WorldWideScience

Sample records for solar radiation measurements

  1. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  2. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  3. Solar Radiation: Models and Measurement Techniques

    Directory of Open Access Journals (Sweden)

    C. K. Pandey

    2013-01-01

    Full Text Available In order to grasp the significance of the work accomplished by the author, it is necessary to keep abreast of the present developments in this field. The research work reported in the paper is an attempt to get knowledge to assess the solar energy potential for practical and efficient utilization in India. Our work is centered on estimating realistic values of solar (global and diffuse radiation on horizontal and tilted surfaces using measured meteorological data and geographical and geometrical parameters for India.

  4. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Science.gov (United States)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  5. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  6. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  7. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.).

  8. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  9. Listing of solar radiation measuring equipment and glossary

    Science.gov (United States)

    Carter, E. A.; Greenbaum, S. A.; Patel, A. M.

    1976-01-01

    An attempt is made to list and provide all available information about solar radiation measuring equipment which are being manufactured and are available on the market. The list is in tabular form and includes sensor type, response time, cost data and comments for each model. A cost code is included which shows ranges only.

  10. Measurement and analysis of near ultraviolet solar radiation

    Science.gov (United States)

    Mehos, M. S.; Pacheco, K. A.; Link, H. F.

    1991-12-01

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global horizontal ultraviolet (280 to 385 nm) and full spectrum (280 to 4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global horizontal ultraviolet to full spectrum radiation of 4 to 6 pct. that is weakly dependent on air mass. Conversely, data for direct normal ultraviolet radiation indicate a much larger dependence on air mass, with a ratio of approx. 5 pct. at low air mass to 1 pct. at higher masses. Results show excellent agreement between the measured data and clear sky predictions for both the ultraviolet and the full spectrum global horizontal radiation. For the direct normal components, however, the tendency is for the clear sky model to underpredict the measured data. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global horizontal component of the radiation exceeds the direct normal component throughout the year.

  11. Measurement and analysis of near ultraviolet solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, M.S.; Pacheco, K.A.; Link, H.F.

    1991-12-01

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global-horizontal ultraviolet (280--385 nm) and full-spectrum (280--4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear-sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global-horizontal ultraviolet to full-spectrum radiation of 4%--6% that is weakly dependent on air mass. Conversely, data for direct-normal ultraviolet radiation indicate a much large dependence on air mass, with a ratio of approximately 5% at low air mass to 1% at higher at masses. Results show excellent agreement between the measured data and clear-sky predictions for both the ultraviolet and the full-spectrum global-horizontal radiation. For the direct-normal components, however, the tendency is for the clear-sky model to underpredict the measured that. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global-horizontal component of the radiation exceeds the direct-normal component throughout the year. 9 refs., 7 figs.

  12. new model for solar radiation estimation from measured air

    African Journals Online (AJOL)

    HOD

    solar radiation data, the use of artificial intelligence for solar radiation ... intelligence technique for solar radiation prediction. The .... are mean values of respectively. Also n is the total number of the test data. When higher value of is obtained, it shows that the model has a better performance while RMSE with smaller value ...

  13. Measurement of the Vertical Distribution of Reflected Solar Radiation

    Directory of Open Access Journals (Sweden)

    Tetsu Aoki

    2015-05-01

    Full Text Available The purpose of this study was to develop a devicefor measuring the vertical distribution of the reflected radiation to the inside of a room from terrace to building.The proposed device is attached to aluminum plates that are painted matte black at intervals of 20 cm on polystyrene insulation. The surface temperature of the aluminum plate, called the SAT (sol-air temperature, is used as an indicator of the quantity of solar radiation. In order to compare terrace materials, two of the measuring devices were located facing south.Concrete tile, artificial turf, and wood chips were selected as materials to be comparedfor the surface of the terrace and were laid in front of the measuring devices. The results indicate that the SAT reflected onto a vertical plane was higher closer to the ground for all materials. Hourly fluctuations of the vertical distribution of the reflected solar radiation differed, depending on the terrace surface material. When concrete tiles of different thicknesses were compared, the temporal heating patterns varied due to differences in heat capacity. These results lead us to the conclusion that using the developed measuringdevice enables grasping the effect of vertical distribution of reflected solar radiation from a terrace.

  14. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  15. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    OpenAIRE

    Aculinin A.; Smikov V.

    2008-01-01

    Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  16. Solar radiation measurements and their applications in climate research

    Science.gov (United States)

    Yin, Bangsheng

    Aerosols and clouds play important roles in the climate system through their radiative effects and their vital link in the hydrological cycle. Accurate measurements of aerosol and cloud optical and microphysical properties are crucial for the study of climate and climate change. This study develops/improves retrieval algorithms for aerosol single scattering albedo (SSA) and low liquid water path (LWP) cloud optical properties, evaluates a new spectrometer, and applies long-term measurements to establish climatology of aerosol and cloud optical properties. The following results were obtained. (1) The ratio of diffuse horizontal and direct normal fluxes measured from Multifilter Rotating Shadowband Radiometer (MFRSR) has been used to derive the aerosol SSA. Various issues have impacts on the accuracy of SSA retrieval, from measurements (e.g., calibration accuracy, cosine respond correction, and forward scattering correction) to input parameters and assumptions (e.g., asymmetry factor, Rayleigh scattering optical depth, and surface albedo). This study carefully analyzed these issues and extensively assessed their impacts on the retrieval accuracy. Furthermore, the retrievals of aerosol SSA from MFRSR are compared with independent measurements from co-located instruments. (2) The Thin-Cloud Rotating Shadowband Radiometer (TCRSR) has been used to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). The evaluation of the TCRSR indicates that the error of radiometric calibration has limited impact on the cloud DER retrievals. However, the retrieval accuracy of cloud DER is sensitive to the uncertainties of background setting (e.g., aerosol loading and the existence of ice cloud) and the measured solar aureole shape. (3) A new high resolution oxygen A-band spectrometer (HABS) has been developed, which has the ability to measure both direct-beam and zenith diffuse solar radiation

