WorldWideScience

Sample records for solar radiation observation

  1. Solar radiation observation stations updated to 1979

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Cristina, J.R.; Williams, B.B.

    1979-04-01

    The type of sensing and recording equipment for 420 stations in the US are listed alphabetically by states. The stations are divided according to whether or not they are in the basic National Weather Service, NOAA, network. Reports of summarized solar radiation data are listed in an appendix. (MHR)

  2. Estimation of solar radiation from Australian meterological observations

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A carefully prepared set of Australian radiation and meteorological data was used to develop a system for estimating hourly or instantaneous broad band direct, diffuse and global radiation from meteorological observations. For clear sky conditions relationships developed elsewhere were adapted to Australian data. For cloudy conditions the clouds were divided into two groups, high clouds and opaque (middle and low) clouds, and corrections were made to compensate for the bias due to reporting practices for almost clear and almost overcast skies. Careful consideration was given to the decrease of visible sky toward the horizon caused by the vertical extent of opaque clouds. Equations relating cloud and other meteorological observations to the direct and diffuse radiation contained four unknown quantities, functions of cloud amount and of solar elevation, which were estimated from the data. These were the proportions of incident solar radiation passed on as direct and as diffuse radiation by high clouds, and as diffuse radiation by opaque clouds, and a factor to describe the elevation dependence of the fraction of sky not obscured by opaque clouds. When the resulting relationships were used to estimate global, direct and diffuse radiation on a horizontal surface, the results were good, especially for global radiation. Some discrepancies between estimates and measurements of diffuse and direct radiation were probably due to erroneously high measurements of diffuse radiation

  3. Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations

    Science.gov (United States)

    Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric

    2013-04-01

    Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.

  4. Observation and calculation of the solar radiation on the Tibetan Plateau

    International Nuclear Information System (INIS)

    Liu Jiandong; Liu Jingmiao; Linderholm, Hans W.; Chen Deliang; Yu Qiang; Wu Dingrong; Haginoya, Shigenori

    2012-01-01

    Highlights: ► Five years of continuous solar-radiation observations on the Tibetan Plateau were analyzed. ► Eight solar models were calibrated and validated in this highland region. ► A strategy for calculating solar radiation on the Tibetan Plateau was presented. - Abstract: Distribution of solar radiation is vital to locate the most suitable regions for harvesting solar energy, but solar radiation is only observed at few stations due to high costs and difficult maintenance. From 2001 to 2005, a set of pyranometer instruments were set up in Gaize, on the Tibetan Plateau, to test the hypothesis of high solar-radiation levels in this region, and find a suitable method for estimating the radiation. Over the 5-year observation period, the average daily radiation was 21 MJ m −2 day −1 with maximum daily values of 27 MJ m −2 day −1 occurring in June and minimum values of 14 MJ m −2 day −1 in December, which is much higher than those measured in other regions at similar latitudes. The observational data were used to validate a set of radiation models: five sunshine based and three temperature based. The results showed that of the five sunshine-based models, a newly developed “comprehensive” model performed the best, but that the “vapor revised Angstrom model” was recommended to use for its simplicity and easy operation. The temperature-based models performed worse than the sunshine-based ones, where the Wu model is to be preferred if a temperature-based model is the only option. Moreover, it was shown that when estimating the solar radiation based on time-dependent coefficients, consideration of the seasonal variation of the coefficients has little predictive value and is thus unnecessary. Based on the results of this study, a strategy for the calculation of solar radiation on the Tibetan Plateau was made for potential users.

  5. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  6. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  7. Estimation of daily solar radiation from routinely observed meteorological data in Chongqing, China

    International Nuclear Information System (INIS)

    Li Maofen; Liu Hongbin; Guo Pengtao; Wu Wei

    2010-01-01

    Solar radiation is a very important and major variable in crop simulation models. However, it is measured at a very limited number of meteorological stations worldwide. Models were developed to estimate daily solar radiation in Chongqing, one of the most important agricultural areas in China. Several routinely observed meteorological variables including daily maximum and minimum temperatures, daily mean dew point temperature, fog and rainfall had been obtained, investigated and analyzed from 1986 to 2000 for Chongqing. The monthly mean daily solar radiation at this location ranged from a maximum of 15.082 MJ m -2 day -1 in August and a minimum of 3.042 MJ m -2 day -1 in December. A newly developed model that included all selected variables proved the best method with a RMSE value of 2.522 MJ m -2 day -1 . The best performed models for different seasons were further evaluated according to divide-and-conquer principle. The model using all selected variables provided the best estimates of daily solar radiation in winter and autumn with RMSE values of 1.491 and 2.037 MJ m -2 day -1 , respectively. The method involving temperatures and rainfall information could be used to estimate daily solar radiation in summer with a RMSE value of 3.163 MJ m -2 day -1 . The model using temperature, rainfall and dew point data performed better than other models in spring with a RMSE value of 2.910 MJ m -2 day -1 .

  8. Solar radiation in Germany - observed trends and an assessment of their causes. Pt. 1; Regional approach

    Energy Technology Data Exchange (ETDEWEB)

    Liepert, B [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Fabian, P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-02-01

    The possible longterm variation of daily sums of global solar radiation (direct plus diffuse solar radiation) in West-Germany was analysed for twelve stations of the German Weather Service (DWD). The global solar radiation decreased remarkably at seven stations (List/Sylt, Norderney, Hamburg, Braunlage, Wuerzburg, Weihenstephan, Hohenpeissenberg) and showed no significant variations at the remaining five stations (Braunschweig, Bocholt, Gelsenkirchen, Trier and Freiburg). The average decline is 3.7[+-]1.3% per decade in the last 15 to 39 years. The locally varying causes for the decline are changes in cloud parameters, fog occurrence and tropospheric aerosol. In this part of the article some possible causes, such as solar variability, increased number of contrails, decreased surface reflectivity, increased volcanic aerosol load in the 1980's or increased water vapour column content could be excluded. With a more sophisticated statistical procedure the effect of changes in cloud parameters and the effect of changed clear sky turbidity could not only be separated for each month for Hohenpeissenberg and Wuerzburg but also made mainly responsible for the observed trend. In Part II (Grabbe, Grassl), more detailed observations of solar radiation hourly averages of Hamburg were analysed. (orig.)

  9. Solar radiation in Germany - observed trends and an assessment of the causes. Pt. 2; Detailed trend analysis for Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Grabbe, G C [Hamburg Univ. (Germany). Meteorologisches Inst.; Grassl, H [Hamburg Univ. (Germany). Meteorologisches Inst. Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-02-01

    In Part II, more detailed observations of solar radiation hourly averages of Hamburg were analysed. Global solar radiation, strongly influenced by clouds, decreased with a low significance between 1964 and 1989. The significance of the trend of increasing direct solar radiation in the same period is very weak, because the clouds play the dominant role. The diffuse solar radiation, which is a safe indicator for trends in solar irradiance, because it is relatively independent of the weather, decreased between 1964 and 1989. The reasons for this decrease are the measures to clean the air. Between 1975 and 1987 the diffuse solar radiation increased slightly. The reason for this fact is a doubling of optically active aerosol particles in the atmospheric boundary layer in this time period. (orig.)

  10. ISEE observations of radiation at twice the solar wind plasma frequency

    International Nuclear Information System (INIS)

    Lacombe, C.; Harvey, C.C.; Hoang, S.

    1988-01-01

    Radiation produced in the vicinity of the Earth's bow shock at twice the solar wind electron plasma frequency f p is seen by both ISEE-1 and ISEE-3, respectively at about 20 and about 200 R E from the Earth. This electromagnetic radiation is due to the presence, in the electron foreshock, of electrons reflected and accelerated at the Earth's bow shock. We show that the source is near the upstream boundary of the foreshock, the surface where the magnetic field lines are tangent to the bow shock. A typical diameter of the source is 120-150 R E . Emissivity is given. The angular size of the source, seen by ISEE-3, is increased by scattering of the 2f p radio waves on the solar wind density fluctuations. We examine whether the bandwidth and directivity predicted by current source models are consistent with our observations

  11. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  12. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America.

    Science.gov (United States)

    Corrêa, Marcelo de Paula

    2015-01-01

    The beneficial and harmful effects of human exposure to solar ultraviolet radiation (UV-R) are topics that arouse great interest not only among physicians and scientists, but also the general public and the media. Currently, discussions on vitamin D synthesis (beneficial effect) are confronted with the high and growing number of new cases of non-melanoma skin cancer and other diseases of the skin and eyes (harmful effect) diagnosed each year in Brazil. However, the lack of scientific knowledge on the UV-R in Brazil and South America leads to adoption of protective measures based on studies conducted in Europe and USA, where the amounts of UV-R available at surface and the sun-exposure habits and characteristics of the population are significantly different from those observed in Brazil. In order to circumvent this problem, the Brazilian Society of Dermatology recently published the Brazilian Consensus of Photoprotection based on recent studies performed locally. The main goal of this article is to provide detailed educational information on the main properties and characteristics of UV-R and UV index in a simple language. It also provides: a) a summary of UV-R measurements recently performed in Brazil; b) a comparison with those performed in Europe; and, c) an evaluation to further clarify the assessment of potential harm and health effects owing to chronic exposures.

  13. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America*

    Science.gov (United States)

    Corrêa, Marcelo de Paula

    2015-01-01

    The beneficial and harmful effects of human exposure to solar ultraviolet radiation (UV-R) are topics that arouse great interest not only among physicians and scientists, but also the general public and the media. Currently, discussions on vitamin D synthesis (beneficial effect) are confronted with the high and growing number of new cases of non-melanoma skin cancer and other diseases of the skin and eyes (harmful effect) diagnosed each year in Brazil. However, the lack of scientific knowledge on the UV-R in Brazil and South America leads to adoption of protective measures based on studies conducted in Europe and USA, where the amounts of UV-R available at surface and the sun-exposure habits and characteristics of the population are significantly different from those observed in Brazil. In order to circumvent this problem, the Brazilian Society of Dermatology recently published the Brazilian Consensus of Photoprotection based on recent studies performed locally. The main goal of this article is to provide detailed educational information on the main properties and characteristics of UV-R and UV index in a simple language. It also provides: a) a summary of UV-R measurements recently performed in Brazil; b) a comparison with those performed in Europe; and, c) an evaluation to further clarify the assessment of potential harm and health effects owing to chronic exposures. PMID:26131858

  14. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  15. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Science.gov (United States)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  16. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    Science.gov (United States)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of

  17. Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived

    Science.gov (United States)

    Carter, E. A.; Wells, R. E.; Williams, B. B.; Christensen, D. L.

    1976-01-01

    A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center.

  18. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  19. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  20. Solar radiation over India

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A; Rangarajan, S

    1982-01-01

    Solar radiation data, on horizontal and sloped surfaces, are provided derived from other meteorological parameters at 145 stations covering all major climatic zones of the country. Two methods were used to compute solar radiation, one using regression techniques to derive radiation from sunshine and cloudiness, the other from extra-terrestrial radiation, allowing for its depletion by absorption and scattering in the atmosphere. The methods of calculating the daily global radiation tilt factor using an anisotropic model for diffuse solar radiation are described. The results of statistical analysis of global solar radiation data recorded at 16 stations are presented. Appendices contain an extensive bibliograpny, sun path diagrams for latitudes 6/sup 0/N to 36/sup 0/N, and tables for the calculation of Local Apparent Time from Indian Standard Time.

  1. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    Science.gov (United States)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  2. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  3. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations over two solar cycles, and operational forecasting.

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2015-12-01

    Understanding of the dynamics in Earth's radiation belts is critical to accurate modeling and forecasting of space weather conditions, both which are important for design, and protection of our space-borne assets. In the current study, we utilize the Versatile Electron Radiation Belt (VERB) code, multi-spacecraft measurements, and a split-operator Kalman filter to recontructe the global state of the radiation belt system in the CRRES era and the current era. The reanalysis has revealed a never before seen 4-belt structure in the radiation belts during the March 1991 superstorm, and highlights several important aspects in regards to the the competition between the source, acceleration, loss, and transport of particles. In addition to the above, performing reanalysis in adiabatic coordinates relies on specification of the Earth's magnetic field, and associated observational, and model errors. We determine the observational errors for the Kalman filter directly from cross-spacecraft phase-space density (PSD) conjunctions, and obtain the error in VERB by comparison with reanalysis over a long time period. Specification of errors associated with several magnetic field models provides an important insight into the applicability of such models for radiation belt research. The comparison of CRRES area reanalysis with Van Allen Probe era reanalysis allows us to perform a global comparison of the dynamics of the radiation belts during different parts of the solar cycle and during different solar cycles. The data assimilative model is presently used to perform operational forecasts of the radiation belts (http://rbm.epss.ucla.edu/realtime-forecast/).

  4. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  5. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  6. The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Kerr, Graham S.; Hudson, Hugh S.; Fletcher, Lyndsay [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Dennis, Brian R.; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack, E-mail: r.milligan@qub.ac.uk [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 10{sup 31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ∼3 × 10{sup 30} erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  7. Spatio-Temporal Characteristics in the Clearness Index Derived from Global Solar Radiation Observations in Korea

    Directory of Open Access Journals (Sweden)

    Yeonjin Jung

    2016-04-01

    Full Text Available The spatio-temporal characteristics of the clearness index (KT were investigated using daily global solar irradiance measurements (290–2800 nm for the period of 2000–2014 at 21 sites in Korea, a complex region in East Asia with a distinct monsoon season and heavy aerosol loading year-round. The annual mean KT value for all sites is 0.46, with values of 0.63 and 0.25 for clear and overcast skies, respectively. The seasonal variations in monthly average KT show a minimum of 0.37 in July at all sites except for Jeju, where the value was 0.29 in January. The maximum value (KT = 0.51 is observed in October, followed by a secondary peak (KT = 0.49 during February–April. The lowest KT value (KT = 0.42 was observed at both the Seoul and Jeju sites, and the highest (KT = 0.48 in the southeastern regions. Increases in average KT exceeding 4% per decade were observed in the middle and southeastern regions, with the maximum (+8% per decade at the Daegu site. Decreasing trends (<−4% per decade were observed in the southwestern regions, with the maximum (−7% per decade at the Mokpo site. Cloud amount, relative humidity, and aerosol optical depth together explained 57% of the variance in daily mean KT values. The contributions of these three variables to variations in KT are 42%, 9% and 6%, respectively. Thus, the variations in KT in Korea can be primarily attributed to the presence of clouds and water vapor, with relatively weak aerosol effects.

  8. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  9. Compatibility of different measurement techniques. Long-term global solar radiation observations at Izaña Observatory [Discussion paper

    OpenAIRE

    García Cabrera, Rosa Delia; Cuevas Agulló, Emilio; García Rodríguez, Omaira Elena; Ramos López, Ramón; Romero Campos, Pedro Miguel; Ory Ajamil, Fernando de; Cachorro, Victoria E.; Frutos, Ángel M. de

    2016-01-01

    A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.

  10. Error sources in the real-time NLDAS incident surface solar radiation and an evaluation against field observations and the NARR

    Science.gov (United States)

    Park, G.; Gao, X.; Sorooshian, S.

    2005-12-01

    The atmospheric model is sensitive to the land surface interactions and its coupling with Land surface Models (LSMs) leads to a better ability to forecast weather under extreme climate conditions, such as droughts and floods (Atlas et al. 1993; Beljaars et al. 1996). However, it is still questionable how accurately the surface exchanges can be simulated using LSMs, since terrestrial properties and processes have high variability and heterogeneity. Examinations with long-term and multi-site surface observations including both remotely sensed and ground observations are highly needed to make an objective evaluation on the effectiveness and uncertainty of LSMs at different circumstances. Among several atmospheric forcing required for the offline simulation of LSMs, incident surface solar radiation is one of the most significant components, since it plays a major role in total incoming energy into the land surface. The North American Land Data Assimilation System (NLDAS) and North American Regional Reanalysis (NARR) are two important data sources providing high-resolution surface solar radiation data for the use of research communities. In this study, these data are evaluated against field observations (AmeriFlux) to identify their advantages, deficiencies and sources of errors. The NLDAS incident solar radiation shows a pretty good agreement in monthly mean prior to the summer of 2001, while it overestimates after the summer of 2001 and its bias is pretty close to the EDAS. Two main error sources are identified: 1) GOES solar radiation was not used in the NLDAS for several months in 2001 and 2003, and 2) GOES incident solar radiation when available, was positively biased in year 2002. The known snow detection problem is sometimes identified in the NLDAS, since it is inherited from GOES incident solar radiation. The NARR consistently overestimates incident surface solar radiation, which might produce erroneous outputs if used in the LSMs. Further attention is given to

  11. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    International Nuclear Information System (INIS)

    Landi, E.; Young, P. R.

    2009-01-01

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s 2 3p 5 4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  12. Solar flare X-radiation and energetic particles by the observation data from the Venera-13,14 space probes

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Dajbog, E.I.; D'yachkov, A.P.

    1984-01-01

    The relationship between bursts of solar hard X-radiation quanta (Esub(x) > 0.055 MeV) and flares of solar cosmic rays (SCR) was considered on the basis of the data from the Venera-13, 14 space probes. The data on solar flares in Hsub(α) and thermal X-radiation range as well as radio-frequency radiation of the 3d type were used for analysis. It was established that the intensity amplitude of flare electrons (Esub(e) > 0.025 and > 0.07 MeV) and protons (Esub(p) > 1.0 MeV) correlates best with the flare importance in the thermal X-radiation range (r approximately 0.8+-0.03). The use of flare importance in thermal X-radiation range was independent measure of flare power in which SCR particles were generated enabled to construct heliolongitudinal dependences of the flare electron fluxes and to obtain the idea of the heliolongitudinal flare interval in which the effects of coronal propagation could be ignored. It is shown that the flux of the flare nonrelativistic electrons is related with the total energy release in the burst of hard X-radiation better than with the amplitude of this burst. Distributions of the solar events were studied with respect to the amplitudes of the intensity of electrons of SCR, thermal and hard X-radiation. It is shown that in the most part of the varying amplitude ranqe the distribution functions are approximated according to the power law. It is shown that the distribution function factor depends both on the parameter used for its construction and the type of events being used for analysis

  13. Radiating properties of solar plasmas

    Science.gov (United States)

    Bruner, M. E.; Mcwhirter, R. W. P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma.

  14. Radiating properties of solar plasmas

    International Nuclear Information System (INIS)

    Bruner, M.E.; Mcwhirter, R.W.P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma. 21 references

  15. Solar ultraviolet radiation cataract.

    Science.gov (United States)

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  16. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  17. The National Solar Radiation Database (NSRDB)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Habte, Aron; Lopez, Anthony; Xie, Yu; Molling, Christine; Gueymard, Christian

    2017-03-13

    This presentation provides a high-level overview of the National Solar Radiation Database (NSRDB), including sensing, measurement and forecasting, and discusses observations that are needed for research and product development.

  18. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  19. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  20. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  1. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  2. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  3. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  4. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  5. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  6. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  7. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  8. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  9. Fluctuation characteristics of solar radiation in crop cultivation

    International Nuclear Information System (INIS)

    Hayashi, S.; Suzuki, H.

    1996-01-01

    The objective of this study was to clarify the fluctuation of solar radiation for long and short periods, which is very crucial for plant growth. Data obtained from a meteorological observatory were used to investigate solar radiation and sunshine duration for a long period. For a short period, observation of global solar radiation and sky solar radiation were conducted in a glass house and at an open field. (1) Yearly average percentage of solar radiation at Kagawa from 1973 to 1994 was 44.3%, and its coefficient of variation was 3.9%. The percentage of possible sunshine and the coefficient were larger than those of solar radiation, 47.3% and 56% respectively. (2) Percentage of possible solar radiation and percentage of possible sunshine showed seasonal variation. Those coefficients of variation both increased exponentially with cloud amount. (3) Variations of global solar radiation and direct solar radiation were more remarkable in the glass house than those in the open field, while variations of sky solar radiation were small in the house and at the open field. (4) The fluctuation of solar radiation observed every 5 minutes was presented as the difference of radiation, present value minus the preceding value. The difference was positive in the morning, negative in the afternoon at the open field. In the house both positive and negative values were obtained the whole day. (5) Diurnal variation of ratio of direct solar radiation to sky solar radiation showed a parabolic effect, whereas it had irregular and large fluctuations at the open field

  10. Solar radiation on domed roofs

    Energy Technology Data Exchange (ETDEWEB)

    Faghih, Ahmadreza K.; Bahadori, Mehdi N. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-11-15

    Solar radiation received and absorbed by four domed roofs was estimated and compared with that of a flat roof. The domed roofs all had the same base areas, and equal to that of the flat roof. One of the roofs considered was the dome of the St. Peter's Church in Rome. Compared with the other roofs considered, this dome had a higher aspect ratio. It was found that all domed roofs received more solar radiation than the flat roof. Considering glazed tiles to cover a selected dome in Iran and the dome of the St. Peter's Church, it was found that the solar radiation absorbed by these roofs is reduced appreciably. In the case of the dome of St. Peter's Church, the amount of radiation absorbed was roughly equal to that absorbed by the comparable flat roof in the warm months. In the case of the glazed reference dome located in Yazd, Iran (a city with very high solar radiation), the radiation absorbed was less than that of flat roof at all times. In addition to aesthetics, this may be a reason for employing glazed tiles to cover the domes of all mosques, shrines, and other large buildings in Iran. (author)

  11. Estimating solar radiation in Ghana

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1986-04-01

    The estimates of global radiation on a horizontal surface for 9 towns in Ghana, West Africa, are deduced from their sunshine data using two methods developed by Angstrom and Sabbagh. An appropriate regional parameter is determined with the first method and used to predict solar irradiation in all the 9 stations with an accuracy better than 15%. Estimation of diffuse solar irradiation by Page, Lin and Jordan and three other authors' correlation are performed and the results examined. (author)

  12. Fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence

    International Nuclear Information System (INIS)

    Bernold, T.E.X.; Treumann, R.A.

    1983-01-01

    Observations with a digital spectrometer within the frequency band between 250 and 273 MHz of fiber fine structures during the type IV solar radio burst of 1978 October 1 are presented and analyzed. The results are summarized in histograms. Typical values for drift rates are in the range between -2.3 and -9.9 MHz s -1 . Frequency intervals between absorption and emission within the spectrum were measured to be within 0.9 and 2.7 MHz. Several types of spectra are discussed. A theoretical interpretation is based upon the model of a population of electrons trapped within a magnetic-mirror loop-configuration. It is shown that the fiber emission can be explained assuming an interaction between spatially localized strong whistler turbulence (solitons) and a broad-band Langmuir wave spectrum. Estimates using the observed flux values indicate that a fiber is composed of some 10 11 --10 14 solitons occupying a volume of about 10 5 --10 8 km 3 . Ducting of whistler solitons in low-density magnetic loops provides a plausible explanation for coherent behavior during the lifetime of an individual fiber. The magnetic field strength is found to be 6.2< or =B< or =35 gauss at the radio source and 15.3< or =B< or =76 gauss at the lower hybrid wave level respectively. The quasi-periodicity of the fiber occurrence is interpreted as periodically switched-on soliton production

  13. Solar polarimetry: observations and theories

    Energy Technology Data Exchange (ETDEWEB)

    Rees, D E [Sydney Univ. (Australia). Dept. of Applied Mathematics

    1982-01-01

    This review surveys some recent observations of polarization in solar spectral lines with emphasis on their theoretical interpretation. Observations of non-magnetic resonance line polarization offer a new approach to temperature and density modelling of the atmosphere. They also provide a basis for comparison in Hanle effect studies of weak magnetic fields on the solar disk. Measurements of the Hanle effect are being used to deduce vector magnetic fields in prominences. It is now feasible to try to infer the vector field distribution in an active region such as a sunspot from analysis of the stokes parameter profiles of a Zeeman split line.

  14. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  15. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    Science.gov (United States)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of ˜ 0.9 MJm-2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm-2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and consistent

  16. Radiative origins of the solar corona

    International Nuclear Information System (INIS)

    Koch, P.

    1978-01-01

    Within observational accuracy, the radiation pressure aT 4 /3 at the effective solar temperature is equal to the coronal gas pressure nkT. This suggests a radiative gas discontinuity between optically thick and optically thin regions. Ideal transitions of this nature are studied and the applicability of this model to the Sun is explored. Further empirical corroboration is obtained if the gas pressure anomalies of Gulyaev are resolved by postulating a corrective gradient of radiation pressure possibly caused by Lyman-α opacity. (Auth.)

  17. Radiation balances and the solar constant

    Science.gov (United States)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  18. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  19. Solar radio observations and interpretations

    International Nuclear Information System (INIS)

    Rosenberg, H.

    1976-01-01

    The recent solar radio observations related to flares are reviewed for the frequency range of a few kilohertz to several gigahertz. The analysis of the radio data leads to boundary conditions on the acceleration processes which are responsible for the fast particles which cause radio emission. The role and cause of plasma turbulence at the plasma-frequency and at much lower frequencies is discussed in relation to the acceleration processes and the radio emission mechanisms for the various radio bursts. (author)

  20. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  1. Solar Observations at Submillimeter Wavelengths

    Science.gov (United States)

    Kaufmann, P.

