n-SiC/p-SiC solar cells

    Zerfaoui, Hana; Dib, Djalel; Rahmani, Mohamed; Benyelloul, Kamel; Mebarkia, Chafia


    Recently, Two technologies of the photovoltaic cells are present today namely the cells crystalline (polycrystalline and monocrystalline) and the cell thin layers. The development of the solar cells requires a technological change of materials used in their manufacturing. The thin layers are parts of these materials and which announced their effectiveness and growth of output of the solar cell. The aim of this paper article is to the study and simulation of photovoltaic cells containing SiC materials. This material is have important having a part in the development of renewable energies. Based on the SCAPS (a Solar Cell Capacitance Simulator) simulation, the obtained results are Vco, Jsc, FF and the output energy of conversion of a solar cell n-SiC/p-SiC with different materials for the anti-reflecting layer ZnO and SnO2.with the SCAPS (a Solar Cell Capacitance Simulator) computer code in one dimension, the results obtained after optimization.

  18. Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

    Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.


    Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and -690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded.

  19. Reflections of ions in electrostatic analyzers: a case study with New Horizons/Solar Wind Around Pluto.

    Randol, B M; Ebert, R W; Allegrini, F; McComas, D J; Schwadron, N A


    Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10(-3) of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of ≤10(-3) of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method

  20. Reflections of ions in electrostatic analyzers: A case study with New Horizons/Solar Wind Around Pluto

    Randol, B. M.; Ebert, R. W. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78229 (United States); Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas 78228 (United States); Allegrini, F.; McComas, D. J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas 78228 (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78229 (United States); Schwadron, N. A. [Department of Astronomy, Boston University, Boston, Massachusetts 02215 (United States)


    Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10{sup -3} of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of {<=}10{sup -3} of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team

  1. Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping: Functions of AAO nano-grating

    Wu, Lei; Zhang, Haiming; Qin, Feifei; Bai, Xiaogang; Ji, Ziye; Huang, Dan


    Anodic aluminium oxide (AAO) nanogratings are experimentally applied to polycrystalline silicon (pc-Si) solar cells at front surface to improve the light coupling. On the basis of the Fresnel Reflection Principle, the primary reflection loss can be reduced by multi-layer dielectric film with varing refactive index. And this multi-layer film is regarded as anti-reflection coating. An efficient light-trapping structure is significant in absorption enhancement of long wavelength band (around 900-1100 nm) for silicon solar cells. In this paper, we put AAO nanogratings on the front side of pc-Si solar cells to serve as anti-reflecting coating and light-trapping structure. The operation leads to light absorption enhancement eventually. Thanks to AAO nano-grating's structure parameters, the anti-reflecting and light-trapping effects are changeable. This is discussed in three aspects: AAO lattice period, AAO thickness and its pore diameter. Optical interaction between AAO nanograting and Ag electrodes is also discussed. We find an increase of short-circuit current density (1.32 mA/cm2) with SiNx:H/AAO complex coating. The relative power conversion efficiency obtains a growth about 2.2% points. Additionally, AAO nanogratings may facilitate carrier separation. This improves the performance of pc-Si solar cells in electrical aspect.

  2. Optical and adhesive properties of dust deposits on solar mirrors and their effects on specular reflectivity and electrodynamic cleaning for mitigating energy-yield loss

    Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark


    Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.

  3. Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Changler, Gyanesh; Choi, Taeyoyung


    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  4. 北京建成区道路绿化空间结构和行道树健康状况%Spatial Structure and Health Condition of Street Trees in Beijing Built-up Areas

    郄光发; 王成


    采用实地普查测量方法,定量研究了北京建成区188条道路行道树的树种结构、径级分布、立木层次和健康状况。结果表明,国槐(Sophora japonica)、毛白杨(Populus alba)、银杏(Ginkgo biloba)是建成区主要行道树种,使用量分别占研究区树木总株数的54.7%、13.7%和7.4%。建成区树木平均密度201株/hm。,平均胸径18.5cm,其中胸径在30cm以上的大径级树木数量较少,仅占11.9%,而中、小径级树木比例过大,10cm≤DBH〈20cm是行道树最集中的径级分布区间。%The structure and health condition of street trees were investigated by using aerial photograph method in Beijing built-up areas. The species composition, tree DBH (diameter at breast height) , tree stratum and health condi- tion were analyzed. The result

  5. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Langer, S. H.; Petrosian, V.


    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  6. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.


    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  7. A Solar Reflectance Method for Retrieving Cloud Optical Thickness and Droplet Size Over Snow and Ice Surfaces

    Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.


    Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.

  8. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands

    Fangfang Yu


    Full Text Available The Advanced Himawari Imager (AHI on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR bands. In this study, the Ray-matching and collocated Deep Convective Cloud (DCC methods, both of which are based on incidently collocated homogeneous pairs between AHI and Suomi NPP (S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS, are used to evaluate the calibration difference between these two instruments. While the Ray-matching method is used to examine the reflectance difference over the all-sky collocations with similar viewing and illumination geometries, the near lambertian collocated DCC pxiels are used to examine the difference for the median or high reflectance scenes. Strong linear relationships between AHI and VIIRS can be found at all the paired AHI and VIIRS bands. Results of both methods indicate that AHI radiometric calibration accuracy agrees well with VIIRS data within 5% for B1-4 and B6 at mid and high reflectance scenes, while AHI B5 is generally brighter than VIIRS by ~6%–8%. No apparent East-West viewing angle dependent calibration difference can be found at all the VNIR bands. Compared to the Ray-matching method, the collocated DCC method provides less uncertainty of inter-calibration results at near-infrared (NIR bands. As AHI has similar optics and calibration designs to the GOES-R Advanced Baseline Imager (ABI, which is currently scheduled to launch in fall 2016, the on-orbit AHI data provides a unique opportunity to develop, test and examine the cal/val tools developed for ABI.

  9. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline


    reflector increases its reflectance drastically. The process is performed at low temperature (150°C) to allow the use of plastic sheets such as polyethylene naphthalate and increases the efficiency of single junction amorphous solar cells dramatically. We present the best result obtained on a flexible...

  10. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    Kumar, Pankaj


    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  11. Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint

    Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.


    A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

  12. Experimental study on cold-formed steel three limbs built-up section members under axial compression%冷弯薄壁型钢开口三肢拼合立柱轴压性能试验研究

    周天华; 聂少锋; 刘向斌


    18 specimens of cold-formed steel three-limb built-up section members were tested under axial compression load. The section forms are divided into A and B categories. A category section is built-up with 3 C section cold- formed steel members. B category section is built-up with 2 C section and 1 U section cold-formed steel members. Load-displacement curves and failure characteristics of specimens were obtained. The test results were compared with the results by effective width method and direct strength method which were calculated according to the specification of China and USA. The results show that the dominant failure characteristics of A and B categories section LC (long column) series columns are flexural-torsional buckling and bending buckling respectively. MC (middle length column) series columns of A categories section are distortional buckling and B categories section are distortionalbuckling and bending buckling. All SC (short column) series columns are local buckling and distortional buckling. The results calculated by AISI effective width method are conservative for LC series column of A and B categories section, while non-conservative for the SC series columns. The calculated results are close to test results as for MC series columns. The results calculated by AISI direct strength method are conservative for LC and MC series columns of A category section, while non-conservative for the SC series columns. As for B category section columns, the errors between direct strength method results and test results are between -16.5% and 11.2%. The results calculated according to ' Technical code of cold-formed thin-wall steel structures' are conservative as for LC series columns. The calculated result are close to test results as for MC and SC series columns, with the error between -8.7% - 4.7% and -7.3% - 13.7% , respectively%对18根冷弯薄壁型钢开口三肢拼合立柱的轴压性能进行了试验研究,试件分为A

  13. On the Use of Deep Convective Clouds to Characterize Response versus Scan-angle for MODIS Reflective Solar Bands

    Bhatt, R.; Doelling, D. R.; Scarino, B. R.; Gopalan, A.; Haney, C.


    MODIS is a cross-track scanning radiometer with a two-sided scan mirror that images the Earth with an angular field of view of 55° on either side of the nadir. The reflectance of the scan mirror is not uniform and is a function of angle of incidence (AOI), as well as wavelength. This feature of the scan mirror is described by response versus scan-angle (RVS), and was characterized for all reflective solar bands (RSBs), for both MODIS instruments prior to launch. The RVS characteristic of the two MODIS instruments has changed on orbit and, therefore, must be tracked precisely over time to ensure high-quality data in the MODIS products. The MODIS Characterization Support Team (MCST) utilizes the onboard solar diffuser (SD) and lunar measurements to track the RVS changes at two fixed AOIs. The RVS at the remaining AOIs is characterized using the earth view (EV) responses from multiple pseudo-invariant desert sites located in Northern Africa. The drawback of this approach is the assumption that all of the desert sites imaged by the MODIS sensors at different AOIs are radiometrically stable during the same period of time. In addition, the desert samples do not always have continuous AOI coverage as they are limited by the 16-day repeat cycle of the satellite orbit, and by clear-sky conditions over the deserts. This paper proposes a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCCs) as an invariant calibration target. The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Because DCCs are distributed across the entirety of the tropics, they provide a continuum of AOI measurements. Initial results have shown that the Aqua-MODIS Collection 6 band 1 level 1b radiances show considerable residual, or artifact, RVS dependencies, especially on the left side of the cross-track scan. Long-term drifts, up to 2.3%, have been observed at certain AOIs. Temporal correction factors

  14. ZnO/Al{sub 2}O{sub 3} core/shell nanorods array as excellent anti-reflection layers on silicon solar cells

    Lung, Chun-Ming; Wang, Wei-Cheng [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 106, Taiwan (China); Chen, Liang-Yih, E-mail: [Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, 106, Taiwan (China); Chen, Miin-Jang, E-mail: [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)


    A simple, low-temperature hydrothermal method and atomic layer deposition (ALD) were used to fabricate ZnO nanostructures as subwavelength-structure antireflection layers (SWS ARLs) on Si solar cells. ZnO seed layers with wafer-scale uniformity were prepared, and ALD was used to reproduce two types of ZnO-based structures, nanorod arrays (NRAs) and nanotip arrays (NTAs). The study examined diammonium phosphate concentrations during growth, conducted simulations based on three-dimensional finite-difference time-domain and reflection analyses, performed X-ray diffractometer, field-emission scanning electron microscope, and high-resolution transmission electron microscope characterizations, measured total reflectance spectra by using a spectrophotometer with integrated spheres, and ran solar simulations to determine the efficiency of the Si solar cells. Coating the ZnO NTAs on the Si solar cells yielded a low total reflectance over a broad band range and produced omnidirectional light scattering on the cells, causing incident light to have a shallow penetration depth near the p–n junction and leading to an increase in short current density ({sub Jsc}). Coating the ZnO NTAs with an Al{sub 2}O{sub 3} shell induced continuous variation in the refractive index, further decreasing the total reflectance to approximately 5.5%, and protected the ZnO NTAs from the harmful acidic environment. Significantly increasing the J{sub sc} and η levels of the Si solar cells, the Al{sub 2}O{sub 3}@ZnO-NTA antireflection structure produced a high efficiency of 17.79%. Its superior performance, including low and wideband reflectance, a low process temperature, and a significant increase in efficiency, indicates the potential of this antireflective structure for enhancing solar cell efficiency in photovoltaic devices. - Highlights: • ZnO nanotip arrays were synthesized by hydrothermal methods as antireflection layer. • The total reflectance is low around 7.8% from 400 nm to 1000

  15. JPSS-1 VIIRS reflective solar band on-orbit calibration performance impacts due to SWIR nonlinearity artifacts

    Moyer, D.; De Luccia, F.; Haas, E.


    The Joint Polar Satellite System 1 (JPSS-1) is the follow on mission to the Suomi-National Polar-orbiting Partnership (SNPP) and provides critical weather and global climate products to the user community. A primary sensor on both JPSS-1 and S-NPP is the Visible-Infrared Imaging Radiometer Suite (VIIRS) with the Reflective Solar Band (RSB), Thermal Emissive Band (TEB) and Day Night Band (DNB) imagery providing a diverse spectral range of Earth observations. These VIIRS observation are radiometrically calibrated within the Sensor Data Records (SDRs) for use in Environmental Data Record (EDR) products such as Ocean Color/Chlorophyll (OCC) and Sea Surface Temperature (SST). Spectrally the VIIRS sensor can be broken down into 4 groups: the Visible Near Infra-Red (VNIR), Short-Wave Infra-Red (SWIR), Mid- Wave Infra-Red (MWIR) and Long-Wave Infra-Red (LWIR). The SWIR spectral bands on JPSS-1 VIIRS have a nonlinear response at low light levels affecting the calibration quality where Earth scenes are dark (like oceans). This anomalous behavior was not present on S-NPP VIIRS and will be a unique feature of the JPSS-1 VIIRS sensor. This paper will show the behavior of the SWIR response non-linearity on JPSS-1 VIIRS and potential mitigation approaches to limit its impact on the SDR and EDR products.

  16. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Teng, Tun-Chien; Lai, Wei-Che


    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  17. Numerical design of thin perovskite solar cell with fiber array-based anti-reflection front electrode for light-trapping enhancement

    Khang Nguyen, Truong; Dang, Phuc Toan; Le, Khai Q.


    Perovskite has recently drawn substantial interest in photovoltaic research owing to its unique potentials of low cost fabrication and high power conversion efficiency. In this paper, a thin solar cells made of perovskite photoactive layer is introduced. The proposed perovskite-based solar cell with atop antireflection front electrode (p-ARFE) made of fiber arrays is calibrated to generate lensing/anti-reflecting effects and thus resulting in improved absorption efficiency. Theoretical and numerical results have demonstrated that the overall integrated AM1.5 G absorption in an optimal configuration yields a maximum short circuit current density of 20.2 mA cm-2 and an enhancement up to 6.3% compared to its flat solar cell counterpart with a same perovskite thickness of 200 nm. The proposed p-ARFE solar cell also presents a relative broadband absorption characteristic with zero reflection at multiple visible frequencies, i.e., 360-750 nm, thus more benefiting associated with next-generation perovskite-based solar cell applications.

  18. Analysis of partial-reflection data from the solar eclipse of 10 Jul. 1972. [ground-based experiment using vertical incident radio waves partially reflected from D region

    Bean, T. A.; Bowhill, S. A.


    Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.

  19. Low cost sol–gel derived SiC–SiO{sub 2} nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    Jannat, Azmira [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Solar Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Lee, Woojin [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Akhtar, M. Shaheer, E-mail: [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Li, Zhen Yu [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); Yang, O.-Bong, E-mail: [School of Semiconductor and Chemical Engineering, Solar Energy Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 (Korea, Republic of); New & Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of)


    Graphical abstract: - Highlights: • Sol–gel derived SiC–SiO{sub 2} nanocomposite was prepared. • It effectively coated as AR layer on p-type Si-wafer. • SiC–SiO{sub 2} layer on Si solar cells exhibited relatively low reflectance of 7.08%. • Fabricated Si solar cell attained highly comparable performance of 16.99% to commercial device. - Abstract: This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol–gel derived SiC–SiO{sub 2} nanocomposite. The prepared SiC–SiO{sub 2} nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol–gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO{sub 2} phases, which noticeably confirmed the formation of SiC–SiO{sub 2} nanocomposite. The SiC–SiO{sub 2} layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC–SiO{sub 2} nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional Si{sub x}N{sub x} AR coated Si solar cell. New and effective sol–gel derived SiC–SiO{sub 2} AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  20. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod


    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  1. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  2. 彩色热反射隔热涂料的研制与性能研究%Preparation and Performance of Color Solar Reflective Thermal Insulation Coatings

    孙顺杰; 杨文颐; 冯晓杰; 于立冲


    为了获得较高的热反射性能,大多数热反射隔热涂料为白色或浅色.单调的颜色很难满足现代建筑对不同色彩的需求.文章研究了彩色热反射涂料制备过程中原材料对性能的影响.通过测试发现,添加冷颜料的彩色热反射涂料与普通外墙涂料相比,除了具备同样的色彩装饰效果,更重要的是具有优异的热反射性能,能有效节省能源.实验中,普通深灰外墙涂料的太阳光反射比为0.092,而相同颜色的热反射涂料太阳光反射比为0.297,两者1h、1.5h隔热温差达到8.5℃和8.7℃.%Most of solar reflective thermal insulation coatings have white or light color to provide higher heat reflective performance. But white or light color is difficult to meet the demand of modern decoration. This article has discussed the influence of raw materials on the performance of color solar reflective thermal insulation coatings. Color solar reflective thermal insulation coatings with cool pigments could give excellent heat reflection properties, the same decorative effect as that of the normal exterior wall paints, showing effective energy saving advantage. In this experiment, the total reflectance of ordinary dark gray exterior paint was 0. 092, while the total reflectance of solar reflective thermal insulation coatings with the same color was 0. 297. The thermal insulation temperature difference between them after 1 h and 1.5 h could be 8. 5 ℃ and 8. 7 ℃.

  3. Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO{sub 3} concentrations

    Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Guerrero-Lemus, R. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Fundacion de Estudios de Economia Aplicada. Catedra Focus-Abengoa. Jorge Juan, 46, 28001 Madrid (Spain)], E-mail:; Diaz-Herrera, B.; Marrero, N. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Mendez-Ramos, J.; Borchert, Dietmar [Departamento de Fisica Fundamental, Experimental Electronica y Sistemas, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Labour und Servicecentre, Institut fuer Solare Energiesysteme, Fraunhofer Institut, Auf der Reihe 2, 45884 Gelsenkirchen (Germany)


    The surface structure of multi-crystalline silicon (mc-Si) etched in HF/HNO{sub 3} at different HF/HNO{sub 3} concentrations is optimized for being applied in solar cells. The resulting texture, which determines the efficiency of solar cells, was characterized by means of scanning electron microscopy (SEM) and optical spectroscopy. The roughness of the surface increases and the reflectance decreases when the content of HNO{sub 3} in the etching solution is increased to a limit. The produced etched pits on the surface have been identified by SEM and the surface mean roughness has been characterized by atomic force microscopy (AFM). Also, depending on the concentration of the electrolyte, the mc-Si samples exhibit photoluminescence in the VIS range under UV excitation. The PL reveals the presence of nanocrystals on the surface of the etched samples. The surface structure is also optimized for an adequate placement of the metallic contact on top. Finally the solar cells were performed in order to investigate the dependence of the roughness, reflectance and photoluminescence to the solar efficiency.

  4. Influence of built-up edge phases on characteristics of surface profile of micro cutting%积屑瘤状态对微细切削表面轮廓特征的影响

    刘志兵; 王西彬


    研究了微细切削条件下,刀具前刀面上的积屑瘤状态对切削表面轮廓特征的影响,为合理选择和控制微细切削刀具的切削条件,以及评价微细切削的表面形貌特征提供实验依据.利用表面粗糙度仪分别提取了无积屑瘤、积屑瘤生长、稳定和脱落等4种积屑瘤状态下的切削表面轮廓,选取幅值密度函数(ADF)、自相关函数(ACF)和功率谱密度函数(PSD)等数理统计函数,以及时间序列模型参数和自回归(AR)谱分析了聚晶金刚石(PCD)刀具表面积屑瘤状态对微细切削表面轮廓特征的影响规律.结果表明,无积屑瘤和积屑瘤稳定阶段,AR谱的谱峰分别出现在91.7 c/mm和93.7 c/mm处,与进给量的倒数比较接近;积屑瘤生长和脱落状态阶段,谱峰出现的空间频率明显偏低,与进给量之间的对应关系不再显著.积屑瘤与切屑之间的不规则接触将破坏微细切削表面轮廓空间结构的一致性;积屑瘤生长和脱落阶段获得的表面轮廓的AR谱中存在明显的空间低频谱峰.%The influences of Built-up Edge(BUE) phases of a rake face on the characteristics of surface profile of micro cutting were researched, which provided the proof for the optimal selection of cutting parameters and the evaluation for the characteristics of surface profile of micro cutting. The surface profile data in micro cutting were measured with a profilometer in different BUE phases, BUE free,BUE formation, BUE stable and BUE drop. The influences of the BUEs on the characteristics of machined surface profiles were analyzed with mathematical statistical functions such as Amplitude Density Function(ADF), Auto-correlation Function(ACF) and Power Spectral Density Function(PSD), as well as the time series model parameters and Auto Regression(AR) spectra. Obtained results indicate that in BUE free and BUE stable phases, the AR spectral peaks of micro cutting surface locate at 91.7 c/mm and 93.7 c/mm, respectively

  5. Statistical Analysis of the Reflectivity of a Heliostats Field. Application to the CR S Heliostats Field of the Plataforma Solar de Almeria; Analisis Estadistico de la Reflectividad de un Campo de Heliostatos CRS de la Plataforma Solar de Almeria

    Fernandez Reche, J.