  17. Solar Radiation Measurement Using Raspberry Pi and Its Modelling Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Priya Selvanathan Shanmuga

    2016-01-01

    Full Text Available The advent of solar energy as the best alternative to traditional energy sources has led to an extensive study on the measurement and prediction of solar radiation. Devices such as pyranometer, pyrrheliometer, global UV radiometer are used for the measurement of solar radiation. The solar radiation measuring instruments available at Innovation Center, MIT Manipal were integrated with a Raspberry Pi to allow remote access to the data through the university Local Area Network. The connections of the data loggers and the Raspberry Pi were enclosed in a plastic box to prevent damage from the rainfall and humidity in Manipal. The solar radiation data was used to validate an Artificial Neural Network model which was developed using various meterological data from 2011-2015.

  18. ISS and Space Shuttle Radiation Measurements at Solar Minimum

    Science.gov (United States)

    Gaza, Ramona; Welton, Andrew; Dunegan, Audrey; Lee, Kerry

    2011-01-01

    A summary of 2008-2011 ISS and Space Shuttle radiation dosimetry results for inside vehicle radiation monitoring in low-Earth orbit will be presented. Results include new data from ISS Expedition 22-25/20A radiation area monitors (RAM) and Shuttle Missions STS127-STS133 passive radiation dosimeters (PRD). ISS 20A radiation measurement locations included three Node 2 crew quarters locations at NOD2S5_CQ, NOD2P5_CQ and CQ-3 (Deck), as well as ESA Columbus, and JAXA Kibo locations. ISS 20A and STS127-STS133 missions were flown at 51.6 inclination with an altitude range of 330-350 km. The passive radiation results will be presented in terms of measured daily dose obtained using luminescence detectors (i.e., Al2O3:C, LiF:Mg,Ti and CaF2:Tm). In addition, preliminary results from the DOSIS 2 Project, in collaboration with the German Space Agency (DLR) will be presented. SRAG s participation to the DOSIS 2 exposure on ISS (11/16/2009-05/26/2010) involved passive radiation measurements at 10 different shielding locations inside the ESA Columbus Module.

  19. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  20. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Spatial representativeness of ground-based solar radiation measurements

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin

    2013-04-01

    The validation of gridded surface solar radiation (SSR) data, i.e., satellite-derived or climate model calculated, relies on the comparison with ground-based in-situ measurements. Detached from any modeling or temporal averaging biases, the question remains how representative a point measurement is for a larger-scale grid cell. In the present study, we make extensive use of high-resolution (0.03°) SSR data from the Satellite Application Facility on climate monitoring (CM SAF) to study in detail: 1) the spatial variability in SSR over Europe, 2) the sub-grid variability within an example grid of 1° resolution, 3) the representativeness of 143 surface sites (BSRN and GEBA) for their corresponding 1° grid cells, and 4) the point-centered and grid-independent surface sites' representativeness for larger-grid cells up to 3°. These analyses are done on a climatological annual mean basis over the period 2001-2005. Annually, the spatial variability as given in the CM SAF data set is largest in regions of sudden changes in weather conditions and topography, e.g., in Northern Spain, the Alpine region, the Carpathians, and Adriatic coast. The 1° sub-grid variability (mean absolute deviation from grid cell mean, relative to grid cell mean, RMAD) is on average 1.64 % (2.43 Wm-2) over European land, with maximum RMAD of up to 10% in Northern Spain. The surface sites' (GEBA and BSRN) representativeness for larger-grid cells is highly dependent on region and grid size. The difference between the CM SAF value at the GEBA site's location and the grid cell mean (calculated from CM SAF data) can vary from almost 0% to more than 10% for a 1° grid cell, and up to 15% for a 3° grid cell. On average, this spatial sampling error is below 5% even for grid cells of 3° resolution. We show that the latitudinal shift of a point relative to the larger-grid cell center may account for a spatial sampling error of up to +-1.81 Wm-2 (for a maximum distance of +-0.5° within 1° grid cell

  2. Trends in solar radiation in NCEP/NCAR database and measurements in northeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Vicente de Paulo Rodrigues da; Silva, Roberta Araujo e; Cavalcanti, Enilson Palmeira; Braga, Celia Campos; Azevedo, Pedro Vieira de; Pereira, Emerson Ricardo Rodrigues [Federal University of Campina Grande/Center of Technology and Natural Resources/Academic Unity of Atmospheric Sciences, Av. Aprigio Veloso, 882, Bodocongo, 58109 970, Campina Grande, PB (Brazil); Singh, Vijay P. [Dept. of Biological and Agricultural Engineering, Texas A and M Univ., TX 77843-2117 (United States)