    We review earlier to recent observational evidences and theoretical motivations leading to a renewed interest to observe flares in the submillimeter (submm) - infrared (IR) range of wavelengths. We describe the new solar dedicated submillimeter wave telescope which began operations at El Leoncito in the Argentina Andes: the SST project. It consists of focal plane arrays of two 405 GHz and four 212 GHz radiometers placed in a 1.5-m radome-enclosed Cassegrain antenna, operating simultaneously with one millisecond time resolution. The first solar events analyzed exhibited the onset of rapid submm-wave spikes (100-300 ms), well associated to other flare manifestations, especially at X-rays. The spikes positions were found scattered over the flaring source by tens of arcseconds. For one event an excellent association was found between the gamma-ray emission time profile and the rate of occurrence of submm-wave rapid spikes. The preliminary results favour the idea that bulk burst emissions are a response to numerous fast energetic injections, discrete in time, produced at different spatial positions over the flaring region. Coronal mass ejections were associated to the events studied. Their trajectories extrapolated to the solar surface appear to correspond to the onset time of the submm-wave spikes, which might represent an early signature of the CME's initial acceleration process.

  2. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  3. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  4. Parameterization Of Solar Radiation Using Neural Network

    International Nuclear Information System (INIS)

    Jiya, J. D.; Alfa, B.

    2002-01-01

    This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values

  5. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  6. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Mustamin [Department of Architecture, Khairun University, Ternate (Indonesia); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Yoshino, Jun; Yasuda, Takashi [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan)

    2012-07-01

    This study was undertaken to analyze solar radiation abundance to ascertain the potential of solar energy as an electrical energy resource. Local weather forecasting for predicting solar radiation is performed using a meteorological model MM5. The prediction results are compared with observed results obtained from the Japan Meteorological Agency for verification of the data accuracy. Results show that local weather forecasting has high accuracy. Prediction of solar radiation is similar with observation results. Monthly average values of solar radiation are sufficiently good during March–September. Electrical energy generated by photovoltaic cells is almost proportional to the solar radiation amount. Effects of clouds on solar radiation can be removed by monthly averaging. The balance between supply and demand of electricity can be estimated using a standard curve obtained from the temporal average. When the amount of solar radiation every hour with average of more than 100 km radius area does not yield the standard curve, we can estimate the system of storage and auxiliary power necessary based on the evaluated results of imbalance between supply and demand.

  7. Solar radiation and human health

    International Nuclear Information System (INIS)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan; Brekke, Paal; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Joerg; Holick, Michael F; Grant, William B

    2011-01-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  8. Solar radiation and human health

    Energy Technology Data Exchange (ETDEWEB)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo (Norway); Brekke, Paal [Norwegian Space Centre, PO Box 113, Skoeyen, N-0212 Oslo (Norway); Dahlback, Arne [Department of Physics, University of Oslo, Blindern, 0316 Oslo (Norway); Andersson-Engels, Stefan [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Reichrath, Joerg [Klinik fuer Dermatologie, Venerologie und Allergologie, Universitaetsklinikum des Saarlandes, D-66421 Homburg/Saar (Germany); Holick, Michael F [Department of Medicine, Section of Endocrinology, Nutrition and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, 85 E. Newton St., M-1013, Boston, MA 02118 (United States); Grant, William B, E-mail: asta.juzeniene@rr-research.no, E-mail: kmoan@hotmail.com, E-mail: paal.brekke@spacecentre.no, E-mail: arne.dahlback@fys.uio.no, E-mail: j.e.moan@fys.uio.no, E-mail: stefan.andersson-engels@fysik.lth.se, E-mail: joerg.reichrath@uks.eu, E-mail: mfholick@bu.edu, E-mail: wbgrant@infionline.net [Sunlight, Nutrition and Health Research Center (SUNARC), PO Box 641603, San Francisco, CA 94164-1603 (United States)

    2011-06-15

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  9. Solar radiation and human health

    Science.gov (United States)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  10. Lidar and in situ observations of aerosols, radiation fluxes, and meteorological parameters during the 20 March 2015 solar eclipse over southern Italy

    Science.gov (United States)

    Perrone, M. R.; Burlizzi, P.; Romano, S.

    2017-10-01

    The effects of the 20 March 2015 partial solar eclipse on irradiance measurements, Planetary Boundary Layer (PBL) height, meteorological and turbulence parameters, and near surface particle properties have been investigated at Lecce (40.3°N, 18.1°E, 30 m a.s.l.), southeastern Italy. Each solar eclipse represents always a unique event, since it is characterized by a particular time of the day, season, location, and synoptic conditions, and allows investigating the atmospheric processes driven by a fast decrease of the solar radiation. According to the astronomic data, the eclipse started at the study site at about 08:30 UTC and ended at 10:47 UTC, reaching the maximum obscuration of the solar disk (43.6%) at about 09:37 UTC. Short-wave irradiance measurements revealed that the eclipse direct radiative forcing at the surface was equal to -307 W m-2 at the maximum obscuration of the solar disk. A lidar system operating at the study site within the European Aerosol LIdar NETwork (EARLINET) was used to investigate both the atmospheric turbulence weakening driven by the eclipse cooling effect and the PBL height time evolution. It has been found that the PBL height that was equal to 300 +/- 30 m before the eclipse onset decreased up to 210 +/- 20 m after the eclipse full phase. Measurements from a micrometeorological station have instead been used to investigate the atmospheric turbulence weakening at the ground level by the changes of turbulent kinetic energy. Integrating nephelometer measurements revealed that the solar eclipse was also responsible for the increase of the near surface particle scattering coefficient, mainly because of the increase of the fine-mode particle concentration.

  11. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  12. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  13. Solar radiation is inversely associated with inflammatory bowel disease admissions.

    Science.gov (United States)

    Jaime, Francisca; Riutort, Maria C; Alvarez-Lobos, Manuel; Hoyos-Bachiloglu, Rodrigo; Camargo, Carlos A; Borzutzky, Arturo

    To explore the associations between latitude and solar radiation with inflammatory bowel disease admission rates in Chile, the country with the largest variation in solar radiation in the world. This is an ecological study, which included data on all hospital-admitted population for inflammatory bowel disease between 2001 and 2012, according to different latitudes and solar radiation exposures in Chile. The data were acquired from the national hospital discharge database from the Department of Health Statistics and Information of the Chilean Ministry of Health. Between 2001 and 2012 there were 12,869 admissions due to inflammatory bowel disease (69% ulcerative colitis, 31% Crohn's disease). Median age was 36 years (IQR: 25-51); 57% were female. The national inflammatory bowel disease admission rate was 6.52 (95% CI: 6.40-6.63) per 100,000 inhabitants with increasing rates over the 12-year period. In terms of latitude, the highest admission rates for pediatric ulcerative colitis and Crohn's disease, as well as adult ulcerative colitis, were observed in the southernmost region with lowest annual solar radiation. Linear regression analysis showed that regional solar radiation was inversely associated with inflammatory bowel disease admissions in Chile (β: -.44, p = .03). Regional solar radiation was inversely associated with inflammatory bowel disease admission rates in Chile; inflammatory bowel disease admissions were highest in the southernmost region with lowest solar radiation. Our results support the potential role of vitamin D deficiency on inflammatory bowel disease flares.

  14. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  15. Workshop Report on Managing Solar Radiation

    Science.gov (United States)

    Lane, Lee (Compiler); Caldeira, Ken (Compiler); Chatfield, Robert (Compiler); Langhoff, Stephanie (Compiler)

    2007-01-01

    The basic concept of managing Earth's radiation budget is to reduce the amount of incoming solar radiation absorbed by the Earth so as to counterbalance the heating of the Earth that would otherwise result from the accumulation of greenhouse gases. The workshop did not seek to decide whether or under what circumstances solar radiation management should be deployed or which strategies or technologies might be best, if it were deployed. Rather, the workshop focused on defining what kinds of information might be most valuable in allowing policy makers more knowledgeably to address the various options for solar radiation management.

  16. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  17. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  18. Spectral and electronic measurements of solar radiation

    International Nuclear Information System (INIS)

    Suzuki, Mamoru; Hanyu, Mitsuhiro

    1977-01-01

    The spectral data of solar radiation are necessary if detailed discussion is intended in relation to the utilization of solar energy. Since those data have not been fully prepared so far, a measuring equipment developed in Electro-technical Laboratory to obtain those data is described. The laboratory is now continuing the measurement at the wavelength of 0.3 μm to 1.1 μm. The equipment employs the system to always calibrate with the standard light source, it can measure both the direct light of the sun only and the sun light including sky light, and it enables to obtain the value based on the secondary standard of spectral illumination intensity established by the laboratory. The solar spectral irradiance is determined with the current readings of photomultiplier in the standard light source and the sun-light measurements at a wavelength and with the spectral illumination intensity from the standard light source. In order to practice such measurement many times at various wavelengths, control of the equipment, data collection, computation, drawing and listing are performed by a microcomputer. As an example, the data on Sept. 10, 1976, are shown comparing the graphs at three different hours. It can be well observed that the transmissivity attenuates with shorter wavelength, and the transmissivity in near infra-red region changes greatly due to the absorption of radiation by water vapour. (Wakatsuki, Y.)

  19. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  20. Observational investigation of the solar oblateness

    International Nuclear Information System (INIS)

    Stebbins, R.T.

    1975-01-01

    The solar oblateness provides important information for solar physics and experimental relativity. After the solar neutrino flux, the sun's shape is the most revealing probe of the solar interior. Rapidly rotating interiors suggested to explain the solar neutrino paradox produce sizeable oblatenesses. Certain types of surface phenomena can also be investigated with precision diameter measurements. The relativistic advance of Mercury's perihelion has long been the principal experimental support for Einstein's theory of general relativity. Recent measurements of the solar oblateness have suggested that the relativistic advance is smaller than originally thought due to a contribution from a solar mass quadrupole moment. This interpretation of the perihelion advance would shift the experimental support to the scalar-tensor theory of gravitation. A debate over the interpretation of the oblateness measurements has resulted. In light of these circumstances, solar oblateness observations have been attempted. Improved experimental techniques have been devised, including a daytime astrometric telescope and an explicit definition of the sun's edge. Observations reveal a time varying excess equatorial brightness, that is, a variation in the limb darkening function between equator and pole, which would preclude accurate interpretation of previous solar oblateness measurements. This vindicates the alternate interpretations of other solar oblateness measurements. From these results, it can be concluded that the Mercury perihelion evidence firmly supports Einstein's General Theory of Relativity, the solar interiors cannot be rotating fast enough to account for the low solar neutrino flux, and a time varying excess equatorial brightness exists

  1. Solar radiation on Mars: Update 1991

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  2. COOP Wind and Radiation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and radiation data from stations in the National Weather Service Cooperative Observers Network. Some precipitation and pressure forms are mistakenly placed in...

  3. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  4. Open Surface Solar Irradiance Observations - A Challenge

    Science.gov (United States)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    GEOSS Common Infrastructure (GCI). We describe the challenges and approach to introduce a suite of standards and best practices into the GEO Energy Societal Benefit Area for solar radiation measurements. Challenges range from spatio-temporal coverage across different scales and data quality to intellectual property rights and existing terminology. The approach includes means to share observations based on standardized data and metadata models and a user-friendly data exploration/management tool. The possibility to access and share data considerably improves the information base for strategic planning and control of new solar power resources. The platform will be integrated as a new component into the Webservice-Energy.org GEOSS Community Portal dedicated to Energy and Environment. The ability to provide users with visualisation and download features for in-situ measurements is seen as a key aspect to start engaging the energy community to share, release and integrate more in-situ measurements. This will put to the test the capacity of cooperation in the SSI community by introducing an unprecedented level of collaboration and eventually help to detect gaps in European earth observation networks. The presentation will be an opportunity to seek further collaboration partners and feedback by the community.

  5. On the ability of RegCM4 to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations

    Science.gov (United States)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Zanis, Prodromos; Tsikerdekis, Athanasios; Katragkou, Eleni; Kourtidis, Konstantinos; Meleti, Charikleia

    2015-04-01

    We assess here the ability of RegCM4 to simulate the surface solar radiation (SSR) patterns over the European domain. For the needs of this work, a decadal (1999-2009) simulation was implemented at a horizontal resolution of 50km using the first year as a spin-up. The model is driven by emissions from CMIP5 while ERA-interim data were used as lateral boundary conditions. The RegCM4 SSR fields were validated against satellite-based SSR observations from Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) sensors (CM SAF SIS product). The RegCM4 simulations slightly overestimate SSR compared to CM SAF over Europe with the bias being +1.54% in case of MFG (2000-2005) and +3.34% in case of MSG (2006-2009). SSR from RegCM4 is much closer to SSR from CM SAF over land (bias of -1.59% for MFG and +0.66% for MSG) than over ocean (bias of +7.20% for MFG and 8.07% for MSG). In order to understand the reasons of this bias, we proceeded to a detailed assessment of various parameters that define the SSR levels (cloud fractional cover - CFC, cloud optical thickness - COT, cloud droplet effective radius - Re, aerosol optical thickness - AOD, asymmetry factor - ASY, single scattering albedo - SSA, water vapor - WV and surface albedo - ALB). We validated the simulated CFC, COT and Re from RegCM4 against satellite-based observations from MSG and we found that RegCM4 significantly underestimates CFC and Re, and overestimates COT over Europe. The aerosol-related parameters from RegCM4 were compared with values from the aerosol climatology taken into account within CM SAF SSR estimates. AOD is significantly underestimated in our simulations which leads to a positive SSR bias. The RegCM4 WV and ALB were compared with WV values from ERA-interim and ALB climatological observations from CERES which are also taken into account within CM SAF SSR estimates. Finally, with the use of a radiative transfer model (SBDART) we manage to quantify the relative contribution of each of

  6. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  7. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  8. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  9. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  10. Increased radiation resistance in lithium-counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  11. Estimation of diffuse from measured global solar radiation

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  12. Biological Sensors for Solar Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André P. Schuch

    2011-04-01

    Full Text Available Solar ultraviolet (UV radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products.

  13. Solar wind radiation damage in lunar dust grains and the characteristics of the ancient solar wind

    International Nuclear Information System (INIS)

    Borg, J.; Chaumont, J.

    1980-01-01

    Current understanding of the exposure history of lunar dust grains to the ancient solar wind is reviewed, the work being based mostly on a Monte Carlo statistical code, describing the 'gardening' effects of the meteorite bombardment in the lunar regolith, and on analytical models, yielding the lifetimes of the grains against various types of destruction processes. Families of lunar dust grains are identified, and evidence is presented showing that lunar dust grains were not partially shielded from solar wind ions. Results of solar wind simulation experiments are used to interpret the thickness distribution of the amorphous coatings of solar wind radiation-damaged material observed on 1-micron lunar dust grains. It is argued that such distributions reflect the speed distribution of the ancient solar wind as averaged over periods of approximately 5000 years in duration, and that the ancient solar wind is less energetic than the present day solar wind

  14. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  15. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  16. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  17. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  18. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  19. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  20. Solar radiation at Parsons, West Virginia

    Science.gov (United States)

    James H. Patric; Stanley Caruso

    1978-01-01

    Twelve years of solar radiation data, measured with a Kipp-Zonen pyranometer, were recorded near Parsons, West Virginia. The data agree well with calculated values of potential and average radiation for the vicinity and are applicable to the central Appalachian region.

  1. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Khatib, Tamer; Elmenreich, Wilfried

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  2. Solar radiation estimation based on the insolation

    International Nuclear Information System (INIS)

    Assis, F.N. de; Steinmetz, S.; Martins, S.R.; Mendez, M.E.G.

    1998-01-01

    A series of daily global solar radiation data measured by an Eppley pyranometer was used to test PEREIRA and VILLA NOVA’s (1997) model to estimate the potential of radiation based on the instantaneous values measured at solar noon. The model also allows to estimate the parameters of PRESCOTT’s equation (1940) assuming a = 0,29 cosj. The results demonstrated the model’s validity for the studied conditions. Simultaneously, the hypothesis of generalizing the use of the radiation estimative formulas based on insolation, and using K = Ko (0,29 cosj + 0,50 n/N), was analysed and confirmed [pt

  3. Orbiter radiator panel solar focusing test

    Science.gov (United States)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  4. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  5. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  6. Radiation From Solar Activity | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  7. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 3. Observation data on global solar radiation and sunshine duration; 1974 nendo zenten nissharyo, nissho jikan no kansoku shiryo. 3. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report includes observation data on global solar radiation and sunshine duration for R and D on solar energy system. The global solar radiation data include the following measured by bimetal pyranometer in 1954-1970: Monthly and yearly mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. The sunshine duration data include the following measured by Jordan's heliograph in 1941-1970: Monthly and yearly total value, 10-year mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. Annual variations of the global solar radiation at 16 typical sites all over the country are illustrated using the average values, and secular variations of the monthly and yearly mean values at 16 sites are also illustrated. Annual variations of the sunshine duration at 17 typical sites are illustrated using the average values, and secular variations of the monthly and yearly total values at 17 sites are also illustrated. Profiles of the global solar radiation and sunshine duration, and their coefficients of variation are illustrated for every country. (NEDO)

  8. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  9. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  10. Obliquity Modulation of the Incoming Solar Radiation

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  11. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  12. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  13. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  14. A solar radiation database for Chile.

    Science.gov (United States)

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  15. Resource Letter OSE-1: Observing Solar Eclipses

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew

    2017-07-01

    This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.

  16. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  17. Solar Observations on Magneto-Convection

    Science.gov (United States)

    1989-05-31

    Technical Library National Solar Observatory Sunspot, NM 88349 Karl - Schwarzschild -Strasse 1 8046 Garching bei Mundhen Solar Observations On Magneto...Schmidt, Hermann-Ulrich Schmidt, Hans-Christoph Thomas (eds.) Max-Planck-Institut fir Physik und Astrophysik Institut fiur Astrophysik Karl ... Schwarzschild -St-. 1 D-8046 Garching, FklG 14TIS CRiA.&l DTIC TA. U~Jar,iou8:ed B ......... ... Distribution I -- Availability COcý----- Avail and or Dist special

  18. Measurement tolerance analysis of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cimo, J.; Maderkova, L.; Horak, J.; Igaz, D.; Pasztorova, S. [Department of Biomereorlogy and Hydrology, Slovak Agriculture University, Nitra (Slovakia)

    2012-07-01

    Solar radiant energy is bane and almost the only one source of heat for Earth 's surface and for atmosphere, and almost the only one source of energy for physical processes. Solar energy is one of the most available and the most ecological energy source. Currently the firm Kipp and Zonen belongs to prominent producer of sensors for measuring of global radiation. These sensors are the most used in our country and also in network of meteorological measurements of WMO. Therefore the two types of measuring sensors for global radiation (pyranometer PMP6, CMP 11) in comparison with calculation method Savin-Angstrom are analysed. (author)

  19. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  20. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  1. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    Science.gov (United States)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  2. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  3. SOLAR RADIATION MAPS FOR EIIDOPIA Tesfaye Bayou and ...

    African Journals Online (AJOL)

    day-1, thus signifying the solar power potential ... data are available only for few places due to the high cost of ... the mean daily global solar radiation for Ethiopia ... wind speed and precipitation. ..... Insolation on Tilted Surfaces, Solar Energy,.

  4. Solar Radiation effect on the bituminous binder; Efecto de la radiacion solar sobre el ligante bituminoso

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Rico, A.; Torres Perez, A.

    2010-07-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  5. The solar energy in Colombia, Atlas of solar radiation of Colombia

    International Nuclear Information System (INIS)

    Rodriguez P, F.

    1995-01-01

    This study was made by means of the Agreement inter-institutional subscribed between Mines Ministry and Energy, HIMAT and INEA and was published by CARBOCOL. In the evaluation of solar energy potential, the information of the radiometric net of the HIMAT taken in 203 stations distributed throughout all Country from 1980 until 1990, it was had in account. A meteorological station is an observation point where are located different instruments and equipment that serve to measure and study meteorological parameter as solar radiation (radiometer actinograph), Solar sheen (Campbell Stoke), Temperature (Thermograph), Moisture (hydrographer), Wind (Anemograph Anemometer) and Precipitation (Pluviograph)

  6. Solar and terrestrial radiation: methods and measurements

    National Research Council Canada - National Science Library

    Coulson, Kinsell L

    1975-01-01

    ... AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. Ill Fifth Avenue, New York, New York 10003 United Kingdom Edition published by A C A D E M I C PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 Library of Congress Cataloging in Publication Data Coulson, Kinsell L Solar and terrestrial radiation. Inclu...

  7. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    Science.gov (United States)

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  8. Continuity of Earth Radiation Budget Observations

    Science.gov (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  9. Solar cell radiation handbook. Addendum 1: 1982-1988

    International Nuclear Information System (INIS)

    Anspaugh, B.E.

    1989-02-01

    The Solar Cell Radiation Handbook (JPL Publication 82-69) is updated. In order to maintain currency of solar cell radiation data, recent solar cell designs have been acquired, irradiated with 1 MeV electrons, and measured. The results of these radiation experiments are reported

  10. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  11. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    Science.gov (United States)

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  12. Observations of Warm Water in Young Solar-System Analogs

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm

    dioxide). The amount of warm water is deduced and its origin is observationally constrained. With both isotopologues observed, the HDO/H2O ratio is deduced. This ratio is then compared to other sources, e.g., comets and the Earth’s ocean, to gain understanding of the origin of the water in our own solar...... system. The emission line fluxes are modeled with radiative transfer tools and compared to other results of water abundances in the same source. The observed water emission, both H18(2 O and HDO is compact for all observed sources and traces the emission on R 150 AU scales or less. In one source...

  13. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  14. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  15. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  16. Turning collectors for solar radiation

    Science.gov (United States)

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  17. Radiation Environments for Future Human Exploration Throughout the Solar System.

    Science.gov (United States)

    Schwadron, N.; Gorby, M.; Linker, J.; Riley, P.; Torok, T.; Downs, C.; Spence, H. E.; Desai, M. I.; Mikic, Z.; Joyce, C. J.; Kozarev, K. A.; Townsend, L. W.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. The ability to predict when and where large events will occur is necessary in order to mitigate their hazards. The largest events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons accelerated very low in the corona by the passage of coronal mass ejection (CME)-driven compressions or shocks and from flares travel near the speed of light, arriving at Earth minutes after the eruptive event. Whether these particles actually reach Earth, the Moon, Mars (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock. Recent contemporaneous observations during the largest events in almost a decade show the unique longitudinal distributions of this ionizing radiation broadly distributed from sources near the Sun and yet highly isolated during the passage of CME shocks. Over the last decade, we have observed space weather events as the solar wind exhibits extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity during cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small particle radiation events. We have used observations from LRO/CRaTER to examine the implications of these highly unusual solar conditions for human space exploration throughout the inner solar system. While these conditions are not a show-stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits

  18. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  19. Observations spotted solar type stars in Pleiades

    International Nuclear Information System (INIS)

    Magnitskij, A.K.

    1987-01-01

    The september - october 1986 observations discovered periodic light variations in three solar type stars in the Pleiades cluster: Hz 296 (0.8 M Sun ), Hz152(0.91 M Sun ) and Hz739(1.15 M Sun ). Periods and amplitudes are accordingly 2 d and 0 m .11, 4 d .12 and 0 m .07, 2 d .70 and 0 m .05. Considerable light variations of these stars in Pleiades are due to the rotation of spotted stars. Contrast spots of solar type stars likely exist when stars are young and rapidly rotate

  20. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    Science.gov (United States)

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  1. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  2. Denoising solar radiation data using coiflet wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  3. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  4. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-10-24

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  5. Water purification using solar radiation in Nigeria

    International Nuclear Information System (INIS)

    Udounwa, A.E.; Osuji, R.U.

    2005-12-01

    In developing countries, lack of safe and reliable drinking water constitutes a major problem. Contaminated water is the major cause of most water borne diseases like diarrhoea. Disinfection of water is accomplished by a number of different physical - chemical treatments including boiling, application of chlorine and filtration techniques. Solar energy, which is universally available, can also be used effectively in this process, that is, to deactivate the micro-organisms present in this contaminated water thereby improving its microbiological quality. This treatment process is called solar water disinfection. This paper therefore appraises the extent to which research work has been done as regards purification of water using solar radiation in Nigeria vis-a-vis outside the country. It is hoped that it will serve as a wake-up-call for Nigerians especially those in remote areas with no treated pipe borne water supply. The problems and prospects of this technology as well as the policy implications are presented. (author)

  6. Observation of galactic gamma radiation

    International Nuclear Information System (INIS)

    Paul, J.A.

    1982-09-01

    A complete and deep survey of the galactic high-energy gamma radiation is now available, thanks to the gamma-ray telescopes on board of the SAS-2 and COS-B spacecrafts. A comparison of the COS-B gamma-ray survey with a fully sampled CO survey together with an Hsub(I) survey is used to show that a simple model, in which uniformly distributed cosmic rays interact with the interstellar gas, can account for almost all the gamma-ray emission observed in the first galactic quadrant. At medium galactic latitudes, it is shown that a relationship exists between the gamma radiation and the interstellar absorption derived from galaxy counts. Therefore gamma rays from the local galactic environment can be used as a valuable probe of the content and structure of the local interstellar medium. The large scale features of the local interstellar gas are revealed, in particular wide concentrations of nearby molecular hydrogen. On a smaller scale, the detection of numerous localized gamma-ray sources focuses the attention on some particular phases of clusters of young and massive stars where diffuse processes of gamma-ray emission may also be at work

  7. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  8. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  9. Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea

    International Nuclear Information System (INIS)

    Shim, K.M.; Kim, Y.S.; Lee, D.B.; Kang, K.K.; So, K.H.