    Reflectivity measuring in a heliostats field of a solar central tower is a task that should performed periodically. The reflectivity of the field is a value that should be known to evaluate the system, moreover it plays an important role in several simulation codes which are useful for the daily operation of the system. When the size of the heliostats field increases (terns of heliostats) it is necessary to find a method, due to operability reasons, that allows us to offer a reflectivity value measuring only in fe facets guaranteeing that the statistical error of this value is within a reasonable range. In this report a statistical analysis of the reflectivity in a heliostats field is presented. The analysis was particularized for the CRS heliostats field of the Plataforma Solar de Almeria. The results of the present study allow us to guarantee a reflectivity value of the heliostats field with a statistical error below 1% measuring only 12 facets (instead of the 1116 facets that compose the field). (Author) 6 refs.

  6. Energy efficiency by use of automated energy-saving windows with heat-reflective screens and solar battery for power supply systems of European and Russian buildings

    Zakharov, V. M.; Smirnov, N. N.; Tyutikov, V. V.; Flament, B.


    The new energy saving windows with heat-reflecting shields have been developed, and for their practical use they need to be integrated into the automated system for controlling heat supply in buildings and the efficiency of their use together with the existing energy-saving measures must be determined. The study was based on the results of field tests of windows with heat-reflective shields in a certified climate chamber. The method to determine the minimum indoor air temperature under standby heating using heat-reflective shields in the windows and multifunctional energy-efficient shutter with solar battery have been developed. Annual energy saving for the conditions of different regions of Russia and France was determined. Using windows with heat-reflecting screens and a solar battery results in a triple power effect: reduced heat losses during the heating season due to increased window resistance; lower cost of heating buildings due to lowering of indoor ambient temperature; also electric power generation.

  7. Utilization of transparent heat-reflecting coatings in solar-energy converters. [ZnS--Ag--ZnS

    Koltun, M.N.; Faiziev, Sh.A.


    The optical characteristics of dielectric-metal-dielectric coatings developed by the authors on glass and polymer films are described. The possibility of using ZnS--Ag--ZnS coatings in solar-energy converters is considered.

  8. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Jun-Chin Liu


    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  9. Polarization-dependent angular-optical reflectance in solar-selective SnOx:F/Al2O3/Al reflector surfaces.

    Mwamburi, Mghendi; Wäckelgård, Ewa; Roos, Arne; Kivaisi, Rogath


    Polarization-dependent angular-optical properties of spectrally selective reflector surfaces of fluorine-doped tin oxide (SnOx:F) deposited pyrolytically on anodized aluminum are reported. The angular-reflectance measurements, for which both s- and p-polarized light are used in the solar wavelength range 0.3-2.5 microm, reveal strong spectral selectivity, and the angular behavior is highly dependent on the polarizing component of the incident beam, the total film thickness, and the individual thickness of the Al2O3 and the SnO2:F layers. The anodic A12O3 layers were produced electrochemically and varied between 100 and 205 nm in thickness. The SnOx:F films were grown pyrolytically at a temperature of 400 degrees C with film thicknesses varying in the range 180-320 nm. The reflectors were aimed at silicon solar cells, and good spectrally selective reflector characteristics were achieved with these thinly preanodized, SnOx:F/Al samples; that is, high cell reflectance was obtained for wavelengths below 1.1 microm and low thermal reflectance for wavelengths above 1.1 microm, with the best samples having values of 0.80 and 0.42, respectively, at near-normal angles of incidence. This corresponds to an anodic layer thickness of 155 nm. Both the angular calculations and the experimental measurements show that the cell reflectance is relatively insensitive to the incidence angle, and a low thermal reflectance is maintained up to an angle of approximately 60 degrees.

  10. Calculation of heat balance considering the reflection, refraction of incident ray and salt diffusion on solar pad; Hikari no hansha kussetsu oyobi shio no kakusan wo koryoshita solar pond no netsukeisan

    Kanayama, K.; Li, X.; Baba, H.; Endo, N. [Kitami Institute of Technology, (Japan)


    In calculating heat balance of solar pond, calculation was made considering things except quality of the incident ray and physical properties of pond water which were conventionally considered. The real optical path length was determined from the reflection ratio of ray on the water surface based on the refraction ratio of pond water and the locus of water transmitted ray in order to calculate a total transmission rate. The rate of absorption of monochromatic lights composing of solar light in their going through the media is different by wavelength, and therefore, calculation was made in each monochromatic light. As to four kinds of salt water solution, NaCl, KCl, MgCl2 and CaCl2, these phenomena seen in solar pond are taken in, and a total transmission rate based on reality can be calculated by the wavelength integration method. Moreover, in the salt gradient layer, there are gradients in both concentration and temperature, and thermal physical values of each layer change. Accordingly, mass transfer and thermal transfer by both gradients were considered at the same time. An analytic solution was introduced which analyzes salt diffusion in the temperature field in the gradient layer and determines the concentration distribution. By these, concentration and physical values of each layer were calculated according to phenomena, and thermal balance of each layer of the solar pond was able to be accurately calculated. 6 refs., 5 figs., 2 tabs.

  11. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    Hernández-Pinilla, D.; Rodríguez-Palomo, A.; Álvarez-Fraga, L.; Céspedes, E.; Prieto, J.E.; Muñoz-Martín, A.; Prieto, C.


    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here. PMID:27182544

  12. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    D. Hernández-Pinilla


    Full Text Available Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]. Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here.

  13. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2 -Si3N4.

    Hernández-Pinilla, D; Rodríguez-Palomo, A; Álvarez-Fraga, L; Céspedes, E; Prieto, J E; Muñoz-Martín, A; Prieto, C


    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2-Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating-cooling cycles are shown here.

  14. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga) Se-2 solar cells

    Vermang, Bart; Timo Watjen, Jorn; Fjallstrom, Viktor; Rostvall, Fredrik; Edoff, Marika; Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis


    Al2O3 rear surface passivated ultra-thin Cu(In,Ga)Se-2 (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al2O3 layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact w...

  15. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se{sub 2} solar cells

    Vermang, Bart, E-mail: [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); ESAT-KU Leuven, University of Leuven, Leuven 3001 (Belgium); Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf [Plasma & Coatings Physics, University of Linköping, Linköping 58183 (Sweden); Kotipalli, Ratan; Henry, Frederic; Flandre, Denis [ICTEAM/IMNC, Université Catholique de Louvain, Louvain-la-Neuve 1348 (Belgium)


    Al{sub 2}O{sub 3} rear surface passivated ultra-thin Cu(In,Ga)Se{sub 2} (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al{sub 2}O{sub 3} layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm{sup 2}; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al{sub 2}O{sub 3} film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination.

  16. Increasing The Efficiency of Silicon Solar Cells via an Anti-reflecting Nano-porous Surface Layer

    Coskuner, Ahmet; Gokce, Aisha; Altunay, Omer; Skarlatos, Yani; Ozatay, Ozhan


    Electrochemical etching of silicon in a controlled environment results in a porous surface that has many application areas from drug delivery to optoluminescent devices. There is vast interest in implementing porous silicon in silicon solar cells to increase light absorption and therefore the efficiency. Here we demonstrate successful formation of a nano-porous surface on mono-crystalline Si wafers as well as doped Si solar cells. Our results show that pre-cleaning and post-drying is crucial to acquire a smooth, non-cracked topography. We also find that under similar conditions, smaller pores in a denser arrangement and with shorter depths form in p-n junction type Si wafers compared to n-type or p-type Si. In ITO coated porous Si solar cells with Al back contacts, the measured efficiency increase is almost 50% of those without a porous surface. This is a promising result to further enhance the performance of Si solar cell devices.

  17. Doped nanocrystalline silicon oxide for use as (intermediate) reflecting layers in thin-film silicon solar cells

    Babal, P.


    In summary, this thesis shows the development and nanostructure analysis of doped silicon oxide layers. These layers are applied in thin-film silicon single and double junction solar cells. Concepts of intermediate reflectors (IR), consisting of silicon and/or zinc oxide, are applied in tandem cells

  18. A Solar Receiver-Reactor with Specularly Reflecting Walls for High-Temperature Thermoelectrochemical and Thermochemical Processes


    catalytic, to serve the functions of energy absorption, heat transfer, catalysis, and possibly reac- tion as well. He has demonstrated the use of soot...imperfect and imperfectly matched heliostats and concentrators. To some extent, the dispersion problem may be made tractable by the use of techniques uses, for either heliostats or concentrators, the superbly reflecting1 2 acrylic films now undergoing development, since these may reflect with

  19. The achievements of solar children from the natural created octave whose source is the emanating sun reflected by the Foundation for Solar Achievement with the Arts

    Petacchi, D.V. [Foundation for Solar Achievement with the Arts, Hobart, NY (United States)


    The Foundation for Solar Achievement With The Arts is a not-for-profit school training gifted children in the use of their talent in accordance with the philosophy and experience that children in harmony with their natural environment based upon the sun`s position in the course of the day have the greater capacity of attention necessary to enhance learning and creativity. Uncluttered as much as possible by the distractions of technology or the artificial glare of electricity, the learning environment of the Foundation for Solar Achievement With The Arts is conducive to this hands-on action. The Foundation was started by an individual whose life long search for the meaning of his life and whose pondering on the meaning human life on this planet led him to many conclusions modern science is just beginning to reach. With the help of dedicated architect John Jehring and likeminded others, Mr. Petacchi is utilizing natural sunlight in an environment conducive to the psyche of children. A building is planned that will expand into indoor form the natural lighting and free space of the out-of-doors.

  20. The spectral reflectance of water-mineral mixtures at low temperatures. [observed on natural satellites and other solar system objects

    Clark, R. N.


    Laboratory reflectance spectra in the 0.325-2.5 micron region of bound water, water-mineral mixtures, mineral grains on frost, and frost on minerals are presented. The materials used in this study are montmorillonite, kaolinite, beryl, Mauna Kea red cinder, and black charcoal. It is found that the wavelengths of bound water and bound OH absorptions do not shift appreciably with temperature and can be detected when large amounts of free water ice are present. The decrease in the visible reflectance seen in many planetary reflectance spectra containing strong water ice absorptions can be explained by water-mineral mixtures, mineral grains on frost, or frost on mineral grains. Mineral grains on frost are detectable in very small quantities (fractional areal coverage less than approximately 0.005) depending on the mineral reflectance features, while it takes a thick layer of frost (greater than approximately 1 mm) to mask a mineral below 1.4 microns, again depending on the mineral reflectance. Frost on a very dark surface (albedo about 6%) is easily seen; however, a dark mineral mixed with water could completely mask the water absorptions (shortward of 2.5 microns).

  1. 彩色热反射装饰砂浆的性能研究%Study on colorful solar heat reflecting decorative mortar

    孙顺杰; 杨文颐; 王巧兰; 冯晓杰


    Through adding cool pigment powder to decorate mortar and after mixing, we can get colorful heat reflecting decorative mortar. Compared with traditional colorful decorate mortar, heat reflecting mortar not only have similar tinctorial ability, but also have higher total solar reflectance (TSR) and near infrared reflectance (NIR),which reducing the wall surface temperature obviously. For example, add 3% of black iron oxide, TSR of mortar surface is only 0.101, but add (he same dosage chromium green-black hematite black pigment, TSR of mortar surface can reach 0.410. After analysis we can find that heat reflecting mortar surface lightness become higher, accordingly TSR become higher. At the last list the empirical formula between lightness and TSR.%通过在装饰砂浆中添加冷颜料,可得到高性能的彩色热反射装饰砂浆.同传统的彩色砂浆相比,热反射砂浆在保证色彩的同时,具有较高的太阳光反射比和近红外反射比,对于降低墙体表面温度具有明显效果.添加3%铁黑的装饰砂浆表面太阳光反射比仅为0.101,而添加相同掺量铁铬黑冷颜料的装饰砂浆表面太阳光反射比达到0.410.经分析可以发现,热反射砂浆表面L*(明度)值越高,太阳光反射比也相应增大,并得出了两者之间的经验公式.

  2. Characterizing Cold Giant Planets in Reflected Light: Lessons from 50 Years of Outer Solar System Exploration and Observation

    Marley, Mark Scott; Hammel, Heidi


    A space based coronagraph, whether as part of the WFIRST/AFTA mission or on a dedicated space telescope such as Exo-C or -S, will be able to obtain photometry and spectra of multiple gas giant planets around nearby stars, including many known from radial velocity detections. Such observations will constrain the masses, atmospheric compositions, clouds, and photochemistry of these worlds. Giant planet albedo models, such as those of Cahoy et al. (2010) and Lewis et al. (this meeting), will be crucial for mission planning and interpreting the data. However it is equally important that insights gleaned from decades of solar system imaging and spectroscopy of giant planets be leveraged to optimize both instrument design and data interpretation. To illustrate these points we will draw on examples from solar system observations, by both HST and ground based telescopes, as well as by Voyager, Galileo, and Cassini, to demonstrate the importance clouds, photochemical hazes, and various molecular absorbers play in sculpting the light scattered by solar system giant planets. We will demonstrate how measurements of the relative depths of multiple methane absorption bands of varying strengths have been key to disentangling the competing effects of gas column abundances, variations in cloud height and opacity, and scattering by high altitude photochemical hazes. We will highlight both the successes, such as the accurate remote determination of the atmospheric methane abundance of Jupiter, and a few failures from these types of observations. These lessons provide insights into technical issues facing spacecraft designers, from the selection of the most valuable camera filters to carry to the required capabilities of the flight spectrometer, as well as mission design questions such as choosing the most favorable phase angles for atmospheric characterization.

  3. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin


    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  4. Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind

    Shoda, Munehito


    Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...

  5. Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

    Mcclure, Donald J.


    A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.

  6. Design and Fabrication of a Dielectric Total Internal Reflecting Solar Concentrator and Associated Flux Extractor for Extreme High Temperature (2500K) Applications

    Soules, Jack A.; Buchele, Donald R.; Castle, Charles H.; Macosko, Robert P.


    The Analex Corporation, under contract to the NASA Lewis Research Center (LeRC), Cleveland, Ohio, recently evaluated the feasibility of utilizing refractive secondary concentrators for solar heat receivers operating at temperatures up to 2500K. The feasibility study pointed out a number of significant advantages provided by solid single crystal refractive devices over the more conventional hollow reflective compound parabolic concentrators (CPCs). In addition to the advantages of higher concentration ratio and efficiency, the refractive concentrator, when combined with a flux extractor rod, provides for flux tailoring within the heat receiver cavity. This is a highly desirable, almost mandatory, feature for solar thermal propulsion engine designs presently being considered for NASA and Air Force thermal applications. Following the feasibility evaluation, the NASA-LeRC, NASA-Marshall Space Flight Center (MSFC), and Analex Corporation teamed up to design, fabricate, and test a refractive secondary concentrator/flux extractor system for potential use in the NASA-MSFC "Shooting Star" flight experiment. This paper describes the advantages and technical challenges associated with the design methodologies developed and utilized and the material and fabrication limitations encountered.

  7. Vertical Pointing Weather Radar for Built-up Urban Areas

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld


      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  8. Military Operations in Built-Up Areas (MOBA).


    the three simulation levels individually or the gaming operation as a whole. The positive features of MOBACS are: (1) it includes all levels of MOBA ...operations; (2) military player/analysts can participate on-line and can both guide and learn from the play of the game ; (3) a wide range of unit...conjunction with SCORES evaluations and could prove useful in this role when SCORES is modified to play MOBA . JIFFY, or a similar interactive game , might

  9. Evaluation of Contractor Quality Control of Built-Up Roofing.


    to6SUMMARY OF QUALITY apply a glaze coat on it at the end of each day’s CONTROL OPERATION work, let it cool and become hard, and then appl gravel to...installed with exception of area required for tie-in of future work. The tie-in area is glaze -coated with bitumen. Glazing is acceptable in lieu of final...shall conform to the requi 3ements, of Underr iters’ Lab- oratorios, Inc-, or factory Mutual Research Corporatlon. deck . 2 Bolts and nuts shall be

  10. 高强冷弯薄壁型钢抱合箱形截面受压构件承载力试验研究%Load-carrying capacity of 550MPa high-strength cold-formed thin-walled steel built-up box section columns

    李元齐; 姚行友; 沈祖炎; 王树坤; 刘翔


    由两个槽形截面构成的抱合箱形截面在超薄壁冷弯型钢结构中应用广泛,但关于其承载力的计算只是将单个构件的承载力简单地数学叠加,并没有相应公式来考虑单个槽形截面构件之间的相互加强.对40根高强冷弯薄壁型钢抱合箱形截面受压构件进行试验研究,考察其受力特性及破坏特征,包括轴压构件21个,绕弱轴偏心和绕强轴偏心构件共19个.试验研究结果表明:抱合箱形截面构件由于两个槽形截面试件的相互约束作用,实测承载力比按单根构件计算承载力叠加结果提高10%~20%左右.最后,在试验和理论分析的基础上,针对高强冷弯薄壁型钢抱合箱形截面受压构件极限承载力提出了一种建议计算方法,依照建议计算方法所得结果与试验结果吻合较好,且偏于安全,可供实际设计参考.%Built-up box section columns by two lipped channel sections are widely used in super thin-walled cold-formed steel structures.However, for their load-carrying capacities of built-up box section columns, usually a mathematical sum according to the load-carrying capacities of each channel section involved is utilized without any further consideration on the reinforcement between single channel sections.Load-carrying capacities and failure modes of 40 high-strength cold-formed thin-walled steel built-up box section columns have been studied, including 21 axially-compressed columns and 19 eccentrically-compressed columns subjected to bending moments along the weak axis and the strong axis respectively.The results show that, due to the interaction between two lipped channel columns connected by self-drilling screws, the ultimate load-carrying capacity of a built-up box section column is 10% to 20% higher than the sum of the ultimate load-carrying capacity of two single lipped channels loaded in the same way independently.Based on the tests and theoretical analysis, a proposed method to estimate

  11. Experimental study and numerical analysis of the behavior of cold-formed steel quadruple-C built-up section members under axial compression%四肢拼合冷弯薄壁型钢截面立柱轴压性能试验研究及数值分析

    周天华; 杨东华; 聂少锋; 吴函恒


    对不同长细比的8根四肢拼合冷弯薄壁型钢截面立柱的轴压性能进行试验研究,在试验研究的基础上建立考虑材料、几何和接触非线性的有限元模型,并通过对试验试件的数值模拟,验证有限元方法的正确性。采用数值方法分析长细比、连接螺钉间距、截面翼缘宽厚比对四肢拼合冷弯薄壁型钢截面立柱轴压性能的影响。结果表明:试件最终破坏均呈现局部屈曲和畸变屈曲的破坏模式;四肢拼合冷弯薄壁型钢截面立柱的轴压性能具有“1×4≥4”的拼合效应;随着长细比的增大,四肢拼合立柱的最大承载力和刚度逐渐降低;当螺钉间距在150—450mm之间变化时,四肢拼合立柱的最大承载力和刚度变化不大;减小四肢拼合立柱截面的翼缘宽厚比,可以显著提高其最大承载力。%Eight specimens of quadruple-C built-up section cold-formed steel columns with different slenderness ratios were tested under axial compression load. The load bearing capacity of the specimens was analyzed. The finite element models involving geometric nonlinearity, materials nonlinearity and contact mechanics were presented. The results of finite element method (FEM) are close to those from the tests, proving that the FEM is reasonable. Factors that influence the behavior of members under axial compression, including slenderness ratio, spacing of screws and the width- thickness ratio, were studied. The results show that the failure modes of all specimens are local buckling and distortional buckling, and the axial bearing capacity of quadruple-C built-up section members is four times more than that of single C-section ones. The axial bearing capacity and stiffness of the quadrnple-C built-up section members decrease as the slenderness ratio increases. The effect of the spacing of screws from 150mm to 450mm on the axial bearing capacity and stiffness of quadrnple-C built-up section members

  12. 冷弯薄壁型钢开口三肢拼合立柱轴压性能有限元分析%Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression

    刘向斌; 周天华; 聂少锋; 吴函恒


    The finite element model involving materials nonlinearity, geometric nonlinearity and contact nonlinearity was established, the influences of slenderness ratios, screw connection spacings, maximum width-thickness ratios on cold-formed thin-walled steel three open limbs built-up columns under axial compression were analyzed by using ANSYS finite element program. Results show that the slenderness ratio has great influence on the bearing capacity of axial compression and the axial compression performance for class A, B section built-up columns, with the increase of the column slenderness ratio, the ultimate bearing capacity gradually decreases. For two class section built-up columns, when screw connection spacing has arranged 450,300,150 mm, the ultimate bearing capacity of axial compression and the rigidity are little affected. For the three different lengths to the two class section built-up columns, as different thicknesses of the basic component plates cause different width-thickness ratios of the section, the ultimate bearing capacity of axial compression and the rigidity are obviously affected. When length and thickness of class A, B section built-up columns are same, and the basic component web height is increasedfrom 89 mm to 140 mm, the ultimate bearing capacity of axial compression is not obviously improved.%建立了考虑材料、几何和接触非线性的有限元模型,利用ANSYS有限元程序分析了长细比、螺钉连接间距、截面板件最大宽厚比对冷弯薄壁型钢开口三肢拼合立柱轴压性能的影响.结果表明:立柱长细比对A、B两类截面拼合立柱轴压承载力和轴压性能有很大影响,随着立柱长细比的增大,立柱轴压极限承载力逐渐降低;当螺钉连接间距为450、300、150 mm时,A、B两类截面拼合立柱轴压极限承载力和刚度变化均不大;由于基本构件板材厚度不同引起截面板件最大宽厚比的不同,对A、B两类截面3种长度的拼合立柱的承

  13. Combining Observations in the Reflective Solar and Thermal Domains for Improved Mapping of Carbon, Water and Energy FLuxes

    Houborg, Rasmus; Anderson, Martha; Kustas, Bill; Rodell, Matthew


    This study investigates the utility of integrating remotely sensed estimates of leaf chlorophyll (C(sub ab)) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. Day to day variations in nominal LUE (LUE(sub n)) were assessed for a corn crop field in Maryland U.S.A. through model calibration with CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. Changes in Cab exhibited a curvilinear relationship with corresponding changes in daily calibrated LUE(sub n) values derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio-temporal variations in LUE(sub n). The results demonstrate the synergy between thermal infrared and shortwave reflective wavebands in producing valuable remote sensing data for monitoring of carbon and water fluxes.