    2010-10-15

    The database from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis project available for the period from 1948 to 2009 was used for obtaining long-term solar radiation for northeastern Brazil. Measurements of global solar radiation (R{sub s}) from data collection platform (DCP) for four climatic zones of northeastern Brazil were compared to the re-analysis data. Applying cluster analysis to R{sub s} from database, homogeneous sub-regions in northeastern Brazil were determined. Long times series of R{sub s} and sunshine duration measurements data for two sites, Petrolina (09 09'S, 40 22'W) and Juazeiro (09 24'S, 40 26'W), exceeding 30 years, were analyzed. In order to exclude the decadal variations which are linked to the Pacific Decadal Oscillation, high-frequency cycles in the solar radiation and sunshine duration time series were eliminated by using a 14-year moving average, and the Mann-Kendall test was employed to assess the long-term variability of re-analysis and measured solar radiation. This study provides an overview of the decrease in solar radiation in a large area, which can be attributed to the global dimming effect. The global solar radiation obtained from the NCEP/NCAR re-analysis data overestimate that obtained from DCP measurements by 1.6% to 18.6%. Results show that there is a notable symmetry between R{sub s} from the re-analysis data and sunshine duration measurements. (author)

  3. Measurement of solar ultraviolet radiation intensity type A and B in Qazvin (2013-14

    Directory of Open Access Journals (Sweden)

    SAR. Babaee

    2016-08-01

    Full Text Available Background: Solar ultraviolet radiation (UVR is considered one of the most important biological risk factors in the world. Most health damages from solar ultraviolet radiation at ground level are mainly caused by UVA and UVB spectrums. Objective: The aim of this study was to Measure the solar ultraviolet radiation intensity type A and B in Qazvin city. Methods: In this cross-sectional study, the intensity of solar ultraviolet radiation type A and B was measured in Qazvin on years of 2013-14 (during one year every monthly at three times, in the morning, afternoon and evening by using a UV Radiometer. Data were analyzed using descriptive statistics. Findings: The maximum average intensity of UVA and UVB rays during the one year with 28.36±1.88 W/m2 and 0.156±0.035 W/m2 respectively was in Tir month (June 22–July 22 and the minimum average intensity of UVA and UVB rays with 10.36±0.83 W/m2 and 0.041±0.010 W/m2 respectively was in Dai month (December 22–January 20. Conclusion: With regards to the results, it is recommended that individuals were less exposed to exposure time with direct sunshine and use appropriate protective measures such as; wear appropriate clothing, sunglasses, and sunscreen.

  4. Method and apparatus for measuring solar radiation in a vegetative canopy

    Science.gov (United States)

    Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

    1985-04-30

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  5. Rocket Measurements of the Direct Solar Lyman-alpha Radiation Penetrating in the Atmosphere

    Science.gov (United States)

    Guineva, V. H.; Witt, G.; Gumbel, J.; Khaplanov, M.; Tashev, V. L.

    2006-03-01

    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric temperature profile can be calculated thereof. Rocket measurements of the direct Lyman-alpha radiation vertical profile in the summer mesosphere and thermosphere (up to 120 km), at high latitudes will be carried out in June 2006. The Lyman-alpha flux will be registered by a detector of solar Lyman-alpha radiation, manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL BAS). Its basic part is an ionization camera, filled in with NO. The scientific data analysis will include raw data reduction, radiative transfer simulations, temperature retrieval as well as co-analysis with other parameters, measured near the polar summer mesopause. This project is a scientific cooperation between STIL-BAS, Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project is part from the rocket experiment HotPay I, in the ALOMAR eARI Project, EU's 6th Framework Programme, Andoya Rocket Range, Andenes, Norway.

  6. Measurements of the radiation quality factor Q at aviation altitudes during solar minimum (2006-2008)

    Science.gov (United States)

    Meier, Matthias M.; Hubiak, Melina

    2010-05-01

    In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.

  7. Solar absorption estimated from surface radiation measurements and collocated satellite products over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Sanchez-Lorenzo, Arturo

    2013-04-01

    Anthropogenic climate change is physically speaking a perturbation of the atmospheric energy budget through the insertion of constituents such as greenhouse gases or aerosols. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the present study is the assessment of the mean state and the spatio-temporal variations in the solar energy disposition, in which we focus on obtaining an accurate partitioning of absorbed solar radiation between the surface and the atmosphere. Surface based measurements of solar radiation (GEBA, BSRN) are combined with collocated satellite-retrieved surface albedo (MODIS, CERES FSW, or CM SAF GAC-SAL) and top-of-atmosphere net incoming solar radiation (CERES EBAF) to quantify the absorbed solar radiation (ASR) at the surface and within the atmosphere over Europe for the period 2001-2005. In a first step, we examine the quality and temporal homogeneity of the monthly time series beyond 2000 provided by GEBA in order to identify a subset of sufficient quality. We find the vast majority of monthly time series to be suitable for our purposes. Using the satellite-derived CM SAF surface solar radiation product at 0.03° spatial resolution, we assess the spatial representativeness of the GEBA and BSRN sites for their collocated 1° grid cells as we intend to combine the point measurements with the coarser resolved CERES EBAF products (1° resolution), and we find spatial sampling errors of on average 3 Wm-2 or 2% (normalized by point values). Based on the combination of 134 GEBA surface solar radiation (SSR) time series with MODIS white-sky albedo and CERES EBAF top-of-atmosphere net radiation (TOAnet), we obtain a European mean partitioning (2001-2005) of absorbed solar radiation (relative to total incoming radiation) of: ASRsurf= 41% and ASRatm= 25%, together equaling

  8. Some solar radiation ratios and their interpretations with regards to ...

    African Journals Online (AJOL)

    Ratios of some radiation fluxes such as global (total) solar radiation, H, direct solar radiation, Hb, diffuse solar radiation, Hd, and extraterrestrial radiation, Ho were proposed to define radiation coefficients related to radiation transfer in the atmosphere and solar radiation measurement on the ground surface. The irradiative ...