    2012-01-01

    Accuracy of daily solar radiation estimated from a Mountain Microclimate Simulation Model (MT-CLIM) was assessed for seven observation sites with complex topography in Uiseong County. The coefficient of determination () between the observed and the estimated daily solar radiation was 0.52 for 7 sites for the study period from 1 August to 30 September 2009. Overall, the MT-CLIM overestimated the solar radiation with root mean square error (RMSE) of which is about 25% of the mean daily solar radiation () for the study period. Considering that the pyranometer's tolerance is of standard sensor, the RMSE of MT-CLIM was too large to accept for a direct application for agricultural sector. The reliability of solar radiation estimated by MT-CLIM must be improved by considering additional ways such as using a topography correction coefficient

  10. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  11. High mortality of Red Sea zooplankton under ambient solar radiation.

    Directory of Open Access Journals (Sweden)

    Ali M Al-Aidaroos

    Full Text Available High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation. The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM 18.4±5.8% h(-1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM 12±5.6 h(-1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  12. Investigation of solar cell radiation damage

    International Nuclear Information System (INIS)

    Bernard, J.; Reulet, R.; Arndt, R.A.

    1974-01-01

    Development of communications satellites has led to the requirement for a greater and longer lived solar cell power source. Accordingly, studies have been undertaken with the aim of determining which solar cell array provides the greatest power at end of life and the amount of degradation. Investigation of the damage done to thin silicon and thin film CdS solar cells is being carried out in two steps. First, irradiations were performed singly with 0.15, 1.0 and 2.0MeV electrons and 0.7, 2.5 and 22MeV proton. Solar cells and their cover materials were irradiated separately in order to locate the sites of the damage. Diffusion length and I.V. characteristics of the cells and transmission properties of the cover materials were measured. All neasurements were made in vacuum immediately after irradiation. In the second part it is intended to study the effect of various combinations of proton, electron and photon irradiation both with and without an electrical load. The results of this part show whether synergism is involved in solar cell damage and the relative importance of each of three radiation sources if synergism is found [fr

  13. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  14. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  15. Assessing the Performance of Global Solar Radiation Empirical ...

    African Journals Online (AJOL)

    In the region where solar radiation data are scarce, the next alternative method is to use solar radiation models to estimate the data needed for some applications such as simulation of crop performance and the design of solar energy conversion devices. In this paper, the validations of fifteen models for estimating monthly ...

  16. Integrated Access to Solar Observations With EGSO

    Science.gov (United States)

    Csillaghy, A.

    2003-12-01

    {\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests

  17. Solar Neutrino Observables Sensitive to Matter Effects

    Directory of Open Access Journals (Sweden)

    H. Minakata

    2012-01-01

    Full Text Available We discuss constraints on the coefficient AMSW which is introduced to simulate the effect of weaker or stronger matter potential for electron neutrinos with the current and future solar neutrino data. The currently available solar neutrino data leads to a bound AMSW=1.47+0.54−0.42(+1.88−0.82 at 1σ (3σ CL, which is consistent with the Standard Model prediction AMSW=1. For weaker matter potential (AMSW1, the bound is milder and is dominated by the day-night asymmetry of 8B neutrino flux recently observed by Super-Kamiokande. Among the list of observables of ongoing and future solar neutrino experiments, we find that (1 an improved precision of the day-night asymmetry of 8B neutrinos, (2 precision measurements of the low-energy quasi-monoenergetic neutrinos, and (3 the detection of the upturn of the 8B neutrino spectrum at low energies are the best choices to improve the bound on AMSW.

  18. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  19. Variation of sodium on Mercury with solar radiation pressure

    International Nuclear Information System (INIS)

    Potter, A.E.; Morgan, T.H.

    1987-01-01

    It has been suggested that nonthermal Na atoms with velocities in excess of 2.1 km/sec in the Mercury atmosphere can be accelerated off the planet by solar radiation pressure; Na abundance may accordingly be expected to decrease with increasing radiation pressure. While this is confirmed by the present measurements, high resolution line profile measurements on Na emission indicate that very little, if any, of the Na is nonthermal, while the bulk is at a temperature approaching that of the planetary surface. Attention is given to explanations for the observed variation. 11 references

  20. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    OpenAIRE

    Alexandre Bryan Heinemann; Pepijn A.J. van Oort; Diogo Simões Fernandes; Aline de Holanda Nunes Maia

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, ...

  1. Solar Radiation Forecasting, Accounting for Daily Variability

    Directory of Open Access Journals (Sweden)

    Roberto Langella

    2016-03-01

    Full Text Available Radiation forecast accounting for daily and instantaneous variability was pursued by means of a new bi-parametric statistical model that builds on a model previously proposed by the same authors. The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical expression but is not bound by a specific clear sky model; it accounts separately for the mean daily variability and for the variation of solar irradiance during the day by means of two corrective parameters. This new proposal allows for a better understanding of the physical phenomena and improves the effectiveness of statistical characterization and subsequent simulation of the introduced parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the experimental distributions of the two parameters’ data was developed, obtaining opportune fittings by means of parametric analytical distributions or mixtures of more than one distribution. Finally, the model was further improved toward the inclusion of weather prediction information in the solar irradiance forecasting stage, from the perspective of overcoming the limitations of purely statistical approaches and implementing a new tool in the frame of solar irradiance prediction accounting for weather predictions over different time horizons.

  2. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  3. Solar radiation in the Brazilian northeast

    Energy Technology Data Exchange (ETDEWEB)

    Tiba, Chigueru [Federal University of Pernambuco, Pernambuco (Brazil)

    2000-07-01

    The significant increase in recent years of the number of rural electrification systems (some thousands of them do exist) using photovoltaic technology installed in the Northeast of Brazil (1,500,000 km{sup 2}, approximately 42 million people) used for illumination or water pumping, calls for an improvement on the design procedures in order to reduce the burden of capital costs per unit of generated power. Such objective can be accomplished as long as a better knowledge about the solar resource is achieved, considering how much these applications depend on it. The sources of information on solar radiation in Brazil are quite varied at both institutional and publication level. At institutional Meteorology (INMET), State Departments of Agriculture, research institute, universities and electric power generation and distribution utilities. Progress reports or scientific and technical journals are the main publishing vehicles where this information can be found. This way, data quality varies considerably, showing, spatial and temporal discontinuities, in addition to the fact that measurement instruments and physical units of registered data are not standardized. The Solarimetric Atlas of Brazil was recently published and it contains that information, which is grouped, evaluated, qualified, and presented in a standardized way. It is one of the best currently existing sources of information, and in certainly consists of almost the entirety of the existing information on the solar resource (data on solar radiation and sunshine hours) in Brazil. By using this database, simultaneous records of solar radiation (measured with pyranoghaps or pyranometers) and sunshine hours with heliographs were obtained in 35 different places in the Northeast region. Coefficients a and b were calculated for those different places using Angstrom's correlation. Using the geostatistical interpolation method known as kriging, the values of a and b were placed on contour maps, the coverage of

  4. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  5. Ultraviolet Radiation in the Solar System

    CERN Document Server

    Vázquez, M

    2006-01-01

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequ...

  6. Observation of solar flare by Hinotori SXT/HXM

    International Nuclear Information System (INIS)

    Ohki, Ken-ichiro; Takakura, Tatsuo; Tsuneta, Sukehisa; Nitta, Nariaki; Makishima, Kazuo.

    1982-01-01

    Solar flares were observed by SXT (hard X-ray two-dimensional observation system) and HXM (hard X-ray spectrometer) on Hinotori. The results of two-dimensional analysis of 20 flares are reported in this paper. Various images of hard X-ray were observed. Hard X-ray bursts with relatively long duration may be generated in corona. The hard X-ray flare generated on the solar disc gives information on the relative position to the H flare. The examples of this hard X-ray images are presented. The HXM can observe the hard X-ray spectra up to 350 keV. The flares with duration less than 5 min have the spectra coninciding with the thermal radiation from a single temperature before the peak, and power law type non-thermal radiation spectra after the peak. The hard X-ray flares with duration longer than 10 min have power law type spectra. (Kato, T.)

  7. Flow of Energy through the Inner Magnetosphere during the March 17, 2015 solar storm as observed by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

    Science.gov (United States)

    Manweiler, J. W.; Madanian, H.; Gerrard, A. J.; Patterson, J. D.; Mitchell, D. G.; Lanzerotti, L. J.

    2017-12-01

    On March 17, 2015, a large solar storm impacted the Earth's magnetosphere with a maximum negative Dst of -232 nT. We report on the temporal and spatial evolution of the proton energetic particle distributions in phase space during this storm, as measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board each of the Van Allen Probes. We characterize the distribution prior to onset of the storm to provide a definition of quiet time conditions. We then show how the distribution evolves during the storm noting key changes of the distribution as a function of L and MLT and showing how the pitch angle distributions change throughout the storm. These observations displayed a number of interesting features of the storm including high beta plasma conditions and multiple injections of protons into the inner magnetosphere. We present the radial changes of the distribution at storm onset and following the evolution of the distribution during storm recovery. We compare observations of the East/West asymmetry in the proton distribution before versus after onset using both Van Allen Probes A and B spacecraft observations. Finally, we note interesting changes in the distribution showing an anomalous dropout in mid-energies of the distribution and observe an outward radial propagation of this dropout during recovery.

  8. Estimation of Solar Radiation using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Slamet Suprayogi

    2004-01-01

    Full Text Available The solar radiation is the most important fator affeccting evapotranspiration, the mechanism of transporting the vapor from the water surface has also a great effect. The main objectives of this study were to investigate the potential of using Artificial Neural Network (ANN to predict solar radiation related to temperature. The three-layer backpropagation were developed, trained, and tested to forecast solar radiation for Ciriung sub Cachment. Result revealed that the ANN were able to well learn the events they were trained to recognize. Moreover, they were capable of effecctively generalize their training by predicting solar radiation for sets unseen cases.

  9. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Science.gov (United States)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  10. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  11. Solar energy R + D programme, 1979-1983. Project F: solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Individual presentations report work in the following areas: production of test reference years for model simulation of solar systems and components; global radiation atlas for horizontal surfaces; radiation data on inclined surfaces; intensity thresholds and cumulative frequency curves; useful energy output from solar collectors; network comparison of pyranometers; measurements of turbidity, spectral radiation, etc.; satellite data. (LEW)

  12. Simulation of solar radiative transfer in cumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  13. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    2015-03-12

    Mar 12, 2015 ... addition, the concentration of carbon dioxide over Malawi within the same period as temperature and solar radiation data ... plant diseases and pests which may have adverse effects ... object that absorbs and emits radiation).

  14. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  15. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  16. Measurement of solar energy radiation in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  17. Detecting solar chameleons through radiation pressure

    International Nuclear Information System (INIS)

    Baum, S.; Cantatore, G.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-01-01

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space

  18. Detecting solar chameleons through radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baum, S., E-mail: sebastian.baum@cern.ch [Uppsala Universitet, Box 516, SE 75120, Uppsala (Sweden); European Organization for Nuclear Research (CERN), Gèneve (Switzerland); Cantatore, G. [Università di Trieste, Via Valerio 2, 34127 Trieste (Italy); INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Hoffmann, D.H.H. [Institut für Kernphysik, TU-Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Karuza, M. [INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Phys. Dept. and CMNST, University of Rijeka, R. Matejcic 2, Rijeka (Croatia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research (IBS), Daejeon 305-701 (Korea, Republic of); Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Upadhye, A. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Zioutas, K., E-mail: konstantin.zioutas@cern.ch [European Organization for Nuclear Research (CERN), Gèneve (Switzerland); University of Patras, GR 26504 Patras (Greece)

    2014-12-12

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  19. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  20. Optimization of Stirling and Ericsson cycles by solar radiation

    Science.gov (United States)

    Badescu, V.

    This paper considers a model consisting of a source of radiation (the sun) and two energy converters. The first converter (the absorber) transforms the solar radiation into heat while the second one (which is a Stirling or Ericsson engine) uses heat to produce mechanical work. Polarization coefficients were introduced to characterize the radiation emitted by two components of the system (the sun and the first converter). The maximum conversion efficiency of solar radiation into work was studied.

  1. Estimating the solar radiation environment on the soil surface between rows using crop canopy architectural models

    International Nuclear Information System (INIS)

    Yuge, K.; Haraguchi, T.; Nakano, Y.; Kuroda, M.; Funakoshi, T.

    2002-01-01

    The objective of this study is quantification of the solar radiation in the farmland located in the hilly and mountainous areas, considering the effect of the shelter adjacent to the field, such as the forest (This effect is called as the edge-effect in this study.). To evaluate the edge-effect on the solar radiation environment in the farmland, solar radiations are measured at the center and edge of the study site adjacent to the forest. The simulation model is composed, coupling with the fish-eye projection method and procedure for the separating direct and diffuse solar radiations. Using this model, the diurnal solar radiations are simulated at the center and edge of the study site. The simulation result showed good agreement with the observation. The spatial distribution of the solar radiation in an observational field is quantified by this method, considering the edge-effect. The simulation result indicated that the solar radiation environment on the field surface is affected by the shelter adjacent to the field and the field direction. (author)

  2. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  3. Analysis of radiation damage in on-orbit solar array of Venus explorer Akatsuki

    International Nuclear Information System (INIS)

    Toyota, Hiroyuki; Shimada, Takanobu; Takahashi, You; Imamura, Takeshi; Hada, Yuko; Ishii, Takako T.; Isobe, Hiroaki; Asai, Ayumi; Shiota, Daikou

    2013-01-01

    This paper describes an analysis of radiation damage in solar array of Venus explorer Akatsuki observed on orbit. The output voltage of the solar array have shown sudden drops, which are most reasonably associated with radiation damage, three times since its launch. The analysis of these radiation damages is difficult, because no direct observation data of the spectra and the amount of the high-energy particles is available. We calculated the radiation damage using the relative damage coefficient (RDC) method assuming a typical spectral shape of protons. (author)

  4. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  5. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  6. Solar radiation in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Jerzy Dera

    2010-12-01

    Full Text Available The influx of solar radiation to the Baltic Sea and its penetration into its waters is described on the basis of selected results of optical and bio-optical studies in the Baltic published by various authors during the past ca 50 years. The variability in the natural irradiance of this sea is illustrated on time scales from short-term fluctuations occurring during a single day to differences in mean monthly values over a period of many years. Data on variability of the proportions between UV, VIS and IR energy in the light reaching the sea surface are also discussed.Long-term monthly mean values of the incident solar radiation flux at the surface of the Baltic Proper are given; they were obtained from meteorological and solar radiation measurements and model approximations. The transmittances of these mean monthly radiation fluxes across the surface of the Baltic are given, as are the typical energyand spectral characteristics of the underwater irradiance, its attenuation with depth in the sea and the associated euphotic zone depths, as well as typical ranges of variability of these characteristics in different Baltic basins. Some of these characteristics are illustrated by typical empirical data. These mean values are not fully representative, however, because with the sole use of classical in situ measurement methods from on board research vessels in the Baltic, it has not been possible to gather a sufficientlyrepresentative set of empirical data that would adequately reflect the variability of the optical characteristics of all the basins of this sea. The article goes on to introduce the statistical model of vertical distributions of chlorophyll a concentration in the Baltic and the bio-optical model of Baltic Case 2 waters, the use of which contribute very significantly to this description of the optical characteristics and will enable this data set to be hugely expanded to include all the Baltic basins. This opportunity is presented by the

  7. Climatic zones of solar radiation of Galicia; Zonas climaticas de radiacion solar de Galicia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Izquierdo, P.; Pose, M.; Prado, M. T.; Santos, J.

    2008-07-01

    The paper shows the results of a research on the solar radiation received in Galicia that allows assigning each one of the 315 Galician municipalities to one of the Climatic Zones of solar radiation, defined in the Spanish Building Technical Code (BTC). It is proposed to complete the assignment of climatic Zones in the BTC with a new zone, named Climatic Zone 0, with the objective to differentiate the geographical areas in Galicia with less than 3.4 kWh/m{sup 2}.day of yearly daily average solar radiation. The study is completed with the realization of a map of the Climate Zones of solar radiation of Galicia. (Author)

  8. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    rarely available required for precise sizing of energy systems. The total solar radiation at different orientation and slope is needed to calculate the efficiency of the installed solar energy systems. To calculate clearness index (Kt) used by Gueymard (2000) for estimating solar irradiation H, irradiation at the earth's surface has ...

  9. An auto-calibration procedure for empirical solar radiation models

    NARCIS (Netherlands)

    Bojanowski, J.S.; Donatelli, Marcello; Skidmore, A.K.; Vrieling, A.

    2013-01-01

    Solar radiation data are an important input for estimating evapotranspiration and modelling crop growth. Direct measurement of solar radiation is now carried out in most European countries, but the network of measuring stations is too sparse for reliable interpolation of measured values. Instead of

  10. Resonance in the restricted problem caused by solar radiation pressure

    International Nuclear Information System (INIS)

    Bhatnagar, K.B.; Gupta, B.

    1977-01-01

    Resonance is discussed in the motion of an artificial Earth satellite caused by solar radiation pressure. The Hamiltonian and the generating functions occurring in the problem are expanded in the power series of small parameter β, which depends on solar radiation pressure. Also the perturbations in the osculating elements are obtained up to O(βsup(1/2)). (author)

  11. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    International Nuclear Information System (INIS)

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  12. IMPACT OF SOLAR RADIATION CHANGE ON THE COLLECTOR EFFICIENTLY

    Directory of Open Access Journals (Sweden)

    Danuta Proszak-Miąsik

    2017-01-01

    Full Text Available In October 2014 in a building of Rzeszow University of Technology, a series of measurements was taken to calculate the parameters of a solar system with a flat collector, as installed on the roof of the building. The following parameters were obtained: the value of solar radiation intensity, the temperature of external air, the temperature on the collector, the temperature of water in the tank and the temperature of glycol on the supply and return lines. On the basis of the data received, charts were made to visually present how changes of solar radiation intensity affected parameters of the system. The study was conducted in autumn when the intensity of solar radiation decreases, compared with summer months. The publication aims to show that the solar system brings energy gains in periods of transition, and the instantaneous intensity of solar radiation are comparable to those in the summer.

  13. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  14. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  15. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  16. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  17. Annual cycle of solar radiation in a deciduous forest

    International Nuclear Information System (INIS)

    Hutchison, B.A.; Matt, D.R.

    1977-01-01

    Periodic solar radiation measurements within and above an east Tennessee Liriodendron forest and continuous records of insolation from a nearby NOAA weather station were used to derive an approximation of the animal radiation regime within and above the deciduous forest. The interaction of changing solar elevations, insolation, and forest phenology are shown to control the radiation climate within the forest. Maximum radiation penetrates the forest in early spring as solar paths rise higher in the sky each day just prior to leaf expansion. After leaf expansion begins, average radiation received within the forest decreases rapidly despite continued increases in solar elevations and daily insolation. This forest attains full leaf in early June and from then until the advent of leaf abscission near the autumnal equinox, forest structure remains relatively static. Solar elevations and daily insolation decline following the summer solstice, however, and as a result, average radiation penetrating the forest slowly declines throughout the summer reaching an annual minimum in early autumn. With leaf fall, slightly increased amounts of radiation penetrate the forest but as within-forest solar paths continue to lengthen, radiation within the forest again declines. Minimum amounts of solar radiation penetrate the leafless forest around the winter solstice

  18. The National Solar Radiation Database (NSRDB): A Brief Overview

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.

  19. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  20. Development of Software for Measurement and Analysis of Solar Radiation

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Abul Adli Anuar; Noor Ezati Shuib

    2015-01-01

    This software was under development using LabVIEW to be using with StellarNet spectrometers system with USB communication to computer. LabVIEW have capabilities in hardware interfacing, graphical user interfacing and mathematical calculation including array manipulation and processing. This software read data from StellarNet spectrometer in real-time and then processed for analysis. Several measurement of solar radiation and analysis have been done. Solar radiation involved mainly infra-red, visible light and ultra-violet. With solar radiation spectrum data, information of weather and suitability of plant can be gathered and analyzed. Furthermore, optimization of utilization and safety precaution of solar radiation can be planned. Using this software, more research and development in utilization and safety of solar radiation can be explored. (author)

  1. Correlation of total, diffuse, and direct solar radiation

    Science.gov (United States)

    Buyco, E. H.; Namkoong, D.

    1977-01-01

    Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.

  2. Radiation observation at Dome Fuji Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Naohiko Hirasawa

    2008-06-01

    Full Text Available This paper reports radiation observations at Dome Fuji Station from February 1, 2003 to January 20, 2004, carried out by the 44th Japanese Antarctic Research Expedition team. The radiometers which measured the upward longwave radiation (LWu, the downward longwave (LWd and the downward shortwave (SWd were equipped with fans to avoid frosting on the surface of the radiometer dome by air circulation. The upward shortwave radiation (SWu measured by a radiometer without fan needs correction, which we leave as a problem for the future. In addition, as for LWd and LWu in the polar night, a typical radiational cooling case and a suppressed radiational cooling one are shown.

  3. Lyman continuum observations of solar flares

    Science.gov (United States)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  4. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  5. Mathematical model of solar radiation based on climatological data from NASA SSE

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Masolov, V. G.

    2018-05-01

    An original model of solar radiation arriving at the arbitrarily oriented surface has been developed. The peculiarity of the model is that it uses numerical values of the atmospheric transparency index and the surface albedo from the NASA SSE database as initial data. The model is developed in the MatLab/Simulink environment to predict the main characteristics of solar radiation for any geographical point in Russia, including those for territories with no regular actinometric observations.

  6. Comparisons of solar radiation interception, albedo and net radiation as influenced by row orientations of crops

    International Nuclear Information System (INIS)

    Baten, Md.A.; Kon, H.

    1997-01-01

    Field experiments were conducted on soybean (Glycin max L.) in summer and potato (Solanum tuberosum L.) in autumn to evaluate the effect of row orientations of crops on some selected micro meteorological factors during 1994 and 1995. The intercepted solar radiation was the largest in the plants growing in bidirection in summer and it exhibited intermediate trend in autumn as compared to E-W or N-S row orientations. In summer, penetrated solar radiation between two plants and near the stem base of a N-S row was larger than that of E-W row. While in autumn, the observed solar radiation between two plants and near the stem base of a E-W row was markedly larger than that of N-S row. The area weighted mean of penetrated solar radiation was larger in E-W soybean rows but lower in potato rows as compared to N-S row orientations. Soil surface temperature between N-S potato rows was larger than that of E-W potato rows and the upper canopy surface temperature of potato was larger in E-W rows as compared to N-S rows. Net radiation observed over E-W potato rows was larger as compared to N-S potato rows but net radiation measured under canopy of E-W potato rows was smaller than that of in N-S rows. Net radiation measured over N-S soybean rows was larger than that of E-W soybean rows and it was smaller between N-S soybean rows when measured under canopy as compared to E-W rows. The albedo observed over potato was larger over E-W rows as compared to N-S rows. Albedos over soybean canopy showed opposite trend with the albedos observed over potato canopy. It was larger over N-S rows as compared to E-W rows. High harvest index was associated with larger interception of radiation. (author)

  7. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  8. Observational Investigation of Solar Interior and Atmosphere

    Science.gov (United States)

    Kuhn, Jeffrey R.

    2003-01-01

    The Imaging Vector Magnetograph (IVM) has been modified to make it easier to observe at more than one spectral line. The cell holding the blocking filter has been replaced by a four-position filter wheel, so that changing to a different line is a matter of a few minutes rather than the several hours it used to take to disassemble the cell and install a new filter. Three new filters have been obtained, for Na 1589.6 nm, Fe 1630.25 nm, and H 1656.3 nm. The new filters have better bandpass profiles than the ones they replaced: somewhat wider, with flatter tops and steeper wings. This results in a reduction of parasitic light coming from adjacent Fabry-Perot orders, from seven percent to about two percent, and flattens the apparent continuum. The Mees CCD Imaging Spectrograph (MCCD) was upgraded under this grant, with a new control computer and data system. The camera was replaced with a faster, larger-format frame-transfer camera. Final integration of the upgrades is not yet complete, but tests indicate that the system cadence will be improved by a factor of five to ten, while increasing the spatial coverage by a factor of two (depending on observation options). Synoptic observations with the IVM and MCCD continue to be conducted daily, to the extent permitted by the fact that we have a single observer responsible for the observations. The older Haleakala Stokes Polarimeter is also used to make a daily vector magnetogram, normally of the region selected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) duty scientists. This instrument, however, is showing its age to the extent that its maintenance is becoming something of a challenge. We also run a white light full-disk imager and a video H alpha prominence camera, continuously during times of observations. Of particular interest, we obtained rapid-cadence observations of the 2003 July 15 white light flare with both the IVM and MCCD. The vector magnetograms show no obvious difference between the

  9. Solar Extreme UV radiation and quark nugget dark matter model

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  10. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  11. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  12. Design and testing of an innovative solar radiation measurement device

    International Nuclear Information System (INIS)

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  13. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations

    Science.gov (United States)

    Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; Bramstedt, K.; Hilbig, T.; Thiéblemont, R.; Marchand, M.; Lefèvre, F.; Sarkissian, A.; Bekki, S.