  14. Experimental estimation of effective recombination coefficients in the D-region ionosphere at high latitudes during solar eclipses by the method of partial reflections

    Chernyakov S. M.


    Full Text Available The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. Experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. The basis of this method is the idea of Appleton about similarity of the behavior of the linear inductive circuit and variations of the electron concentration in the ionosphere on a fixed height in the absence of the transport processes, the change in the rate of formation of electrons in time and the disappearance of free electrons due to recombination. By analogy with the time constant of the electric circuit Appleton called the reaction of the ionosphere on the process of ionization in the ionosphere as "sluggishness" with a characteristic time constant τ, which is also called the "relaxation time" or "time constant of the ionosphere". During 11 August 1999, 1 August 2008, 11 June 2011, 20 March 2015 solar eclipses at the partial reflection facility of the observatory "Tumanny" (69.0N, 35.7E observations of the amplitudes of reflections of ordinary and extraordinary waves have been carried out. Using the obtained data the two-dimensional (time, height distribution of the electron density ne at altitudes of the D-region ionosphere has been calculated. This has made it possible to obtain the behavior of the electron concentration in time at selected altitudes (temporal profiles of electron density at selected altitudes. Using the obtained experimental profiles, the effective recombination coefficients on the heights of the D-region ionosphere have been evaluated. Transport processes of plasma (for example, propagation of acoustic

  15. Solar Simulator


    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.


    方有珍; 马吉; 陆承铎; 曲延全; 申林


    In order to alleviate the mechanics defects of PEC columns fabricated with thin-walled built-up sections as the biaxial unequal flexural stiffness and concentration of local buckling in flanges, new PEC columns fabricated with crimping thin-walled built-up sections were put forward. The transverse steel sheet links-spacing was taken as a primary design parameter, 4 specimens were designed and fabricated by full-scale. The tests of specimens were conducted with constant axial compression and low-cycle lateral reversed loading in the column strong axis, the local buckling in the flange of a crimping thin-walled built-up section and the crack forming and crushing of concrete were investigated, the load-displacement hysteretic curves were obtained. Base on the test results, the specimens' relative performance were analyzed, including the load-carrying capacity, lateral stiffness, the seismic ductility and energy-dissipation capacity, the deformation pattern and failure mode. The conclusion showed that all specimens exhibited soundly deformation and energy-dissipation capacity resulted from the post-buckling performance of crimping flanges were utilized fully; the failure mode is primarily induced by the local buckling region growing in flanges of crimping thin-walled built-up sections with large-area crushing and spalling of concrete at the corner region of a column.%为进一步改善现行薄壁钢板组合截面PEC柱构件双向不等刚度和翼缘局部屈曲过于集中等力学性能缺陷,该文提出了采用翼缘钢板卷边的新型卷边钢板组合截面PEC柱类型.以拉结板条间距作为基本参数,对4个按新型卷边钢板组合截面强轴布置的足尺试件进行了恒定竖向荷载下的水平低周反复荷载试验,观察了试验过程中PEC柱卷边钢板组合截面翼缘钢板局部屈曲和混凝土部分裂缝开展与压溃发展过程,得到了试件的荷载-位移滞回曲线.根据试验结果分析了PEC柱的承载力、

  17. 大型地下停车库综合施工技术——城市建筑密集区地下空间开发利用的新技术%Integrated Construction Technology of the Large Underground Parking Garage——the new technology of underground space development and utilization in urban built-up areas

    周蓉峰; 马惠龄


    The prefabricated underground wall construction is the emerging recently technology which has been combined with other construction technology such as cover excavation and applied to the urban built-up areas for underground space development and utilization. Through the project implementation of the Huadong hospital, this method has gotten a good economic and social benefits.%预制地下连续墙是近年新涌现的施工工艺,将其与盖挖法等施工技术相结合,运用到密集建筑群中进行地下空间的开发利用,通过华东医院二层地下停车库的工程实施,取得了良好的经济效益和社会效益.

  18. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Chin-Yi Tsai


    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  19. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, 1 May 1991--30 April 1992

    Gordon, R.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry


    This report describes work to improve the performance of solar cells by improving the electrical and optical properties of their transparent conducting oxides (TCO) layers. Boron-doped zinc-oxide films were deposited by atmospheric pressure chemical vapor deposition in a laminar-flow reactor from diethyl zinc, tert-butanol, and diborane in the temperature range between 300{degrees}C and 420{degrees}C. When the deposition temperature was above 320{degrees}C, both doped and undoped films have highly oriented crystallites with their c-axes perpendicular to the substrate plane. Films deposited from 0.07% diethyl zinc and 2.4% tert-butanol have electron densities between 3.5 {times} 10{sup 20} cm{sup {minus}3} and 5.5 {times} 10{sup 20} cm{sup {minus}3}, conductivities between 250 {Omega}{sup {minus}1} and 2500 {Omega}{sup {minus}1} and mobilities between 2.5 cm{sup 2}/V-s and 35.0 cm{sup 2}/V-s, depending on dopant concentration, film thickness, and deposition temperature. Optical measurements show that the maximum infrared reflectance of the doped films is close to 90%, compared to about 20% for undoped films. Film visible absorption and film conductivity were found to increase with film thickness. The ratio of conductivity to visible absorption coefficient for doped films was between 0.1 {Omega} and 1.1 {Omega}{sup {minus}1}. The band gap of the film changes from 3.3 eV to 3.7 eV when the film is doped with 0.012% diborane.

  20. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    Gray, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  1. Reflecting reflection in supervision

    Lystbæk, Christian Tang

    Reflection has moved from the margins to the mainstream in supervision. Notions of reflection have become well established since the late 1980s. These notions have provided useful framing devices to help conceptualize some important processes in guidance and counseling. However, some applications...

  2. Stability and Load Bearing Capacity of a Bars with Built up Cross Section and Elastic Supports / Badania Stateczności I Nosności Prętów Złożonych Z Podporami Sprężystymi

    Krajewski, Marcin


    The present paper is devoted to the numerical analysis and experimental tests of compressed bars with built-up cross section which are commonly used as a top chord of the roof trusses. The significant impact on carrying capacity for that kind of elements in case of out-of-plane buckling is appropriate choice of battens which are used to provide interaction between separate members. Linear buckling analysis results and nonlinear static analysis results, with material and geometrical nonlinearity, are presented for the bar with built-up cross section which was used as the top chord of the truss made in reality. Diagonals and verticals which are supports for the top chord between marginal joints were replaced by the elastic supports. The threshold stiffness (minimum stiffness) for the intermediate elastic supports which ensures maximum buckling load was appointed for the beam and shell model of the structure. The magnitude of limit load depended on length of the battens was calculated for models with initial geometric imperfections. The experimental tests results for the axially compressed bars with builtup cross section and elastic support are presented. Niniejsza praca poświecona jest analizom numerycznym i badaniom doświadczalnym ściskanych prętów złożonych, które są często stosowane, jako pasy górne kratownic dachowych. Istotny wpływ na nośność tego typu elementów, przy założeniu wyboczenia z płaszczyzny układu, ma odpowiedni dobór przewiązek zapewniający współpracę poszczególnych gałęzi. W pracy przedstawiono rezultaty liniowych analiz stateczności oraz fizycznie i geometrycznie nieliniowych analiz statycznych dla pręta złożonego, z którego zbudowany jest pas górny kratownicy wykonanej w rzeczywistości. Słupki i krzyżulce podpierające pas między węzłami skrajnymi zastąpiono podporami sprężystymi. Wyznaczono graniczną (minimalna) sztywność sprężystych podpór pośrednich zapewniającą maksymalną wartość obci

  3. Durable solar mirror films

    O' Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.


    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  4. Reflective Teaching

    Farrell, Thomas S. C.


    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…


    陆森强; 方有珍


    To study the hysteretic behavior of partially encased composite ( PEC) columns fabricated with thin-walled channel built-up section and steel beams median joint with welded split-tee and pretension through-out high strength bolted connections, one specimen was designed and fabricated by 1∶1.6 scale which represented the median joint. The pseudo-static test for the specimen was conducted and ABAQUS software was simulated the test and to verify the rationality of the FE model.By comparison of the hysteretic behaviors, energy-dissipation capacity and failure mode, the results showed that through-out bolts exhibited partial self-centering function and effectively realized the force-transfer mechanism of concrete equivalent strut in the panel zone;the failure mode primary induced by plastic hinge formed in the steel beam section near the end of split-tee web because of strengthening and the rotation angles of the joint all surpassed 0.02 rad.%为研究采用预拉对穿螺栓的薄钢板部分外包组合截面( PEC)柱-钢梁中节点T形件焊接连接的滞回性能,按照1∶1.6缩尺设计制作了1个中节点试件,对其进行低周循环荷载试验,并采用有限元软件ABAQUS进行数值模拟验证,对比分析试件的滞回曲线、耗能能力和破坏模式。研究结果显示:预拉对穿螺栓具有部分自复位功效,且较好实现了混凝土斜压带传力机理;所有试件破坏模式均由于T形件对梁端加强而使梁截面塑性铰的出现位置向T形件腹板尾部附近梁截面转移,且所有试件达到破坏时,节点转角均超过了0.02 rad。

  6. Preparation and Performance of Solar Reflection Material NaZneO4%太阳光反射材料NaZnPO4的制备与性能

    苏达根; 付文祥; 钟明峰


    以Zn(NO3)2·6H2O、H3PO4和无水碳酸钠为原料,采用直接沉淀法获得前驱体,经热处理后制得太阳光反射材料NaZnPO4,采用紫外-可见近红外分光光度计、XRD、TG/DSC对其进行表征.结果表明:原料的磷锌摩尔比对产物的组成起重要的作用,宜控制在1.7 ~2.0之间;制备NaZnPO4的热处理温度为400 ~ 800℃,热处理温度对NaZnPO4的太阳光反射性能有重要影响,其中600℃热处理所得产物的太阳光反射性能最佳,太阳光平均反射率达95.2%.%A kind of solar reflection material, NaZnPO4, was prepared by heat-treating the precursor obtained via the direct precipitation, with Zn(NO3)2 · 6H2O, H3PO4 and anhydrous sodium carbonate as raw materials. The product was then characterized by means of UV-Vis, XRD and TG/DSC. The results show that the phosphorus-to-zinc molar ratio of the raw materials plays an important role in the structure of NaZnPO4, that the appropriate phosphorus-to-zinc molar ratio ranges from 1.7 to 2.0, that the heat treatment temperature for preparing NaZnPO4, which is important to the solar reflection, should be controlled in the range from 400 to 800°C, and that the product with the heat treatment at 600 °C is of the best solar reflection property, with its average reflection rate being up to 95. 2%.

  7. Y{sub 2}O{sub 3}: Eu{sup 3+}, Tb{sup 3+} spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells

    Miao, Hui [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Ji, Ruonan [School of Physics, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Han, Linzi; Hao, Yuanyuan; Sun, Qian [School of Physics, Northwest University, Xi’an 710069 (China); Zhang, Dekai [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); Fan, Jun [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Bai, Jintao [School of Physics, Northwest University, Xi’an 710069 (China); National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Northwest University, Xi’an 710069 (China); and others


    Highlights: • Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were successfully prepared. The as prepared particles can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. • Y{sub 2}O{sub 3} is not only a good photoluminescence host material, but also it has high corrosion resistivity, thermal stability, and transparency from violet to infrared light. Cooperated with SiO{sub 2} sols, it could realize a better anti-reflection property. • As a proof-of-concept application, the as prepared bi-functional films could effectively improve the photoelectric conversion efficiency by 0.23% compared to pure SiO{sub 2} AR coating film and 0.55% compared to glass. - Abstract: In this study, Eu{sup 3+} and Tb{sup 3+} co-doped Y{sub 2}O{sub 3} particles were prepared via the simple, cost-effective urea homogeneous precipitation method without additives. The chosen particles were added in the SiO{sub 2} sols to get anti-reflection (AR) and wavelength conversion bi-functional films. Careful investigations were carried out to find the optimum preparation conditions and proper morphology. SEM images showed that the particle sizes reduced as metal ion/urea ratio decreased. Additionally, the extracted particles turned from sphere to lamellar type when the deionized water, which was used as solvent, reduced to a certain extent. The mechanisms of the morphology formation and diversification were proposed as well. The as prepared materials can convert UV region photos to visible photons between 460 nm and 640 nm, which just matched the spectral response of most solar cells. The spherical sample showed better luminescence performance than the one with lamellar morphology. In addition, the optical transmittance spectra indicated that the films adding spherical particles had better anti-reflective performance, and the best adding amount was 0.08 g. Finally, As a proof-of-concept application

  8. The optimization of triple layer anti-reflection coatings and its application on solar cells%三层减反射膜的模拟及其在太阳电池中的应用

    宫臣; 张静全; 冯良桓; 武莉莉; 李卫; 黎兵; 曾广根; 王文武


    The anti-reflection coatings with the structure of Al2O3/H4/MgF2 triple layer were prepared with electron beam evaporation technology on the glass substrate. The transmittance and surface morphology of the films were examined. The anti-reflection coating structure was optimized considering AMI. 5 spectrum and the spectroscopy response band of CdS/CdTe thin film solar cells through TFCALC software simulation. Then the optimized anti-reflection coatings were prepared on the CdTe thin film solar cells. It was found that the quantum efficiency of solar cells with anti-reflection coatings increase by 7. 3% than without, and the photoelectric conversion efficiency increased from 12. 5% to 13. 3%.%使用减反射膜层是提高太阳电池短路电流密度进而提高电池转换效率的有效手段之一.针对CdTe薄膜太阳电池的光谱响应范围,基于AM1.5辐照光谱,优化设计了MgF2/H4/Al2O3结构的减反射薄膜,使用电子束蒸发技术制备了该减反射膜,使用椭圆偏振仪、紫外/可见分光光度计、原子力显微镜分别测量了所制备薄膜的光学性质和表面形貌,对比分析了膜系结构理论模拟与实验测量结果.结果表明,使用该减反射薄膜后,电池的量子效率提高了7.3%;光电转换效率从12.5%提高到13.3%.

  9. Relationship between normalized light intensity and attenuated total reflection ratio

    Yingcai Wu; Zhengtian Gu


    Attenuated total reflection (ATR) ratio is usually utilized to study the properties of surface plasmon resonance (SPR) sensors. The relationship between normalized light intensity and ATR ratio is investigated, and a modification coefficient is put forward to describe the relationship. A mathematical expression is built up for the coefficient based on Fresnel principle. The result shows that the ATR ratio, which cannot be measured directly in experiments, can be determined with the coefficient and the normalized intensity of light. The characteristic of the coefficient is also discussed.

  10. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Langer, S. H.; Petrosian, V.


    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  11. Research on solar aided coal-fired power generation system and performance analysis

    YANG YongPing; CUI YingHong; HOU HongJuan; GUO XiYan; YANG ZhiPing; WANG NinLing


    Integrationg rating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha-nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a of SEGS, 0.14 S/kW. h.

  12. 冷弯薄壁型钢拼合箱形截面立柱轴压性能试验研究%Experimental Analysis on Behavior of Cold-formed Steel Box Built-up Section Columns under Axial Compression

    聂少锋; 周天华; 袁涛涛; 高婷婷; 吴函恒


    17 specimens of cold-formed steel box built-up setion columns were tested under axial compression load. The section forms were divided into two categories: A and B. Load-displacement curves and failure characteristics of specimens were obtained. The test results are compared with the caculated results according to "effective ratio of width to thickness" in code of "Technical code of cold-formed thin-wall steel structures" (GB 50018 - 2002), "effective section method" and "direct strength method" in AISI specification. The results show that: the failure characteristics of LC and MC series columns are overall flexural buckling, while SC series columns are local buckling and ends confined damage. The ultimate bearing capacity of B categories section columns is three times as great as that of A categories section columns, so it has the effect of "1 + 1>2". The results calculated according to "GB50018" and AISI specification are much conservative for LC series columns of A categories section, while in agreement with test results for MC and SC series columns. For B categories section columns, the calculated results are non-conservative for LC and MC series columns, while conservative for SC series columns.%对17根冷弯薄壁型钢拼合箱形截面立柱的轴压性能进行试验研究,截面分为A、B两类,得到了各试件荷载-位移曲线和破坏特征,并将试验结果与《冷弯薄壁型钢结构技术规范》(GB 50018-2002)“有效宽厚比法”和美国相关规范中“直接强度法”、“有效截面法”计算结果进行对比分析.结果表明:LC和MC系列立柱的破坏模式为整体弯曲屈曲,SC系列立柱则为局部屈曲和端部承压破坏;B类试件的最大承载力大于A类截面试件的最大承载力的2倍,即有“1+1>2”的拼合效应;对于A类截面LC系列立柱,GB 50018和AISI规范公式计算结果过于保守,而对于MC和SC系列试件,公式计算结果与试验结果比较吻合;对于B类截面LC和MC

  13. Glass for Solar Concentrators

    Bouquet, F. L.


    Report identifies four commercially available glasses as promising reflectors for solar concentrators. Have properties of high reflectance (80 to 96 percent), lower cost than first-surface silver metalization, and resistance to environmental forces.

  14. Vicarious Calibration Based Cross Calibration of Solar Reflective Channels of Radiometers Onboard Remote Sensing Satellite and Evaluation of Cross Calibration Accuracy through Band-to-Band Data Comparisons

    Kohei Arai


    Full Text Available Accuracy evaluation of cross calibration through band-to-band data comparison for visible and near infrared radiometers which onboard earth observation satellites is conducted. The conventional cross calibration for visible to near infrared radiometers onboard earth observation satellites is conducted through comparisons of band-to-band data of which spectral response functions are overlapped mostly. There are the following major error sources due to observation time difference, spectral response function difference in conjunction of surface reflectance and atmospheric optical depth, observation area difference. These error sources are assessed with dataset acquired through ground measurements of surface reflectance and optical depth. Then the accuracy of the conventional cross calibration is evaluated with vicarious calibration data. The results show that cross calibration accuracy can be done more precisely if the influences due to the aforementioned three major error sources are taken into account.

  15. Indium gallium zinc oxide layer used to decrease optical reflection loss at intermediate adhesive region for fabricating mechanical stacked multijunction solar cells

    Sameshima, Toshiyuki; Nimura, Takeshi; Sugawara, Takashi; Ogawa, Yoshihiro; Yoshidomi, Shinya; Kimura, Shunsuke; Hasumi, Masahiko


    Reduction of optical reflection loss is discussed in three mechanical stacked samples: top crystalline silicon and bottom crystalline germanium substrates, top crystalline GaAs and bottom crystalline silicon substrates, and top crystalline GaP and bottom crystalline silicon substrates using an epoxy-type adhesive with a reflective index of 1.47. Transparent conductive Indium gallium zinc oxide (IGZO) layers with a refractive index of 1.85 were used as antireflection layers. IGZO layers were formed on the bottom surface of the top substrate and the top surface of the bottom substrate of the three stacked samples with thicknesses of 188, 130, and 102 nm. The insertion of IGZO layers decreased the optical reflectivity of the stacked samples. The IGZO layers provided high effective optical absorbency of bottom substrates of 0.925, 0.943, and 0.931, respectively, for light wavelength regions for light in which the top substrates were transparent and the bottom substrates were opaque.