  9. Solar absorption estimated from surface radiation measurements and collocated satellite products

    Science.gov (United States)

    Hakuba, M. Z.; Wild, M.; Folini, D.; Sanchez-Lorenzo, A.; Schaepman-Strub, G.

    2012-04-01

    The Earth's climate and life-relevant processes are governed by the incoming solar radiation as part of the global energy balance. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the research presented here is an improved understanding of the mean state and spatio-temporal variations of the global energy balance through reducing the uncertainties in one of its components, i.e., the absorption of solar radiation within the climate system. To quantify the solar absorption at the surface and within the atmospheric column, we combine the worldwide surface radiation measurements of the Global Energy Balance archive (GEBA) and Baseline Surface Radiation Network (BSRN) with collocated satellite-inferred surface albedo and top-of-atmosphere (TOA) radiation data (MODIS, CERES). Our analysis of the present mean state, temporal and spatial variability during the last decade (2000-2010) focuses on Europe and Asia, and will expand worldwide in a later step. We examined the quality and homogeneity of station records beyond 2000 provided by GEBA to identify a subset of station records of sufficient quality. We find the vast majority of monthly records to be suitable for our purposes. The considered GEBA sites indicate overall positive trends in Europe, and mostly negative trends over Asia during the last decade (2000-2010). To derive the surface solar absorption at the measurement sites, we intend to combine the shortwave fluxes with the collocated surface albedo from MODIS. The MODIS products include the so-called black-sky albedo (under the assumption of direct radiation only) and white-sky albedo (under diffuse isotropic conditions). The majority of GEBA sites comprises only global radiation data, which do not differentiate between direct and diffuse components. To determine solar absorption from

  10. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  11. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    Science.gov (United States)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  12. Measurement Of Solar Radiation at New Delhi, High Altitude Observatory, Hanle and Maitri Antarctica

    Science.gov (United States)

    Jain, S. L.; Arya, B. C.

    The measurement of solar radiation plays an important role in climate and environmental change studies. The enhanced UV-B radiations at the ground level has the potential to cause adverse biological and environmental impacts. The amount of UV-B radiation at ground level depends on various temporal, spatial and meteorological factors such as time of the day, season, altitude, clouds, surface albedo, ozone, aerosols, etc. The risks for the human health, plant, animals and material are growing because of high exposition of the solar radiation which is caused by ozone depletion and other anthropogenic activities. A limited measurements have been made at high altitudes and Antarctica which are very crucial to inhabitants of these locations. In view of the above, measurements of solar radiation along with other parameters were carried out at Leh (34°77' N, 77°36' E), 3311 meter above mean sea level as well as at Indian Astronomical Observatory , Leh / Hanle ( Indian Institute of Astrophysics, Bangalore), Hanle (Mount Saraswati), Jammu and Kashmir (India) (32°43' N, 77°34' E), 4467 meter above mean sea level during July 13-31, 1999, June 2000 and July 2003 in a campaign mode. These measurements are first of its kind at a unique location well deep inside the troposphere as it happens to be one of the highest observatory in the world. The regular measurements are also being carried out at NPL, New Delhi(280 65^' N, 770 21^' E) and Maitri, Antarctica(70.440 S, 11.450 E). Also the data were collected during our voyage to Antarctica to cover latitudinal distribution of these parameters from Goa, India (15.240 N, 73.420 E) to Maitri, Antarctica (70.440 S, 11.450 E) using a highly sophisticated and microprocessor based compact hand held sun photometer consisting of five filter channels at 300, 305, 312, 940 and 1020 nm to measure solar radiation at all the sites. The measurements were used to derive total column ozone, water vapour and aerosol optical depth etc. The solar

  13. Galileo probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere

    Science.gov (United States)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-09-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 μm in radius) of optical depth 1.5-2 at 0.5 μm. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-μm thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near

  14. O2 density and temperature profiles retrieving from direct solar Lyman-alpha radiation measurements

    Science.gov (United States)

    Guineva, V.; Witt, G.; Gumbel, J.; Khaplanov, M.; Werner, R.; Hedin, J.; Neichev, S.; Kirov, B.; Bankov, L.; Gramatikov, P.; Tashev, V.; Popov, M.; Hauglund, K.; Hansen, G.; Ilstad, J.; Wold, H.

    2009-12-01

    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL—Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU’s 6th Framework Programme, Andøya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.