    2018-03-01

    Context. Since April 5, 2008 and up to February 15, 2017, the SOLar SPECtrometer (SOLSPEC) instrument of the SOLAR payload on board the International Space Station (ISS) has performed accurate measurements of solar spectral irradiance (SSI) from the middle ultraviolet to the infrared (165 to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and the impact of solar variability on climate. In particular, a new reference solar spectrum (SOLAR-ISS) is established in April 2008 during the solar minima of cycles 23-24 thanks to revised engineering corrections, improved calibrations, and advanced procedures to account for thermal and aging corrections of the SOLAR/SOLSPEC instrument. Aims: The main objective of this article is to present a new high-resolution solar spectrum with a mean absolute uncertainty of 1.26% at 1σ from 165 to 3000 nm. This solar spectrum is based on solar observations of the SOLAR/SOLSPEC space-based instrument. Methods: The SOLAR/SOLSPEC instrument consists of three separate double monochromators that use concave holographic gratings to cover the middle ultraviolet (UV), visible (VIS), and infrared (IR) domains. Our best ultraviolet, visible, and infrared spectra are merged into a single absolute solar spectrum covering the 165-3000 nm domain. The resulting solar spectrum has a spectral resolution varying between 0.6 and 9.5 nm in the 165-3000 nm wavelength range. We build a new solar reference spectrum (SOLAR-ISS) by constraining existing high-resolution spectra to SOLAR/SOLSPEC observed spectrum. For that purpose, we account for the difference of resolution between the two spectra using the SOLAR/SOLSPEC instrumental slit functions. Results: Using SOLAR/SOLSPEC data, a new solar spectrum covering the 165-3000 nm wavelength range is built and is representative of the 2008 solar minimum. It has a resolution better than 0.1 nm below 1000 nm and 1 nm in the 1000-3000 nm wavelength range. The new

  14. A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea

    International Nuclear Information System (INIS)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2015-01-01

    Highlights: • Our goal is to create a map of solar radiation using sunshine hours and topography. • We found the empirical models based on sunshine hours performs significantly well. • The effect of topography on radiation is more significant in winter than summer. • Topographical impact is totally opposite in north and south facing terrain. • Though the extraterrestrial solar radiation flux is highest in June, at ground observed radiation is higher in May. - Abstract: Solar radiation is one of the important renewable resources, currently scientists are taking their interest in. Accurate solar radiation data is not only required for solar-power management but also is a vital input parameter in different biogeochemical and atmospheric models. But there are inadequate number of stations measuring solar radiation in comparison to stations dedicated for sunshine duration, temperature, humidity etc. Therefore, to overcome this problem, an empirical model is developed to estimate solar radiation from sunshine duration data over South Korea. As more than 50% of the area in Korean peninsula have a complex terrain, a topographical factor is applied to modeled data. Thereafter a map presenting monthly mean variation in incoming solar insolation is constructed using ordinary kriging method. The influence of topographical features like slope and aspect is found to be higher in winter than summer. Solar radiation is highest in May and lowest in December over Korea. Spatial variation of incoming radiation is mainly influenced by topographical and atmospheric features whereas latitudinal gradient is almost insignificant

  15. Estimation of available global solar radiation using sunshine duration over South Korea

    Science.gov (United States)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  16. NREL Solar Radiation Resource Assessment Project: Status and outlook

    Science.gov (United States)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961 - 1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities were measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93 percent of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952 - 1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial resources were devoted to the data base development. However, in FY 1991 the SRRAP was involved in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory.

  17. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  18. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  19. CLASSICS Handbook of Solar Radiation Data for India

    Indian Academy of Sciences (India)

    Srimath

    Handbook of Solar Radiation Data for India. By Anna Mani. CHAPTER 1. Introduction. 1.1. The sun and its radiation. The electromagnetic radiation emitted by the sun covers a very large range of wave- lengths, from radiowaves through the infrared, visible and ultraviolet to X-rays and gamma rays. However, 99 per cent of ...

  20. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  1. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  2. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  3. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  4. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    Kuo, T.K.; Pantaleone, J.

    1990-01-01

    The results of recent Kamiokande-II and 37 Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  5. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.

  6. Protection from solar ultraviolet radiation by clothing

    International Nuclear Information System (INIS)

    Pailthorpe, M.

    1996-01-01

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 'Sun Protective Clothing - Evaluation and Classification' specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia's most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 'sunsuits' have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin

  7. Surface Radiation Budget (SURFRAD) Network 1-Hour Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation measurements at SURFRAD stations cover the range of the electromagnetic spectrum that affects the earth/atmosphere system. Direct solar radiation is...

  8. A simple solar radiation index for wildlife habitat studies

    Science.gov (United States)

    Keating, Kim A.; Gogan, Peter J.; Vore, John N.; Irby, Lynn R.

    2007-01-01

    Solar radiation is a potentially important covariate in many wildlife habitat studies, but it is typically addressed only indirectly, using problematic surrogates like aspect or hillshade. We devised a simple solar radiation index (SRI) that combines readily available information about aspect, slope, and latitude. Our SRI is proportional to the amount of extraterrestrial solar radiation theoretically striking an arbitrarily oriented surface during the hour surrounding solar noon on the equinox. Because it derives from first geometric principles and is linearly distributed, SRI offers clear advantages over aspect-based surrogates. The SRI also is superior to hillshade, which we found to be sometimes imprecise and ill-behaved. To illustrate application of our SRI, we assessed niche separation among 3 ungulate species along a single environmental axis, solar radiation, on the northern Yellowstone winter range. We detected no difference between the niches occupied by bighorn sheep (Ovis canadensis) and elk (Cervus elaphus; P = 0.104), but found that mule deer (Odocoileus hemionus) tended to use areas receiving more solar radiation than either of the other species (P solar radiation component.

  9. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  10. The effect of radiation intensity on diode characteristics of silicon solar cells

    International Nuclear Information System (INIS)

    Asgerov, Sh.Q; Agayev, M.N; Hasanov, M.H; Pashayev, I.G

    2008-01-01

    In order to explore electro-physical properties of silicon solar cells, diode characteristics and ohmic properties of Al - Ni / (n+) - Si contact has been studied. Diode characteristics have been studied on a wide temperature range and on various radiation intensity, so this gives us the ability to observe the effect of the radiation and the temperature on electro-physical properties of under study solar cells. Volt-Ampere characteristics of the ohmic contacts of the silicon solar cells have been presented. As well as contact resistance and mechanism of current transmission has been identified.

  11. Long Term Solar Radiation Forecast Using Computational Intelligence Methods

    Directory of Open Access Journals (Sweden)

    João Paulo Coelho

    2014-01-01

    Full Text Available The point prediction quality is closely related to the model that explains the dynamic of the observed process. Sometimes the model can be obtained by simple algebraic equations but, in the majority of the physical systems, the relevant reality is too hard to model with simple ordinary differential or difference equations. This is the case of systems with nonlinear or nonstationary behaviour which require more complex models. The discrete time-series problem, obtained by sampling the solar radiation, can be framed in this type of situation. By observing the collected data it is possible to distinguish multiple regimes. Additionally, due to atmospheric disturbances such as clouds, the temporal structure between samples is complex and is best described by nonlinear models. This paper reports the solar radiation prediction by using hybrid model that combines support vector regression paradigm and Markov chains. The hybrid model performance is compared with the one obtained by using other methods like autoregressive (AR filters, Markov AR models, and artificial neural networks. The results obtained suggests an increasing prediction performance of the hybrid model regarding both the prediction error and dynamic behaviour.

  12. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  13. Solar radiation and mitochondrial DNA damage

    International Nuclear Information System (INIS)

    Hill, H.Z.; Locitzer, J.; Nassrin, E.; Ogbonnaya, A.; Hubbard, K.

    2003-01-01

    The 16.6 kB human mitochondrial DNA contains two homologous 13 base pair direct repeats separated by about 5 kB. During asynchronous mitochondrial DNA replication, the distant repeat sequences are thought to anneal, resulting in the looping out of a portion of the non-template strand which is subsequently deleted as a result of interaction with reactive oxygen species (ROS). A normal daughter and a deleted daughter mitochondrion result from such insults. This deletion has been termed the common deletion as it is the most frequent of the known mitochondrial DNA deletions. The common deletion is present in high frequency in several mitochondrial disorders, accumulates with age in slow turnover tissues and is increased in sun-exposed skin. Berneburg, et al. (Photochem. Photobiol. 66: 271, 1997) induced the common deletion in normal human fibroblasts after repeated exposures to UVA. In this study, the common deletion has been shown to be induced by repeated non-lethal exposures to FS20 sunlamp irradiation. Increases in the common deletion were demonstrated using nested PCR which produced a 303 bp product that was compared to a 324 bp product that required the presence of the undeleted 5 kB region. The cells were exposed to 10 repeated doses ranging from 0.5 (UVB) - 0.24 (UVA) J/sq m to 14.4 (UVB) - 5.8 J/sq m (UVA) measured using a UVX digital radiometer and UVB and UVA detectors respectively. Comparison with the earlier study by Berneberg, et al. suggests that this type of simulated solar damage is considerably more effective in fewer exposures than UVA radiation alone. The common deletion provides a cytoplasmic end-point for ROS damage produced by low dose chronic irradiations and other low level toxic exposures and should prove useful in evaluating cytoplasmic damage produced by ionizing radiation as well

  14. Solar radiation and its penetration in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Qasim, S.Z.; Bhattathiri, P.M.A.; Abidi, S.A.H.

    The Cochin Backwater which is an estuarine area on the west coast of India receives maximum solar radiation from December to March and minimum from June to September. During the monsoon months the estuary becomes highly turbid as a result...

  15. The growth of solar radiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  16. The growth of solar radiated yeast

    Science.gov (United States)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  17. An economic evaluation of solar radiation management

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan [CICERO — Center for International Climate and Environmental Research Oslo (Norway); Kristjánsson, Jón Egill; Muri, Helene [Department of Geosciences, University of Oslo (Norway); Niemeier, Ulrike; Schmidt, Hauke [Max Planck Institute for Meteorology, Hamburg (Germany)

    2015-11-01

    Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative.

  18. Public understanding of solar radiation management

    International Nuclear Information System (INIS)

    Mercer, A M; Keith, D W; Sharp, J D

    2011-01-01

    We report the results of the first large-scale international survey of public perception of geoengineering and solar radiation management (SRM). Our sample of 3105 individuals in the United States, Canada and the United Kingdom was recruited by survey firms that administer internet surveys to nationally representative population samples. Measured familiarity was higher than expected, with 8% and 45% of the population correctly defining the terms geoengineering and climate engineering respectively. There was strong support for allowing the study of SRM. Support decreased and uncertainty rose as subjects were asked about their support for using SRM immediately, or to stop a climate emergency. Support for SRM is associated with optimism about scientific research, a valuing of SRM's benefits and a stronger belief that SRM is natural, while opposition is associated with an attitude that nature should not be manipulated in this way. The potential risks of SRM are important drivers of public perception with the most salient being damage to the ozone layer and unknown risks. SRM is a new technology and public opinions are just forming; thus all reported results are sensitive to changes in framing, future information on risks and benefits, and changes to context.

  19. An economic evaluation of solar radiation management

    International Nuclear Information System (INIS)

    Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan; Kristjánsson, Jón Egill; Muri, Helene; Niemeier, Ulrike; Schmidt, Hauke

    2015-01-01

    Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative

  20. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  1. Solar-wind minor ions: recent observations

    International Nuclear Information System (INIS)

    Bame, S.J.

    1982-01-01

    During the years following the Solar Wind Four Conference at Burghausen our knowledge of the solar wind ion composition and dynamics has grown. There have been some surprises, and our understanding of the evolution of the solar wind has been improved. Systematic studies have shown that the minor ions generally travel with a common bulk speed and have temperatures roughly proportional to their masses. It has been determined that the 3 He ++ content varies greatly; 3 He ++ / 4 He ++ ranges from as high as 10 2 values to below 2 x 10 - 4 . In some solar wind flows which can be related to energetic coronal events, the minor ions are found in unusual ionization states containing Fe 16 + as a prominent ion, showing that the states were formed at unusually high temperatures. Unexpectedly, in a few flows substantial quantities of 4 He + have been detected, sometimes with ions identifiable as O 2 + and O 3 + . Surprisingly, in some of these examples the ionization state is mixed showing that part of the plasma escaped the corona without attaining the usual million-degree temperatures while other parts were heated more nearly in the normal manner. Additionally, detailed studies of the minor ions have increased our understanding of the coronal expansion. For example, such studies have contributed to identifying near equatorial coronal streamers as the source of solar wind flows between high speed streams

  2. The relationship between incoming solar radiation and daily air temperature

    International Nuclear Information System (INIS)

    Kpeglo, Daniel Kwasi

    2013-07-01

    Solar radiation is the ultimate source of energy for the planet. To predict the values of temperature and instant solar radiation when equipment are not readily available from obtained equations, a good knowledge and understanding of the disposition and distribution of solar radiation is a requirement for modelling earth’s weather and climate change variables. A pyranometer (CM3) in series with a PHYWE amplifier and a voltmeter were experimentally set-up and used to study the amount of solar radiation received at the Physics Department of the University of Ghana during the day. The temperature of the study area as well as the Relative Humidity was also recorded. Data was collected over a period of one month (from 2nd to 24th April, 2012). Days for which rain was recorded were ignored because rain could damage the pyranometer. The data obtained by the set-up were therefore used to compare with data obtained by a wireless weather station (Davis Vintage Pro). The data from these separate set-ups indicated that a perfect correlation existed between the solar radiation and temperature of the place. The data obtained by the experimental set-up was split into two separate sessions as morning and evening sessions. It was observed that the experimental set-up had a good correlation with that of the weather station on a particular day 11th April, 2012. The various Regression Coefficient (R"2) values for morning session were respectively R"2 = 0.96 and R"2 = 0.95 with their respective equations as I_W =136.22T_W - 40623 and I_p = 2.3198T_p - 678.14. The evening session also had good Regression Coefficient values of R"2 = 0.81 and R"2 = 0.97 with equations of 2.1098T_p - 625 and I_W = 161.31T_w - 4876.9. Similar analysis of the data from the separate set-ups gave a better correlation for that of the experimental set-up than that of the wireless station. The range of values of Regression Coefficient (R"2) for the experimental set-up was between 0.82 − 0.99 for the morning

  3. Improved Statistical Model Of 10.7-cm Solar Radiation

    Science.gov (United States)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  4. Solar flares observed simultaneously with SphinX, GOES and RHESSI

    Science.gov (United States)

    Mrozek, Tomasz; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kępa, Anna; Gryciuk, Magdalena

    2013-07-01

    In February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2-15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

  5. Estimating surface solar radiation from upper-air humidity

    Energy Technology Data Exchange (ETDEWEB)

    Kun Yang [Telecommunications Advancement Organization of Japan, Tokyo (Japan); Koike, Toshio [University of Tokyo (Japan). Dept. of Civil Engineering

    2002-07-01

    A numerical model is developed to estimate global solar irradiance from upper-air humidity. In this model, solar radiation under clear skies is calculated through a simple model with radiation-damping processes under consideration. A sky clearness indicator is parameterized from relative humidity profiles within three atmospheric sublayers, and the indicator is used to connect global solar radiation under clear skies and that under cloudy skies. Model inter-comparisons at 18 sites in Japan suggest (1) global solar radiation strongly depends on the sky clearness indicator, (2) the new model generally gives better estimation to hourly-mean solar irradiance than the other three methods used in numerical weather predictions, and (3) the new model may be applied to estimate long-term solar radiation. In addition, a study at one site in the Tibetan Plateau shows vigorous convective activities in the region may cause some uncertainties to radiation estimations due to the small-scale and short life of convective systems. (author)

  6. Ancient Chinese observations of physical phenomena attending solar eclipses

    International Nuclear Information System (INIS)

    Wang, P.K.; Siscoe, G.L.

    1980-01-01

    The realization that solar activity probably undergoes changes in qualitative character on time scales greater than the 11 or 22 year cycle but short compared to the duration of recorded history gives renewed importance to historical documents describing the state of solar activity. Modern eclipse observation reveal the presence of solar acitivity through the appearance of coronal structures and prominences. It has been widely remarked that eclipse records prior to the 18th century are uniformly silent on these conspicuous solar eclipse features, raising the possibility, however unlikely, that a change in solar activity has occurred which rendered them only recently noticeable. We present here material from ancient Chinese sources, primarily astrological, that describe phenomena attending solar eclipses that are almost certainly coronal structures and prominences. Thus, these aspects of the present character of solar activity have apparently occurred at other times in history, if not continuously. (orig.)

  7. Prostate cancer incidence in Australia correlates inversely with solar radiation.

    Science.gov (United States)

    Loke, Tim W; Seyfi, Doruk; Sevfi, Doruk; Khadra, Mohamed

    2011-11-01

    What's known on the subject? and What does the study add? Increased sun exposure and blood levels of vitamin D have been postulated to be protective against prostate cancer. This is controversial. We investigated the relationship between prostate cancer incidence and solar radiation in non-urban Australia, and found a lower incidence in regions receiving more sunlight. In landmark ecological studies, prostate cancer mortality rates have been shown to be inversely related to ultraviolet radiation exposure. Investigators have hypothesised that ultraviolet radiation acts by increasing production of vitamin D, which inhibits prostate cancer cells in vitro. However, analyses of serum levels of vitamin D in men with prostate cancer have failed to support this hypothesis. This study has found an inverse correlation between solar radiation and prostate cancer incidence in Australia. Our population (previously unstudied) represents the third group to exhibit this correlation. Significantly, the demographics and climate of Australia differ markedly from those of previous studies conducted on men in the United Kingdom and the United States. • To ascertain if prostate cancer incidence rates correlate with solar radiation among non-urban populations of men in Australia. • Local government areas from each state and territory were selected using explicit criteria. Urban areas were excluded from analysis. • For each local government area, prostate cancer incidence rates and averaged long-term solar radiation were obtained. • The strength of the association between prostate cancer incidence and solar radiation was determined. • Among 70 local government areas of Australia, age-standardized prostate cancer incidence rates for the period 1998-2007 correlated inversely with daily solar radiation averaged over the last two decades. •  There exists an association between less solar radiation and higher prostate cancer incidence in Australia. © 2011 THE AUTHORS. BJU

  8. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  9. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  10. Radiation effects in heteroepitaxial InP solar cells

    Science.gov (United States)

    Weinberg, I.; Curtis, H. B.; Swartz, C. K.; Brinker, D. J.; Vargas-Aburto, C.

    1993-01-01

    Heteroepitaxial InP solar cells, with GaAs substrates, were irradiated by 0.5 and 3 MeV protons and their performance, temperature dependency, and carrier removal rates determined as a function of fluence. The radiation resistance of the present cells was significantly greater than that of non-heteroepitaxial InP cells at both proton energies. A clear difference in the temperature dependency of V(sub oc), was observed between heteroepitaxial and homoepitaxial InP cells. The analytically predicted dependence of dV(sub oc)/dT on Voc was confirmed by the fluence dependence of these quantities. Carrier removal was observed to increase with decreasing proton energy. The results obtained for performance and temperature dependency were attributed to the high dislocation densities present in the heteroepitaxial cells while the energy dependence of carrier removal was attributed to the energy dependence of proton range.

  11. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  12. Solar radiation and thermal performance of solar collectors for Denmark

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark.......This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark....

  13. UV radiation hardness of silicon inversion layer solar cells

    International Nuclear Information System (INIS)

    Hezel, R.

    1990-01-01

    For full utilization of the high spectral response of inversion layer solar cells in the very-short-wavelength range of the solar spectrum sufficient ultraviolet-radiation hardness is required. In addition to the charge-induced passivation achieved by cesium incorporation into the silicon nitride AR coating, in this paper the following means for further drastic reduction of UV light-induced effects in inversion layer solar cells without encapsulation are introduced and interpretations are given: increasing the nitride deposition temperature, silicon surface oxidation at low temperatures, and texture etching and using higher substrate resistivities. High UV radiation tolerance and improvement of the cell efficiency could be obtained simultaneously

  14. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  15. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  16. Development of dual stream PCRTM-SOLAR for fast and accurate radiative transfer modeling in the cloudy atmosphere with solar radiation

    Science.gov (United States)

    Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.

    2016-12-01

    Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.

  17. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  18. Efficiency of solar radiation conversion in photovoltaic panels

    Directory of Open Access Journals (Sweden)

    Kurpaska Sławomir

    2018-01-01

    Full Text Available This paper included analysis the conversion efficiency in photovoltaic panels. The tests were done between February and June at a test stand equipped with three commonly used types of photovoltaic panels: poly- and monocrystalline silicon and with semi-conductive layer made of copper (Cu, indium (In, gallium (Ga and selenium (Se (CIGS. Five days of each month were selected for a detailed analysis. They were close to the so-called recommended day for calculations in solar power engineering. Efficiency, calculated as the yield of electrical energy in relation to solar radiation energy reaching the panels was made conditional upon solar radiation intensity and ambient temperature. It was found that as solar radiation intensity and ambient temperature increase, the efficiency of solar radiation conversion into electricity is reduced. Correlation dependence was determined for the test data obtained, describing temperature change of panels depending on climatic conditions. It was found that as panel temperature increases, the conversion efficiency is reduced. Within the tested scope of experiment conditions, the efficiency was reduced in the range between 20.1 and 22.8%. The authors also determined the average efficiency values in individual test months together with average ambient conditions of the environment where the process of solar radiation conversion took place.

  19. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  20. Effects of solar electromagnetic radiation on the terrestrial environment

    International Nuclear Information System (INIS)

    Dickinson, R.E.

    1986-01-01

    The general intent of this essay is to discuss the effect of solar electromagnetic radiation on the terrestrial environment. Instead of giving a systematic approach considering all environment processes where solar emission is the primary energy source and all important materials which have been generated by solar driven processes, the author sketches an impression of the range of the effects of solar radiation on the environment by surveying a number of topics of particular current interest, in varying levels of detail. These include atmospheric chemistry, some aspects of the transfer of radiation within the atmosphere, global energy balance and climate feedbacks, especially those due to clouds, impacts of fossil fuel energy use, evolution of early life processes, photosynthesis and plant productivity as it relates to photosynthesis and the global carbon cycle. (Auth.)

  1. The virtual enhancements - solar proton event radiation (VESPER) model

    Science.gov (United States)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  2. National Solar Radiation Database (NSRDB) SolarAnywhere 10 km Model Output for 1989 to 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Solar Radiation Database (NSRDB) was produced by the National Renewable Energy Laboratory under the U.S. Department of Energy's Office of Energy...

  3. Spatial solar radiation distribution analysis in afforestation at horqin desert, China

    International Nuclear Information System (INIS)

    Hao, A.; Haraguchi, T.; Nakano, Y.; Amaya, T.

    2007-01-01

    Forestation is one of the effective ways to prevent the desertification. This study was conducted to evaluate the effects of big project of forestation going on at Naimanki, Horqin Desert in China. First, a simulation model was proposed to estimate solar radiation environment in the poplars forest. Second, using fisheye-photographs taken at several points on the soil surface between tree rows, gap space of the canopy was calculated with applying the Gap Light Analyzer (GLA). Third, the gap space data were used for simulating direct radiation, diffused radiation and scattered radiation at different points on the soil surface. Fourth, the accuracy of simulation model was checked by comparing the estimated solar radiations at four points on the soil surface with the observation. The estimated values showed good agreement with the observation. Once the fisheye-photographs were taken at any points on the soil surface, daily fluctuations of solar radiation in the forestation can be calculated. Solar radiation acts main role on energy balance, heat balance and water balance phenomena in the forestation. The proposed method would be effectively used for evaluating the environmental modification brought by the forestation in the desert

  4. Calculation and mapping of direct and diffuse solar radiation in Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    Knowledge of direct and diffuse solar radiation has been of vital importance in assessing the energy potential of Costa Rica. The work is focused on the calculation and plotting of contour maps of the direct and diffuse solar radiation, based in sixty-two radiometric stations scattered throughout the country. In tracing these contours have been used experimental and predicted values of direct and diffuse radiation. Additionally, direct and diffuse solar radiation is compared during the dry season and the rainy season in the six climatic regions of the country: Valle Central, North Pacific, Central Pacific, South Pacific, North Zone and Caribbean Region. Daily average levels of radiation observed directly have been from 6.1 and 10.1 MJ/m 2 , with higher values in the northern sections of the Pacific Slope, west of Valle Central and the tops of the highest mountains. The lowest values have coincided with the North Zone and Caribbean Region. The highest values of diffuse radiation have coincided with the North Zone and South Pacific. An increase in direct solar radiation by 40% is observed in the month of the dry season. (author) [es

  5. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    Science.gov (United States)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  6. Influence of anthropogenic aerosol on solar radiation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H M

    1993-12-01

    Backscatter of solar radiation by aerosol and the cooling thus induced, is the single largest uncertainty factor in assessing the climate effect of the greenhouse gases. The dominant reason for the uncertainty in the aerosol effect is its local nature. Therefore it is only via localized efforts that estimates can be improved. It is the aim of the present study to better assess the amount of solar radiation intercepted by aerosol, especially that of aerosol of anthropogenic origin in Europe. The assessment is realized along three interconnected approaches. First, empirical factors stemming from measurements in the US and used in the present estimates of the reflection of solar radiation by anthropogenic aerosol are checked for their validity in the European domain. Secondly, historical data on solar flux in Europe are related to the historic trend in aerosol loading. Finally, a sophisticated aerosol and cloud (radiation) module is developed for incorporation in a climate model. The radiation module uses aerosol characteristics as measured in the field and is validated via solar radiation measurements. The concerted investigation started in January 1993. The data obtained in the first phase of the study formed the basis for the definite detailed approach and will therefore be reported in this text. 1 fig., 9 refs.