  16. Technical feasibility study on polycarbonate solar panels

    Hackmann, M.M.; Meuwissen, M.H.H.; Bots, T.L.; Buijs, J.A.H.M. [TNO Industrial Technology, Eindhoven (Netherlands); Broek, K.M.; Kinderman, R. [Energy Research Center of the Netherlands, Petten (Netherlands); Tanck, O.B.F.; Schuurmans, F.M. [Shell Solar Energy, Helmond (Netherlands)


    This paper describes a technical feasibility study on the application of polycarbonate (PC) plates in a superstrate photovoltaic module design. The lamination process was performed in a conventional laminator apparatus using low temperature curing (100{sup o}C) ethylene-vinyl-acetate (EVA) as the potting material and multi-crystalline silicon-solar cells. Thermo-mechanical calculations via the finite element method were performed to support the experimental results on various layer set-ups. Both experimental and numerical results revealed that PC superstrate laminates display a certain degree of warpage after the lamination process. This warpage can be attributed to stress built up in the modules due to differences in thermal expansion between solar cells and PC. This stress build-up can be diminished by application of thicker layers of PC or EVA leading to less curved laminates. (author)

  17. Horizontally mounted solar collector

    Black, D. H. (Inventor)


    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  18. Reflective Writing

    Ahrenkiel Jørgensen, Andriette


    Høeg etetera. The dialogues work as a tool of reflection in terms of providing opportunity to examine his own beliefs, to explore the possible reasons for engaging in a particular activity. On the basis of Sven-Ingvar Andersson’s book a teaching program at the Aarhus School of Architecture provides...... a contribution to the discussions about the role of reflection in design work and in learning situations at large. By engaging with the dialogic reflection, which is one of the four essential types of reflection, (the three others being descriptive writing, descriptive reflection and critical reflection...

  19. Angular solar absorptance of absorbers used in solar thermal collectors.

    Tesfamichael, T; Wäckelgård, E


    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  20. Solar energy modulator

    Hale, R. R. (Inventor); Mcdougal, A. R.


    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  1. 平衡式跟踪与光反射技术在太阳能光伏中的增效分析%Efficiency Analysis of Balance Tracking and Light Reflection Tech nology in Solar Photovlo taic



    The technology of increasing the light intensity can improve the efficiency of photovoltaic.On the one hand, the use of sun tracking control technology of balance will keep the solar panel normal parallel to the sun's rays all the time, and make the tracking actuator minimize its own power consumption to increase absorption and reduce expenditure;on the other hand, the technology of applying optical reflection principle to increasing light intensity will improve efficiency and reduce the cost effectively, thus it is suitable for areas lacking solar energy resources.There-fore, increasing light intensity of solar panels in the ways of mechanics and optics is practical to maximize the efficien-cy of solar photovoltaic systems, and to provide reference for the popularization of clean energy.%通过增加受光强度技术提高光伏效率,一方面,采用平衡式太阳光跟踪控制技术,在保持太阳能电池板法线始终平行于太阳光线的同时,如何使跟踪执行机构自身功耗的最小化,达到增收而又节支的目的;另一方面,采用光学反射原理增加太阳能电池板的受光强度技术,可以提高效率的同时,有效降低成本,更是适用于太阳能资源相对匮乏的地区。因此,从力学与光学的角度增加太阳能电池受光强度,对于如何最大限度地提高太阳能光伏系统效率、普及推广清洁能源都具有实用意义。

  2. Solar radiation absorption in solar ponds

    Cengel, Y.A.; Ozisik, M.N.


    The local rate of absorption of the solar radiation in a solar pond is determined for the direct component at angles of incidence from 0/sup 0/ to 75/sup 0/ with 15/sup 0/ intervals as well as for the diffuse component by the exact treatment of the radiation problem. The effects of bottom reflection, the pond depth, the type of radiation on the thermal performance of the pond are examined, and a new rigorous approach is presented for treating diffuse radiation as a direct beam. The fraction of the solar radiation absorbed within the first 10 cm of water is determined under various conditions. The local rate of solar energy absorption at any depth and at any incidence angle can readily be computed from a fourthdegree polynomial expression, the coefficients of which are tabulated for different incidence angles and bottom reflectivities.

  3. Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15

    Thalmann, C; Goto, M; Wisniewski, J P; Janson, M; Henning, T; Fukagawa, M; Honda, M; Mulders, G D; Min, M; Moro-Martín, A; McElwain, M W; Hodapp, K W; Carson, J; Abe, L; Brandner, W; Egner, S; Feldt, M; Fukue, T; Golota, T; Guyon, O; Hashimoto, J; Hayano, Y; Hayashi, M; Hayashi, S; Ishii, M; Kandori, R; Knapp, G R; Kudo, T; Kusakabe, N; Kuzuhara, M; Matsuo, T; Miyama, S; Morino, J -I; Nishimura, T; Pyo, T -S; Serabyn, E; Shibai, H; Suto, H; Suzuki, R; Takami, M; Takato, N; Terada, H; Tomono, D; Turner, E L; Watanabe, M; Yamada, T; Takami, H; Usuda, T; Tamura, M


    We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward-scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions (SED) of such systems, comprising an optically thick outer disk with an inner truncation radius of ~46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading...

  4. Solar Indices - Solar Corona

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  5. Solar Indices - Solar Flares

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  6. Solar Indices - Solar Irradiance

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  7. Solar Indices - Solar Ultraviolet

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  8. Corrosion resistant solar mirror

    Medwick, Paul A.; Abbott, Edward E.


    A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.

  9. Solar thermal aircraft

    Bennett, Charles L.


    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Quantifying Reflection

    Alcock, Gordon Lindsay


    This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning...

  11. Investigation of anti-reflection properties of crystalline silicon solar cell surface silicon nanowire arrays∗%晶体硅太阳电池表面纳米线阵列减反射特性研究

    梁磊†; 徐琴芳; 忽满利; 孙浩; 向光华; 周利斌


      为增强晶体硅太阳电池的光利用率,提高光电转换效率,研究了硅纳米线阵列的光学散射性质.运用严格耦合波理论对硅纳米线阵列在310—1127 nm波段的反射率进行了模拟计算,用田口方法对硅纳米线阵列的表面传输效率进行了优化.结果表明,当硅纳米线阵列的周期为50 nm,占空比为0.6,高度约1000 nm时减反射效果最佳;该结构在上述波段的平均反射率约为2%,且在较大入射角度范围保持不变.采用金属催化化学腐蚀法,于室温、室压条件下在单晶硅表面制备周期为60 nm,占空比为0.53,高度为500 nm的硅纳米线阵列结构,其反射率的实验测试结果与计算模拟值相符,在上述波段的平均反射率为4%—5%,相对于单晶硅35%左右的反射率,减反射效果明显.这种减反射微结构能够在降低太阳电池成本的同时有效减小单晶硅表面的光反射损失,提高光电转换效率.%In order to trap more sunlight onto the crystalline silicon solar cell and improve the photo-electric conversion efficiency, it is very important to study the optical scattering properties of silicon nanowire arrays on silicon wafer. The rigorous coupled wave analysis method is used for optical simulation, and the Taguchi method is used for efficient optimization. The simulation results show that at the above-mentioned wavelengths the reflectance of the optimized structure is less than 2%, and also able to achieve the wide-angle antireflection. At room temperature and ambient pressure, the silicon nanowire arrays each with a period of 50 nm, duty ratio of 0.6 and height of 1000 nm are successfully prepared on mono-crystalline Si wafers using a novel metal-catalyzed chemical etching technique, the reflectance test results are consistent with simulation values. The average reflectance of the optimized structure over the above-mentioned wavelength range is 4%–5%, showing that the antireflection effect is obvious

  12. Suppressing lossy-film-induced angular mismatches between reflectance and transmittance extrema: optimum optical designs of interlayers and AR coating for maximum transmittance into active layers of CIGS solar cells.

    Chang, Yin-Jung


    The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (T(ave)) into the CuIn(1-x)Ga(x)Se2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (R(ave)) from the cell surface or maximum T(ave) into the CIGS absorber. In the presence of one MgF2 coating, difference in R(ave) associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding T(ave) values could be up to 14.34% apart. Significant T(ave) improvements associated with the maximum-T(ave)-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-T(ave)-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-R(ave)-based counterparts, to be highly robust to omnidirectional incidence.

  13. IIP Tropospheric Infrared Mapping Spectrometers (TIMS) demonstration of CO retrieval, including multi-layer, from atmospheric data acquired simultaneously in the solar reflective region near 2.3 um and the thermal emissive region near 4.7 um

    Mergenthaler, J. L.; Kumer, J.; Roche, A. E.; Rairden, R. L.; Blatherwick, R.; Hawat, T.; Desouza-Machado, S.; Hannon, S.; Chatfield, R. B.


    The NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) Tropospheric Infrared Mapping Spectrometers (TIMS) have been developed to demonstrate measurement capability, when deployed in space, for multi-layer retrieval of CO from spectral measurements acquired in the solar reflective (SR) region ~ 4281 to 4301 cm-1 and in the thermal InfraRed (TIR) region ~ 2110 to 2165 cm-1. We describe joint deployment at Denver University (DU) with co-investigators there of the TIMS, and of the DU colleagues FTS, to acquire simultaneous measurements of atmospheric spectra in the SR and the TIR. The FTS provided validation radiance data for the TIMS. The TIMS retrievals of CO, H2O and CH4 agreed well with validation vs these as retrieved from the DU data, AIRS retrieval, standard models and ECMWF. The TIMS CO retrievals included column retrieved from the just the SR data, column retrieved from just the TIR data, and a simple two-layer retrieval from the combined data sets. The data were acquired in an operational mode that mimicked the operations in a conceptual application that would provide footprints, coverage, refresh time as in the Decadal Survey GEO-CAPE mission statement. Very encouraging CO precisions were achieved, e.g., the TIMS CO column retrieval from the SR data demonstrated better than the 10% precision requirement as listed on slide 32 of the GEO-CAPE Reference document http://geo-

  14. Reflection ciphers

    Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde


    study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...... and analyze the security properties of different families of coupling permutations. Finally, we concentrate on the case of reflection block ciphers and, as an illustration, we provide concrete examples of key schedules corresponding to several coupling permutations, which lead to new variants of the block...

  15. Optical design of a linear reflecting solar concentrator with all-flat mirrors%全平面镜线反射太阳聚光器的光学设计

    浦绍选; 夏朝凤


    In order to reduce the cost of solar concentrating collectors, flat mirrors were used to make reflectors in line focusing Fresnel collectors. Based on the optical principle of linear Fresnel concentration, several flat narrow silvered mirror strips were used to make a reflecting mirror unit on a tracing device. The primary mirrors of linear Fresnel collector were consisted of reflecting mirror units with different focal lengths. With new idea of receiver design, a double-arc secondary reflector was designed in order to collect more radiation and lessen the aperture of the receiver. Good results were obtained from the simulation of ray trace and experiments of testing device. The design of the reflecting mirror unit has the advantages of low cost, good sunlight concentration, expandable primary mirror field, very low wind load and stable tracing. The small scale concentrators can be applied to steam generation which can provide process heat for agricultural products drying. The large scale concentrators can provide steam for thermal electricity.%为了降低太阳能聚光器的成本,在线聚光菲涅耳集热器中常使用平面镜作为反射镜的组成元素.根据菲涅耳线聚光理论,提出了使用全平面的窄条镜按一定角度布置于跟踪托架上构成不同焦距的初级反射镜单元,由多块跟踪镜单元组成初级反射镜场的设计方法,采用新的次级反射器设计思路,设计了双圆弧形二次反射聚光器.采用平板玻璃镀银镜为初级反射镜材料,设计制作了试验装置,从光线跟踪模拟和实际试验都具有很好的聚光效果.该反射镜单元的设计具有低成本、聚光效果好、可扩展集热器场宽度、跟踪稳定和抗风载等优点,小规模集热器可用于蒸汽生产,提供农产品干燥等所需的过程热,大规模的集热器可以用于热发电所需的预热蒸汽或直接用于热发电.

  16. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich


    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  17. Solar building

    Zhang, Luxin


    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  18. Processing on high efficiency solar collector coatings

    Roberts, M.


    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  19. Reflective optics

    Korsch, Dietrich


    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  20. Reflective equilibrium

    van der Burg, W.; van Willigenburg, T.


    The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste

  1. Reflective equilibrium

    van der Burg, W.; van Willigenburg, T.


    The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste

  2. Solar Features - Solar Flares

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  3. Solar storms; Tormentas solares

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.


    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)


    Schmelz, J. T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Reames, D. V. [IPST, University of Maryland, College Park, MD 20742 (United States); Von Steiger, R. [ISSI, Hallerstrasse 6, 3012 Bern (Switzerland); Basu, S., E-mail: [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)


    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  5. Photovoltaic solar energy conversion

    Bauer, Gottfried H


    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  6. Synthesis of nanoparticles of P3HT and PCBM for optimizing morphology in polymeric solar cells

    Satapathi, Soumitra; Gill, Hardeep Singh; Li, Lian; Samuelson, Lynne; Kumar, Jayant; Mosurkal, Ravi


    Nanoparticles (NPs) with opposite charges of a donor polymer, poly(3-hexyl thiophene) (P3HT) and an acceptor molecule, phenyl-C61-butyric acid methyl ester (PCBM) were synthesized using simple mini-emulsion technique. The NPs were examined by dynamic light scattering, atomic force microscopy and scanning electron microscopy to confirm the formation of the NPs. The NPs were assembled into thin films by spin-coating of a blend of the NPs dispersion. The built-up of a five layered film was monitored by UV-vis absorption spectroscopy. Our preliminary study demonstrated that a solar cell made from an annealed NP film can exhibit photovoltaic response.

  7. Built-Up Area Change Analysis in Iasi City Using GIS

    Ursu Adrian


    Full Text Available The study analyses the spatial and temporal changes occurred in the builtup area of Iași city and its surrounding areas using cartographic materials from different time periods. The paper aims to highlight the areas where the most significant changes took place by identifying the main evolution patterns, generated by certain natural or human-driven factors. The results of the study were achieved by using specific photo-interpretation methods of the available orthophotomaps form 2006 and 2012, mainly using the professional GIS softwares TNT Mips 7.2., ArcGIS 10.2 and Global Mapper 11. The changes have lead on the one hand to the conversion of the former industrial areas and thus, the urban regeneration, but also to the periurbanization phenomenon, with major functional and structural effects.

  8. Visualisation and analysis of the urban built-up area with VRML

    Kuzevič Štefan


    Full Text Available The Virtual Reality Modelling Language (VRML is a file format for describing interactive 3D objects and worlds. VRML is designed to be used on the Internet, intranets, and local client systems. VRML is also intended to be a universal interchange format for integrated 3D graphics and multimedia. VRML may be used in a variety of application areas such as engineering and scientific visualization, multimedia presentations, entertainment and educational titles, web pages, and shared virtual worlds.VRML is capable of representing static and animated dynamic 3D and multimedia objects with hyperlinks to other media such as text, sounds, movies, and images. VRML browsers, as well as authoring tools for the creation of VRML files, are widely available for many different platforms. VRML supports an extensibility model that allows new dynamic 3D objects to be defined allowing application communities to develop interoperable extensions to the base standard. There are mappings between VRML objects and commonly used 3D application programmer interface (API features.VRML is useful for a variety of applications, including data visualization , financial analysis, entertainment, education, distributed simulatio, computer-aided design, product marketing, virtual malls, user interfaces to information, scientific visualization.Data visualization turns numbers into a 3D VRML world. It takes a complex database with lots of numerical information and turns it into a three-dimensional environment, which may have a time dimension. Even interactive features and sound can represent information.Financial analysis can use data visualization to visualize financial data, such as stock prices or corporate financial accounts. Anomalies and opportunities can be detected by highlighted areas in the data set.Entertainment is a potential goldmine for VRML developers, since VRML allows for interactive, 3D movies. VRML allows customized, dynamically-generated camera angles with alternate scenarios possible.Education with VRML can give people a chance to learn something in a new way, or learn a real-life job without the dangers of physical machinery.Distributed Simulation can use multi-user VRML worlds over networks to simulate military exercises or industrial courses.Computer-Aided Design is an area where designers could collaborate on designing industrial parts or other 3D objects in a shared multi-user space. Or alternatively, they can e-mail parts back and forth to each other, or put drafts up on Web servers for comments.Product Marketing often tries to reach buyers at an emotional level. VRML is great way to do this, for the same reasons that it will be successful in entertainment applications. In addition, marketers selling 3-dimensional products like clothes can give buyers an impression of the object before they purchase it.As User Interfaces to Information, VRML can help bring some sense to the confusing hypermedia world of the Web, and to massive databases packed with more information than can be easily represented textually.In Scientific Visualization, researchers or students can observe a 3D protein hovering in space and click on parts of it to learn about the function of the parts of the protein through hyperlinks to a database. In fact, Aereal Inc. is currently working on this for the Genetic Information Bank of Japan's Institute of Physical and Chemical Sciences.

  9. Built-up Effect of Core Material for Microencapsulated Flame Retardant Containing Dimethyl Methyl Phosphate

    LIN Miao; DONG Kai; YANG Yong


    The flame retardants containing organophosphorus compounds have extensively been used inthe flame retarding of polymer materials.Among others,dimethyl methyl phosphate (DMMP) was applied in flame retarding of polyurethane owmg to its so much merit.However,the water-soluble property of DMMP restricted its application in textile fabric.The flame retardtag systemcontainirm DMMP will be microencapsulated to form a novel flame retardant that could be used in textiles.We have studied the builtup effect of DMMP with some inorganic compounds to improve the afterflame and afterglow suppression in the flame retarding system.The experimeatal data indicated that inorganic compounds containing various non-metal elements P,N,B and metal ions Mg2+,Al3+,Ca2+,Zn2+,Cu2+,Mn4+ could be applied in flame retarding systems as additives to effectively suppress afterflame or afterglow.

  10. [Future built-up area zoning by applying the methodology for assessing the population health risk].

    Bobkova, T E


    Using the methodology for assessing the population health risk provides proposals on the functional zoning of the reorganized area of a plastics-works. An area has been allocated for possible house-building.

  11. Roofer: An Engineered Management System (EMS) for Bituminous Built-Up Roofs



  12. Military Operations in Built-Up Areas: Essays on Some Past, Present, and Future Aspects


    Of major importance in maintaining that minimun of morale the de- fander= required to !Iva through the hardships and not give in to the temptation of waging combat in urban areas. The "creative" application of the lessons of the past essentially consists of exploit- r in& the more efficient...battle of Saigon--illustrated two different types of urban warfare: small-weapon guerrilla warfare as waged by one side, and fighting vith heavier weapons

  13. Porous Membranes Built Up from Hydrophilic Poly(ionic liquid)s.

    Täuber, Karoline; Zimathies, Annett; Yuan, Jiayin


    Porous polymer membranes made via electrostatic complexation are fabricated from a water-soluble poly(ionic liquid) (PIL) for the first time. The porous structure is formed as a consequence of simultaneous phase separation of the PIL and ionic complexation with an acid, which occurred in a basic solution of a nonsolvent for the PIL. These membranes have a stimuli-responsive porosity, with open and closed pores in isopropanol and in water, respectively. This property is quantitatively demonstrated in filtration experiments, where water is passing much slower through the membranes than isopropanol.

  14. Thermal stratification built up in hot water tank with different inlet stratifiers

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark


    H is a rigid plastic pipe with holes for each 30 cm. The holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and in the full length of the stratifier. The flexibility...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... of the stratifier prevents counterflow. The tests have shown that both types of inlet stratifiers had an ability to create stratification in the test tank under the different test conditions. The stratifier from EyeCular Technologies ApS had a better performance at low flows of 1-2 l/min and the stratifier...