  15. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  16. Real-time measurement of outdoor worker's exposure to solar ultraviolet radiation in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    Mmathapelo Makgabutlane

    2015-05-01

    Full Text Available The city of Pretoria in South Africa receives considerable solar ultraviolet radiation (UVR because of its low latitude (22–35°S and relatively clear skies. Certain meteorological factors affect the amount of solar UVR that reaches the ground; the most dominant factors being stratospheric ozone, cloud cover and solar zenith angle. It is known that overexposure to solar UVR may lead to the development of adverse health conditions, the most significant being skin cancer. Outdoor workers spend a significant amount of time outside and are thus susceptible to this risk. In this case study, we estimated, for the first time, the real-time solar UVR exposure of an outdoor worker in Pretoria. Measurements were made on 27 and 28 May 2013 using a handheld ultraviolet index (UVI meter calibrated against a science-grade biometer at the South African Weather Service in Pretoria. Personal exposure estimation was used to discern the pattern in diurnal and annual sunburn risk for the outdoor worker. Ambient UVR levels ranged from 0 UVI to 4.66 UVI and the outdoor worker’s potential exposure estimates regularly exceeded 80% of these levels depending on the time of day. The risk of sunburn was evident; however, actual incidents would depend on individual skin photosensitivity and melanin content, as well as sun protection used. Further research is needed to determine the personal exposure estimations of outdoor workers in other provinces in which solar UVR levels may be equally high, or higher than those in Pretoria.

  17. Calibration of GOES-derived solar radiation data using a distributed network of surface measurements in Florida, USA

    Science.gov (United States)

    Sumner, David M.; Pathak, Chandra S.; Mecikalski, John R.; Paech, Simon J.; Wu, Qinglong; Sangoyomi, Taiye; Babcock, Roger W.; Walton, Raymond

    2008-01-01

    Solar radiation data are critically important for the estimation of evapotranspiration. Analysis of visible-channel data derived from Geostationary Operational Environmental Satellites (GOES) using radiative transfer modeling has been used to produce spatially- and temporally-distributed datasets of solar radiation. An extensive network of (pyranometer) surface measurements of solar radiation in the State of Florida has allowed refined calibration of a GOES-derived daily integrated radiation data product. This refinement of radiation data allowed for corrections of satellite sensor drift, satellite generational change, and consideration of the highly-variable cloudy conditions that are typical of Florida. To aid in calibration of a GOES-derived radiation product, solar radiation data for the period 1995–2004 from 58 field stations that are located throughout the State were compiled. The GOES radiation product was calibrated by way of a three-step process: 1) comparison with ground-based pyranometer measurements on clear reference days, 2) correcting for a bias related to cloud cover, and 3) deriving month-by-month bias correction factors. Pre-calibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m–2 day–1 (13 percent). Calibration reduced errors to 1.7 MJ m–2 day–1 (10 percent) and also removed time- and cloudiness-related biases. The final dataset has been used to produce Statewide evapotranspiration estimates.

  18. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  19. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  20. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    Science.gov (United States)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  1. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  2. Spatial representativeness of ground-based solar radiation measurements estimated from high-resolution Meteosat data

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Sanchez-Lorenzo, Arturo; Wild, Martin

    2014-05-01

    The validation of gridded surface solar radiation (SSR) data often relies on the comparison with ground-based in-situ measurements. This poses the question on how representative a point measurement is for a larger-scale surrounding. We use the high-resolution (0.03° ) SIS MVIRI data from the Satellite Application Facility on Climate Monitoring (CM SAF) to study the spatial sub-grid variability in all-sky surface solar radiation (SSR) over Europe, Africa, and parts of South America as covered by the Meteosat disk. This is done for the CERES EBAF 1° standard grid and two equal-angle grids of 0.25° and 3° resolution. Furthermore, we quantify the spatial representativeness of numerous surface sites from the BSRN and the GEBA for their site-centered larger surroundings varying in size from 0.25° to 3°, as well as with respect to the given standard grids. These analyses are done on a climatological annual and monthly mean basis over the period 2001-2005. The annual mean sub-grid variability (mean absolute deviation) in the 1° standard grid over European land is on average 1.6% (2.4 Wm¯²), with a maximum of up to 10% in Northern Spain (Hakuba et al. 2013). As expected, highest sub-grid variability is found in mountainous and coastal regions. The annual mean representation error of point values at 143 surface sites in Europe with respect to their 1° surrounding and the 1° standard grid is on average 2% (3 Wm¯² ). For larger surroundings of 3°, the representation error increases to 3% (4.8 Wm¯²), which is of similar order as the measurement accuracy of in-situ observations. Most of the sites can thus be considered as representative for their larger surroundings of up to 3°, which holds also true for the majority of BSRN sites located in Africa and South America. This representation error can be reduced if site-specific correction factors are applied or when multiple sites are available in the same grid cell, i.e., three more sites reduce the error by 50

  3. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  4. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...... Center, SEC, Denmark. With measured solar radiation on horizontal and the different solar radiation processing models the total radiation is calculated on differently tilted and oriented surfaces and compared with the measured solar radiation on the different surfaces. Further, the impact on the yearly...

  5. Incidental solar radiation according to the solar collector slope : horizontal measurements conversion on an inclined panel laws

    Energy Technology Data Exchange (ETDEWEB)

    Slama, R.B. [ISSAT Gabes, Gabes (Tunisia). Dept. of Electromecanique

    2009-07-01

    Solar water heaters are in need of improvement, as they are known to be overheated in the summer and are unsatisfactory in the winter. The purpose of this paper was to determine the incidental solar energy on a collector for various slopes and with various orientations, which could be generalized with the solar water, photovoltaic panel and air collectors, and with the walls of a building. The paper presented the computational model and subsequent results and discussion. This included the ideal tilt angle of the solar collectors according to the date; flux received by the collector according to the slope and of the period of usage; received solar flux by the collector according to the date and various inclinations; energy received according to the date for various inclinations of the solar collector; received energy according to the inclination of the collector and the period of use; and influence of albedo on received energy. The paper also addressed the conversion, on an inclined collector, of the horizontal measurements provided by the weather stations. It was concluded that the measurement of solar incident energy is necessary for the optical performance of photovoltaic or thermal solar installations. 25 refs., 8 figs., 1 appendix.