  7. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  8. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  9. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  10. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  11. A simple formula for estimating global solar radiation in central arid deserts of Iran

    International Nuclear Information System (INIS)

    Sabziparvar, Ali A.

    2008-01-01

    Over the last two decades, using simple radiation models has been an interesting task to estimate daily solar radiation in arid and semi-arid deserts such as those in Iran, where the number of solar observation sites is poor. In Iran, most of the models used so far, have been validated for a few specific locations based on short-term solar observations. In this work, three different radiation models (Sabbagh, Paltridge, Daneshyar) have been revised to predict the climatology of monthly average daily solar radiation on horizontal surfaces in various cities in central arid deserts of Iran. The modifications are made by the inclusion of altitude, monthly total number of dusty days and seasonal variation of Sun-Earth distance. A new height-dependent formula is proposed based on MBE, MABE, MPE and RMSE statistical analysis. It is shown that the revised Sabbagh method can be a good estimator for the prediction of global solar radiation in arid and semi-arid deserts with an average error of less than 2%, that performs a more accurate prediction than those in the previous studies. The required data for the suggested method are usually available in most meteorological sites. For the locations, where some of the input data are not reported, an alternative approach is presented. (author)

  12. Estimation of potential solar radiation using 50m grid digital terrain model

    International Nuclear Information System (INIS)

    Kurose, Y.; Nagata, K.; Ohba, K.; Maruyama, A.

    1999-01-01

    To clarify the spatial distribution of solar radiation, a model to estimate the potential incoming solar radiation with 50m grid size was developed. The model is based on individual calculation of direct and diffuse solar radiation accounting for the effect of topographic shading. Using the elevation data in the area with radius 25km, which was offered by the Digital Map 50m Grid, the effect of topographic shading is estimated as angle of elevation for surrounding configuration to 72 directions. The estimated sunshine duration under clear sky conditions agreed well with observed values at AMeDAS points of Kyushu and Shikoku region. Similarly, there is a significant agreement between estimated and observed variation of solar radiation for monthly mean conditions over complex terrain. These suggest that the potential incoming solar radiation can be estimated well over complex terrain using the model. Locations of large fields over complex terrain agreed well with the area of the abundant insolation condition, which is defined by the model. The model is available for the investigation of agrometeorological resources over complex terrain. (author)

  13. Observation of solar wind with radio-star scintillation

    International Nuclear Information System (INIS)

    Watanabe, Takashi

    1974-01-01

    Large solar flares occurred in groups in early August 1972, and many interesting phenomena were observed. The solar wind condition during this period, obtained by scintillation observation, is reviewed. The velocity of solar wind has been determined from the observation of interplanetary space scintillation at Toyokawa, Fujigamine and Sugadaira. Four to ten radio wave sources were observed for ten minutes at each southing every day. Strong earth magnetic storm and the Forbush decrease of cosmic ray were observed during the period from August 3rd to 7th. Pioneer 9 observed a solar wind having the maximum velocity as high as 1,100 km/sec, and HEOS-II observed a solar wind having the velocity close to 2,000 km/sec. On the other hand, according to the scintillation of 3C-48 and 3C-144, the velocity of solar wind passing in the interplanetary space on the westside of the earth was only 300 to 400 km/sec. Therefore it is considered that the condition of solar wind on the east side of the earth differs from that on the west side of the earth. Pioneer 9 observed the pass of a shock wave on August 9th. With all radio wave sources, high velocity solar wind was observed and Pioneer 6 positioned on the west side of the earth also observed it. The thickness of this shock wave is at least 0.3 AU. Discussion is made on the cause for the difference between the asymmetric shock wave in the direction of south-west and symmetrical shock wave. The former may be blast wave, and the latter may be piston driven shock wave and the like. (Iwakiri, K.)

  14. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    Science.gov (United States)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  15. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  16. Observed solar near UV variability: A contribution to variations of the solar constant

    International Nuclear Information System (INIS)

    London, J.; Pap, J.; Rottman, G.J.

    1989-01-01

    Continuous Measurements of the Solar UV have been made by an instrument on the Solar Mesosphere Explorer (SME) since October 1981. The results for the wavelength interval 200 to 300 nm show an irradiance decrease to a minimum in early 1987 and a subsequent increase to mid-April 1989. The observed UV changes during part of solar cycles 21 to 22 represent approx. 35 percent (during the decreasing phase) and 25 percent (during the increasing phase) of the observed variations of the solar constant for the same time period as the SME measurements

  17. Effect of solar radiation on drying house performance

    International Nuclear Information System (INIS)

    Rachmat, R.

    2000-01-01

    Solar drying is one of thermal utilization where radiation energy can be utilized efficiently. Solar drying of all sorts of agricultural products have been thoroughly studied and reported in literature, but brown rice drying system has not yet done as many as other products. The aim of the present study is to investigate the effect of solar radiation on drying house performance and brown rice drying characteristics. A construction of drying house is made from FRP sheets with 30 deg. of root slope faces southern part and inside the drying house is installed a flat bed dryer. The site of construction has 136 deg. 31.4'E in longitude and 34 deg. 43.8N in latitude with 3 m in elevation from sea level. The investigated parameters are global solar radiation, absorbed and net radiation and brown rice drying characteristics. The results showed that in unload condition, the air temperature inside drying house was higher (10 deg. C - 12 deg. C) than ambient air when there was not collector and temperature rise become higher (16 deg. C) when there was a black FRP collector inside drying house. The effect of solar radiation on temperature rise has the trend as a linear function. The heat collection efficiency of drying house with black FRP collector was two times higher (36.9 percent) than that without collector (16.3 percent). These phenomena exhibited significant result of collector utilization to the advantageous condition for a drying purpose [in

  18. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  19. SRADLIB: A C Library for Solar Radiation Modelling

    International Nuclear Information System (INIS)

    Balenzategui, J. L.

    1999-01-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As result of this study and revision, a C library (SRADLIB) is presented as a key tool for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. Some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs

  20. Observer-Based Bilinear Control of First-Order Hyperbolic PDEs: Application to the Solar Collector

    KAUST Repository

    Mechhoud, Sarra

    2015-12-18

    In this paper, we investigate the problem of bilinear control of a solar collector plant using the available boundary and solar irradiance measurements. The solar collector is described by a first-order 1D hyperbolic partial differential equation where the pump volumetric flow rate acts as the plant control input. By combining a boundary state observer and an internal energy-based control law, a nonlinear observer based feedback controller is proposed. With a feed-forward control term, the effect of the solar radiation is cancelled. Using the Lyapunov approach we prove that the proposed control guarantees the global exponential stability of both the plant and the tracking error. Simulation results are provided to illustrate the performance of the proposed method.

  1. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    Science.gov (United States)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  2. Solar System Observations with the James Webb Space Telescope

    OpenAIRE

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  3. Increase of solar radiation due to climate change and its impact on solar energy use

    International Nuclear Information System (INIS)

    Kuhnke, K.; Rahme, A.; Harling, J.; Arensmann, R.

    2008-01-01

    Full text: There is a significant change in solar radiation in Central Europe coinciding with the IPCC climate change model calculations. The increase of yearly solar radiation on the horizontal surface is about 0.38 percent/year. On the other hand, photovoltaic solar modules show an ageing effect of the same order of magnitude, i.e. a reduction of yearly energy yield between 0.3 and 0.5 percent/year. This reduction is normally taken into account in economic calculations such as payback time and internal rate of interest. As the two trends of increase in radiation and ageing of solar modules are in opposite direction to each other, they will - with their uncertainties - neutralize one another to zero. Thus, the energy production of photovoltaic systems can be calculated without any deductions due to ageing in the future. (authors)

  4. Solar wind ion trends and signatures: STEREO PLASTIC observations approaching solar minimum

    Directory of Open Access Journals (Sweden)

    A. B. Galvin

    2009-10-01

    Full Text Available STEREO has now completed the first two years of its mission, moving from close proximity to Earth in 2006/2007 to more than 50 degrees longitudinal separation from Earth in 2009. During this time, several large-scale structures have been observed in situ. Given the prevailing solar minimum conditions, these structures have been predominantly coronal hole-associated solar wind, slow solar wind, their interfaces, and the occasional transient event. In this paper, we extend earlier solar wind composition studies into the current solar minimum using high-resolution (1-h sampling times for the charge state analysis. We examine 2-year trends for iron charge states and solar wind proton speeds, and present a case study of Carrington Rotation 2064 (December 2007 which includes minor ion (He, Fe, O kinetic and Fe composition parameters in comparison with proton and magnetic field signatures at large-scale structures observed during this interval.

  5. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    results of main belt comets, asteroids with ring system, lunar studies, planned exploration of planetary satellites that may harbour sub-surface oceans, there is increasing need to include polarimetric (linear, circular and differential) as an integral observing mode of instruments and facilities. For laboratory measurements, there is a need to identify simulants that mimic the polarimetric behaviour of solar system small bodies and measure their polarimetric behavior as function of various physical process they are subject to and have undergone radiation changes of their surfaces. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for groundbased facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  6. Sunscreens: topical and systemic approaches for protection of human skin against harmful effects of solar radiation

    International Nuclear Information System (INIS)

    Pathak, M.A.

    1982-01-01

    This review deals with topical and systemic approaches for protection of human skin against the harmful effects of solar radiation. Two concerns about the deleterious effects of sun exposure involve: (1) acute effects (e.g., sunburn and drug-induced phototoxicity) and (2) potential long-term risks of repeated sun exposures leading to development of solar elastosis, keratoses, induction of both nonmelanoma and melanoma skin cancer, and alteration of immune responses and functions. Action spectra of normal and abnormal reactions of human skin to acute and chronic effects of solar radiation are presented with a view to helping the physician prescribe the appropriate sunscreens. Factors that influence acute effects of sunburn are reviewed. Various artificial methods effective in minimizing or preventing harmful effects of solar radiation, both in normal individuals and in patients with photosensitivity-related problems, are discussed. Emphasis is placed on the commercially available chemical sunscreens and their properties. Sun protection factor (SPF) values of several brand-name formulations determined with a solar simulator under indoor conditions (laboratory) and with solar radiation under natural, field conditions are presented. Factors responsible for variations of SPF values observed under indoor and outdoor conditions are reviewed. Systemic photoprotective agents and their limitations are outlined. The photobiology of melanin pigmentation (the tanning reaction) is briefly discussed, with emphasis on the dangers of using quick-tanning lotions for stimulation of the tanning reaction

  7. Solar radiation pressure and deviations from Keplerian orbits

    Energy Technology Data Exchange (ETDEWEB)

    Kezerashvili, Roman Ya. [Physics Department, New York City College of Technology, the City University of New York, Brooklyn, NY 11201 (United States); Vazquez-Poritz, Justin F. [Physics Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201 (United States)], E-mail: jporitz@gmail.com

    2009-05-04

    Newtonian gravity and general relativity give exactly the same expression for the period of an object in circular orbit around a static central mass. However, when the effects of the curvature of spacetime and solar radiation pressure are considered simultaneously for a solar sail propelled satellite, there is a deviation from Kepler's third law. It is shown that solar radiation pressure affects the period of this satellite in two ways: by effectively decreasing the solar mass, thereby increasing the period, and by enhancing the effects of other phenomena, potentially rendering some of them detectable. In particular, we consider deviations from Keplerian orbits due to spacetime curvature, frame dragging from the rotation of the sun, the oblateness of the sun, a possible net electric charge of the sun, and a very small positive cosmological constant.

  8. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  9. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Science.gov (United States)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  10. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  11. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  12. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    sources, namely photovoltaic (PV) panels, to roughly determine the energy producing potential of an installation’s solar array. The implicit...power resources assembled as a single system (generator, storage, distribution and load), with the ability to run independently as an “island” and/or...atmospheric layers that will act on the solar radiation as it traverses strata. These terms are a function of cloud type, size , and density. To create a

  13. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  14. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  15. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  16. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  17. Solar Extreme UV radiation and quark nugget dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  18. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  19. Modelling solar radiation interception in row plantation. 3. Application to a traditional vineyard

    International Nuclear Information System (INIS)

    Sinoquet, H.; Valancogne, C.; Lescure, A.; Bonhomme, R.

    1992-01-01

    Modeling solar radiation interception in row plantation. III. Application to a traditional vineyard. A previously described model of solar radiation interception was applied to a spatially discontinuous canopy: that of a traditional vineyard in which the classical terms of the radiative balance and the spatial distribution of the radiation transmitted to the soil were measured. Comparison of measured and simulated data gave satisfactory agreement for reflected radiation (fig 4), but major discrepancies appeared for mean transmitted radiation (fig 5). The use of small stationary sensors for measuring the transmitted radiation explains the latter observation, since most of the time they measured radiation received on the ground in the sunflecks or in the shaded area rather than mean radiation. This was verified by comparing the measured and simulated spatial distribution of transmitted radiation (figs 7, 8). Finally, the influence of the woody parts which were not taken into consideration in the model was clearly identified : it significantly reduced the transmission of incident radiation (fig 9), and to a greater degrees the closer the sensor was to the vegetation row [fr

  20. Short-range solar radiation forecasts over Sweden

    Directory of Open Access Journals (Sweden)

    T. Landelius

    2018-04-01

    Full Text Available In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble.The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models.Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  1. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  2. Determination of variations of the solar radius from solar eclipse observations

    Science.gov (United States)

    Sofia, S.; Dunham, D. W.; Fiala, A. D.

    1980-01-01

    This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.

  3. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    NARCIS (Netherlands)

    Heinemann, A.B.; Oort, van P.A.J.; Simoes Fernandes, D.; Maia, A.H.N.

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this

  4. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 1. Bibliography on solar radiation; 1974 nendo taiyo hosha ni kansuru bunken mokuroku. 1. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report is the 1st one among 3 reports 'Bibliography on solar radiation', 'Guideline for using weather data' and 'Observation data on global solar radiation and sunshine duration'. This report is composed of the part 1 'Present state and view of researches on solar radiation' including (1) view of researches on short-wave radiation, (2) atmospheric radiation, (3) scattering of solar radiation, (4) global net radiation and (5) radiometer, and the part 2 including the bibliography and its commentary. (1) describes researches on incident short-wave radiation (solar radiation) and some current issues, (2) describes the basis for quantitative measurement of atmospheric radiation transfer, based on the premise that atmospheric radiation is infrared radiation between the ground surface and atmospheric system. (3) describes scattering of solar radiation in the air, and its effect. (4) describes that the global profile of net radiation of the air-earth system and its seasonal change can be observed directly from the weather satellite roughly, and research on global net radiation is approaching a new era. (NEDO)

  5. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 1. Bibliography on solar radiation; 1974 nendo taiyo hosha ni kansuru bunken mokuroku. 1. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report is the 1st one among 3 reports 'Bibliography on solar radiation', 'Guideline for using weather data' and 'Observation data on global solar radiation and sunshine duration'. This report is composed of the part 1 'Present state and view of researches on solar radiation' including (1) view of researches on short-wave radiation, (2) atmospheric radiation, (3) scattering of solar radiation, (4) global net radiation and (5) radiometer, and the part 2 including the bibliography and its commentary. (1) describes researches on incident short-wave radiation (solar radiation) and some current issues, (2) describes the basis for quantitative measurement of atmospheric radiation transfer, based on the premise that atmospheric radiation is infrared radiation between the ground surface and atmospheric system. (3) describes scattering of solar radiation in the air, and its effect. (4) describes that the global profile of net radiation of the air-earth system and its seasonal change can be observed directly from the weather satellite roughly, and research on global net radiation is approaching a new era. (NEDO)

  6. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    Hill, H.A.

    1984-01-01

    The objective of the project is to detect and monitor climatically significant solar variability by accurate monitoring of the associated variability in solar shape and diameter. The observing program for this project was initiated in 1981. Solar diameter measurements have been taken and data reduction programs for these measurements have been developed. Theoretical analysis of the expected change in the intensity from the solar atmosphere to a given mechanial driving has progressed to the extent that changes in the solar diameter can be related to the associated change in the solar luminosity. An absolute calibration system for the telescope has been constructed and is currently being tested. A proposal is made for the continuation of the work in each of these areas

  7. Effects of solar radiation on the abiotic and bacterially mediated carbon flux in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Anesio, A.M.

    2000-05-01

    In this thesis, I studied some of the current aspects of organic matter photochemistry. I analyzed abiotic photo transformations of several types of dissolved (DOM) and particulate organic matter (POM). I also evaluated the effects of photo transformation of several types of DOM on bacteria. Finally, in a field experiment, I analyzed net effects of solar radiation on organic matter decomposition. DOM undergoes several transformations due to solar irradiation. One such transformation is photooxidation of organic matter into inorganic carbon. Results of this Thesis show that photooxidation is ubiquitous to all kinds of organic matter in both dissolved and particulate forms. The intensity of this process depends on several factors, including DOM composition, radiation type and time of exposure. Besides mineralization to inorganic carbon, DOM undergoes other chemical transformations due to UV radiation, with profound consequences to DOM availability for bacteria. Bioavailability was tested by measuring bacterial growth and respiration on irradiated and nonirradiated DOM from several types of humic matter and plant leachates. Irradiation of freshly-leached DOM often produced negative effects on bacteria, whereas irradiation of humic material was followed by stimulation of bacterial growth. The degree of stimulation seems to be related to the initial bioavailability of the DOM and to the capability of the DOM to produce hydrogen peroxide upon irradiation. Other factors also accounted for differences in bacterial response to photochemical modification of DOM, including length and type of irradiation exposure. The effects of solar radiation on litter decomposition were also evaluated using experiments that more closely mimic natural conditions. I could not observe differences between dry weight loss of leaves and culms exposed to solar radiation or kept in darkness, which may be explained by the fact that abiotic decomposition under solar radiation is counterbalanced by

  8. Exploration of solar radiation data from three geo-political zones in Nigeria.

    Science.gov (United States)

    Adejumo, Adebowale O; Suleiman, Esivue A; Okagbue, Hilary I

    2017-08-01

    In this paper, readings of solar radiation received at three meteorological sites in Nigeria were analysed. Analysis of Variance (ANOVA) statistical test was carried out on the data set to observe the significant differences on radiations for each quarter of the specified years. The data were obtained in raw form from Nigerian Meteorological Agency (NIMET), Oshodi, Lagos. In order to get a clear description and visualization of the fluctuations of the radiation data, each year were considered independently, where it was discovered that for the 3rd quarter of each year, there is a great fall in the intensity of the solar radiation to as low as 73.27 (W/m 2 ), 101.66 (W/m 2 ), 158.51 (W/m 2 ) for Ibadan, Port-Harcourt and Sokoto respectively. A detailed data description is available for the averages across months for each quarter. The data can provide insights on the health implications of exposure to solar radiation and the effect of solar radiation on climate change, food production, rainfall and flood patterns.

  9. Exploration of solar radiation data from three geo-political zones in Nigeria

    Directory of Open Access Journals (Sweden)

    Adebowale O. Adejumo

    2017-08-01

    Full Text Available In this paper, readings of solar radiation received at three meteorological sites in Nigeria were analysed. Analysis of Variance (ANOVA statistical test was carried out on the data set to observe the significant differences on radiations for each quarter of the specified years. The data were obtained in raw form from Nigerian Meteorological Agency (NIMET, Oshodi, Lagos. In order to get a clear description and visualization of the fluctuations of the radiation data, each year were considered independently, where it was discovered that for the 3rd quarter of each year, there is a great fall in the intensity of the solar radiation to as low as 73.27 (W/m2, 101.66 (W/m2, 158.51 (W/m2 for Ibadan, Port-Harcourt and Sokoto respectively. A detailed data description is available for the averages across months for each quarter. The data can provide insights on the health implications of exposure to solar radiation and the effect of solar radiation on climate change, food production, rainfall and flood patterns.

  10. Solar thermal barometer - EurObserv'ER - May 2016

    International Nuclear Information System (INIS)

    2016-05-01

    In 2015, the European Union saw its solar thermal market contract for the seventh year in a row. EurObserv'ER puts sales of solar thermal capacity installed for the heating market (hot water and space heating) at 1861 MWth, equivalent to a 2.7 million m"2 of collectors... a further 8.6% decrease on the previous year's poor performance. Combined solar thermal capacity installed to date in the EU stands at 34.3 GWth, or 49 million m"2 of collectors

  11. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  12. Radiation aspects on the Earth's surface during solar flares

    International Nuclear Information System (INIS)

    Mansurov, K.Zh.; Aitmukhambetov, A.A.

    2002-01-01

    In the paper the results of investigation of radiation solution in the space near the Earth at the different altitudes of the Earth atmosphere and at the ground level in dependence on geo-coordinates and solar activity during 1957-1999 are presented. Radiation is due to the Galactic cosmic ray flux for different periods of the Solar activity: - the radiation doses of the radioactive clouds at latitudes ∼12-13 km which go ground the Earth two or three times were created; - it seems to years that these clouds make a certain contribution to the ecological situation in the Earth atmosphere and on the surface. The radiation near ground level of the Earth for the last 1500 years was calculated also using the data of radioactive carbon 14 C intensity investigation

  13. Measurement of global solar radiation over Brunei Darussalam

    International Nuclear Information System (INIS)

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  14. Studies of diffuse and direct solar radiation over snow

    International Nuclear Information System (INIS)

    Wesely, M.L.; Everett, R.G.

    1976-01-01

    Two interesting questions can be addressed by examination of solar radiation records obtained while the surface is covered with snow. One concerns the extent to which airborne particulate matter affects solar radiation received at the surface during winter conditions that are typical of those in the northeastern quarter of the United States. The other relates to the importance of complicated light scatterng in the earth-atmosphere system when the surface albedo is large. With the snow surface reflecting 50% or more of the incident radiation, it is likely that a significant addition to diffuse radiation would result from light that is reflected from the surface and then scattered back to the earth by the atmosphere. Preliminary data from measurements made during the winter of 1975 to 1976 are reported

  15. Radiative magnetohydrodynamic simulations of solar pores

    NARCIS (Netherlands)

    Cameron, R.; Schuessler, M.; Vögler, A.; Zakharov, V.

    2007-01-01

    Context. Solar pores represent a class of magnetic structures intermediate between small-scale magnetic flux concentrations in intergranular lanes and fully developed sunspots with penumbrae. Aims. We study the structure, energetics, and internal dynamics of pore-like magnetic structures by means of

  16. Observations of the transmittance in two solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Almanza, R.; Bryant, M.C.

    1983-11-01

    A NaCl salt gradient solar pond has been in continuous operation at the University of New Mexico since the fall of 1975; a smaller pond, using KNO/sub 3/ to produce the salinity gradient, was commissioned in the fall of 1981. The distribution of absorbed radiation in the ponds is of key importance in the determination of their efficiencies for collecting and storing solar energy. The absorption coefficient of light in an aqueous solution is very dependent upon wavelength; the spectral distribution of sunlight shifts toward the blue and the amount of solar energy absorbed per unit length of path declines with depth of penetration. The presence of suspended solids and bioforms further complicate the transmittance of sun light through the pond, specially since this contamination tends to vary strongly with depth. Because of its importance to the phytoplankton population , considerable work has been done by oceanographers on the absorption and scattering of light for different wavelengths. However, in a solar pond the big question is the amount of energy reaching the lower convective layer (storage). Several attempts have been made to measure the transmittance in solar ponds, mainly NaCl but the problem is to find a temperature-insensitive submersible pyranometer. Convenient formulas have been offered for the attenuation of solar radiation in pond water by considering it to be divided into spectral bands, or by fitting simple analytical functions, or specifying the extintion coefficient. (For the first method, it is necessary to know the absorption and scattering of light for different lambda.) In this paper some measurements of transmittance in the UNM ponds, are presented thereby exhibiting a simple procedure which may be of interest to others in this field.

  17. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  18. Observations of Halley's Comet by the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Niedner, M. B.

    1986-01-01

    Solar Maximum Mission coronagraph/polarimeter observations of large scale phenomena in Halley's Comet are discussed. Observations of the hydrogen coma with the UV spectrometer are considered. It is concluded that coronograph/polarimeter observations of the disconnection event, in which the entire plasma tail uproots itself from the head of the comet, is convected away in the solar wind at speeds in the 50 to 100 km/sec range (relative to the head), and is replaced by a plasma tail constructed from folding ion-tail rays, are the most interesting.

  19. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  20. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  1. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  2. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  3. Observations of gamma-ray emission in solar flares

    International Nuclear Information System (INIS)

    Forrest, D.J.; Chupp, E.L.; Suri, A.N.; Reppin, C.

    1973-01-01

    This paper reviews the observations of gamma-ray emission made from the OSO-7 satellite in connection with two solar flares in early August 1972. The details of the measurements and a preliminary interpretation of some of the observed features are given. (U.S.)

  4. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    Hill, H.A.