  15. Military Operations in Selected Lebanese Built-Up Areas, 1975 - 1978


    and the Hispano- Suiza 30. Although all are towed except the M-42, an SP &Omm, they were mounted on trucks. These weapons were employed against...number of Staghounds * an undetermined number of truck-mounted anti-aircraft weapons (Yugoslav Hispano- Suiza twin 20mms, Soviet twin ZU-23s, Swiss...the Soviet ZU-23 and ZU-57, the Swiss Oerlikan, and the Hispano- Suiza 30. Although all are towed except the M-42, a SP 40mm, they were mounted on

  16. Utilization direction of industrial raw products built-up in power station ash dumps

    Lihach Snejana A.


    Full Text Available Nowadays hundreds million tons of ash and slag waste (ASW is produced in Russia yearly. Large territories are needed in order to store such a big waste volume. Besides, it is necessary to conduct special engineering and ecological work at the design and usage stages of this structure. The goal of the research is to outline acceptable ASW utilization methods accumulated in coal burning power station ash dumps and to determine the order of activities to solve the problem. The research methods: experimental where Kansk-Achinsk and Kuznetsk coals are the object of the research. Besides, review of relevant to the problem literature and normative documentation was done to determine activities order, possible ways and limitations of the problem solving. We elucidated that ASW transportation to depleted coal quarries to restore them is essential to arrange in order to solve the problem of ASW utilization. As to new produced ASW, they should be divided into groups according to application field (mostly in construction. The groups correspond to boiler unit load operation. After coal combustion ash is stored in special places (reservoirs, silos. Therefore modern boiler unit might be seen as a production complex of steam and ash and slag material of an adequate quality.

  17. Design and research of total-internal-reflection solar energy concentrating module%全内反射型太阳能聚光模块设计与研究

    王骁; 曹秒; 安志勇; 曹维国


    设计了用于太阳能聚集的全内反射(Total-internal-reflection,TIR)聚光器并采取措施进行优化,将多个TIR聚光器进行叠加放置在光波导板组成波导聚光模块。太阳光线经TIR聚光器阵列收集后照射到光波导板上并在其内部传播,由末端的光伏电池吸收。由实验结果可知,在光波导板长度为400 mm增至4800 mm的过程中,光学效率由88.6%降低为40.2%,而辐照度由212 W/m2增长为980 W/m2。这样根据不同需求选取不同长度的光波导板,并在保证较高的输出功率的前提下大大减少所需使用的光伏电池面积,同时TIR聚光器只需水平放置在光波导板上,避免了透镜阵列与光波导板的严格对准要求,降低了制造与装配成本。%Total-internal-reflection(TIR) concentrator for solar concentration was designed, and a series of measures was adopted to optimize. Then lots of TIR concentrators was superimposed and assembled on the waveguide slab to form the waveguide concentrating module. Collected by the TIR concentrator array, the sun light incident on the waveguide slab continued to propagate in it, and was absorbed by the photovoltaic cells in the end. The experimental result shows that when the length of the waveguide slab increased from 400 mm to 4 800 mm, the optical efficiency decreased from 88.6% to 40.2%, while the irradiance concentration grew from 212 W/m2 to 980 W/m2. Thus different lengths of the waveguide slab can be selected according to different requirements. While getting the high output power, the area of photovoltaic cells used is decimated. At the same time, the TIR concentrator can be just placed on the waveguide slab, avoiding the demand of aligning strictly the lens array and the waveguide slab, which is convenient in installation and adjustment.

  18. Snow, ice and solar radiation

    Kuipers Munneke, P.


    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  19. Snow, ice and solar radiation

    Kuipers Munneke, P.


    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  20. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Tsai, Chin-Yi; Tsai, Chin-Yao


      In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications...

  1. Solar Energy.

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  2. On Reflection

    Blasco, Maribel


    This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending...... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...... in designing learning objectives in intercultural education and in devising ways to attain them. Greater attention is also needed in intercultural education to the ways in which selfhood, and hence also reflexivity and constructions of difference, differ across space and time....

  3. Inspiring Reflections

    Muchie, Mammo


    contributions have been put together. There are a number of ways to continue Chris Freeman's legacy on innovation research. The first is to build in a critical tradition in the economics of innovation research by introducing fearlessly emancipatory epistemology. Second the economic system that dominates social......A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... life is not free from fluctuations, cycles, disruptions, crises and destructions both human and ecological. Innovation research ought to position itself to address environmental, financial and economic crises. The third is innovation research for development by addressing not only poverty erdaication...

  4. An early attempt at an integrated home energy system including solar thermal, ground source heat pump, radiant floor heating, reflective and dynamic insulation and ground-tempered makeup air

    White, T.


    This paper described an attempt to design and build a comfortable and energy efficient home that integrates solar thermal panels with active and passive features. The exterior walls of the 1700 square foot house were interlocking concrete blocks with radiant floor heating pipes fastened to the outside, which was later covered with rigid insulation and stucco. The active heating system included 4 solar panels and a ground source heat pump with supply lines buried horizontally 5 feet below the surface of the back yard on the south side of the building. The solar panels were used for different purposes in different seasons. The system was monitored for the first winter only. For 4 hours a day in January, 10 per cent more solar energy was measured on the vertical collectors than is available from direct solar insolation at summer solstice. With an outside temperature of -33 degrees C, the solar collectors were capable of maintaining an almost constant core wall temperature of 12 degrees C. The total electricity bill for this all-electric house averaged $60 month during for an entire year, with a single occupant. Despite these results, funding to optimize the control system was not granted. The house was sold at a loss and the heat pump was eventually replaced by a natural gas boiler, which reduced the energy efficiency of the house, but which satisfied the bank who wanted a conventional heating system before approving a mortgage. 2 figs.

  5. Solar Combisystems

    Thür, Alexander


    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  6. Solar energy

    Rapp, D.


    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  7. Solar energy

    Rapp, D.


    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  8. Reflected Glory


    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  9. Semitransparent organic solar cells with organic wavelength dependent reflectors

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.


    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the

  10. Optical coatings for solar cells and solar collectors. Citations from the Engineering Index data base

    Carrigan, B.


    This bibliography of worldwide journal literature cites reports on materials and research for the development of selective coatings for solar energy conversion devices. These materials include types of coatings or covers used to reflect or transmit solar radiation in order to optimize solar conversion to heat or electricity. Most studies concern antireflection, thermal control, or reflective coatings. Coatings which act as optical filters are also covered. This updated bibliography contains 223 abstracts, 54 of which are new entries to the previous edition.

  11. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Theebhan Mogana


    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  12. Solar Collectors


    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  13. Solar energy and environmental ethics

    Geiger, C.J.


    Current directions in the scientific development and advocacy of solar technology emphasize its technical efficiency, its ability to function in place of conventional energy technologies, and measures of its long-run cost effectiveness. Those directions do not consider human experience or the effect of their preoccupation with technical thinking. Even environmental ethics, as it relates to solar energy, and legal aspects of the use of solar energy are biased toward finding fixed solutions to social problems. The German thinker Martin Heidegger argued that meaningful involvement in any saturation depends on one's ability to think clearly and thoroughly. Heidegger's emphasis on thinking and thoughtfulness fits best with ways of using solar energy that are appropriate to both the nature of solar energy and the lifestyles of the users. Truly appropriate use of solar energy requires what Heidegger called a composure toward solar technology, in which solar technology might change to suit new circumstances but not to the point where the user cannot control it. The horizons of solar technology itself are broadened in the context to include scientifically less-sophisticated equipment, and ways of using solar energy that reflect changes in lifestyle and greater awareness of the sun.

  14. Solar Imagery

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  15. Solar Indices

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Features

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  17. Insect thin films as solar collectors.

    Heilman, B D; Miaoulis, L N


    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  18. Synthesis of nanoparticles of P3HT and PCBM for optimizing morphology in polymeric solar cells

    Satapathi, Soumitra; Gill, Hardeep Singh [Center for Advanced Materials, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Li, Lian; Samuelson, Lynne [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Kumar, Jayant [Center for Advanced Materials, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Mosurkal, Ravi, E-mail: [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States)


    Highlights: • Nanoparticles (NPs) with opposite charges of a donor polymer, poly(3-hexyl thiophene) (P3HT) and an acceptor molecule, phenyl-C61-butyric acid methyl ester (PCBM) were synthesized using simple mini-emulsion technique. • The NPs were examined by dynamic light scattering, atomic force microscopy and scanning electron microscopy to confirm the formation of the NPs. • The NPs were assembled into thin films by spin-coating of a blend of the NPs dispersion. • The built-up of a five layered film was monitored by UV–vis absorption spectroscopy. • Our preliminary study demonstrated that a solar cell made from an annealed NP film can exhibit photovoltaic response. - Abstract: Nanoparticles (NPs) with opposite charges of a donor polymer, poly(3-hexyl thiophene) (P3HT) and an acceptor molecule, phenyl-C61-butyric acid methyl ester (PCBM) were synthesized using simple mini-emulsion technique. The NPs were examined by dynamic light scattering, atomic force microscopy and scanning electron microscopy to confirm the formation of the NPs. The NPs were assembled into thin films by spin-coating of a blend of the NPs dispersion. The built-up of a five layered film was monitored by UV–vis absorption spectroscopy. Our preliminary study demonstrated that a solar cell made from an annealed NP film can exhibit photovoltaic response.

  19. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Petru Chioncel


    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  20. Solar urticaria

    Srinivas C


    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  1. Solar Indices - Solar Radio Flux

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Dynamic solar radiation control in buildings by applying electrochromic materials

    Jelle, B.P.; Gustavsen, A.


    Full text: Smart windows like electrochromic windows (ECWs) are windows which are able to regulate the solar radiation throughput by application of an external voltage. The ECWs may decrease heating, cooling and electricity loads in buildings by admitting the optimum level of solar energy and daylight into the buildings at any given time, e.g. cold winter climate versus warm summer climate demands. In order to achieve as dynamic and flexible solar radiation control as possible, the ECWs may be characterized by a number of solar radiation glazing factors, i.e. ultraviolet solar transmittance, visible solar transmittance, solar transmittance, solar material protection factor, solar skin protection factor, external visible solar reflectance, internal visible solar reflectance, solar reflectance, solar absorbance, emissivity, solar factor and colour rendering factor. Comparison of these solar quantities for various electrochromic material and window combinations and configurations enables one to select the most appropriate electrochromic materials and ECWs for specific buildings. Measurements and calculations were carried out on two different electrochromic window devices. (Author)

  3. Solar Sail: Materials and Space Environmental Effects

    Kezerashvili, Roman Ya


    Theoretical aspects of a solar sail material degradation are presented when the solar electromagnetic and corpuscular forms of radiation were considered as sources of degradation. The analysis of the interaction of two components of solar radiation, the electromagnetic radiation and radiation of low- and high-energy electrons, protons, and helium ions emitted by the Sun with the solar-sail materials is discussed. The physical processes of the interactions of photons, electrons, protons and alpha-particles with sail material atoms and nuclei, leading to the degradation and ionization of solar sail materials are analyzed. The dependence of reflectivity and absorption for solar sail materials on temperature and on wavelength of the electromagnetic spectrum of solar radiation is investigated. It is shown that the temperature of a solar sail increases approximately as T r^(-2/5), with the decrease of the heliocentric distance r, when are taking into account the temperature dependence of optical parameters of the s...

  4. Solar flair.

    Manuel, John S


    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  5. Photovoltaic module with light reflecting backskin

    Gonsiorawski, Ronald C.


    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  6. Solar Energy: Solar System Economics.

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  7. Offset truss hex solar concentrator

    White, John E. (Inventor); Sturgis, James D. (Inventor); Erikson, Raymond J. (Inventor); Waligroski, Gregg A. (Inventor); Scott, Michael A. (Inventor)


    A solar energy concentrator system comprises an offset reflector structure made up of a plurality of solar energy reflector panel sections interconnected with one another to form a piecewise approximation of a portion of a (parabolic) surface of revolution rotated about a prescribed focal axis. Each panel section is comprised of a plurality of reflector facets whose reflective surfaces effectively focus reflected light to preselected surface portions of the interior sidewall of a cylindrically shaped solar energy receiver. The longitudinal axis of the receiver is tilted at an acute angle with respect to the optical axis such that the distribution of focussed solar energy over the interior surface of the solar engine is optimized for dynamic solar energy conversion. Each reflector panel section comprises a flat, hexagonally shaped truss support framework and a plurality of beam members interconnecting diametrically opposed corners of the hexagonal framework recessed within which a plurality of (spherically) contoured reflector facets is disposed. The depth of the framework and the beam members is greater than the thickness of a reflector facet such that a reflector facet may be tilted (for controlling the effective focus of its reflected light through the receiver aperture) without protruding from the panel section.

  8. Reflectance spectra of subarctic lichens

    Petzold, Donald E.; Goward, Samuel N.


    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  9. Research on solar aided coal-fired power generation system and performance analysis


    Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha- nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a typical SACPG system, considering CO2 avoidance, is 0.098 $/kW·h, lower than that of SEGS, 0.14 $/kW·h.

  10. The Progress in Improving the Solar Cell Performance of Anti-reflection Film Doped with Rare-earth Eu Complexes%稀土铕配合物减反射层对提高太阳能电池效率的研究进展

    赵峰; 梁妍; 赵旭


    The main limited factors of solar photoelectric conversion efficiency is its spectral sensitive area is narrow, most of the sunlight irradiation on the battery has failed to effectively converted into electricity. Rare-earth complexes doped into the anti-reflection film of solar cells,in order to improve the efficiency,is a research hotspot in the field of solar energy in recent years.Rare earth Eu3+ complexes not only make part of the ultraviolet and visible light to convert to a wavelength which is more suitable for solar cell absorption and utilization of 612 nm red band, also can effectively shield against ultraviolet light on solar cell.This paper mainly introduces the turn light mechanism of rare earth Eu3+and its complexes, and its research progress in solar cells decreased reflector.%限制太阳能电池光电转换效率的主要因素是其光谱敏感区域比较狭窄,照射在电池上的大部分太阳光没能有效地转换成电能.将稀土铕配合物掺杂入太阳能电池减反射层中以此来提高太阳能电池效率是近年来太阳能领域的研究热点.稀土铕配合物不仅使部分紫外及可见光转换为波长更适合太阳能电池吸收利用的612nm红光波段,还能有效屏蔽对太阳能电池不利的紫外光,如能将其合理有效地在太阳能电池中加以利用,势必会对太阳能电池的光电转换效率产生重要影响.本文主要介绍稀土铕元素及其配合物的转光机理和其在太阳能电池减反射层中的研究进展.

  11. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.


    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  12. Basic principles of solar water heating

    Page-Shipp, RJ


    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  13. Solar energy

    Sommer-Larsen, P.; Krebs, F.C. (Risoe DTU, Roskilde (Denmark)); Plaza, D.M. (Plataforma Solar de Almeria-CIEMAT (Spain))


    Solar energy is the most abundant energy resource on earth. In a sustainable future with an ever-increasing demand for energy, we will need to use this resource better. Solar energy technologies either convert sunlight directly into heat and electrical energy or use it to power chemical conversions which create 'solar fuels' or synthetic compounds. Solar heating technologies have developed steadily for many years and solar heating and cooling is one of the world's commonest renewable energy technologies. This chapter, however, focuses on technologies for electricity production and touches more briefly on the prospects for solar fuels. The section on Danish perspectives also discusses solar thermal heating in district heating plants. In recent decades, two technologies for converting solar energy into electrical energy have dominated: photovoltaics (PV) and concentrating solar power (CSP). Today's silicon and thin-film PV technologies are advancing steadily, with new materials and technologies constantly being developed, and there are clear roadmaps for lowering production costs. In the discussion below we assess the maturation potential of currently emerging PV technologies within the next 40 years. Concentrating solar power is already a proven technology, and below we evaluate its potential to become a substantial part of the energy mix by 2050. Solar fuels cover a range of technologies. The chapter is to a great extent based on two recent roadmaps from the International Energy Agency (IEA). Many reports, predictions, scenarios and roadmaps for solar energy deployment exist. The IEA predictions for the penetration of solar energy in the future energy system are low relative to many of the other studies. The IEA roadmaps, however, cover most aspects of the future deployment of the technologies and reference older work. (Author)

  14. Solar architecture and solar construction; Solararchitektur und Solares Bauen

    Karweger, A. [Economic Forum Ltd., London (United Kingdom)]|[Economic Forum Ltd., Muenchen (Germany)]|[Economic Forum Ltd., Bozen (Italy)


    Solar architecture already takes into account solar energy during the design phase: The generation and use of energy as well as the materials for thermal energy storage characterize the planning process from the beginning. Solar houses are already technically feasible since a long time and become more and more interesting in economic respect due to continuously increasing energy prices. However this knowledge is not reflected in the construction practice. Energy-efficient construction is very often understood as a compact, thermally-insulated construction body, which has a small enveloping surface with small windows (principle Thermos bottle). The credo of the architects ''the form follows the task'' is converted into the opposite. The energy concept of a house must take into account its specific location and situation (climate). A uniform building envelope for all building types, locations and uses does not exist. A comprehensive planning and a cross-field dialogue between all participants is necessary in order to develop an comprehensive energy concept for a certain building; Supporting framework, heating, ventilation, construction physics and facade must be considered in dependance of each other. This is the only way to predict future heating and cooling performance and to optimize heating and ventilation plants. (orig.)

  15. Survey of coatings for solar collectors

    Mcdonald, G. E.


    Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel.

  16. Solar Photovoltaic

    Wang, Chen; Lu, Yuefeng


    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  17. Solar impulsive energetic electron events

    Wang, Linghua

    studies, I chose nearly scatter-free electron events and developed a forward-fitting method that assumes an isosceles triangular injection profile (equal rise and fall times) at the Sun. I find that in electron/3He-rich SEP events, the low-energy (~0.4 to 6-9 keV) electron injection starts ~9 min before the coronal release of the type III radio burst; the high-energy (~13 to ~300 keV) electron injection starts ~8 min after the type III burst; and the injection of ~MeV/nucleon, 3 He-rich ions begins ~1 hour later. I also find that the selected electron/ 3 He-rich SEP events have a remarkable one-to-one association with fast west-limb CMEs, and most of the associated CMEs are narrow. Finally, I present a case study to investigate the propagation of different energy electrons in solar impulsive electron events. I find that in the interplanetary medium, low-energy (~ 10-30 keV) electrons propagate differently, with more scattering at high energies. Such scattering appears to be caused by resonance with waves/turbulence at scale greater than ~ the thermal proton gyroradius in the solar wind. Although a transition to more scattering occurs at energies where the electron injection delays are detected, I show that the scattering is not enough to produce these delays. Based on the results of this thesis, a coherent picture of electron/ 3 He-rich SEP events can be built up. At the Sun, the low-energy (~0.4 to 6-9 keV) electrons may be accelerated in jets that are ejected upward from magnetic reconnection sites between closed and open field lines; these low-energy electrons generate the type III radio bursts. The jets may appear as CMEs high in the corona, and the high-energy (~13 to ~300 keV) electrons may then be accelerated at >~ 1 R S by CMEs, acting on the seed electrons provided by the low-energy injection. The ~MeV/nucleon, 3 He-rich ions may be accelerated by selective resonance with electron-beam generated waves and/or by fast, narrow CMEs. In the interplanetary medium

  18. High-Reflectivity Coatings for a Vacuum Ultraviolet Spectropolarimeter

    Narukage, Noriyuki; Kubo, Masahito; Ishikawa, Ryohko; Ishikawa, Shin-nosuke; Katsukawa, Yukio; Kobiki, Toshihiko; Giono, Gabriel; Kano, Ryouhei; Bando, Takamasa; Tsuneta, Saku; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; McCandless, Jim; Chen, Jianrong; Choi, Joanne


    Precise polarization measurements in the vacuum ultraviolet (VUV) region are expected to be a new tool for inferring the magnetic fields in the upper atmosphere of the Sun. High-reflectivity coatings are key elements to achieving high-throughput optics for precise polarization measurements. We fabricated three types of high-reflectivity coatings for a solar spectropolarimeter in the hydrogen Lyman-α (Lyα; 121.567 nm) region and evaluated their performance. The first high-reflectivity mirror coating offers a reflectivity of more than 80 % in Lyα optics. The second is a reflective narrow-band filter coating that has a peak reflectivity of 57 % in Lyα, whereas its reflectivity in the visible light range is lower than 1/10 of the peak reflectivity (˜ 5 % on average). This coating can be used to easily realize a visible light rejection system, which is indispensable for a solar telescope, while maintaining high throughput in the Lyα line. The third is a high-efficiency reflective polarizing coating that almost exclusively reflects an s-polarized beam at its Brewster angle of 68° with a reflectivity of 55 %. This coating achieves both high polarizing power and high throughput. These coatings contributed to the high-throughput solar VUV spectropolarimeter called the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP), which was launched on 3 September, 2015.