  6. A note on the effect of reflected solar radiation on airborne and ground measurements in the thermal infrared

    Science.gov (United States)

    Whitehead, V. S.

    1971-01-01

    The magnitude of thermal solar radiation reflected from water surfaces is considered. It is shown both theoretically and by field observation that, for instruments with small fields of view, the reflected thermal solar radiation can contribute significantly to the measured energy. Comparison of thermal scanner data taken from aircraft at a 16 deg azimuth angle from the mirror point of the sun over the open ocean with data taken at a 164 deg anzimuth angle from the mirror point of the sun at the same angle from nadir is indicative of a difference of 2.8 K in the equivalent black body radiation temperature. Observations taken from a surface vessel into sunglint 80 deg from nadir are indicative of an equivalent black body radiation temperature that is 34 K warmer than the temperature obtained at a similar nadir angle away from the sunglint.

  7. Estimating solar radiation using NOAA/AVHRR and ground measurement data

    Science.gov (United States)

    Fallahi, Somayeh; Amanollahi, Jamil; Tzanis, Chris G.; Ramli, Mohammad Firuz

    2018-01-01

    Solar radiation (SR) data are commonly used in different areas of renewable energy research. Researchers are often compelled to predict SR at ground stations for areas with no proper equipment. The objective of this study was to test the accuracy of the artificial neural network (ANN) and multiple linear regression (MLR) models for estimating monthly average SR over Kurdistan Province, Iran. Input data of the models were two data series with similar longitude, latitude, altitude, and month (number of months) data, but there were differences between the monthly mean temperatures in the first data series obtained from AVHRR sensor of NOAA satellite (DS1) and in the second data series measured at ground stations (DS2). In order to retrieve land surface temperature (LST) from AVHRR sensor, emissivity of the area was considered and for that purpose normalized vegetation difference index (NDVI) calculated from channels 1 and 2 of AVHRR sensor was utilized. The acquired results showed that the ANN model with DS1 data input with R2 = 0.96, RMSE = 1.04, MAE = 1.1 in the training phase and R2 = 0.96, RMSE = 1.06, MAE = 1.15 in the testing phase achieved more satisfactory performance compared with MLR model. It can be concluded that ANN model with remote sensing data has the potential to predict SR in locations with no ground measurement stations.

  8. Development of tool for optimization in the measurement of solar radiation; Desarrollo de herramientas para la optimizacion en la medicion de la radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Adaro, J.; Quiroga, D.; Fasulo, A.; Lema, A.

    2004-07-01

    One of the most important requirements to make a project of rational use of solar energy is the precise knowledge of the temporal-spatial distribution of the solar resource on the terrestrial surface. For that reason, the Solar Energy Group at the National University of Rio Cuarto in Argentina, is measuring and recording data of global and direct solar radiation. Many possibilities of different kinds of errors there exist in this process, but the most significant problem is the lack of data. Then, it would be necessary to have a methodology that indicates what to do in this situation, and for that reason, this work performs an study about the data processing of the obtained measurements to infer values to be incorporated to the series in situations where the data are lost. To incorporate lost data, the Time Series Analysis based in spatial state models were used. (Author)

  9. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  10. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  11. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  12. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  13. Measured and calculated clear-sky solar radiative fluxes during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS)

    Energy Technology Data Exchange (ETDEWEB)

    Valero, Francisco P. J. [Atmospheric Research Laboratory, Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, San Diego, California (United States); Bush, Brett C. [Atmospheric Research Laboratory, Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, San Diego, California (United States)

    1999-11-27

    Modeled and measured surface insolations are compared with the purpose of evaluating the ability of a radiative transfer model to predict the amount of solar radiation reaching the surface under clear-sky conditions. Model uncertainties are estimated by performing sensitivity studies for variations in aerosol optical depth, aerosol optical properties, water vapor profiles, ozone content, solar irradiance at the top of the atmosphere, and surface albedo. In this fashion, a range of possible calculated values is determined and compared to observations. Experimental errors are evaluated by comparison with independent, simultaneous measurements performed using two World Radiation Reference instrument arrays that were operational for a limited period during SUCCESS. Assuming a mineral aerosol, it is found that there is agreement between calculated and measured fluxes, with differences approximately equal to and within one standard deviation. Such agreement improves further if a layer containing a small amount of carbonaceous aerosol is added. The presence of carbonaceous aerosols is likely because occasional biomass burning activities took place during SUCCESS in the area around the experimental site (the clouds and radiation test bed operated by the Department of Energy in Oklahoma). (c) 2000 American Geophysical Union.

  14. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  15. Solar ultraviolet radiation cataract.