    1991-01-01

    The work performed on solar variability during 1990 at SCLERA is reviewed. That portion of the SCLERA research program supported by the Department of Energy has been directed toward the detection and monitoring of climatically significant solar variability by accurate measurement of the variability in solar shape and diameter. Observations were obtained in 1990 and results from analysis of earlier observations obtained. The observational evidence of systematic long-term changes in the apparent solar diameter and/or radius has been detected, and these changes continue to strongly correlated with long-term changes in solar total irradiance. Additional evidence for internal gravity modes has been found which may be important to understanding the internal structure of the Sun. Each of these findings shows promise for anticipating future changes in the solar luminosity. Progress has been made in setting up an international network based on SCLERA-type instruments to improve the coverage and quality of the observations. A proposal is made for the continuation of support from the Department of Energy for further studies relevant to solar-variability forecasting

  5. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Science.gov (United States)

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  6. POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE

    Energy Technology Data Exchange (ETDEWEB)

    Benford, James N. [Microwave Sciences, 1041 Los Arabis Lane, Lafayette, CA 94549 (United States); Benford, Dominic J., E-mail: jimbenford@gmail.com [NASA’s Goddard Space Flight Center, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2016-07-10

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  7. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  8. new model for solar radiation estimation from measured air

    African Journals Online (AJOL)

    HOD

    RMSE) and correlation ... countries due to the unavailability of measured data in place [3-5]. ... models were used to predict solar radiation in Nigeria by. [12-15]. However ..... "Comparison of Gene Expression Programming with neuro-fuzzy and ...

  9. Glacial Influences on Solar Radiation in a Subarctic Sea.

    Science.gov (United States)

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  10. Effect of solar radiation on surface ozone in Cairo

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, H F.S. [National Research Centre, Air Pollution Research Dept., Cairo (Egypt)

    1992-04-01

    Measurements of surface ozone content over an urban area in Cairo were conducted during a year, May 1989 to April 1990, while solar radiation at the same area was measured. Low and high concentrations of ozone are compared with those recommended by the WHO expert committee regarding the daily cycle of ozone concentration. 15 refs.

  11. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  12. A comparison of outer electron radiation belt dropouts during solar ...

    Indian Academy of Sciences (India)

    Utilizing multiple data sources from the year 1997–2007, this study identifies radiation belt electron dropouts which are ultimately triggered when solar wind stream interfaces (SI) arrived at ... Center for Space Research, School for Physical and Chemical Sciences, North–West University, Potchefstroom 2520, South Africa.

  13. Listing of solar radiation measuring equipment and glossary

    Science.gov (United States)

    Carter, E. A.; Greenbaum, S. A.; Patel, A. M.

    1976-01-01

    An attempt is made to list and provide all available information about solar radiation measuring equipment which are being manufactured and are available on the market. The list is in tabular form and includes sensor type, response time, cost data and comments for each model. A cost code is included which shows ranges only.

  14. Ultraviolet solar radiation and the prevention of erythema

    International Nuclear Information System (INIS)

    Tena, F.; Martinez-Lozano, J.A.; Utrillas, M.P.

    1998-01-01

    An ultraviolet index appropriate for its use in Spain is studied on the basis of those already available in other countries. The suitability of this index to characterise ultraviolet solar radiation and, particularly, the potential risks to human health are discussed. Finally, the main factors affecting this index are identified and their influence is studied. (Author) 43 refs

  15. Estimation of solar radiation energy of Ethiopia from sunshine data

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, N. [Tampere Univ., Dep. of Civil Engineering, Tampere (Finland)

    1996-12-31

    Measurements of global solar radiation on a horizontal surface, for nine meteorological stations in Ethiopia, are compared with their corresponding values computed based on Angstroem relations. Regression coefficients are obtained and correlation equations are determined to predict the global solar radiation. The results shows that Angstroem relations are valid for Ethiopian locations, and the correlation equations can be used to predict the monthly mean daily global solar radiation in the locations considered in this study. This study also proves that the results made by ENEC et al, using the generalised Frere`s coefficients, is unsatisfactory for the prediction of monthly mean daily global solar radiation. On the other hand, the work of Dogniaux and Lemoine, using the regression coefficients a and b as a function of latitude and atmospheric turbidity and grouping large range latitudes to extend the application, can give better estimation. However, for more accurate estimation, several additional meteorological stations have to be evaluated and their regression coefficients have to be determined before grouping in to one relationship to express the variations of a and b under any conditions of equipment and location. (author) 1 fig., 11 tabs., 22 refs.

  16. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    Background. The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals and African albinos, and people spending extended ...

  17. Comparison Of Diffuse Solar Radiation Models Using Data For ...

    African Journals Online (AJOL)

    Measurements of global solar radiation and sunshine duration data during the period from 1984 to 1999 were supplied by IITA (International Institute of Tropical Agriculture) at Onne. The data were used to establish empirical relationships that would connect the daily monthly average diffuse irradiation with both relative ...

  18. Galactic and solar radiation exposure to aircrew during a solar cycle

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Butler, A.; Pierre, M.

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H*(10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events. (author)

  19. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.).

  20. Assessment and comparison of methods for solar ultraviolet radiation measurements

    International Nuclear Information System (INIS)

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.)

  1. Estimation of clear sky hourly global solar radiation in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  2. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  3. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  4. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

    Science.gov (United States)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira

    2018-03-01

    A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

  5. Effect of solar radiation and temperature on grain number definition in maize

    International Nuclear Information System (INIS)

    Didonet, A.D.; Rodrigues, O.; Mario, J.L.; Ide, F.

    2002-01-01

    The objective of this experiment was to study the effect of solar radiation and temperature regime between emergence and silking on the crop development rate and the number of grain per growing rate unit of the crop, and the relationships of such parameters with the grain yield of corn hybrids. The experiments were carried out in the years 1994/95 to 1996/97, using the commercial hybrids C-901, XL-560, and XL-678 in 1994/95 and the hybrids C-901, XL-212, and XL-370 in the remaining years. The treatments consisted of sowing dates from September to December, in 1994/95, and from August to December, in 1995/96 and 1996/97. High dry matter accumulation was observed when there was high incidence of solar radiation during the period between emergence and flowering. However, as the mean air temperature exerts effect on the duration of that period, the growth rate during such period was more associated to temperature than to solar radiation. The effect of the temperature was inversely proportional to the number of grains per unit of growing rate in this period, possibly due to the longer time for solar radiation interception. As a result of the association between temperature and radiation, the photothermal coefficient was positively associated with the grain yield. (author) [pt

  6. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  7. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  8. Development of software for estimating clear sky solar radiation in Indonesia

    Science.gov (United States)

    Ambarita, H.

    2017-01-01

    Research on solar energy applications in Indonesia has come under scrutiny in recent years. Solar radiation is harvested by solar collector or solar cell and convert the energy into useful energy such as heat and or electricity. In order to provide a better configuration of a solar collector or a solar cell, clear sky radiation should be estimated properly. In this study, an in-house software for estimating clear sky radiation is developed. The governing equations are solved simultaneously. The software is tested in Medan city by performing a solar radiation measurements. For clear sky radiation, the results of the software and measurements ones show a good agreement. However, for the cloudy sky condition it cannot predict the solar radiation. This software can be used to estimate the clear sky radiation in Indonesia.

  9. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations

    Directory of Open Access Journals (Sweden)

    A. R. Breen

    Full Text Available The solar maximum solar wind is highly structured in latitude, longitude and in time. Coronal measurements show a very high degree of variability, with large variations that are less apparent within in situ spacecraft measurements. Interplanetary scintillation (IPS observations from EISCAT, covering distances from 20 to 100 solar radii (RS, are an ideal source of information on the inner solar wind and can be used, therefore, to cast light on its evolution with distance from the Sun. Earlier comparisons of in situ and IPS measurements under solar minimum conditions showed good large-scale agreement, particularly in the fast wind. In this study we attempt a quantitative comparison of measurements made over solar maximum by EISCAT (20–100 RS and the Wind and Ulysses spacecraft (at 215 RS and 300–1000 RS, respectively. The intervals studied were August–September 1999, May 2000, September 2000 and May 2001, the last-named being the period of the second Ulysses fast latitude scan. Both ballistic and – when possible – MHD/ballistic hybrid models were used to relate the data sets, and we compare the results obtained from these two mapping methods. The results of this study suggest that solar wind velocities measured in situ were less variable than those estimated from IPS measurements closer to the Sun, with the greatest divergence between IPS velocities and in situ measurements occurring in regions where steep longitudinal velocity gradients were seen in situ. We suggest that the interaction between streams of solar wind with different velocities leads to "smoothing" of solar wind velocities between 30–60 RS and 1 AU, and that this process continues at greater distances from the Sun.

    Key words. Interplanetary physics (solar wind plasma; sources of the solar wind; instruments and techniques

  11. Observational Evidence of Magnetic Waves in the Solar Atmosphere

    Science.gov (United States)

    McIntosh, Scott W.

    2012-03-01

    The observational evidence in supporting the presence of magnetic waves in the outer solar atmosphere is growing rapidly - we will discuss recent observations and place them in context with salient observations made in the past. While the clear delineation of these magnetic wave "modes" is unclear, much can be learned about the environment in which they originated and possibly how they are removed from the system from the observations. Their diagnostic power is, as yet, untapped and their energy content (both as a mechanical source for the heating of coronal material and acceleration of the solar wind) remains in question, but can be probed observationally - raising challenges for modeling efforts. We look forward to the IRIS mission by proposing some sample observing sequences to help resolve some of the zoological issues present in the literature.

  12. Clinical observation of radiation urinary bladder disease

    International Nuclear Information System (INIS)

    Jin Yuke; Liu Libo; Zhang Haiying; Liang Shuo; Chen Dawei; Wu Zhenfeng; Dong Lihua; Lu Xuejun

    2004-01-01

    Objective: Clinical characteristic, diagnosis and treatment of radiation urinary bladder disease induced by radiation therapy for cancers in the pelvis were inquired into for providing diagnostic basis. Methods: Statistical analysis for the clinical cases was carried out. Results: The incidence of radiation bladder diseases induced by radiation therapy of cervix cancer are about 0.8%-2.96%, with an average of 2.14%. Radiation bladder disease is divided into acute radiation cystitis, chronic radiation cystitis and radiation vesical fistula. Chronic radiation cystitis is seen most often in the clinic and its main clinical symptom is painless macroscopic hematuria, which is again subdivided into slight and severe degrees. Diagnosis should include history of exposure to radiation, which dose exceed the dose threshold, and typical clinical characteristics. Conclusion: The characteristics, types and diagnostic basis of radiation urinary bladder disease analyzed in this study can provide the reference for drawing up diagnostic standard

  13. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Science.gov (United States)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  14. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  15. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  16. Estimation of global solar radiation by means of sunshine duration

    Energy Technology Data Exchange (ETDEWEB)

    Luis, Mazorra Aguiar; Felipe, Diaz Reyes [Electrical Engineering Dept., Las Palmas de Gran Canaria Univ. (U.L.P.G.C.), Campus Univ. Tafira (Spain); Pilar, Navarro Rivero [Canary Islands Technological Inst. (I.T.C.), Gran Canaria (Spain)

    2008-07-01

    This paper analyses the relationship between global solar irradiation and sunshine duration with different estimation models for the island of Gran Canaria (Spain). These parameters were taken from six measurement stations around the Island, and selected for their reliability and the long period of time they covered. All data used in this paper were handed over by the Canary Islands Technological Institute (I.T.C.). As a first approach, it was decided to study the Angstrom lineal model. In order to improve the knowledge on solar resources, a Typical Meteorological Year (TMY) was created from all daily data. TMY shows differences between southern and northern locations, where Trade Winds generate clouds during the summer months. TMY resumes a data bank much longer than a year in duration, generating the characteristics for a year series of each location, for both irradiation and sunshine duration. To create the TMY, weighted means have been used to smooth high or low values. At first, Angstrom lineal model has been used to estimate solar global irradiation from sunshine duration values, using TMY. But the lineal model didn't reproduce satisfactory results when used to obtain global solar radiation from all daily sunshine duration data. For this reason, different models based in both parameters were used. The parameters estimation of this model was achieved both from TMY daily and monthly series and from all daily data for every location. Because of the weather stability all over the year in the Island, most of the daily data are concentrated in a close range, occasioning a deviation in the lineal equations. To avoid this deviation it was proposed to consider a limit condition data, taking into account values out of the main cloud of data. Additionally, different models were proposed (quadratic, cubic, logarithmic and exponential) to make a regression from all daily data. The best results were obtained with the exponential model proposed in this paper. The

  17. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  18. Higher plant acclimation to solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Robberecht, R.

    1981-01-01

    The objectives of this study were to determine: (1) the relationship between plant sensitivity and epidermal uv attenuation, (2) the effect of phenotypic changes in the leaf epidermis, resulting from uv-B exposure, on plant sensitivity to uv radiation, and (3) the platicity of these changes in the epidermis leading to plant acclimation to uv-B radiation. A mechanism of uv-B attenuation, possibly involving the biosynthesis of uv-absorbing flavonoid compounds in the epidermis and mesophyll under the stress of uv-B radiation, and a subsequent increase in the uv-B attenuation capacity of the epidermis, is suggested. The degree of plant sensitivity and acclimation to natural and intensified solar uv-B radiation may involve a dynamic balance between the capacity for uv-B attenuation and uv-radiation-repair mechanisms in the leaf

  19. Diamagnetic effect in the foremoon solar wind observed by Kaguya

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-04-01

    Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.

  20. Establishing a ultraviolet radiation observational network and enhancing the study on ultraviolet radiation

    Science.gov (United States)

    Bai, Jianhui; Wang, Gengchen

    2003-09-01

    On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.

  1. Piecewise mass flows within a solar prominence observed by the New Vacuum Solar Telescope

    Science.gov (United States)

    Li, Hongbo; Liu, Yu; Tam, Kuan Vai; Zhao, Mingyu; Zhang, Xuefei

    2018-06-01

    The material of solar prominences is often observed in a state of flowing. These mass flows (MF) are important and useful for us to understand the internal structure and dynamics of prominences. In this paper, we present a high resolution Hα observation of MFs within a quiescent solar prominence. From the observation, we find that the plasma primarily has a circular motion and a downward motion separately in the middle section and legs of the prominence, which creates a piecewise mass flow along the observed prominence. Moreover, the observation also shows a clear displacement of MF's velocity peaks in the middle section of the prominence. All of these provide us with a detailed record of MFs within a solar prominence and show a new approach to detecting the physical properties of prominence.

  2. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  3. Applying Nyquist's method for stability determination to solar wind observations

    Science.gov (United States)

    Klein, Kristopher G.; Kasper, Justin C.; Korreck, K. E.; Stevens, Michael L.

    2017-10-01

    The role instabilities play in governing the evolution of solar and astrophysical plasmas is a matter of considerable scientific interest. The large number of sources of free energy accessible to such nearly collisionless plasmas makes general modeling of unstable behavior, accounting for the temperatures, densities, anisotropies, and relative drifts of a large number of populations, analytically difficult. We therefore seek a general method of stability determination that may be automated for future analysis of solar wind observations. This work describes an efficient application of the Nyquist instability method to the Vlasov dispersion relation appropriate for hot, collisionless, magnetized plasmas, including the solar wind. The algorithm recovers the familiar proton temperature anisotropy instabilities, as well as instabilities that had been previously identified using fits extracted from in situ observations in Gary et al. (2016). Future proposed applications of this method are discussed.

  4. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  5. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  6. A Kalman Filter-Based Method for Reconstructing GMS-5 Global Solar Radiation by Introduction of In Situ Data

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-06-01

    Full Text Available Solar radiation is an important input for various land-surface energy balance models. Global solar radiation data retrieved from the Japanese Geostationary Meteorological Satellite 5 (GMS-5/Visible and Infrared Spin Scan Radiometer (VISSR has been widely used in recent years. However, due to the impact of clouds, aerosols, solar elevation angle and bidirectional reflection, spatial or temporal deficiencies often exist in solar radiation datasets that are derived from satellite remote sensing, which can seriously affect the accuracy of application models of land-surface energy balance. The goal of reconstructing radiation data is to simulate the seasonal variation patterns of solar radiation, using various statistical and numerical analysis methods to interpolate the missing observations and optimize the whole time-series dataset. In the current study, a reconstruction method based on data assimilation is proposed. Using a Kalman filter as the assimilation algorithm, the retrieved radiation values are corrected through the continuous introduction of local in-situ global solar radiation (GSR provided by the China Meteorological Data Sharing Service System (Daily radiation dataset_Version 3 which were collected from 122 radiation data collection stations over China. A complete and optimal set of time-series data is ultimately obtained. This method is applied and verified in China’s northern agricultural areas (humid regions, semi-humid regions and semi-arid regions in a warm temperate zone. The results show that the mean value and standard deviation of the reconstructed solar radiation data series are significantly improved, with greater consistency with ground-based observations than the series before reconstruction. The method implemented in this study provides a new solution for the time-series reconstruction of surface energy parameters, which can provide more reliable data for scientific research and regional renewable-energy planning.

  7. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  8. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2012

    International Nuclear Information System (INIS)

    2012-05-01

    27545 MWth: the EU's solar thermal base to date at the end of 2011. After two years of sharp decline, the European solar thermal market is bottoming out. The EurObserv'ER survey findings are that the installation figure fell just 1.9% in comparison with 2010, giving a newly-installed collector area of 3.7 million m 2 . The concentrated solar power sector has been forging ahead alongside the heat production applications, and at the end of 2011 installed capacity passed the one gigawatt mark in Spain for the first time with 1157.2 MWe

  9. Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate.

    Science.gov (United States)

    Batchu, Sudha Rani; Panditi, Venkata R; O'Shea, Kevin E; Gardinali, Piero R

    2014-02-01

    Roxithromycin, erythromycin, ciprofloxacin and sulfamethoxazole are frequently detected antibiotics in environmental waters. Direct and indirect photolysis of these problematic antibiotics were investigated in pure and natural waters (fresh and salt water) under irradiation of different light sources. Fundamental photolysis parameters such as molar absorption coefficient, quantum yield and first order rate constants are reported and discussed. The antibiotics are degraded fastest under ultraviolet 254 nm, followed by 350 nm and simulated solar radiation. The composition of the matrix (pH, dissolved organic content, chloride ion concentration) played a significant role in the observed photodegradation. Under simulated solar radiation, ciprofloxacin and sulfamethoxazole degrade relatively quickly with half-lives of 0.5 and 1.5h, respectively. However, roxithromycin and erythromycin, macrolides are persistent (half-life: 2.4-10 days) under solar simulation. The transformation products (15) of the targeted antibiotics produced under irradiation experiments were identified using high resolution mass spectrometry and degradation pathways were proposed. © 2013.

  10. Radiologic observations on pulmonary radiation injury

    International Nuclear Information System (INIS)

    Liang Yong

    1992-01-01

    Based on the data of pulmonary radiation injury in 16 cases, the relationship among the radiation dosage and field, the development and onset time of the pulmonary radiation injury were discussed, and the dynamic changes of pulmonary radiation injury in X-ray films were analysed. The author found that: (1) there was a close relationship between the development of radiation injury and radiation dosages and the size of radiation fields, i.e. for the large radiation field, a relatively small dosage was needed for developing radiation injury ; (2) most off acute radiation injury of the lungs appeared within one month of postirradiation therapy, and the chronic pulmonary fibrosis appeared at 4.23 months after radiation therapy, with a fibrosis rate of about 85.7% within a half year; (3) the clinical manifestations of pulmonary radiation injury were not parallel to the X-ray signs, namely the X-ray changes were more severe than clinical manifestations. On the basis of X-ray signs and the dynamic changes of pulmonary radiation injury, the differentiation of radiation injury from interstitial pulmonary metastasis, primary tumor, common pneumonia, and tumor recurrence after radiation therapy were discussed

  11. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  12. Radiative equilibrium in solar prominences reconsidered

    Czech Academy of Sciences Publication Activity Database

    Heinzel, Petr; Anzer, U.

    2012-01-01

    Roč. 539, March (2012), A49/1-A49/6 ISSN 0004-6361 R&D Projects: GA ČR GA205/09/1705; GA ČR GAP209/10/1680 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  13. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  14. The Solar Wind from Pseudostreamers and their Environs: Opportunities for Observations with Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.

    2017-12-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Mid-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of pseudostreamers shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at thepseudostreamer base low in the corona. We review and model possible coronal magnetic configurations and solar wind plasma properties at different distances from the solar surface that

  15. A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.

    Science.gov (United States)

    Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.

    2009-09-01

    Gamma Test (GT). GT is a newly developed algorithm (Koncar, 1997; Agalbjorn, et al.1997) that helps in estimating the best mean squared error (MSE), for a given combination of inputs when modelling an unseen data. The study also explores the ability of GT to determine the optimum data length and optimum number of nearest neighbours for nonlinear modelling of global solar radiation in un-gauged catchments. Artificial neural networks (ANN) and Local linear regression based nonlinear models have been used to test the proposed methodology and the results have shown a high degree of correlation between the observed and estimated solar radiation data. It is believed that this study will initiate further exploration of GT for improving informed data and model selection. References Badescu V., (2008), Modelling Solar radiation at the Earth's Surface, Springer-Verlag Berlin Heidelberg. Grell G. A., Dhudia J. and Stauffer D. R. (1995), A description of fifth generation Penn Stat/NCAR Mesoscale Model (MM5). In NCAR/TN-398 + STR, NCAR Technical Note. Pp. 74-76. Yang K. and Koike T. (2002) Estimating surface solar radiation from upper air humidity. Solar Energy, Vol. 7, 2. pp. 177-186. Kambezidis H. D. and Psiloglou B. E. (2008), The Meteorological Radiation Model (MRM): Advancements and Applications in Modelling solar radiation on earth's surface, Springer-Verlag Berlin Heidelberg. Končar N., (1997), Optimization methodologies for direct inverse neurocontrol. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London. Agalbjörn S, Končar N, Jones A. J., (1997), A note on the gamm test, Neural Computing and Applications 5(1997) p-131

  16. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    Science.gov (United States)

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. © 2016 Phycological Society of America.

  17. Common SphinX and RHESSI observations of solar flares

    Science.gov (United States)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  18. Signals for invisible matter from solar-terrestrial observations

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We observe a strong correlation between the orbital position of the planets with solar phenomena like flares or the variation of EUV irradiance. Similarly, a correlation is found in the study of the ionization content of the Earth atmosphere. Planetary gravitational lensing of one (or more) streams of slow moving invisible matter is proposed as an explanation of such a behaviour.

  19. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  20. Heliosphere Responds to a Large Solar Wind Intensification: Decisive Observations from IBEX

    Science.gov (United States)

    McComas, D. J.; Dayeh, M. A.; Funsten, H. O.; Heerikhuisen, J.; Janzen, P. H.; Reisenfeld, D. B.; Schwadron, N. A.; Szalay, J. R.; Zirnstein, E. J.

    2018-03-01

    Our heliosphere—the bubble in the local interstellar medium produced by the Sun’s outflowing solar wind—has finally responded to a large increase in solar wind output and pressure in the second half of 2014. NASA’s Interstellar Boundary Explorer (IBEX) mission remotely monitors the outer heliosphere by observing energetic neutral atoms (ENAs) returning from the heliosheath, the region between the termination shock and heliopause. IBEX observed a significant enhancement in higher energy ENAs starting in late 2016. While IBEX observations over the previous decade reflected a general reduction of ENA intensities, indicative of a deflating heliosphere, new observations show that the large (∼50%), persistent increase in the solar wind dynamic pressure has modified the heliosheath, producing enhanced ENA emissions. The combination of these new observations with simulation results indicate that this pressure is re-expanding our heliosphere, with the termination shock and heliopause already driven outward in the locations closest to the Sun. The timing between the IBEX observations, a large transient pressure enhancement seen by Voyager 2, and the simulations indicates that the pressure increase propagated through the heliosheath, reflected off the heliopause, and the enhanced density of the solar wind filled the heliosheath behind it before generating significantly enhanced ENA emissions. The coming years should see significant changes in anomalous cosmic rays, galactic cosmic radiation, and the filtration of interstellar neutral atoms into the inner heliosphere.

  1. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  2. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES

    Science.gov (United States)

    Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.

    2017-09-01

    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.

  3. Neural network based method for conversion of solar radiation data

    International Nuclear Information System (INIS)

    Celik, Ali N.; Muneer, Tariq

    2013-01-01

    Highlights: ► Generalized regression neural network is used to predict the solar radiation on tilted surfaces. ► The above network, amongst many such as multilayer perceptron, is the most successful one. ► The present neural network returns a relative mean absolute error value of 9.1%. ► The present model leads to a mean absolute error value of estimate of 14.9 Wh/m 2 . - Abstract: The receiving ends of the solar energy conversion systems that generate heat or electricity from radiation is usually tilted at an optimum angle to increase the solar incident on the surface. Solar irradiation data measured on horizontal surfaces is readily available for many locations where such solar energy conversion systems are installed. Various equations have been developed to convert solar irradiation data measured on horizontal surface to that on tilted one. These equations constitute the conventional approach. In this article, an alternative approach, generalized regression type of neural network, is used to predict the solar irradiation on tilted surfaces, using the minimum number of variables involved in the physical process, namely the global solar irradiation on horizontal surface, declination and hour angles. Artificial neural networks have been successfully used in recent years for optimization, prediction and modeling in energy systems as alternative to conventional modeling approaches. To show the merit of the presently developed neural network, the solar irradiation data predicted from the novel model was compared to that from the conventional approach (isotropic and anisotropic models), with strict reference to the irradiation data measured in the same location. The present neural network model was found to provide closer solar irradiation values to the measured than the conventional approach, with a mean absolute error value of 14.9 Wh/m 2 . The other statistical values of coefficient of determination and relative mean absolute error also indicate the

  4. Characteristics of solar and heliospheric ion populations observed near earth

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles. 33 references

  5. Solar radio observations in support of Skylab A

    Science.gov (United States)

    Gotwols, B. L.