  19. From “Three Olds” Reconstruction to Urban Renewal:Reflections on Establishment of Urban Renewal Bureau in Guangzhou

    Wang; Shifu; Shen; Shuangting


    With the establishment of Guangzhou Urban Renewal Bureau,the first of its kind in China,as the background and the starting point,the paper reviews relevant experiences in the UK,Singapore,and Hong Kong,summarizes the features,responsibilities,and rights of such institutions.Through analyzing three statuses of redevelopment,which are increased,reduced,and retained construction,the paper points out that urban renewal is a process orienting at promoting the comprehensive capacity of the built-up environment.Then the paper summarizes the strength and weakness of the "three olds" reconstruction policy making and implementation in Guangzhou,holding that the strength lies in the effective land consolidation and socially collaboration experiences,while the weakness includes the unclear rights and responsibilities,unsystematic target,and imbalanced interests distribution.It concludes that the goal of urban renewal is to improve the existing built-up environment without damaging the benefits of original stakeholders,to emphasize both fairness and efficiency,and to seek for sustainable city redevelopment with optimized comprehensive capacity.Moreover,the paper clarifies that the primary responsibility of urban renewal is to well maintain the built-up environment and the extended responsibility is to properly coordinate the city redevelopment.Considering that urban renewal is a kind of public administration with distinctive social and processing features,urban renewal should be empowered the necessary implementation priority and administrative permission power via local legislation measures.In addition,an effective social collaboration platform should be established to actively support the urban renewal and to reflect the "new normal" of city redevelopment.

  20. Dust Accumulation on MER Solar Panels

    Guinness, E. A.; Arvidson, R. E.; McEwen, A. S.; Cull, S.


    HiRISE acquired in March 2011 a color image of the Spirit Mars Exploration Rover from orbit that shows an exceptionally bright reflection from the rover solar panels. HiRISE data combined with laboratory measurements of MER solar cell reflectance provide a method for constraining the thickness of dust on the solar panels. Spirit is the brightest object in the HiRISE scene with a reflectance that is about 3 times higher at 500 nm and about 1.5 times higher at 700 and 850 nm than bright outcrop and soil near the rover. The rover is also less red than these nearby materials and less red than a typical Mars dust spectrum modeled with the same geometry and seen through similar atmospheric conditions as the HiRISE image. Lighting and viewing angles for the HiRISE image of Spirit are close to a specular reflection geometry when factoring in the rover orientation, the sun position, and the location of HiRISE during image acquisition. Laboratory photometric measurements of clean and dust-coated MER solar cells show a strong specular reflection for dust coating thicknesses up to at least 45 micrometers. The specular reflection was not present in the laboratory data when the solar cell was covered with about a 135 micrometer thick layer. The dust used in the experiments consisted of less than 10 micrometer sized particles derived from a palagonitic tephra from Mauna Kea that is spectrally similar to Mars dust. A survey of MER Pancam color images acquired by Spirit and Opportunity also shows several examples of specular reflections from the solar panels. These examples correspond to times when the solar cells were moderately clean to dusty as inferred from the amount of power generated by the cells. Specular reflections in Pancam images have been observed when the solar cell output was only 45% that of a dust-free cell. Spirit HiRISE data indicate that the rover was not covered by an optical thick layer of dust because some of the reflected light must have come from the

  1. 二次反射塔式太阳能吸热器热应力分析%Thermal Stress Analysis of Two-stage Reflective Tower Solar Heat Absorber

    张晨; 马超; 赵云云; 李凤娟; 张晓燕; 杨晓峰


    Solar energy heat absorber is one of the most important equipment in tower thermal solar energy systems ,the heat pipe and the joint of heat pipe and mother tube are the thermal stress concentration. This paper analyze thermal stress of these parts in heat absorber. Numerical simulation is used to get the change of the thermal stress of different bend with the temperature change. The results prove that the temperature difference of molten salt is the main factor which influences the thermal stress distribution can be got.%太阳能吸热器是塔式光热太阳能发电系统中最重要的设备之一,吸热器内吸热管、吸热管与母管连接处都是热应力产生的集中点,文中对吸热器这几个部位进行热应力分析,通过数值模拟得出不同弯头热应力随温度的变化情况,以及熔盐温差是影响热应力分布的主要因素。

  2. A Microstrip Reflect Array Using Crossed Dipoles

    Pozar, David M.; Targonski, Stephen D.


    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  3. Solar Sprint

    Tabor, Richard; Anderson, Stephen


    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  4. Environmental Degradation of Solar Reflectors

    Bouquet, F. L.


    Report presents results of study of atmospheric degradation of large solar reflectors for power generators. Three general types of reflective surfaces investigated. Report also describes computer buildup and removal (by rain and dew) of contamination from reflectors. Data used to determine effects of soil buildup and best method and frequency of washing at various geographic locations.

  5. A solar module fabrication process for HALE solar electric UAVs

    Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)


    We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

  6. Reflectable bases for affine reflection systems

    Azam, Saeid; Yousofzadeh, Malihe


    The notion of a "root base" together with its geometry plays a crucial role in the theory of finite and affine Lie theory. However, it is known that such a notion does not exist for the recent generalizations of finite and affine root systems such as extended affine root systems and affine reflection systems. As an alternative, we introduce the notion of a "reflectable base", a minimal subset $\\Pi$ of roots such that the non-isotropic part of the root system can be recovered by reflecting roots of $\\Pi$ relative to the hyperplanes determined by $\\Pi$. We give a full characterization of reflectable bases for tame irreducible affine reflection systems of reduced types, excluding types $E_{6,7,8}$. As a byproduct of our results, we show that if the root system under consideration is locally finite then any reflectable base is an integral base.

  7. Pyrometric temperature measurements in the solar furnace

    Tschudi, H.-R; Mueller, Ch.


    Surface temperatures are key parameters in many applications of concentrated solar radiation. Pyrometric temperature determination is here hampered by the reflected solar radiation. Two approaches to solve this problem were experimentally tested with the TREMPER reactor in the solar furnace at PSI: the flash assisted multiwavelength pyrometry (FAMP) developed at PSI and a so called 'solar-blind' pyrometer developed by IMPAC Electronic GmbH in Frankfurt, Germany, in collaboration with PSI. Performance, advantages and disadvantages of the two different pyrometers are reported and discussed. (authors)

  8. Multilayer front-sheet for solar modules with tuned color appearance

    Rooms, H.C.A.; Barbu, I.; Vroon, Z.A.E.P.; Meertens, R.; Vermeulen, B.


    The acceptance of solar cells in the built environment is partly dependent on the appearance of the solar modules. One aspect in the appearance is color. In most cases a solar cell itself reflects either blue or no color and will appear blackish. For the blue solar cells it is possible to tune the a

  9. Multilayer front-sheet for solar modules with tuned color appearance

    Rooms, H.C.A.; Barbu, I.; Vroon, Z.A.E.P.; Meertens, R.; Vermeulen, B.


    The acceptance of solar cells in the built environment is partly dependent on the appearance of the solar modules. One aspect in the appearance is color. In most cases a solar cell itself reflects either blue or no color and will appear blackish. For the blue solar cells it is possible to tune the a

  10. Solar Thermal Propulsion Test Facility


    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  11. Reflectance Spectral Characteristics of Lunar Surface Materials

    Yong-Liao Zou; Jian-Zhong Liu; Jian-Jun Liu; Tao Xu


    Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm.It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.

  12. Solar prominences

    Engvold, Oddbjørn


    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  13. Solar Nexus.

    Murphy, Jim


    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  14. Solar Radio

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  15. Material effects in manufacturing of silicon based solar cells and modules

    Schieferdecker, Anja; Sachse, Jens-Uwe; Mueller, Torsten; Seidel, Ulf; Bartholomaeus, Lars; Germershausen, Sven; Perras, Reinhold; Meissner, Rita; Hoebbel, Helmut; Schenke, Andreas; Bhatti, A.K.; Kuesters, Karl Heinz [Conergy Solar Module GmbH and Co. KG, Conergy Str. 8, 15236 Frankfurt/Oder (Germany); Richter, Hans [IHP, Im Technologiepark 25, 15236 Frankfurt/Oder (Germany); GFWW, Im Technologiepark 1, 15236 Frankfurt/Oder (Germany)


    The performance and efficiency of solar cells depends strongly on influence of materials. Key topics for solar cell optimisation are presently silicon material properties and materials for cell metallisation. Optimisation of silicon is focussed e.g. on material properties such as impurity content, density of dislocation and grain boundaries in multi-crystalline silicon which influence parameters like carrier lifetime, and therefore the cell efficiency. Improved characterisation methods of solar cells like electroluminescence and photoluminescence are combined with techniques such as thermography and LBIC to improve production process and materials. As a result cell efficiency will be increased. Optimisation of cell metallisation and module interconnects is strongly related to progress in paste materials for front side metallisation. Improved materials enable the use of higher emitter resistance and the printing of smaller metal lines, while reducing the series resistance of the solar cell. Progress in paste materials leads to increased solar cell efficiency for the standard cell process. The introduction of new metal pastes has to be combined with careful optimisation of the process window in soldering during module built-up. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Innovative Solar Optical Materials

    Lampert, Carl M.


    A variety of optical coatings are discussed in the context of solar energy utilization. Well-known coatings such as transparent conductors (heat mirrors), selective absorbers, and reflective films are surveyed briefly. Emphasis is placed on the materials' limitations and on use of lesser-known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, cold mirrors, fluorescent concentrator materials, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials, research has only recently been considered, so various design and durability issues need to be addressed.

  17. Award-Winning Etching Process Cuts Solar Cell Costs (Revised) (Fact Sheet)


    The NREL "black silicon" nanocatalytic wet-chemical etch is an inexpensive, one-step method to minimize reflections from crystalline silicon solar cells. The technology enables high-efficiency solar cells without the use of expensive antireflection coatings.

  18. The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    Beck, P G; Van Reeth, T; Tkachenko, A; Raskin, G; van Winckel, H; Nascimento, J -D do; Salabert, D; Corsaro, E; Garcia, R A


    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100

  19. Solar energy engineering

    Sayigh, A.A.M. (ed.)


    The scope and advantages of solar energy are dealt with. The nature of the sun, the solar radiation spectrum, the estimation of total, direct, and diffuse radiation, and the heat transfer fundamentals for solar energy application are explained. The fundamentals, fabrication, and uses of various water and air heaters are outlined. Optics and concentrating collectors are dealt with, as well as solar furnaces. The various applications of solar energy are discussed, namely, solar pond, solar distillation, photovoltaic conversion of solar energy, solar refrigeration, solar hydrogen production, space applications, and solar measuring equipment. The cost of solar appliances is discussed. (MHR)

  20. Streaming of interstellar grains in the solar system

    Gustafson, B. A. S.; Misconi, N. Y.


    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  1. Flexible solar cells based on curved surface nano-pyramids

    Shrestha, Anil; Mizuno, Genki; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.; Lewis, Jay


    The advent of ultrathin crystalline silicon (c-Si) solar cells has significantly reduced the cost of silicon solar cells by consuming less material. However, the very small thickness of ultrathin solar cells poses a challenge to the absorption of sufficient light to provide efficiency that is competitive to commercial solar cells. Light trapping mechanisms utilizing nanostructure technologies have been utilized to alleviate this problem. Unfortunately, a significant portion of light is still being lost even before entering the solar cells because of reflection. Different kinds of nanostructures have been employed to reduce reflection from solar cells, but reflection losses still prevail. In an effort to reduce reflection loss, we have used an array of modified nanostructures based cones or pyramids with curved sides, which matches the refractive index of air to that of silicon. Moreover, use of these modified nano-pyramids provides a quintic (fifth power) gradient index layer between air and silicon, which significantly reduces reflection. The solar cells made of such nanostructures not only significantly increase conversion efficiency at reduced usage of crystalline silicon material (e.g. thinner), but it also helps to make the c-Si based solar cell flexible. Design and optimization of flexible c-Si solar cell is presented in the paper.

  2. Solar Features - Solar Flares - SIDS

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  3. Solar Features - Solar Flares - Patrol

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  4. Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant

    Zhu, Guangdong [National Renewable Energy Laboratory,15013 Denver West Parkway,Golden, CO 80401e-mail:; Turchi, Craig [National Renewable Energy Laboratory,15013 Denver West Parkway,Golden, CO 80401


    Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error and receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.

  5. Shock wave reflection phenomena

    Ben-dor, Gabi


    This book provides a comprehensive state-of-the-knowledge description of the shock wave reflection phenomena from a phenomenological point of view. The first part is a thorough introduction to oblique shock wave reflections, presenting the two major well-known reflection wave configurations, namely, regular (RR) and Mach (MR) reflections, the corresponding two- and three-shock theories, their analytical and graphical solution and the proposed transition boundaries between these two reflection-wave configurations. The second, third and fourth parts describe the reflection phenomena in steady, pseudo-steady and unsteady flows, respectively. Here, the possible specific types of reflection wave configurations are described, criteria for their formation and termination are presented and their governing equations are solved analytically and graphically and compared with experimental results. The resolution of the well-known von Neumann paradox and a detailed description of two new reflection-wave configurations - t...

  6. Liberating Moral Reflection

    Horell, Harold D.


    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  7. Knowledge-Level Reflection

    Harmelen, van F.A.H.; Wielinga, B.J.; Bredeweg, Bert; Schreiber, G.; Karbach, Werner; Reinders, Martin; Voss, A.; Akkermans, H.; Bartsch-Spoerl, Brigitte; Vinkhuyzen, Erik

    This paper presents an overview of the REFLECT project. It defines the notion of knowledge level reflection that has been central to the project, it compares this notion with existing approaches to reflection in related fields, and investigates some of the consequences of the concept of knowledge le

  8. Liberating Moral Reflection

    Horell, Harold D.


    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  9. Imaging seismic reflections

    Op 't Root, Timotheus Johannes Petrus Maria


    The goal of reflection seismic imaging is making images of the Earth subsurface using surface measurements of reflected seismic waves. Besides the position and orientation of subsurface reflecting interfaces it is a challenge to recover the size or amplitude of the discontinuities. We investigate tw

  10. Reflective Learning in Practice.

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning in Practice" (Ann…

  11. A climatology of visible surface reflectance spectra

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas


    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  12. Solar Radiation Model for Development and Control of Solar Energy Sources

    Dominykas Vasarevičius


    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  13. Reflection Positive Doubles

    Jaffe, Arthur


    Here we introduce reflection positive doubles, a general framework for reflection positivity, covering a wide variety of systems in statistical physics and quantum field theory. These systems may be bosonic, fermionic, or parafermionic in nature. Within the framework of reflection positive doubles, we give necessary and sufficient conditions for reflection positivity. We use a reflection-invariant cone to implement our construction. Our characterization allows for a direct interpretation in terms of coupling constants, making it easy to check in concrete situations. We illustrate our methods with numerous examples.

  14. Solar Neutrinos

    Davis, R. Jr.; Harmer, D. S.


    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  15. Wave Reflection Coefficient Spectrum

    俞聿修; 邵利民; 柳淑学


    The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The reflection coefficients of oblique irregular waves are analyzed by the Modified Two-Point Method (MTPM) proposed by the authors. The results show that the wave reflection coefficient decreases with increasing wave frequency and incident angle or decreasing structure slope. The reflection coefficient frequency spectrum and its variation with Iribarren number are given in this paper. The paper also suggests an empirical 3-dimensional reflection coefficient spectrum, i.e. reflection coefficient directional spectrum, which can be used to illustrate quantitatively the variation of reflection coefficient with the incident angle and the Iribarren number for oblique irregular waves.

  16. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    Mark Spitzer


    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  17. Solar fuels

    Bolton, J.R.


    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  18. Solar Energy

    Sommer-Larsen, Peter; Furbo, Simon


    This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to improve its efficiency. Our research studies found that using multi-junction cells with larger substrates can increase the efficiency to some extent which in practice is limited to 43 percent. The experiment was conducted using ten solar cells each with an area of 20.9〖cm〗 ^2, where each cell gives 0.5 V and 0.4 A and a 1.25 Ω r...

  19. Test results, Industrial Solar Technology parabolic trough solar collector

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)


    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  20. Solar Energy and You.

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  1. Advances in the determination of thermodynamic temperatures in the DLR solar furnace above 1500 K

    Rohner, N.; Neumann, A. [German Aerospace Center (DLR), Solar Energy Technology, Cologne (Germany)


    The need for a new high temperature measurement system for applications in the solar furnace were pointed out and the advantages as well as the difficulties of measuring at short wavelengths explained. A system for the spectral measurement of temperature radiation in combination with a precise evaluation method was built up and tested with a blackbody as radiation source. Measurements on a real sample of about 2000 K and at a larger distance are planned. To keep the measurement area A{sub samp} small, the instrumentation must be modified. This can be accomplished by using a facet of short focal length and with the required f/D ratio. Tests with this configuration are in process. (orig.)

  2. Three-movement compound tracking of Fresnel reflection type solar concentrator system%菲涅耳反射式太阳能聚光系统的三运动复合跟踪

    叶鸿烈; 戴静; 冯朝卿; 郑宏飞


    A new tracking method of the linear Fresnel reflection type concentrator system (LFRC) was proposed.The secondary reflector placed over the receiver rotates at the same time with the mirror field's translation.Plane mirrors' rotation,secondary reflector's rotation and mirror field's translation together constituted a three-movement pattern.The cosine loss was decreased by way of the mirror field's translation so as to increase total efficiency of the system.The basis theoretical analysis and optical simulation showed that the total cosine loss of the three-movement system was unchanged basically through whole day.A 24 m2 mirror field system was tested practically.As a result,under good weather condition in summer,the increment of effective energy brought by three-movement system was greater about 5.8%,and the daily increment of energy was able to reach about 38 MJ.%提出了线性菲涅耳式太阳能反射聚光系统新的跟踪方式:置于接收器上方的二次聚光器配合镜场平移的同时进行旋转,与平面镜的转动组成三运动复合形式.通过镜场的整体平移减小余弦损失,提高系统整体的聚光集热效率.从理论分析和计算机模拟两个方面对这种三运动复合形式进行的研究发现,三运动系统的总余弦损失在一天中基本不变.对一个24 m2镜场的测试分析表明,在夏季晴天条件下,三运动复合系统的有效能量增加率约为5.8%,每天的能量增益达到38 MJ左右.

  3. Black Silicon Solar Cells with Black Ribbons

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io


    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  4. Development of wider bandgap n-type a-SiOx:H and μc-SiOx:H as both doped and intermediate reflecting layer for a-Si:H/ a-Si1-xGex:H tandem solar cells

    Chen, Po-Wei; Chen, Pei-Ling; Tsai, Chuang-Chuang


    In this work, we developed a-SiOx:H(n) and μc-SiOx:H(n) films as n-type layer, intermediate reflecting layer (IRL), and back-reflecting layer (BRL) to improve the light management in silicon thin-film solar cells. In the development of SiOx:H films, by properly adjusting the oxygen content of the films, the optical bandgap of μc-SiOx:H(n) can be increased while maintaining sufficient conductivity. Similar effect was found for a-SiOx:H(n). In a-Si:H single-junction cells, employing a-SiOx:H(n) as the replacement for a-Si:H(n) resulted in a relative efficiency enhancement of 11.4% due to the reduced parasitic absorption loss. We have also found that μc-SiOx:H(n) can replace back ITO layer as BRL, leading to a relative efficiency gain of 7.6%. For a-Si:H/ a-Si1- x Ge x:H tandem cell, employing μc-SiOx:H(n) as IRL increased the current density of top cell. In addition, employing a-SiOx:H(n) as a replacement of a-Si:H(n) in the top cell increased the current density of bottom cell due to the reduction of absorption loss. Combining all the improvements, the a-Si:H/ a-Si1-xGex:H tandem cell with efficiency of 9.2%, V OC = 1.58 V, J SC = 8.43 mA/cm2, and FF = 68.4% was obtained. [Figure not available: see fulltext.

  5. Solar sail Engineering Development Mission

    Price, H. W.


    Since photons have momentum, a useful force can be obtained by reflecting sunlight off of a large, low mass surface (most likely a very thin metal-coated plastic film) and robbing the light of some of its momentum. A solar sail Engineering Development Mission (EDM) is currently being planned by the World Space Foundation for the purpose of demonstrating and evaluating solar sailing technology and to gain experience in the design and operation of a spacecraft propelled by sunlight. The present plan is for the EDM spacecraft to be launched (sail stowed) in a spin-stabilized configuration into an initial elliptical orbit with an apogee of 36,000 km and a perigee of a few hundred kilometers. The spacecraft will then use its own chemical propulsion system to raise the perigee to at least 1,200 km. The deployed sail will have an area of 880 sq m and generate a solar force of about 0.007 N.