    Science.gov (United States)

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  16. Solar Radiation Resource Assessment Project. Program overview of fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The mission of the Solar Radiation Resource Assessment Project is to provide essential information about the solar radiation resource to users and planners of solar technologies so that they can make informed and timely decisions concerning applications of those technologies. The project team accomplishes this by producing and disseminating relevant and reliable information about solar radiation. Topics include: Variability of solar radiation, measurements of solar radiation, spectral distribution of solar radiation, and assessment of the solar resource. FY 1993 accomplishments are detailed.

  17. The National Solar Radiation Database (NSRDB)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Habte, Aron; Lopez, Anthony; Xie, Yu; Molling, Christine; Gueymard, Christian

    2017-03-13

    This presentation provides a high-level overview of the National Solar Radiation Database (NSRDB), including sensing, measurement and forecasting, and discusses observations that are needed for research and product development.

  18. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    Energy Technology Data Exchange (ETDEWEB)

    Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  19. Validation of Environmental Stress Index by Measuring Infrared Radiation as a Substitute for Solar Radiation in Indoor Workplaces

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2016-09-01

    Full Text Available Background The exposure of individuals to heat at different jobs warrants the use of heat stress evaluation indices. Objectives The aim of this study was to validate environmental stress index using an infrared radiation (IR measurement instrument as a substitute for pyranometer in indoor workplaces. Methods This study was conducted on 2303 indoor workstations in different industries in Isfahan, Iran, during July, August, and September in 2012. The intensity of the Infrared Radiation (IR (w/m2 was measured at five-centimeter distances in six different directions, above, opposite, right, left, behind and below the globe thermometer. Then, the dry globe temperature (Ta, wet globe temperature (Tnw, globe temperature (Tg and relative humidity (RH were also simultaneously measured. The data were analyzed using correlation and regression by the SPSS18 software. Results The study results indicate that a high correlation (r = 0.96 exists between the environmental stress index (ESI and the values of wet bulb globe temperature (P < 0.01. According to the following equation, WBGT = 1.086 × ESI - 1.846, the environmental stress index is able to explain 91% (R2 = 0.91 of the WBGT index variations (P < 0.01. Conclusions Based on the results, to study heat stress in indoor workplaces when the WBGT measurement instrument is not available and also in short-term exposures (shorter than 30 minutes when measuring the wet bulb globe temperature shows a considerable error, it is possible to calculate the environmental stress index and accordingly to the WBGT index, by measuring the parameters of dry bulb temperature (Ta, relative humidity (RH, and infrared radiation intensity that can be easily measured in a short time.

  20. SOLAR RADIATION MAPS FOR EIIDOPIA Tesfaye Bayou and ...

    African Journals Online (AJOL)

    SOLAR RADIATION MAPS FOR EIIDOPIA. Tesfaye Bayou and Abebayehu Assefa. Faculty of Technology. Addis Ababa University. ABSTRACT. Estimates of solar radiation maps for Ethiopia are prepared from measured solar radiation data of 6 sites and estimates from sunshine hour records of 136 sites. The estimates for ...

  1. Solar radiation at Parsons, West Virginia

    Science.gov (United States)

    James H. Patric; Stanley Caruso

    1978-01-01

    Twelve years of solar radiation data, measured with a Kipp-Zonen pyranometer, were recorded near Parsons, West Virginia. The data agree well with calculated values of potential and average radiation for the vicinity and are applicable to the central Appalachian region.

  2. Solar ultraviolet radiation measurements at South African and Reunion Island Coastal Sites: An indicator of public sun protection

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) has the potential to cause biological harm to humans. Intensity of solar UVR at the Earth’s surface depends on several factors, such as total column ozone and cloud cover, and temporal trends are usually dependent...

  3. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, F.; Stephen, T.; Kosters, J. [Univ. of Denver, CO (United States)

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  4. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. I - Theory

    Science.gov (United States)

    Nakajima, Teruyuki; King, Michael D.

    1990-01-01

    A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (tau c) and effective particle radius (r/e/) of water clouds can be determined solely from reflection function measurements at 0.75 micron and 2.16 microns, provided tau c is not less than 4 and r(e) is not less than 6 microns. For optically thin clouds, the retrieval becomes ambiguous, resulting in two possible solutions for the effective radius and optical thickness. Adding a third channel near 1.65 micron does not improve the situation noticeably, whereas the addition of a channel near 3.70 microns reduces the ambiguity in deriving the effective radius. The effective radius determined by the above procedure corresponds to the droplet radius at some optical depth within the cloud layer.

  5. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  6. Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogota

    Energy Technology Data Exchange (ETDEWEB)

    Forero, N.L. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Caicedo, L.M.; Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2007-12-15

    An empirical expression developed to estimate global solar radiation in clear days, on inclined surfaces located at any geographical position, is presented. This expression allows determining the global solar radiation in a specific day of the year, considering the attenuation of radiation in the atmosphere, the air mass factor, astronomic geometric and geographic parameters, and in particular, the altitude. Data calculated with this expression were correlated with those obtained experimentally in Bogota, Colombia (74 4'W, 4 35'N and 2580 m altitude). The correlation of the calculated with the experimental data yielded a coefficient of 0.9980, which indicates the reliability of the former and that the developed expression facilitates the construction of data bases with information on solar radiation potential in ample regions characterized by their locations at different altitudes above sea level. These data bases will supply preliminary information on sites adequate for the installation of photovoltaic systems. (author)

  7. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  8. Snow, ice and solar radiation

    OpenAIRE

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend mostly on variations in the size of the snow crystals on the surface. Firstly, a radiative transfer model is developed and adapted in order to study the propagation of solar radiation through an at...