    1974-01-01

    The solar radio spectra were recorded in real time, both on film and magnetic tape, during the period from November 1972 to February 1974. A catalogue of the observations is given for the frequency range 565-1000 MHz and includes descriptions of the bursts, intensity scales, and pertinent remarks. Some theoretical considerations resulting from the research are given. Equipment modified for the experiment is described and the text of the final report which summarizes the research on type IV solar radio bursts is included.

  6. Steady flows in the solar transition region observed with SMM

    International Nuclear Information System (INIS)

    Gebbie, K.B.; Hill, F.; Toomre, J.; November, L.J.; Simon, G.W.; Gurman, J.B.; Shine, R.A.; Woodgate, B.E.; Athay, R.G.; Bruner, E.C. Jr.; Rehse, R.A.; Tandberg-Hanssen, E.A.

    1981-01-01

    Steady flows in the quiet solar transition region have been observed with the Ultraviolet Spectrometer and Polarimeter (UVSP) experiment on the Solar Maximum Mission (SMM) satellite. The persistent vertical motions seen at disk center have spatial rms amplitudes of 1.4 km s -1 in the C II line, 3.9 km s -1 in Si IV, and 4.2 km s -1 in C IV. The amplitudes of the more horizontal flows seen toward the limb tend to be somewhat higher. Plots of steady vertical velocity versus intensity seen at disk center in Si IV and C IV show two distinct branches

  7. Density gradients in the solar plasma observed by interplanetary scintillation

    International Nuclear Information System (INIS)

    Gapper, G.R.; Hewish, A.

    1981-01-01

    A new technique is described which overcomes the limitation set by Fresnel filtering in previous IPS studies of the small-scale density irregularities in the solar plasma. Phase gradients introduced by irregularities larger than the Fresnel limit cause transverse displacements of the small-scale scintillation pattern. In the presence of the solar wind, such refraction effects may be revealed by simultaneous measurements of intensity scintillation at two radio frequencies. Observations show that the structure corresponding to temporal frequencies approximately 0.02 Hz is in agreement with an extrapolation of the Kolmogorov spectrum derived from spacecraft data at lower frequencies. (author)

  8. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  9. Coastal-inland solar radiation difference study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  10. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  11. Initial solar observations with Prototype Brazilian Decimetric Array

    Science.gov (United States)

    Fernandes, F. C. R.; Ramesh, R.; Cecatto, J. R.; Faria, C.; Andrade, M. C.; Subramanian, K. R.; Rajan, M. S. Sundara; Sawant, H. S.

    The Prototype Brazilian Decimetre Array (PBDA) consists of 5 element alt-azimuth mounted parabolic dishes of 4-m diameter, having baselines up to 216 m in East-West direction. We present initial solar observations carried out with the PBDA during the period 22nd November to 11th December, 2004. The frequency of observation was 1.6 GHz. The temporal and spatial resolution were 100 ms and 3 arcmin, respectively.

  12. Ulysses solar wind plasma observations at high southerly latitudes.

    Science.gov (United States)

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  13. Improving magnetosphere in situ observations using solar sails

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter; Schiff, Conrad; Williams, Trevor

    2018-01-01

    Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA's Magnetospheric Multi-Scale mission.

  14. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain)

    International Nuclear Information System (INIS)

    Pablo-Davila, F. de; Labajo, J.L.; Tomas-Sanchez, C.

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  15. Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina

    International Nuclear Information System (INIS)

    Bocco, M.

    2006-01-01

    The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m -2 d -1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation [pt

  16. WIND observations of coherent electrostatic waves in the solar wind

    Directory of Open Access Journals (Sweden)

    A. Mangeney

    1999-03-01

    Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ fpe, coherent wave packets with frequencies in the ion acoustic range fpi < f < fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λD, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.Key words

  17. WIND observations of coherent electrostatic waves in the solar wind

    Directory of Open Access Journals (Sweden)

    A. Mangeney

    Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ fpe, coherent wave packets with frequencies in the ion acoustic range fpi < f < fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λD, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined

  18. Long-term visual health risks from solar ultraviolet radiation

    International Nuclear Information System (INIS)

    Waxler, M.

    1987-01-01

    Ocular exposure to the ultraviolet radiation (UV) contained in sunlight may result in long-term visual health problems. UV plays a role in the etiology of cataracts and possibly in the etiology of visual impairments associated with solar retinopathy, retinopathy of prematurity, ocular aging, cystoid macular edema, retinitis pigmentosa, and senile macular degeneration. The exact does relationships between known UV bioeffects and these ocular problems is, however, uncertain. Thus, there are questions about the extent to which protective measures should be taken to reduce UV exposure of the eye. This paper identifies the long-term visual health problems potentially associated with ocular exposure to solar UV; proposes worst-case assumptions for the role of solar UV in these visual problems; and recommends protective measures based on damage thresholds and worst-case assumptions

  19. Effects of stratospheric perturbations on the solar radiation budget

    International Nuclear Information System (INIS)

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  20. Solar radiation and out-of-hospital cardiac arrest in Japan.

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2017-11-01

    Although several studies have estimated the effects of temperature on mortality and morbidity, little is known regarding the burden of out-of-hospital cardiac arrest (OHCA) attributable to solar radiation. We obtained data for all cases of OHCA and meteorological data reported between 2011 and 2014 in 3 Japanese prefectures: Hokkaido, Ibaraki, and Fukuoka. We first examined the relationship between daily solar radiation and OHCA risk for each prefecture using time-varying distributed lag non-linear models and then pooled the results in a multivariate random-effects meta-analysis. The attributable fractions of OHCA were calculated for low and high solar radiation, defined as solar radiation below and above the minimum morbidity solar radiation, respectively. The minimum morbidity solar radiation was defined as the specific solar radiation associated with the lowest morbidity risk. A total of 49,892 cases of OHCA occurred during the study period. The minimum morbidity solar radiation for each prefecture was the 100th percentile (72.5 MJ/m 2 ) in Hokkaido, the 83rd percentile (59.7 MJ/m 2 ) in Ibaraki, and the 70th percentile (53.8 MJ/m 2 ) in Fukuoka. Overall, 20.00% (95% empirical confidence interval [eCI]: 10.97-27.04) of the OHCA cases were attributable to daily solar radiation. The attributable fraction for low solar radiation was 19.50% (95% eCI: 10.00-26.92), whereas that for high solar radiation was 0.50% (95% eCI: -0.07-1.01). Low solar radiation was associated with a substantial attributable risk for OHCA. Our findings suggest that public health efforts to reduce OHCA burden should consider the solar radiation level. Large prospective studies with longitudinal collection of individual data is required to more conclusively assess the impact of solar radiation on OHCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    Hill, H.A.; Bos, R.J.

    1982-01-01

    The objective of the project is to detect and monitor climatically significant solar variability by studying the associated variability in solar shape and diameter. The observing program for this project was initiated in 1981, as was the requisite data reduction. These two activities are conducted simultaneously. Theoretical work has also progressed on matters relevant to the interpretation of observed changes in the indirect diagnostics in terms of changes in the solar luminosity. The success of the observing program over long time periods depends in part on the development of a technique to calibrate the scale in the telescope field, and work on this has progressed to the design and construction phase. A proposal is made for the continuation of the work in each of these areas

  2. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-01-01

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the ‘bottom side’ i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm −2 broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  3. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  4. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  5. CO2 and solar radiation: cause of global warming?

    International Nuclear Information System (INIS)

    Bayona Gabriel; Garcia, Yuri C.; Sarmiento Heiner R

    2010-01-01

    A cause-effect relationship between global temperature as a climatic change indicator and some of the main forcing mechanisms (Atmospheric CO 2 concentration, solar radiation and volcanic activity) are analyzed in this paper through time series analysis for the 1610-1990 AD period comparing trends and variability for the frequency spectrums. Temperature seems to fit the CO 2 trend for the last century, but we found no cause-effect relationship for this interval. The frequency analysis shows a correlation between radiation and temperature for a period of 22 years. Volcanism presents an inverse relationship with temperature better seen at a decadal scale.

  6. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  7. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity

    International Nuclear Information System (INIS)

    Cossu, Marco; Murgia, Lelia; Ledda, Luigi; Deligios, Paola A.; Sirigu, Antonella; Chessa, Francesco; Pazzona, Antonio

    2014-01-01

    Highlights: • The solar radiation distribution inside photovoltaic greenhouses has been studied. • A greenhouse with 50% of the roof area covered with solar panels was considered. • The yearly solar light reduction was 64%, with a transversal north–south gradient. • The reduction was 82% under the solar panels and 46% under the plastic cover. • We provided suggestions for a better agronomic sustainability of PV greenhouses. - Abstract: This study assessed the climate conditions inside a greenhouse in which 50% of the roof area was replaced with photovoltaic (PV) modules, describing the solar radiation distribution and the variability of temperature and humidity. The effects of shading from the PV array on crop productivity were described on tomato, also integrating the natural radiation with supplementary lighting powered by PV energy. Experiments were performed inside an east–west oriented greenhouse (total area of 960 m 2 ), where the south-oriented roofs were completely covered with multi-crystalline silicon PV modules, with a total rated power of 68 kWp. The PV system reduced the availability of solar radiation inside the greenhouse by 64%, compared to the situation without PV system (2684 MJ m −2 on yearly basis). The solar radiation distribution followed a north–south gradient, with more solar energy on the sidewalls and decreasing towards the center of the span, except in winter, where it was similar in all plant rows. The reduction under the plastic and PV covers was respectively 46% and 82% on yearly basis. Only a 18% reduction was observed on the plant rows farthest from the PV cover of the span. The supplementary lighting, powered without exceeding the energy produced by the PV array, was not enough to affect the crop production, whose revenue was lower than the cost for heating and lighting. The distribution of the solar radiation observed is useful for choosing the most suitable crops and for designing PV greenhouses with the attitude

  8. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  9. Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE

    Science.gov (United States)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-01-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting

  10. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  11. Rapid and extensive warming following cessation of solar radiation management

    OpenAIRE

    McCusker, Kelly E.; Armour, Kyle; Bitz, Cecilia M.; Battisti, David S.

    2014-01-01

    Solar radiation management (SRM) has been proposed as a means to alleviate the climate impacts of ongoing anthropogenic greenhouse gas (GHG) emissions. However, its efficacy depends on its indefinite maintenance, without interruption from a variety of possible sources, such as technological failure or global cooperation breakdown. Here, we consider the scenario in which SRM—via stratospheric aerosol injection—is terminated abruptly following an implementation period during which anthropogenic...

  12. Solar Radiation Data Base for Nigeria | Chineke | Discovery and ...

    African Journals Online (AJOL)

    Solar Radiation Data Base for Nigeria. T C Chineke, J I Aina, S S Jagtap. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/dai.v11i3.15556 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  13. Particle acceleration in solar flares: observations versus numerical simulations

    International Nuclear Information System (INIS)

    Benz, A O; Grigis, P C; Battaglia, M

    2006-01-01

    Solar flares are generally agreed to be impulsive releases of magnetic energy. Reconnection in dilute plasma is the suggested trigger for the coronal phenomenon. It releases up to 10 26 J, accelerates up to 10 38 electrons and ions and must involve a volume that greatly exceeds the current sheet dimension. The Ramaty High-Energy Solar Spectroscopic Imager satellite can image a source in the corona that appears to contain the acceleration region and can separate it from other x-ray emissions. The new observations constrain the acceleration process by a quantitative relation between spectral index and flux. We present recent observational results and compare them with theoretical modelling by a stochastic process assuming transit-time damping of fast-mode waves, escape and replenishment. The observations can only be fitted if additional assumptions on trapping by an electric potential and possibly other processes such as isotropization and magnetic trapping are made

  14. Transmission coefficient of solar radiation in Manaus (AM-Brazil), in June

    International Nuclear Information System (INIS)

    Villa Nova, N.A.; Santos, J.M.; Goes Ribeiro, M.N.

    1976-01-01

    Global and diffuse solar radiation measurements, obtained by means of an Eppley pyrheliometer, were made two days in June 1975, one was clear day, (june, 11), and the other and overcast day (June, 19). The mean transmission coefficient for global and direct radiation were determined to be 0,81 and 0,70 respectively. The date on daily global solar radiation indicated that the values measured with the actinograph under estimate the real solar radiation values reaching the ground [pt

  15. Properties of solar generators with reflectors and radiators

    Science.gov (United States)

    Ebeling, W. D.; Rex, D.; Bierfischer, U.

    1980-06-01

    Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.

  16. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  17. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  18. Global solar radiation estimation in Lavras region, Minas Gerais

    International Nuclear Information System (INIS)

    Dantas, A.A.A.; Carvalho, L.G. de; Ferreira, E.

    2003-01-01

    The objective of this work was the determination of the ''a'' and '' b'' constants of the Angstrom linear model in order to estimate the global solar radiation in Lavras, MG. The work was carried out in the Climatological Station of Lavras (ECP/INMET/UFLA), at the Federal University of Lavras, from December 2001 to November 2002, through insolation daily data and global solar radiation daily records. The ''a'' and '' b'' constants, that express the atmospheric transmitance, were obtained by regression analysis of those data. The obtained equation, Qg/Qt = 0,23 + 0,49 presented a determination coefficient of 0,89. The results are smaller than those suggested by the recommendations that uses the local latitude. According to the results, its possible to indicate the values of 0,23 and 0,49 to be used as the ''a'' and '' b'' constants on the Angstrom equation to estimate the global solar radiation in Lavras, MG. (author) [pt

  19. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  20. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  1. Vitamin B12 deficiency is associated with geographical latitude and solar radiation in the older population.

    Science.gov (United States)

    Cabrera, Sebastián; Benavente, David; Alvo, Miriam; de Pablo, Paola; Ferro, Charles J

    2014-11-01

    Vitamin B12 and folic acid deficiency are common in the older and are associated with several conditions including anaemia, cardiovascular disease, cognitive impairment and cancer. Evidence from in vitro studies suggests that solar radiation can degrade both vitamins in the skin. Chile is the longest country in the world running perfectly North-South making it an ideal place to study potential associations of latitude and solar radiation on vitamin B12 and folic acid deficiency. The objective was to examine the association between vitamin B12 and folic acid deficiencies and latitude. Plasma samples were collected from Chileans aged 65+ years (n=1013) living across the whole country and assayed for vitamin B12 and folic acid concentrations as part of the Chilean Health Survey 2009-2010, which is a national representative sample study. Overall, the prevalence of vitamin B12 deficiency was 11.3%, with the prevalence in the North of the country being significantly greater than in the Central and South zones (19.1%,10.5%, and 5.7%, respectively; Psolar radiation (OR 1.203 [95% confidence intervals 1.119-1.294], Psolar radiation. Although degradation by solar radiation might explain this observation, further work is required to establish the potential mechanisms. In countries that routinely fortify food with folic acid, efforts to identify vitamin B12 deficiency might be more cost-efficiently targeted in areas closest to the Equator. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  3. CODE's new solar radiation pressure model for GNSS orbit determination

    Science.gov (United States)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  4. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  5. Solar radiation as a forest management tool: a primer of principles and application

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  6. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  7. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie

    2018-01-01

    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  8. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  9. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  10. Implications for space radiation environment models from CREAM and CREDO measurements over half a solar cycle

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Peerless, C.L.; Watson, C.J.; Evans, H.E.; Knight, P.; Cosby, M.; Underwood, C.; Cousins, T.; Noulty, R.; Maag, C.

    1999-01-01

    Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM and CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment and radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model

  11. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    OpenAIRE

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  12. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  13. Modelling solar radiation interception in row plantation. 3. Application to a traditional vineyard

    International Nuclear Information System (INIS)

    Sinoquet, H.; Valancogne, C.; Lescure, A.; Bonhomme, R.

    1992-01-01

    A previously described model of solar radiation interception was applied to a spatially discontinuous canopy: that of a traditional vineyard in which the classical terms of the radiative balance and the spatial distribution of the radiation transmitted to the soil were measured. Comparison of measured and simulated data gave satisfactory agreement for reflected radiation (fig 4), but major discrepancies appeared for mean transmitted radiation (fig 5). The use of small stationary sensors for measuring the transmitted radiation explains the latter observation, since most of the time they measured radiation received on the ground in the sunflecks or in the shaded area rather than mean radiation. This was verified by comparing the measured and simulated spatial distribution of transmitted radiation (figs 7, 8). Finally, the influence of the woody parts which were not taken into consideration in the model was clearly identified : it significantly reduced the transmission of incident radiation (fig 9), and to a greater degrees the closer the sensor was to the vegetation row. (author) [fr

  14. Effect of solar radiation on severity of soybean rust.

    Science.gov (United States)

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  15. Observations of nesting avifauna under gamma-radiation exposure

    International Nuclear Information System (INIS)

    Buech, R.R.

    1977-01-01

    An opportunity arose to observe the nesting success of birds (up to the time of fledging) when the Enterprise Forest Radiation Facility was established for a study of the effects of gamma radiation on the flora and fauna of northern forest communities. The results of these observations on the fate of the nest occupants in relation to radiation exposure are presented

  16. Multi-wavelength Observations of Solar Active Region NOAA 7154

    Science.gov (United States)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  17. Photocatalysis and radiation absorption in a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Curco, D; Gimenez, J [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Barcelona, Barcelona (Spain); Malato, S; Blanco, J [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Plataforma Solar de Almeria, Almeria (Spain)

    1996-11-15

    Recently, many papers have appeared in literature about photocatalytic detoxification. However, progress from laboratory data to the industrial solar reactor is not easy. Kinetic models for heterogeneous catalysis can be used to describe the photocatalytic processes, but luminic steps, related to the radiation, have to be added to the physical and chemical steps considered in heterogeneous catalysis. Thus, the evaluation of the radiation, and its distribution, inside a photocatalytic reactor is essential to extrapolate results from laboratory to outdoor experiments and to compare the efficiency of different installations. This study attempts to validate the experimental set up and theoretical data treatment for this purpose in a Solar Pilot Plant. The procedure consists of the calibration of different sunlight radiometers, the estimation of the radiation inside the reactor, and the validation of the results by actinometric experiments. Finally, a comparison between kinetic constants, for the same reaction in the laboratory (artificial light) and field conditions (sun light), is performed to demonstrate the advantages of knowing the radiation inside a large photochemical reactor

  18. Measuring solar UV radiation with EBT radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Cheung Tsang; Yu, Peter K N; Butson, Martin J

    2010-01-01

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m -2 UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m -2 (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  19. Observations of the solar wind speed near the sun

    International Nuclear Information System (INIS)

    Grall, R. R.; Coles, Wm. A.; Klinglesmith, M. T.

    1996-01-01

    Two-antenna scintillation (IPS) observations can provide accurate measurements of the velocity with which electron density fluctuations drift past the line of sight. These fluctuations can be used as tracers for the solar plasma and allow us to estimate the solar wind velocity near the Sun where spacecraft have not yet penetrated. We present recent IPS measurements made with the EISCAT and VLBA arrays. We have found that by using baselines which are several times the scale size of the diffraction pattern we are able to partially deconvolve the line of sight integration which affects remote sensing data. The long baselines allow the fast and slow components of the solar wind to be separated and their velocities estimated individually. In modeling IPS it is important that the scattering be 'weak' because the model then requires only 1 spatial parameter instead of 3. EISCAT can only operate near 933MHz which limits the observation to outside of 18R · , however the VLBA has higher frequency receivers which allow it to observe inside of 15R · . The density variance δN e 2 in the fast wind is a factor of 10-15 less than in the slow (Coles et al., 1995) making it necessary to consider the entire line of sight, particularly when the fast wind occupies the center portion. Using the point of closest approach and the average velocity to characterize the observation can lead to an incorrect interpretation of the data. We have compared our IPS observations with maps made from the Yohkoh soft X ray, HAO's white-light electron density, and Stanford magnetic field measurements as well as with the IMP8 and Ulysses spacecraft data to assist in placing the fast and slow wind. Here we have selected those observation from 1994 which were dominated by the southern coronal hole and have estimated a velocity acceleration profile for the fast solar wind between 7 and 100R · which is presented in Figure 1. The observations suggest that the fast solar wind is fully developed by ≅7R

  20. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  1. Solar Radiation Pressure Binning for the Geosynchronous Orbit

    Science.gov (United States)

    Hejduk, M. D.; Ghrist, R. W.

    2011-01-01

    Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.

  2. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Science.gov (United States)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  3. Comparative study of series of solar radiation; Estudio comparativo de series de radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Adaro, Agustin; Cesari, Daniela; Lema, Alba; Galimberti, Pablo; Barral, Jorge [Universidad Nacional de Rio Cuarto, (Argentina)

    2000-07-01

    In any team or solar device that it seeks to be designed and dedicated to the use of the solar energy it will be had the most appropriate information on the radiation levels. Being this source of dependent energy of the atmospheric and meteorological fluctuations, it is that requires have the information best regarding the quantity and variability of the available solar energy. A road is already the statistical treatment of the data available, so much of solar radiation as of hours of sun. This focus generates a lot of expectation for the biggest quantity in information regarding the hours of existent sun. This bigger information of hours of sun is due to that the mensurations are carried out with instruments called heliografos with a level of complexity and much smaller cost that the instruments of radiation mensuration. Among the heliografos the most used one is that of Campbell-Stokes, and it is the one that you had installed in most of the meteorological stations of Argentina and the World, for what the information of hours of sun is the one that more is plentiful. The present work has for objective to find an interrelation between the measured series of hours of sun and irradiation. The study is carried out using models of temporary series and the pattern of Angstrom-Page. The are carried out a study of the generation of radiation sequences using models of temporary series and the pattern of Angstrom-Page. They are carried out a study of the generation of radiation sequences using the concept of the Chains of Markov. Rio Cuarto's series are analyzed for being determined the transfer function among both series, and the values of global solar radiation are obtained for towns of the same region. They are the coefficients of Anstrom-Page's Equation for Rio Cuarto. They are the values monthly means for these two methods and results are compared. [Spanish] En cualquier equipo o dispositivo solar que pretenda ser disenado y destinado al aprovechamiento de

  4. YOHKOH Observations at the Y2K Solar Maximum

    Science.gov (United States)

    Aschwanden, M. J.

    1999-05-01

    Yohkoh will provide simultaneous co-aligned soft X-ray and hard X-ray observations of solar flares at the coming solar maximum. The Yohkoh Soft X-ray Telescope (SXT) covers the approximate temperature range of 2-20 MK with a pixel size of 2.46\\arcsec, and thus complements ideally the EUV imagers sensitive in the 1-2 MK plasma, such as SoHO/EIT and TRACE. The Yohkoh Hard X-ray Telescope (HXT) offers hard X-ray imaging at 20-100 keV at a time resolution of down to 0.5 sec for major events. In this paper we review the major SXT and HXT results from Yohkoh solar flare observations, and anticipate some of the key questions that can be addressed through joint observations with other ground and space-based observatories. This encompasses the dynamics of flare triggers (e.g. emerging flux, photospheric shear, interaction of flare loops in quadrupolar geometries, large-scale magnetic reconfigurations, eruption of twisted sigmoid structures, coronal mass ejections), the physics of particle dynamics during flares (acceleration processes, particle propagation, trapping, and precipitation), and flare plasma heating processes (chromospheric evaporation, coronal energy loss by nonthermal particles). In particular we will emphasize on how Yohkoh data analysis is progressing from a qualitative to a more quantitative science, employing 3-dimensional modeling and numerical simulations.

  5. Optically pumped carbon dioxide laser mixtures. [using solar radiation

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1979-01-01

    This work explores the concept of blackbody radiation pumping of CO2 gas as a step toward utilization of solar radiation as a pumping source for laser action. To demonstrate this concept, an experiment was performed in which laser gas mixtures were exposed to 1500 K thermal radiation for brief periods of time. A gain of 2.8 x 10 to the -3rd reciprocal centimeters has been measured at 10.6 microns in a CO2-He gas mixture of 1 Torr pressure. A simple analytical model is used to describe the rate of change of energy of the vibrational modes of CO2 and to predict the gain. Agreement between the prediction and experiment is good.

  6. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    Science.gov (United States)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  7. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    Science.gov (United States)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  8. Three-dimensional transfer of solar radiation in clouds

    International Nuclear Information System (INIS)

    Davies, R.

    1976-01-01

    The results of a theoretical study of the effects of cloud geometry on the transfer of incident solar radiation is presented. These results indicate that a three-dimensional description of cloud geometry is a necessary prerequisite to the accurate determination of the emerging radiation field. Models which make the plane parallel assumption are therefore frequently inadequate. Both a Monte Carlo method and an analytic method were used to model the three-dimensional transfer of radiation. At the expense of considerable computation time the Monte Carlo model provides accurate values of the fluxes and intensities (averages over π/30 steradians) emerging from clouds which can be described as a set of connected cuboidal cells, each cell being homogeneous with respect to extinction coefficient, single scatter albedo and phase function. The analytic model, based on an extension of Eddington's approximation to three dimensions and to anisotropic scattering, is efficient to use, but is restricted to clouds made up of a single cuboidal cell and is more accurate for large clouds than small ones. By an iterated approach, involving integration of the source function along line of sight, the analytic model provides both fluxes and intensities of the emerging radiation at any specified point on the cloud's surface. These models were both applied to a systematic study of the transfer of solar radiation in isolated cuboidal clouds of arbitraty dimensions, the results of which illustrate the importance of considering the total cloud geometry in any attempt at realistic modelling. A study of the transfer of radiation in stratiform clouds with turretted top surfaces also indicated that even for these clouds the plane parallel assumption was often not tenable

  9. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  10. concentrated solar power and solar thermal Barometer - EurObserv'ER - May 2015

    International Nuclear Information System (INIS)

    2015-05-01

    European concentrated solar power capacity remained stable in 2014 and will probably post a negligible increase in 2015. Construction work on a number of new facilities in Italy that are scheduled for commissioning in 2016 and 2017 could commence in the second half of the year. The European solar thermal market for producing heat, domestic hot water and heating has not found the recipe for recovery. According to EurObserv'ER, the market contracted by a further 3.7% from its 2013 level which is the sixth decrease in a row

  11. A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS

    International Nuclear Information System (INIS)

    Denissenkov, Pavel A.