  6. Solar thermophotovoltaic system using nanostructures.

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C


    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  7. Sistema Solar

    Federación de Asociaciones de Astronomía Cielo de Comellas


    Lección sobre el Sistema Solar. Curso de Astronomía Básica, segunda edición, impartido por los miembros de la Federación de Asociaciones de Astronomía Cielo de Comellas. Casa de la Ciencia, sábados, del 24 de septiembre al 22 de octubre de 2011

  8. Solar system

    Homer, Charlene


    Thrill young astronomers with a journey through our Solar System. Find out all about the Inner and Outer Planets, the Moon, Stars, Constellations, Asteroids, Meteors and Comets. Using simplified language and vocabulary, concepts such as planetary orbits, the asteroid belt, the lunar cycle and phases of the moon, and shooting stars are all explored.

  9. Solar Neutrinos

    V. Antonelli


    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  10. Reflective article having a sacrificial cathodic layer

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.


    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  11. Solar filament eruptions and their physical role in triggering Coronal Mass Ejections

    Schmieder, B; Aulanier, G


    Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80 % of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption. In order to initiate eruptions, different mechanisms have been proposed: new emergence of flux, and/or dispersion of the external magnetic field, and/or reconnection of field lines below or above the flux rope. These mechanisms reduce the downward magnetic tension and favor the rise of the flux rope. Another mechanism is the kink instability when t...

  12. Temperature Controller for a Solar Furnace

    Hale, R. R.; Mcdougal, A. R.


    Relatively-simple movable sheild has been suggested for controlling temperature of solar furnace. Temperature modulator can be set to have collected solar energy fully "on", fully "off" or any intermediate level. Parabolic mirror concentrates Sunlight into receiver. Shade plate that blocks insolation at back of receiver produces shade zone in center of collector. No radiation is returned to receiver from shade zone; only rays falling on other areas of reflecting surface are directed back toward receiver.

  13. Efficiency Enhancement in Plasmonic IBC Solar Cells

    Christian Chaverri-Ramos; J. Ayúcar; L. Bellières; Guillermo Sánchez Plaza; James Connolly


    Silicon solar cells dominate photovoltaics but suffer from poor interaction with light. This work reports on progress regarding both spectral conversion and improved light interaction with the LIMA design [1]. This combines an efficient interdigitated back-contact (IBC) solar cell [2] with a silicon quantum dot (Si-QD) [3] to optimize the spectral distribution of the incident spectrum, and finally a front-side plasmon layer to optimize light interaction. Reflectivity after thickness and proce...

  14. Prospects for the building of solar furnaces for industry

    La Blanchetais, C.H. (CNRS, Groupe des Laboratoires de Bellevue, 92 - Meudon-Bellevue (France))


    After a brief summary of the interest of using solar energy, a review of the different kinds of devices is presented: solar furnaces, projects of solar plants of high power. The main characteristics of the 1,000 kw Odeillo solar furnace are reviewed. For the concentrator a project of device derived from the paraboloide is presented and studied with details. For the field of orientators a preliminary study of the energy to the minor in the solar layer reflected by a plane orientator of the finite dimensions shows that it is possible to consider the possibility of reduction of the heliostat field.

  15. Media for Reflection

    Knudsen, Morten


    This article develops the concept media for reflection in the interest of conceptualizing the interpretative frames that enable and limit reflection in management and leadership education. The concept ‘media for reflection’ allows us to conceptualize the social and cultural mediation of reflection...... without reducing reflection to an effect of the social structures and cultural norms in which it is embedded. Based on the developed theoretical framework, this article analyses how a renaissance ‘mirror for princes’ and contemporary research-based management education mediate reflection. The content...... of the mediations is analysed as well as the societal and organizational background. Furthermore, the means by which the two media enable and limit reflection in different ways is compared. Finally, the article discusses possible implications of the analysis in terms of management and leadership education....

  16. Microsheet Glass In Solar Concentrators

    Richter, Scott W.


    Microsheet glass used as highly protective covering material for developmental concentrating reflectors for solar power systems. Together with other materials, possible to fabricate lightweight, highly reflective, accurate, and long-lived concentrators. Desirable properties include durability and smoothness. Glass not affected by ultraviolet radiation, and not degraded by atomic oxygen, found in low orbits around Earth. Though concentrators intended for use in outer space, noteworthy that terrestrial concentrator fabricated with glass sheet 0.7 mm thick.

  17. Reflection in professional practice

    Hetzner, Stefanie Bianca


    The purpose of this thesis is to contribute to the research on professional learning through reflective practice. The main goal is to examine—against the backdrop of workplace changes and errors—individual and contextual factors that are theoretically assumed to influence reflection in the context of professional work. Reflective practice is defined as a retrospective but future- and goal-oriented cognitive-affective process that basically involves (a) the awareness and review of incident...

  18. Unanticipated Partial Behavioral Reflection

    Roethlisberger, David; Denker, Marcus; Tanter, Éric


    International audience; Dynamic, unanticipated adaptation of running systems is of interest in a variety of situations, ranging from functional upgrades to on-the-fly debugging or monitoring of critical applications. In this paper we study a particular form of computational reflection, called unanticipated partial behavioral reflection, which is particularly well-suited for unanticipated adaptation of real-world systems. Our proposal combines the dynamicity of unanticipated reflection, i.e., ...

  19. X-ray Reflection

    Fabian, A. C.; Ross, R. R.


    Material irradiated by X-rays produces backscattered radiation which is commonly known as the Reflection Spectrum. It consists of a structured continuum, due at high energies to the competition between photoelectric absorption and electron scattering enhanced at low energies by emission from the material itself, together with a complex line spectrum. We briefly review the history of X-ray reflection in astronomy and discuss various methods for computing the reflection spectrum from cold and ionized gas, illustrated with results from our own work reflionx. We discuss how the reflection spectrum can be used to obtain the geometry of the accretion flow, particularly the inner regions around black holes and neutron stars.

  20. Extracting built-up areas from TerraSAR-X data using object-oriented classification method

    Wang, SuYun; Sun, Z. C.


    Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.

  1. An Investigation of Energy Transmission Due to Flexural Wave Propagation in Lightweight, Built-Up Structures. Thesis

    Mickol, John Douglas; Bernhard, R. J.


    A technique to measure flexural structure-borne noise intensity is investigated. Two accelerometers serve as transducers in this cross-spectral technique. The structure-borne sound power is obtained by two different techniques and compared. In the first method, a contour integral of intensity is performed from the values provided by the two-accelerometer intensity technique. In the second method, input power is calculated directly from the output of force and acceleration transducers. A plate and two beams were the subjects of the sound power comparisons. Excitation for the structures was either band-limited white noise or a deterministic signal similar to a swept sine. The two-accelerometer method was found to be sharply limited by near field and transducer spacing limitations. In addition, for the lightweight structures investigated, it was found that the probe inertia can have a significant influence on the power input to the structure. In addition to the experimental investigation of structure-borne sound energy, an extensive study of the point harmonically forced, point-damped beam boundary value problem was performed to gain insight into measurements of this nature. The intensity formulations were also incorporated into the finite element method. Intensity mappings were obtained analytically via finite element modeling of simple structures.

  2. QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL freeware.

    Toropova, Alla P; Toropov, Andrey A; Benfenati, Emilio; Gini, Giuseppina


    CORAL (CORrelations And Logic, is a freeware available on the Internet. This freeware is designed to build up quantitative structure - property/activity relationships. The molecular structure for CORAL should be represented by the simplified molecular input line entry system (SMILES). Optimal descriptors calculated with SMILES are a mathematical function of the presence or absence of SMILES elements. The essence of this approach is the calculation of correlation weights for each element or combination of the elements by the Monte Carlo method. These coefficients serve to calculate the descriptors correlated with the endpoint for the training set, hoping that this correlation will also hold for the external test set. These descriptors can be improved by taking into account global physicochemical situations in molecules. An example of the physicochemical situation is the presence of oxygen and nitrogen. One can calculate these situations with SMILES and represent them by combining 0 (absence) and 1 (presence). The involving in the modelling of correlation weights of aforementioned physicochemical situations gave improvement in accuracy of models of toxicity to Daphnia magna for test set: n(test) = 75, r(2) = 0.7322, r(2) (pred) = 0.7193, r(2) (m) = 0.6549 (without correlation weights of the physicochemical situations); and n(test) = 75, r(2) = 0.7897, r(2) (pred) = 0.7790, r(2) (m) = 0.6850 (with aforementioned correlation weights of physicochemical situations). © 2011 John Wiley & Sons A/S.

  3. Modeling the Effects of the Urban Built-Up Environment on Plant Phenology Using Fused Satellite Data

    Gervais, Norman; Buyantuev, Alexander; Gao, Feng


      Understanding the effects that the Urban Heat Island (UHI) has on plant phenology is important in predicting ecological impacts of expanding cities and the impacts of the projected global warming...

  4. Lightweight, low-cost solar energy collector

    Hochberg, Eric B. (Inventor); Costen, Michael K. (Inventor)


    A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of identical tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two identical spaced anchorplates, each containing a plurality of holes which lie on the desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers which control the shape and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.

  5. Solar cosmic ray bursts and solar neutrino fluxes

    Basilevakaya, G. A.; Nikolsky, S. I.; Stozhkov, Y. I.; Charakhchyan, T. N.


    The neutrino flux detected in the C1-Ar experiment seems to respond to the powerful solar cosmic ray bursts. The ground-based detectors, the balloons and the satellites detect about 50% of the bursts of soalr cosmic ray generated on the Sun's visible side. As a rule, such bursts originate from the Western side of the visible solar disk. Since the solar cosmic ray bursts are in opposite phase withthe 11-year galactic cosmic ray cycle which also seems to be reflected by neutrino experiment. The neutrino generation in the bursts will flatten the possible 11-year behavior of the AR-37 production rate, Q, in the Cl-Ar experiment. The detection of solar-flare-generated gamma-quanta with energies above tens of Mev is indicative of the generation of high-energy particles which in turn may produce neutrinos. Thus, the increased Q during the runs, when the flare-generated high energy gamma-quanta have been registered, may be regarded as additional evidence for neutrino geneation in the solar flare processes.

  6. Collecting Solar Energy. Solar Energy Education Project.

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  7. Collecting Solar Energy. Solar Energy Education Project.

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…


    Murat ÖZTÜRK


    Full Text Available Solar ponds are the systems which collect solar energy and store it for long periods of time. For effective and efficient use of these systems in the country, concepts relating economy of solar ponds which generated hot water from the sun must be known besides their physical properties. Life cycle cost analysis is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes. In order to quantify the costs, resource consumption, and energy use, material and energy balances are performed in a cradle-to-grave manner on the operations required to transform raw materials into useful products. In this study; life cycle cost analysis of reflecting covered and non covered solar ponds are calculated for a volume of 3.5x3.5x2 cubic meters and presented. Also the energies extractable for these solar ponds in Goller Region climatic conditions are given.

  9. Magnetic reconnection in lower solar atmosphere



    Observations of vector magnetic field have provided the decisive constraint on the magnetic topology of solar active regions, thus offering an observational basis to identify various physical processes. Based on both magnetic field observations and theoretical discussions, it has been inferred that the magnetic flux cancellation, discovered from the line-of-sight magnetograms, reflects the interaction between magnetic loop systems and is most likely the slow magnetic reconnection in the lower solar atmosphere. This type of reconnections may affect the magnetic activities in the higher atmosphere by the way of transporting the magnetic energy and helicity and sometimes may cause fast reconnection in the corona, providing the necessary energy in solar flares.

  10. Solar coronal observations at high frequencies

    Katsiyannis, A. C.; Mathioudakis, M.; Phillips, K. J. H.; Williams, D. R.; F. P. Keenan


    The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage syst...

  11. Solar astrometry with Rio Astrolabe and Heliometer

    Sigismondi, Costantino; Andrei, Alexandre Humberto; Reis-Neto, Eugenio; Penna, Jucira Lousada; D'Avila, Victor Amorim


    Monitoring the micro-variations of the solar diameter helps to better understand local and secular trends of solar activity and Earth climate. The instant measurements with the Reflecting Heliometer of Observatorio Nacional in Rio de Janeiro have minimized optical and thermal distortion, statistically reducing air turbulence effects down to 0.01 arcsec. Contrarily to satellites RHRJ has unlimited lifetime, and it bridges and extends the measures made with drift-scan timings across altitude circles with 0.1 arcsec rms with Astrolabes. The Astrolabe in Rio operated from 1998 to 2009 to measure the solar diameter and the detected variations have statistical significance.

  12. Solar hydrogen and solar electricity using mesoporous materials

    Mahoney, Luther

    The development of cost-effective materials for effective utilization of solar energy is a major challenge for solving the energy problems that face the world. This thesis work relates to the development of mesoporous materials for solar energy applications in the areas of photocatalytic water splitting and the generation of electricity. Mesoporous materials were employed throughout the studies because of their favorable physico-chemical properties such as high surface areas and large porosities. The first project was related to the use of a cubic periodic mesoporous material, MCM-48. The studies showed that chromium loading directly affected the phase of mesoporous silica formed. Furthermore, within the cubic MCM-48 structure, the loading of polychromate species determined the concentration of solar hydrogen produced. In an effort to determine the potential of mesoporous materials, titanium dioxide was prepared using the Evaporation-Induced Self-Assembly (EISA) synthetic method. The aging period directly determined the amount of various phases of titanium dioxide. This method was extended for the preparation of cobalt doped titanium dioxide for solar simulated hydrogen evolution. In another study, metal doped systems were synthesized using the EISA procedure and rhodamine B (RhB) dye sensitized and metal doped titania mesoporous materials were evaluated for visible light hydrogen evolution. The final study employed various mesoporous titanium dioxide materials for N719 dye sensitized solar cell (DSSC) materials for photovoltaic applications. The materials were extensively characterized using powder X-ray diffraction (XRD), nitrogen physisorption, diffuse reflectance spectroscopy (DRS), UV-Vis spectroscopy, Fourier-Transform-Infrared Spectroscopy (FT-IR), Raman spectroscopy, chemisorption, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). In addition, photoelectrochemical measurements were completed using

  13. A dynamic model of an innovative high-temperature solar heating and cooling system

    Buonomano Annamaria


    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  14. Concentrated solar power generation using solar receivers

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph


    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  15. Solar Decathlon 2015 - Indigo Pine

    Blouin, Vincent [Clemson Univ., SC (United States)


    The Solar Decathlon competition challenges students across the country to design and build a net-zero, market ready solar powered home. The bi-annual competition consists of ten contests that seek to balance the home on a scale of innovation. The ten contests were selected by to organizers to address all aspects of housing, including architecture, market appeal, engineering, communication, affordability, comfort, appliances, home life, commuting, and energy balance. Along with the criteria associated with the contests, the competition includes several design constraints that mirror those found in practical housing applications: including (but certainly not limited to) lot lines, building height, and ADA accessibility. The Solar Decathlon 2015 was held at the Orange Country Great Park in Irvine, CA. The 2015 competition was Clemson University’s first entry into the Solar Decathlon and was a notable milestone in the continued development of a home, called Indigo Pine. From the beginning, the team reconsidered the notion of sustainability as related to both the design of a home and the competition itself. The designing and building process for the home reflects a process which seamlessly moves between thinking and making to develop a comprehensive design with a method and innovations that challenge the conventions of residential construction. This report is a summary of the activities of the Clemson University team during the two-year duration of the project leading to the participation in the 2015 Solar Decathlon competition in Irvine California.

  16. Transparencies and Reflections.

    Hubbard, Guy


    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  17. Reflective Practitioner Account



    This article focus on the reflective account of an English teacher learning and teaching in higher education with the British post-graduate certificate program of the Yunnan Agdculture University.As n practitioner for smny years in English learning and teaching for many years,it reflects in four fields.

  18. Reflective Learning in Practice.

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech);…

  19. Dissenting in Reflective Conversations

    Bjørn, Pernille; Boulus, Nina


    a methodological reflective approach that provides space for taking seriously uncertainties experienced in the field as these can be a catalyst for learning and sharpening our theoretical and empirical skills as action researchers. Through first-person inquiry, we investigate how our reflective conversations...

  20. Residential solar-heating system uses pyramidal optics


    Report describes reflective panels which optimize annual solar energy collection in attic installation. Subunits include collection, storage, distribution, and 4-mode control systems. Pyramid optical system heats single-family and multi-family dwellings.

  1. Thermal Efficiency for Each Zone of a Solar Pond

    BEZ(I)R C(I)CEK Nalan; SAH(I)N SENCAN Arzu


    A salt gradient solar pond with a surface area of 3.5×3.5 m2 and a depth of 2m is built.Two collapsible covers are used to reduce thermal energy loss from the surface of the solar pond during the night and to increase the thermal efficiency of the pond solar energy harvesting during daytime.The covers can be rotated between 0 and 180° by a controlled electric motor and has insulation and reflection properties.The thermal efficiency for each solar pond zone is investigated theoretically and experimentally.A salt gradient solar pond (SGSP) can store a portion of solar radiation as thermal energy for longterm use.Long-term energy storage in a solar pond is important for many applications,i.e.greenhouse heating or heating in buildings.%A salt gradient solar pond with a surface area of 3.5×3.5 m2 and a depth of 2m is built. Two collapsible covers are used to reduce thermal energy loss from the surface of the solar pond during the night and to increase the thermal efficiency of the pond solar energy harvesting during daytime. The covers can be rotated between 0 and 180° by a controlled electric motor and has insulation and reflection properties. The thermal efficiency for each solar pond zone is investigated theoretically and experimentally.

  2. Fisica solare

    Degl’Innocenti, Egidio Landi


    Il volume è un'introduzione alla Fisica Solare che si propone lo scopo di illustrare alla persona che intende avvicinarsi a questa disciplina (studenti, dottori di ricerca, ricercatori) i meccanismi fisici che stanno alla base della complessa fenomenologia osservata sulla stella a noi più vicina. Il volume non ha la pretesa di essere esauriente (basta pensare che la fisica solare spazia su un gran numero di discipline, quali la Fisica Nucleare, la Termodinamica, L'Elettrodinamica, la Fisica Atomica e Molecolare, la Spettoscopia in tutte le bande dello spettro elettromagnetico, la Magnetoidrodinamica, la Fisica del Plasma, lo sviluppo di nuova strumentazione, l'Ottica, ecc.). Piuttosto, sono stati scelti un numero di argomenti di rilevanza fondamentale nello studio presente del Sole (soprattutto nei riguardi delle osservazioni da terra con grandi telescopi) e su tali argomenti si è cercato di dare una panoramica generale, inclusiva dell'evoluzione storica, senza scendere in soverchi dettagli. Siccome la Fis...

  3. Solar club

    Solar club


    SOLAR CLUB Le  CERN-Solar-Club souhaite une  très bonne année 2013 à tous les Cernois et Cernoises, et remercie encore une fois  tous ceux et celles qui, fin octobre, par leur vote, nous ont permis de finir dans les 5 premiers du concours "Conforama Solidaire" et ainsi financer nôtre projet "énergie solaire et eau potable pour Kilela Balanda" en République Démocratique du Congo (voir : Nous vous annoncons également notre Assemblée Générale Annuelle jeudi 21 février à 18 h 00 Salle C, 1er étage, Bât. 61 Vous êtes les bienvenus si vous souhaitez en savoir un peu plus sur les énergies renouvelables.

  4. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Czirjak, Daniel


    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  5. Energia Solar

    Paulo Henrique Dias de Borba


    Full Text Available Este projeto trata da implantação de células fotovoltaicas na forma de postes independentes na área externa da escola Oswaldo Cruz em Sinop- MT, mais especificamente no estacionamento do local, e também a implantação de placas solares nas guaritas e nos estacionamentos cobertos, tornando-os semi-sustentáveis.