    2010-01-01

    The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  12. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    Science.gov (United States)

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  13. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  14. Human projected area factors for detailed direct and diffuse solar radiation analysis

    DEFF Research Database (Denmark)

    Kubaha, K.; Fiala, D.; Toftum, Jørn

    2004-01-01

    Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...

  15. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  16. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    Kozak, Tadeeusz; Majchrzycka, Anna

    2009-01-01

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  17. Medium level of direct solar radiation and energetic potential of solar concentrator in Minas Gerais State, Brazil; Niveis medios de radiacao solar direta e potencial energetico dos concentradores solares em Minas Gerais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    Basic concepts of solar energy, technical description of solar concentrators, its orientation and methodology of direct solar radiation measurement are discussed. An comparison of different solar radiation measurements methods, its methodology and its calculation steps are reported. Calculus and tables of the electric and thermal energy generation potential, through solar concentrators, on the state of Minas Gerais are also presented. 18 figs., 90 tabs., 12 refs.

  18. Five years of solar UV-radiation monitoring in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Weine

    1996-10-01

    A network of five stations measuring the solar UV-radiation has been operated for about five years. Data are presented as plotted time-series of monthly and yearly values for the sites. A general climatology can be deduced from these data. Daily and hourly maximum values are shown for each month as indicators of the potential extreme exposure levels. The large annual variation at high latitudes is easily seen in the data set. This illustrates the importance of the solar elevation on the level of the UV-irradiance. Influence of cloud variation and of larger changes in ozone is also detectable. A few examples of the daily variation also show the strong solar elevation dependence of the UV-irradiance. The quantity and unit of the UV-radiation in this presentation is CIE-weighted irradiance expressed as MED (minimum erythermal dose), where one MED equals 210 Jm{sup -2}. The values have been recomputed to refer to the international intercomparison of broad-band meters in Helsinki in 1995. In the following named WMO-STUK 1995 scale. As will be seen there are many sources of error and detailed studies are prevented by the large uncertainty connected with these data. Due to the short period of the record and the low accuracy no attempt to study trends is done. 6 refs, 27 figs, 4 tabs

  19. Solar thermal and concentrated solar power barometer - EurObserv'ER - May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging. EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2

  20. Models in the estimate of the diffuse solar radiation; Modelos de estimativa da radiacao solar difusa

    Energy Technology Data Exchange (ETDEWEB)

    Recieri, Reinaldo Prandini; Ferruzzi, Yuri; Silva, Suedemio de Lima [Universidade Estadual do Oeste do Parana (UNIOESTE/FAG), Cascavel, PR (Brazil). Curso de Mestrado em Engenharia Agricola; Quallio, Silvana [Universidade Estadual do Oeste do Parana (UNIOESTE/FAG), Cascavel, PR (Brazil). Curso de Biologia; Batista, Vitor Roberto Lourenco [Universidade Estadual do Oeste do Parana (UNIOESTE/FAG), Cascavel, PR (Brazil). Curso de Graduacao em Engenharia Eletrica

    2004-07-01

    In this work we evaluate, by means of polynomial regression analysis, several models that relate the diffuse fraction of the global radiation (K{sub d}) with the clearness index (K{sub t}). The experiment was conducted in the Solar Radiometry Station of Cascavel/PR from the first of January to the 31st of December, in the year of 2001. The solar radiation components were monitored by the following manufactured instruments: pyranometer (KIPP and ZONEN CM3) and pirheliometer (EPPLEY NIP) connected in a sun tracker (ST-1 model). A datalogger CR10X from the CAMPBELL SCIENTIFIC was used in the data acquisition. This datalogger was programmed in the frequency of 1 Hz storing an average of 5 minutes of collected data. Among the equations the best values of RMSE an MBE were find in the fourth and third degrees, respectively. We also find that the fourth degree polynomial equation (K{sub d}=1,172-1,001K{sub t}+3,992K{sub t}{sup 2}-11,742K{sub t}{sup 3}+7,698K{sub t}{sup 4}) generalizes the utilization of equations for diffuse solar radiation estimation. This means that this equation probably can be applied for any place and climatic conditions. (author)

  1. Properties of solar gravity mode signals in total irradiance observations

    International Nuclear Information System (INIS)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs

  2. Studies of the Solar Radiations' Influence About Geomembranes Used in Ecological Landfill

    Science.gov (United States)

    Vasiluta, Petre; Cofaru, Ileana Ioana; Cofaru, Nicolae Florin; Popa, Dragos Laurentiu

    2017-12-01

    The study shown in this paper presents the behavior of geomembranes used at the ecological landfills. The influences of the solar radiations has a great importance regarding the correct mounting of the geomembranes. The mathematical model developed for the determination anytime and anywhere in the world for the next values and parameters: apparent solar time, solar declination, solar altitude, solar azimuth and incidence angle, zone angle, angle of sun elevation, solar declination, solar constant, solar flux density, diffuse solar radiation, global radiation, soil albedo, total radiant flux density and relational links of these values. The results of this model was used for creations an AutoCAD subroutines useful for choosing the correct time for correct mounting anywhere of the geomembranes

  3. Contribution of solar radiation to decadal temperature variability over land.

    Science.gov (United States)

    Wang, Kaicun; Dickinson, Robert E

    2013-09-10

    Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

  4. General characterisation of the solar radiation behaviour in Mozambique

    Energy Technology Data Exchange (ETDEWEB)

    Cuamba, B.C. [Renewable Energies Research and Training Programme, Department of Physics, Faculty of Sciences, Eduardo Mondlane University (UEM), Maputo (Mozambique)]|[Action Group for Renewable Energies and Sustainable Development, Maputo (Mozambique); Chenene, M.L.; Mahumane, G. [Renewable Energies Research and Training Programme, Department of Physics, Faculty of Sciences, Eduardo Mondlane University (UEM), Maputo (Mozambique); Quissico, D.Z. [Renewable Energies Research and Training Programme, Department of Physics, Faculty of Sciences, Eduardo Mondlane University (UEM), Maputo (Mozambique)]|[National Institute of Meteorology, Maputo (Mozambique); Vasco, E. [National Institute of Meteorology, Maputo (Mozambique); Lovseth, J. [Solar Energy and Environmental Group, Department of Physics (LADE), Trondheim University of Science and Technology (NTNU) (Norway); O' Keefe, P. [University of Northumbria at Newcastle, Newcastle Upon Tyne (United Kingdom)

    2004-07-01

    Just as with the other Southern African Development Community (SADC) countries, Mozambique faces severe and interrelated problems of energy and environment linked with the massive consumption of fuel wood biomass. The conventional power grid caters for less than 7% of the energy needs for the country's 17 million inhabitants, and about 83% of the energy consumed in the country comes from biomass. Areas around the major urban centres and along the main development corridors are the most affected by energy shortages. This hinders the country's economic and social development as it is generally acknowledged that no development can be sustainable without linking it to energy planning and environmental management. Renewable energy resources can play an important role in the process of development of the country. From the vast renewable energy resources available in the country, solar energy represents one of those with the highest potential. Thus the evaluation of its potential is of extreme importance. This paper represents a first attempt to systemise the solar radiation data being measured by the National Institute of Meteorology (INAM). The period considered for analysis is from 1970 to 2000. Results of the present work reveal that the country has substantial solar energy resources for a variety of solar energy technologies. (orig.)

  5. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  6. Solar observations with the prototype of the Brazilian Decimetric Array

    Science.gov (United States)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  7. A Proposal for a Thesaurus for Web Services in Solar Radiation

    Science.gov (United States)

    Gschwind, Benoit; Menard, Lionel; Ranchin, Thierry; Wald, Lucien; Stackhouse, Paul W., Jr.

    2007-01-01

    Metadata are necessary to discover, describe and exchange any type of information, resource and service at a large scale. A significant amount of effort has been made in the field of geography and environment to establish standards. Efforts still remain to address more specific domains such as renewable energies. This communication focuses on solar energy and more specifically on aspects in solar radiation that relate to geography and meteorology. A thesaurus in solar radiation is proposed for the keys elements in solar radiation namely time, space and radiation types. The importance of time-series in solar radiation is outlined and attributes of the key elements are discussed. An XML schema for encoding metadata is proposed. The exploitation of such a schema in web services is discussed. This proposal is a first attempt at establishing a thesaurus for describing data and applications in solar radiation.

  8. Interanual variability os solar radiation in Peninsula Iberica; Variabilidad interanual de la radiacion solar en la Peninsula Iberica

    Energy Technology Data Exchange (ETDEWEB)

    Pozo-Vazquez, D.; Tovar-Pescador, J.; Gamiz-Fortis, S.; Esteban-Parra, M.; Castro-Diez, Y.

    2004-07-01

    The NAO climatic phenomenon is the main responsible for the interanual cloud cover variability in Europe. We explore the relationship between the NAO and the solar radiation spatio-temporal variability in Europe during winter. Measured monthly sums of sunshine duration and short-wave downward solar flux reanalysis data have been used. Correlation analysis between the NAO index and the measured sunshine duration shows a maximum positive value (+0.75) over the Iberian Peninsula. Accordingly, solar radiation in this area undergoes an interanual variability that can reach up to 30%, with the derived consequences for a reliable solar energy resources evaluation. (Author)

  9. A solar observing station for education and research in Peru

    Science.gov (United States)

    Kaname, José Iba, Ishitsuka; Ishitsuka, Mutsumi; Trigoso Avilés, Hugo; Takashi, Sakurai; Yohei, Nishino; Miyazaki, Hideaki; Shibata, Kazunari; Ueno, Satoru; Yumoto, Kiyohumi; Maeda, George

    2007-12-01

    Since 1937 Carnegie Institution of Washington made observations of active regions of the Sun with a Hale type spectro-helioscope in Huancayo observatory of the Instituto Geofísico del Perú (IGP). IGP has contributed significantly to geophysical and solar sciences in the last 69 years. Now IGP and the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA) are planning to refurbish the coelostat at the observatory with the support of National Astronomical Observatory of Japan. It is also planned to install a solar Flare Monitor Telescope (FMT) at UNICA, from Hida observatory of Kyoto University. Along with the coelostat, the FMT will be useful to improve scientific research and education.

  10. Soft x-ray spectrographs for solar observations

    International Nuclear Information System (INIS)

    Bruner, M.E.

    1988-01-01

    This paper surveys some of the recent advances in the state of the art of soft X-ray spectrometers, particularly as they might be applied to Solar Observations. The discussions center on the windowless region from roughly 1 to 100 A, and covers both grating and crystal instruments. The author begins with a short discussion of the solar soft X-ray spectrum and its interpretation, followed by a few general comments on problems peculiar to soft X-ray instruments. The paper reviews of recent developments in spectrometer optical design, which has been a lively field during the last dozen years. This is particularly true in the case of grating spectrometers. The paper concludes with a short section on telescope considerations, and some remarks on future flight opportunities

  11. Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)

    Science.gov (United States)

    Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo

    2017-08-01

    Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

  12. Effect of solar radiation on the lipid characterization of biomass cultivated in high-rate algal ponds using domestic sewage.

    Science.gov (United States)

    Assemany, Paula Peixoto; Calijuri, Maria Lúcia; Santiago, Anibal da Fonseca; do Couto, Eduardo de Aguiar; Leite, Mauricio de Oliveira; Sierra, Jose Jovanny Bermudez

    2014-01-01

    The objective of this paper is to compare the lipid content and composition ofbiomass produced by a consortium of microalgae and bacteria, cultivated under different solar radiation intensities and tropical conditions in pilot-scale high-rate ponds (HRPs) using domestic sewage as culture medium. The treatment system consisted of an upflow anaerobic sludge blanket reactor followed by UV disinfection and six HRPs covered with shading screens that blocked 9%, 18%, 30%, 60% and 80% of the solar radiation. The total lipid content does not vary significantly among the units, showing a medium value of 9.5%. The results show that blocking over 30% of the solar radiation has a negative effect on the lipid productivity. The units with no shading and with 30% and 60% of solar radiation blocking have statistically significant lipid productivities, varying from 0.92 to 0.96 gm(-2) day(-1). Besides radiation, other variables such as volatile suspended solids and chlorophyll-a are able to explain the lipid accumulation. The lipid profile has a predominance of C16, C18:1 and C18:3 acids. The unsaturation of fatty acids increases with the reduction in solar radiation. On the other hand, the effect of polyunsaturation is not observed, which is probably due to the presence of a complex and diverse biomass.

  13. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    Science.gov (United States)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  14. Magnetospheric and solar physics observations with the PAMELA experiment

    International Nuclear Information System (INIS)

    Casolino, M.; Adriani, O.; Ambriola, M.; Barbarino, G.C.; Basili, A.; Bazilevskaja, G.A.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Castellini, G.

    2008-01-01

    PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV-300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation

  15. Magnetospheric and solar physics observations with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M. [INFN, Structure of Rome ' Tor Vergata' and Physics Department of University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, I-00133 Rome (Italy)], E-mail: Marco.Casolino@roma2.infn.it; Adriani, O. [INFN, Structure of Florence and Physics Department of University of Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence (Italy); Ambriola, M. [INFN, Structure of Bari and Physics Department of University of Bari, Via Amendola 173, I-70126 Bari (Italy); Barbarino, G.C. [INFN, Structure of Naples and Physics Department of University of Naples ' Federico II' , Via Cintia, I-80126 Naples (Italy); Basili, A. [INFN, Structure of Rome ' Tor Vergata' and Physics Department of University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Bazilevskaja, G.A. [Lebedev Physical Institute, Leninsky Prospekt 53, RU-119991 Moscow (Russian Federation); Boezio, M. [INFN, Structure of Trieste and Physics Department of University of Trieste, Via A. Valerio 2, I-34127 Trieste (Italy); Bogomolov, E.A. [Ioffe Physical Technical Institute, Polytekhnicheskaya 26, RU-194021 St. Petersburg (Russian Federation); Bonechi, L.; Bongi, M. [INFN, Structure of Florence and Physics Department of University of Florence, Via Sansone 1, I-50019 Sesto Fiorentino, Florence (Italy); Bonvicini, V. [INFN, Structure of Trieste and Physics Department of University of Trieste, Via A. Valerio 2, I-34127 Trieste (Italy); Bruno, A.; Cafagna, F. [INFN, Structure of Bari and Physics Department of University of Bari, Via Amendola 173, I-70126 Bari (Italy); Campana, D. [INFN, Structure of Naples and Physics Department of University of Naples ' Federico II' , Via Cintia, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, Albanova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy)] (and others)

    2008-04-01

    PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV-300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation.

  16. In vitro propagation of Cypripedium guttatum using immature seed based on cumulative solar radiation after pollination

    International Nuclear Information System (INIS)

    Sasaki, Y.

    2000-01-01

    Cypripedium guttatum is one of the most endangered orchids in Japan. In vitro propagation is an important approach for conservation of the plant species. Generally, Cypripedium in vitro propagation is unstable, especially using immature seeds. Therefore, an in vitro propagation system that protocorm produces stable germination is required. In this study, one of the weather factors was tested to obtain stable immmature seeds for seedling production. From statistical analysis of the weather data, it was suggested that solar radiation affected the ripening of Cypripedium seed. From simulations of cumulative solar radiation, a seed 46 days after pollination is suitable for in vitro propagation in Akita. Using a seed 47 days after pollination of Cypripedium guttatum, seedlings were grown in hormone free 1/3 MS agar medium. In the case of adding 0.2 mg/L BAP, multiple shoots were observed. For root elongation of the seedling, hormone free medium was preferable to adding 0.2 mg/L NAA

  17. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor

    International Nuclear Information System (INIS)

    Kamble, Sanjay P.; Sawant, Sudhir B.; Pangarkar, Vishwas G.

    2007-01-01

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation

  18. Stimulation of auroral kilometric radiation by type III solar radio bursts

    International Nuclear Information System (INIS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers

  19. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria.

    OpenAIRE

    McCambridge, J; McMeekin, T A

    1981-01-01

    The effect of solar radiation and predacious microorganisms on the survival of bacteria of fecal and plant origin was studied. The decline in the numbers of Escherichia coli cells in estuarine water samples was found to be significantly greater in the presence of both naturally occurring microbial predators and solar radiation than when each of these factors was acting independently. The effect of solar radiation on microbial predators was negligible, whereas the susceptibility of bacteria to...

  20. Changes in the relationship between solar radiation and sunshine duration in large cities of China

    International Nuclear Information System (INIS)

    Liu, Jiandong; Linderholm, Hans; Chen, Deliang; Zhou, Xiuji; Flerchinger, Gerald N.; Yu, Qiang; Du, Jun; Wu, Dingrong; Shen, Yanbo; Yang, Zhenbin

    2015-01-01

    Based on the linear relationship between solar radiation and sunshine duration, the Angstrom model is widely used to estimate solar radiation from routinely observed meteorological variables for energy exploitation. However, the relationship may have changed in quickly developing regions in the recent decades under global “dimming” and “brightening” context, with increasing aerosols due to industrial pollutions. Solar radiation stations under different climate conditions in six large cities in China are selected to test this hypothesis. Analysis of the related meteorological items shows that Guiyang has the lowest solar radiation with the average annual value of 10.5 MJm −2 d −1 , while Lhasa on the Tibetan Plateau has the highest of 20.1 MJm −2 d −1 . Both radiation and sunshine hours decreased from 1961 to 2010, but at different rates. A moving linear regression method is used to investigate the changes in the relationship between radiation and sunshine duration, the results indicate an abrupt change in the correlation coefficients in 1980–1990s, which can be attributed to the aerosol load resulting from air pollution caused by the industrial development in 1980s under China's Open Door Policy. The sky condition has been changing from clean to dirty, thus the relationship between solar radiation and duration changes in the 1980's and has recovered in the recent decades. This finding implies that it might not necessarily be right to use long data sets for model calibration. Further investigation confirms that the Angstrom model performs the best with higher NSE (nash-sutcliffe efficiency) of 0.914 and lower MAPE (mean absolute percentage error) and RMSE (root mean square error) values of 13.7 w/m 2 and 23.9 w/m 2 respectively, when calibrated with a 10-year data set. In contrast, the model performs worst when it is calibrated with a 40-year data set, with NSE, MAPE and RMSE values of 0.891, 15.1 w/m 2 and 25.3 w/m 2 , respectively

  1. ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, NO. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Fang, Fang [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States); McIntosh, Scott W.; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  2. On the Observation and Simulation of Solar Coronal Twin Jets

    Science.gov (United States)

    Liu, Jiajia; Fang, Fang; Wang, Yuming; McIntosh, Scott W.; Fan, Yuhong; Zhang, Quanhao

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  3. The Energy Under Our Feet: A Study of Solar Radiation

    Science.gov (United States)

    Weiss, I.

    2016-12-01

    In this experiment I tested if asphalt pavement can produce enough solar heat to produce energy through a system that uses water, solar energy and heat. A setup that can conserve the water and prevent it from evaporating, as well as measuring the energy production is required to run this experiment. I have done a lot of research on this experiment and found that there are several variables that impact the results of this experiment. 1. The surface temperature compared to the air temperature 2. The Geographical location of the pavement 3. The time of the year 4. Cloud coverage for the day Overall there will be many variables I will have to keep out of the experiment such as temperature ranges, season changes and geographical location. My constant will be my location at 33.7086o North and 117.9564o West. Asphalt pavements do not reflect the sunlight and hence heat up faster than a light surface that would reflect the sunlight. This means the Asphalt absorbs the solar radiation, which increases the temperature of the air around the asphalt contributing to what is known as the urban heat island effect. This heating in turn contributes to the formation of smog and ozone products. With the population still growing this would also mean an increase in this temperature and hence an increase in smog and ozone, creating a significant health concern. Cities need to start looking at ways to cool their pavement and find ways to harvest the energy created by their streets. Installing pipes with water can provide that solution and not only reduce the heat reflected from the pavement but also harvest energy from this setup, and decrease the smog production and maintain a balance in ozone levels. As well as the asphalt needed to run the testing, a Stirling engine is required. A Stirling Engine is a highly efficient engine that can run on a variety of heat sources. Because it is highly compatible with alternative energy and renewable energy sources it could become increasingly

  4. Higher latitude and lower solar radiation influence on anaphylaxis in Chilean children.

    Science.gov (United States)

    Hoyos-Bachiloglu, Rodrigo; Morales, Pamela S; Cerda, Jaime; Talesnik, Eduardo; González, Gilberto; Camargo, Carlos A; Borzutzky, Arturo

    2014-06-01

    Recent studies suggest an association between higher latitude, a proxy of vitamin D (VD) status, and allergic diseases. Chile provides an ideal setting to study this association due to its latitude span and high rates of VD deficiency in southern regions. The aim of this study is to explore the associations of latitude and solar radiation with anaphylaxis admission rates. We reviewed anaphylaxis admissions in Chile's hospital discharge database between 2001 and 2010 and investigated associations with latitude and solar radiation. 2316 anaphylaxis admissions were registered. Median age of patients was 41 yr; 53% were female. National anaphylaxis admission rate was 1.41 per 100,000 persons per year. We observed a strong north-south increasing gradient of anaphylaxis admissions (β 0.04, p = 0.01), with increasing rates south of latitude 34°S. A significant association was also observed between solar radiation and anaphylaxis admissions (β -0.11, p = 0.009). Latitude was associated with food-induced (β 0.05, p = 0.02), but not drug-induced (β -0.002, p = 0.27), anaphylaxis. The association between latitude and food-induced anaphylaxis was significant in children (β 0.01, p = 0.006), but not adults (β 0.003, p = 0.16). Anaphylaxis admissions were not associated with regional sociodemographic factors like poverty, rurality, educational level, ethnicity, or physician density. Anaphylaxis admission rates in Chile are highest at higher latitudes and lower solar radiation, used as proxies of VD status. The associations appear driven by food-induced anaphylaxis. Our data support a possible role of VD deficiency as an etiological factor in the high anaphylaxis admission rates found in southern Chile. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-01-01

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably ∼15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between ∼36°S-60°S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  6. Determination of incoming solar radiation in major tree species in Turkey.

    Science.gov (United States)

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p solar radiation values of sites and light requirements of forest trees ranked similarly.

  7. Performance of Sayigh's universal formula in the estimation of global solar radiation in Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    The performance of Sayigh's universal formula for the estimation of global solar radiation is tested against that of Angstrom-Black model for 13 stations in Ghana, using monthly mean daily global solar radiation averaged over the years 1957-1981. Sayigh's model is found not to perform as credibility as the Angstrom-Black model in the estimation of monthly global solar radiation in Ghana. Of the 156 values of monthly global solar radiation estimated by Sayigh's model, 123 (or 78.8%) had discrepancies of more than 10% with the measured values. The corresponding value for the Angstrom-Black model was 7 (or 4.5%). (author). 5 refs

  8. A possible radiation-resistant solar cell geometry using superlattices

    Science.gov (United States)

    Goradia, C.; Clark, R.; Brinker, D.

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  9. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  10. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    Science.gov (United States)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  11. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  12. Share of erythema dose of solar radiation in high mountains

    International Nuclear Information System (INIS)

    Blumthaler, M.; Ambach, W.

    1987-01-01

    The erythema dose was measured using a Robertson-Berger Sunburn Meter. The spectral sensitivity of the detector is adapted to an erythema action spectrum with the optical center at about 300 nm. The erythema dose is expressed in the biologically relevant Sunburn Units (SU). The Robertson-Berger Sunburn Meter has been recommended by the WMO for global monitoring of solar UV-B erythema dose. UV-A radiation was measured with a UV-radiometer. The spectral sensitivity of the detector has a flat maximum at 345 nm and a half band width of +- 25 nm. Global radiation was measured using a pyranometer. All detectors were placed horizontally and calibrated several times. Readings were taken in intervals of one minute

  13. Radiation resistance of amorphous silicon alloy solar cells

    International Nuclear Information System (INIS)

    Hanak, J.J.; Chen, E.; Myatt, A.; Woodyard, J.R.

    1987-01-01

    The radiation resistance of a-Si alloy solar cells when bombarded by high energy particles is reviewed. The results of investigations of high energy proton radiation resistance of a-Si alloy thin film photovoltaic cells are reported. Irradiations were carried out with 200 keV and 1.00 MeV protons with fluences ranging betweeen 1E11 and 1E15 cm-2. Defect generation and passivation mechanisms were studied using the AM1 conversion efficiency and isochronal anneals. It is concluded that the primary defect generation mechanism results from the knock-on of Si and Ge in the intrinsic layer of the cells. The defect passivation proceeds by the complex annealing of Si and Ge defects and not by the simple migration of hydrogen

  14. Impact of So