  6. Solar Chameleons

    Brax, Philippe


    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  7. Solarscope, a method to analyze solar ambient application to the solar comparison of three streets

    Follut, Dominique [Nantes (France)


    Amongst the various studies of urban forms, many are concerned with typo-morphological aspects, possibly combined with historical factors. Another way to analyze urban forms may consist in examining them as closely related to various environmental factors. This paper examines the incidence of sunlight on urban built-up forms and introduces the notion of Solarscope and the sun effects in relation to the morphology. Solarscope is a method that integrated human being, its position in the urban site and enables an environmental interpretation of the results obtained from the various numerical simulations. Only the solar part of the method will be presented here. This method aims to analyze results of simulation through specific descriptors relative to the spatial position of an observer. This is a new way to analyze the physical data of the urban space by positioning into the urban scene a user of this space that would observe the built environment. This method allows therefore to constitute a cartography of the urban void and not only the facets elements of the buildings and ground. Introducing the observer, it is therefore more a cartography of the perceived space than a cartography of a phenomenon in a space. [Spanish] Entre los diversos estudios de formas urbanas, muchas estan enfocadas a aspectos tipo-morfologicos, posiblemente combinados con factores historicos. Otra manera de analizar formas urbanas puede consistir en examinarlos como relacionadas muy de cerca con varios factores ambientales. Este articulo examina la incidencia de luz solar sobre formas urbanas integradas e introduce la nocion de Solarscope (Ambito Solar) y los efectos del sol con relacion a la morfologia. El Solarscope es un metodo que integra al ser humano, su posicion en el espacio urbano y posibilita una interpretacion ambiental de los resultados obtenidos de diversas simulaciones numericas. Solo la parte solar del metodo se presenta aqui. Este metodo se orienta a analizar los resultados de

  8. Nanostructured Solar Cells

    Chen, Guanying; Ning, Zhijun; Ågren, Hans


    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  9. Nanostructured Solar Cells.

    Chen, Guanying; Ning, Zhijun; Ågren, Hans


    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  10. Early solar physics

    Meadows, A J


    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  11. Solar Sails

    Young, Roy


    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  12. Semitransparent organic solar cells with organic wavelength dependent reflectors

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.


    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  13. Operation of the computer model for microenvironment solar exposure

    Gillis, J. R.; Bourassa, R. J.; Gruenbaum, P. E.


    A computer model for microenvironmental solar exposure was developed to predict solar exposure to satellite surfaces which may shadow or reflect on one another. This document describes the technical features of the model as well as instructions for the installation and use of the program.

  14. Semitransparent organic solar cells with organic wavelength dependent reflectors

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.


    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  15. Reflection and teaching: a taxonomy

    Vos, Henk; Cowan, John


    A major problem in teaching reflection is that educational objectives for reflection in terms of student behaviour are lacking. Therefore a taxonomy of reflection has been developed based on Bloom’s taxonomy. Reflective assignments can then be better focused on any chosen educational objectives. The act of reflection has been analysed and abstracted from goal, content, context, means, and moment of reflecting. Reflection was operationalised as answering reflective questions. Bloom’s taxonomy ...

  16. Investigations of boreal forest bidirectional reflectance factor

    White, H. Peter

    To monitor the Earth's biosphere using satellites, remote sensing science must develop robust forest reflectance models with which to extract canopy properties such as leaf area index, biomass, and percentage canopy cover from observed canopy reflectance values. At present such algorithms are generally based on regression equations which have been derived and evaluated at localized areas of solar zenith and view angles, and incorporate a priori knowledge of the scene. Of particular interest here is the treatment of the understorey which has distinct spectral reflectance properties. Recent studies suggest this layer in the boreal ecosphere has a significant influence on the CO2 budget during the northern growing season. Previous treatments of this layer in canopy reflectance models have been limited, often treating the layer as either non-reflecting, or isotropic with the same average reflectance as the overstorey. In-field observations demonstrate that this isn't the case. The recently developed Four-Scale Model [Chen and Leblanc, 1997] provides a new description of canopy reflectance that considers four levels of canopy architecture, the distributions of tree crowns, branches, shoots, and leaves. In doing so, the four proportions of sunlit and shaded overstorey and understorey are determined and treated as relevant contributors to the overall canopy reflectance. One purpose of this study is to examine the potential of further developing this model into a linear kernel form suitable for inversion, providing both the ability to extrapolate from observed reflectance values at certain view/illumination geometries to canopy BRF at other geometries and to allow extraction of information about the canopy based on observed BRF values. The FLAIR model (F_our- Scale L_inear Kernel Model for A_ni_sotropic R_eflectance) is the result of this development, following the philosophy that the model must remain applicable to a wide range of canopy types, understorey conditions, and

  17. Reflectivity in Research Practice

    Luigina Mortari


    Full Text Available The article grounds on the assumption that researchers, in order to be not mere technicians but competent practitioners of research, should be able to reflect in a deep way. That means they should reflect not only on the practical acts of research but also on the mental experience which constructs the meaning about practice. Reflection is a very important mental activity, both in private and professional life. Learning the practice of reflection is fundamental because it allows people to engage into a thoughtful relationship with the world-life and thus gain an awake stance about one’s lived experience. Reflection is a crucial cognitive practice in the research field. Reflexivity is largely practiced in qualitative research, where it is used to legitimate and validate research procedures. This study introduces different perspectives of analysis by focusing the discourse on the main philosophical approaches to reflection: pragmatistic, critical, hermeneutic, and finally phenomenological. The thesis of this study is that the phenomenological theory makes possible to analyze in depth the reflective activity and just by that to support an adequate process of training of the researcher.

  18. Review of Teacher's Teaching Reflection



    Teacher's teaching reflection has become the core focus in school.However,there are different understandings of the concept of teacher's teaching reflection.The paper introduces and compares different understandings of the concept of teachers' teaching reflection.Based on the summarizing of the concept on reflection and teaching reflection,this paper tries to provide reference for the teacher's teaching reflection.

  19. Solar neutrinos and the solar composition problem

    Pena-Garay, Carlos


    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  20. Development of paints with infrared radiation reflective properties

    Eliane Coser


    Full Text Available AbstractLarge buildings situated in hot regions of the Globe need to be agreeable to their residents. Air conditioning is extensively used to make these buildings comfortable, with consequent energy consumption. Absorption of solar visible and infrared radiations are responsible for heating objects on the surface of the Earth, including houses and buildings. To avoid excessive energy consumption, it is possible to use coatings formulated with special pigments that are able to reflect the radiation in the near- infrared, NIR, spectrum. To evaluate this phenomenon an experimental study about the reflectivity of paints containing infrared-reflective pigments has been made. By irradiating with an IR source and by measuring the surface temperatures of the samples we evaluated: color according to ASTM D 2244-14, UV/VIS/NIR reflectance according to ASTM E 903-12 and thermal performance. Additionally, the spectral reflectance and the IR emittance were measured and the solar reflectance of the samples were calculated. The results showed that plates coated with paints containing IR-reflecting pigments displayed lower air temperature on the opposite side as compared to conventional coatings, indicating that they can be effective to reflect NIR and decrease the temperature of buildings when used in roofs and walls.

  1. Self-Reflection

    Fausing, Bent


    will take a look at the establishing of the modern self and possibilities of self-reflection, too. My examples will be from the so-called dark-selfies and from a new selfie form, which merge the present with the previous progressing into the future. I will discuss the media reflections as loos and/or gain....... As another but short viewpoint telepresence, Skype, will be discussed, where new screen types, presence and reflections are established. In a perspective, I debate my term sore-society in relation to my topic and especially the dark selfies....

  2. A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications

    Piszczor, Michael F., Jr.; Macosko, Robert P.


    A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.

  3. Solar thermal collectors

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  4. Concentrated Solar Thermoelectric Power

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston


    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  5. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  6. 77 FR 76477 - Notice of Availability of the Final Environmental Impact Statement for the Quartzsite Solar...


    ...-megawatt (MW) concentrating solar power plant, to Western Area Power Administration's (Western) Bouse-Kofa... power plant that would use concentrating solar power technology to capture the sun's heat to make steam... or tower, a solar field consisting of mirrors or heliostats to reflect the sun's energy to...

  7. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel


    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  8. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel


    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  9. Solar Module Fabrication

    A. El Amrani


    Full Text Available One of the most important steps in the photovoltaic industry is the encapsulation of the solar cells. It consists to connect the cells in order to provide useful power for any application and also protect them from environmental damages which cause corrosion, and mechanical shocks. In this paper, we present the encapsulation process we have developed at Silicon Technology Unit (UDTS for monocrystalline silicon solar cells. We will focus particularly on the thermal treatment, the most critical step in the process, which decides on the quality and the reliability of the module. This thermal treatment is conducted in two steps: the lamination and the polymerization. Several tests of EVA reticulation have been necessary for setting technological parameters such as the level of vacuum, the pressure, the temperature, and the time. The quality of our process has been confirmed by the tests conducted on our modules at the European Laboratory of Joint Research Centre (JRC of ISPRA (Italy. The electrical characterization of the modules has showed that after the encapsulation the current has been improved by a factor of 4% to 6% and the power gain by a factor of 4% to 7%. This is mainly due to the fact of using a treated glass, which reduces the reflection of the light at a level as low as 8%.

  10. BLM Solar Energy Zones

    Bureau of Land Management, Department of the Interior — Priority development areas for utility-scale solar energy facilities as identified in the Solar PEIS Record of Decision. An additional Solar Energy Zone identified...

  11. Encouraging Counsellor Reflection.

    Upton, David; Asch, Rachel


    Describes the evolution and testing of an "attributes checklist" tool for assisting counselor development. These attributes relate to characteristics of case notes that indicate evidence of counselor reflection and consideration of the counseling process. (Author/GCP)

  12. Detecting Extra-solar Planets In Reflected Light

    Hatzes, A. P.

    To understand the complex system earth and its interchange and interaction processes with the atmosphere a complete digital data basis is an essential requirement. The whole digital data basis consists of distributed and validated data bases wich are con- nected via a world-wide network. Online information systems like the CHAMP-ISDC with its clearinghouse and datawarehouse services allow an aimed search for required data and information. Excellent geoscientific applications using clearinghouse and datawarehouse features make for relevant geoscientific, economic and social services.

  13. Benefits of metal reflective surfaces for concentrating solar applications

    Braendle, Stefan


    Concentrating photovoltaic (CPV) companies are constantly making gains in efficiency and a lower levelized cost of energy, but continue to face questions of reliability and efficiency at scale remain. New technologies such as highly efficient aluminum mirrors help CPV companies fulfill both of these demands by allowing for performance and reliability gains, while also enabling high volume production for scaled deployment. In testing, metal mirrors have shown to be good matches for concentrating applications while performing at the same level as glass mirrors in accelerated weather tests. When combined with the inherent lighter weight and formability of aluminum, these new mirrors provide CPV solutions with a compelling advantage in the field.

  14. Solar Electricity


    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  15. Solar Generator


    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  16. Thoughts on Reflection (Editorial

    Denise Koufogiannakis


    Full Text Available There has been some acknowledgement in the published literature that reflection is a crucial element of the evidence based library and information practice (EBLIP model we have adopted (Booth 2004, 2006; Grant 2007; Helliwell 2007. As we work through a problem and try to incorporate the best available evidence into our decision making, reflection is required at several stages, including the very identification of the problem through to our assessment of the process itself and what we have learned in order to inform future practice. However, reflection and reflective writing have not fully been integrated into the process we espouse, and very little has been done to look more closely at this element of the model and how it can be integrated into professional learning.In a recently published research article, Sen (2010 confirms the relationship between reflection and several aspects of professional practice. These include critical review and decision making, two aspects that are tied closely to the evidence based process. Sen notes: Students were more likely to show evidence of learning, self‐development, the ability to review issues crucially, awareness of their own mental functions, ability to make decision [sic] and being empowered when they had mastered the art of reflective practice and the more deeply analytical reflective writing. (p.84 EBLIP (the journal tries to incorporate elements of reflection within the articles we publish. While we clearly believe in the need for our profession to do quality research and publish that research so that it can be accessible to practitioners, we also know that research cannot be looked at in isolation. Our evidence summaries are one way of reflecting critically on previously published research, and in the same vein, our classics bring older research studies back to the foreground. This work needs to continue to be discussed and looked at for its impact on our profession.More directly, the Using

  17. Solar greenhouses in Minnesota

    Polich, M.


    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  18. Mobile Solar Tracker Facility

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  19. Solar Energy Systems


    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  20. Black Silicon Solar Cells with Black Ribbons

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io


    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average reflecta......We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  1. Inexpensive Antireflection Coating for Solar Cells

    Tracy, C. E.; Kern, W.; Vibronek, R. D.


    Continuous method for applying antireflection coating to solar cells increases efficiency of devices by preventing energy from being reflected away, but adds little to manufacturing cost. Method consists of spraying solution on cells or glass collector plates, drying sprayed layer, and curing it. Solution is formulated to spread evenly over surfaces.

  2. Using an Infrared Thermometer for Solar Pyranometry

    Fiedler, B. H.


    The simple hand-held infrared thermometer can be used to measure the temperature of surfaces of different reflectivity exposed to sunlight and wind. From four temperature measurements of black and white panels in windy and wind-sheltered conditions, together with the two wind speed measurements, both the flux of incident solar radiation and the…

  3. Solar Club

    Solar Club


    Le CERN Solar-Club vous invite à la présentation de sa participation dans : The Cyprus Institute Solar Car Challenge du 18 au 20 juin à Chypre . en réponse à l’invitation dudit institut, dans le cadre de la demande de Chypre pour joindre le CERN . Le Club y participera avec son vénérable Photon rénové , et la Dyane E-Solaire d’un de ses membres, rénové aussi . Après la présentation, le forum est ouvert pour toutes vos questions et propositions diverses, également dans d’autres domaines des énergies renouvelables . C’est aussi l’occasion pour joindre le Club ! Où, et Quand ? Le Mercredi 7 Avril à 19 h 00, au 6ème étage du Bât. Principal, (60-6-015) à la suite de l’AG des membres du Club , à 18h00 dans...

  4. Climate Throughout Geologic Time Was Cooled by Sequences of Explosive Volcanic Eruptions Forming Aerosols That Reflect and Scatter Ultraviolet Solar Radiation and Warmed by Relatively Continuous Extrusion of Basaltic Lava that Depletes Ozone, Allowing More Solar Ultraviolet Radiation to Reach Earth

    Ward, P. L.


    Active volcanoes of all sizes and eruptive styles, emit chlorine and bromine gases observed to deplete ozone. Effusive, basaltic volcanic eruptions, typical in Hawaii and Iceland, extrude large lava flows, depleting ozone and causing global warming. Major explosive volcanoes also deplete ozone with the same emissions, causing winter warming, but in addition eject megatons of water and sulfur dioxide into the lower stratosphere where they form sulfuric-acid aerosols whose particles grow large enough to reflect and scatter ultraviolet sunlight, causing net global cooling for a few years. The relative amounts of explosive and effusive volcanism are determined by the configuration of tectonic plates moving around Earth's surface. Detailed studies of climate change throughout geologic history, and since 1965, are not well explained by greenhouse-gas theory, but are explained quite clearly at Ozone concentrations vary substantially by the minute and show close relationships to weather system highs and lows (as pointed out by Dobson in the 1920s), to the height of the tropopause, and to the strength and location of polar vortices and jet streams. Integrating the effects of volcanism on ozone concentrations and the effects of ozone concentrations on synoptic weather patterns should improve weather forecasting. For example, the volcano Bárðarbunga, in central Iceland, extruded 85 km2 of basaltic lava between August 29, 2014, and February 28, 2015, having a profound effect on weather. Most surprising, more than a week before the March 4 eruption of Eyjafjallajökull in 2010, substantial amounts of ozone were released in the vicinity of the volcano precisely when surface deformation showed that magma first began moving up from sills below 4 km depth. Ozone similarly appears to have been emitted 3.5 months before the Pinatubo eruption in 1991. Readily available daily maps of ozone concentrations may allow early warning of an imminent volcanic

  5. Optical study of solar tower power plants

    Eddhibi, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.


    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature.

  6. TMR REPORT Calibration of an Infrared Camera in the Solar furnace of the Plataforma Solar Almeria

    Zeller, A. [Wallenhauser Str. Germany (Germany)


    The object of the graduate work was the calibration of an infrared camera in the solar furnace with a black body. Former measures indications an influence of diffuse solar radiation on the measurement, the measurements in this study were carried out with and without solar radiation reflected in the furnace. To explain the occurring differences in the temperature measuring of the camera, the parameters diffuse solar radiation and cooling reaction of the black body were considered. In the first part of the study measuring was carried out with and without diffuse solar radiation, i. e. with open and closed shutter, while the camera was not focused on the black body. The findings showed that diffuse radiation has no effect on the temperature measuring of the camera. In the second part the effect of the cooling of the black was checked. The results indicate that the measurement of the camera is influenced by the cooling of the black body. (Author) 9 refs.

  7. Creation, Identity and Reflection

    Alina Beatrice Cheşcă


    Full Text Available The paper “Creation, Identity and Reflection” approaches the identification in the “mirror” of reality with creation, in other words seeking the authors’ identity in the reflected images. Reflection means attempting to find oneself, the mirror being the main principle of creation. Many characters become interesting only when they step into the world beyond the mirror, when their faces are doubled by the other self or when their selves are returned by other characters. The narcissistic concept of the mirror, i.e. the reflection in the mirror and the representation of the mirror itself, is a recurrent one in literature, but the reflection of the self which is not the self (as it is a reflection does not necessarily appear in a mirror or in a photograph or portrait. Sometimes, the not-self is returned to the self by another person or character. As far as Oscar Wilde’s theories are concerned, the main idea is that people are interesting for their masks, not for their inner nature. What Wilde calls “inner nature” is the characters’ un-reflected self and the mask is the reflection, the self in the mirror. Some characters’ relationships develop within a fiction that they dramatically try to preserve and protect with the risk of suffering. They refuse to take off the masks which define them in the others’ minds and hearts; the narcissistic individuals (both artists and characters seek and love their own image which they project upon facts, thus creating a fictive realm.

  8. Solar energy an introduction

    Mackay, Michael E


    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  9. Solar Energy: Solar and the Weather.

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  10. Solar Energy: Solar System Design Fundamentals.

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  11. Solar models and solar neutrino oscillations


    We provide a summary of the current knowledge, theoretical and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for doing new solar neutrino experiments and what we think may be learned from the future measurements.

  12. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato


    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  13. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Zuzuarregui, Ana, E-mail:; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)


    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  14. Graded bandgap perovskite solar cells

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex


    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  15. Optical models for silicon solar cells

    Marshall, T.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)


    Light trapping is an important design feature for high-efficiency silicon solar cells. Because light trapping can considerably enhance optical absorption, a thinner substrate can be used which, in turn, can lower the bulk carrier recombination and concommitantly increase open-circuit voltage, and fill factor of the cell. The basic concepts of light trapping are similar to that of excitation of an optical waveguide, where a prism or a grating structure increases the phase velocity of the incoming optical wave such that waves propagated within the waveguide are totally reflected at the interfaces. Unfortunately, these concepts break down because the entire solar cell is covered with such a structure, making it necessary to develop new analytical approaches to deal with incomplete light trapping in solar cells. This paper describes two models that analyze light trapping in thick and thin solar cells.

  16. Cassegrainian concentrator solar array exploratory development module

    Patterson, R. E.; Crabtree, W. L.


    A miniaturized Cassegrainian concentrator solar array concept is under development to reduce the cost of multi-kW spacecraft solar arrays. A primary parabolic reflector directs incoming solar energy to a secondary, centrally mounted inverted hyperbolic reflector and down onto a solar cell mounted on an Mo heat spreader on a 0.25 mm thick Al heat fin. Each unit is 12.7 mm thick, which makes the concentrator assembly roughly as thick as a conventional panel. The output is 100 W/sq and 20 W/kg, considering 20% efficient Si cells at 100 suns. A tertiary light catcher is mounted around the cell to ameliorate optic errors. The primary reflector is electroformed Ni with protective and reflective coatings. The cells have back surface reflectors and a SiO antireflective coating. An optical efficiency of 80% is projected, and GaAs cells are being considered in an attempt to raise cell efficiencies to over 30%.

  17. Invisibility via reflecting coating

    Burdzy, Krzysztof


    We construct a subset $A$ of the unit disc with the following properties. (i) The set $A$ is the finite union of disjoint line segments. (ii) The shadow of $A$ is arbitrarily close to the shadow of the unit disc in "most" directions. (iii) If the line segments are considered to be mirrors reflecting light according to the classical law of specular reflection then most light rays hitting the set emerge on the other side of the disc moving along a parallel line and shifted by an arbitrarily small amount. We also construct a set which reflects almost all light rays coming from one direction to another direction but its shadow is arbitrarily small in other directions, except for an arbitrarily small family of directions.

  18. EDITORIAL Solar harvest Solar harvest

    Demming, Anna


    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  19. Black silicon solar cells with black bus-bar strings

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io


    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  20. Efficiency improvement of silicon nanostructure-based solar cells.

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh


    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ~181.1% and a decrease in reflectivity of ~144.3%. The performance of the SNS-based solar cells was found to be optimized (~11.86%) in an SNS with a length of ~300 nm, an aspect ratio of ~5, surface coverage of ~84.9% and a reflectivity of ~6.1%. The ~16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.