  9. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil

    Science.gov (United States)

    Thomas, Claire; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-06-01

    The SoDa website (www.soda-pro.com) is populated with numerous solar-related Web services. Among them, three satellite-derived irradiation databases can be manually or automatically accessed to retrieve radiation values within the geographical coverage of the Meteosat Second Generation (MSG) satellite: the two most advanced versions of the HelioClim-3 database (versions 4 and 5, respectively HC3v4 and HC3v5), and the CAMS radiation service. So far, these databases have been validated against measurements of several stations in Europe and North Africa only. As the quality of such databases depends on the geographical regions and the climates, this paper extends this validation campaign and proposes an extensive comparison on Brazil and global irradiation received on a horizontal surface. Eleven stations from the Brazilian Institute of Space Research (INPE) network offer 1 min observations, and thirty-one stations from the Instituto Nacional de Meteorologia (INMET) network offer hourly observations. The satellite-derived estimates have been compared to the corresponding observations on hourly, daily and monthly basis. The bias relative to the mean of the measurements for HC3v5 is mostly comprised between 1 and 3 %, and that for HC3v4 between 2 and 5 %. These are very satisfactory results and they demonstrate that HC3v5, and to a lesser extent HC3v4, may be used in studies of long-term changes in SSI in Brazil. The situation is not so good with CAMS radiation service for which the relative bias is mostly comprised between 5 and 10 %. For hourly irradiation, the relative RMSE ranges from 15 to 33 %. The correlation coefficient is very large for all stations and the three databases, with an average of 0.96. The three databases reproduce well the hour from hour changes in SSI. The errors show a tendency to increase with the viewing angle of the MSG satellite. They are greater in tropical areas where the relative humidity in the atmosphere is important. It is concluded

  10. Improvement in the spatio-temporal distribution of surface solar radiation data over Belgium by merging ground-based and satellite measurements

    Science.gov (United States)

    Journée, M.; Bertrand, C.

    2010-09-01

    Appropriate information on solar resources is very important for a variety of technological areas, such as: agriculture, meteorology, forestry engineering, water resources and in particular in the designing and sizing of solar energy systems. As an example, time-and space-dependent global solar radiation on horizontal surface at the location of interest is the most critical input parameter employed in the design and prediction of the performance of a solar energy device. Solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of observed solar radiation measurements has proven to be spatially and temporally inadequate for many applications. Mapping the solar radiation by interpolation/extrapolation of measurements is possible but leads to large errors, except if the network is dense. A global coverage of solar radiation can however be inferred from space-based observations. In the present study, we evaluate the potential benefit of merging global solar radiation measurements from the Royal Meteorological Institute of Belgium (RMIB) solar measurements network with the operationally derived surface incoming global short-wave radiation products from Meteosat Second Generation (MSG) satellites imageries to improve the spatio-temporal resolution of the surface global solar radiation data over Belgium. Within the Satellite Application Facility (SAF) network supported by the European Organisation for the Exploitation of Meteorological Satellites (Eumetsat), the downwelling shortwave radiation at the surface of Belgium is operationally retrieved from MSG imageries by two decentralized SAFs: the Satellite Application Facility on Climate Monitoring (CM-SAF) and the Land Surface Analysis Satellite Application Facility (LSA-SAF). To retrieve the same parameter, the different SAFs use their own algorithms and

  11. An auto-calibration procedure for empirical solar radiation models

    NARCIS (Netherlands)

    Bojanowski, J.S.; Donatelli, Marcello; Skidmore, A.K.; Vrieling, A.

    2013-01-01

    Solar radiation data are an important input for estimating evapotranspiration and modelling crop growth. Direct measurement of solar radiation is now carried out in most European countries, but the network of measuring stations is too sparse for reliable interpolation of measured values. Instead of

  12. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. L. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); Yu, P. K. N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong (Hong Kong)

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  13. Estimation of global solar radiation using solar PV and its ...

    African Journals Online (AJOL)

    Solar energy is the prime energy source of hydrologic parameter such as evapotranspiration and aerodynamic parameter like wind. Knowledge of daily global solar radiation is important to estimate all solar energy related parameters. In this study, mean daily global solar radiation at Haramaya University (HU) and Dire ...

  14. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    Science.gov (United States)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  15. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  16. Spectral variation of the solar radiation during an eclipse

    OpenAIRE

    Peter Koepke; Joachim Reuder; Jan Schween

    2001-01-01

    The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earths surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from ...

  17. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J. [University of New Hampshire, Durham, NH 03824 (United States); Saul, L.; Wurz, P. [University of Bern, 3012 Bern (Switzerland); Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Fuselier, S. A.; Livadiotis, G.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Frisch, P. [University of Chicago, Chicago, IL 60637 (United States); Gruntman, M. [University of Southern California, Los Angeles, CA 90089 (United States); Mueller, H. R. [Dartmouth College, Hanover, NH 03755 (United States)

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  18. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  19. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    Directory of Open Access Journals (Sweden)

    J. Huttunen

    2016-07-01

    Full Text Available In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have

  20. A solar radiation database for Chile.

    Science.gov (United States)

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  1. Radiation balances and the solar constant

    Science.gov (United States)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  2. History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lantos, P.; Fuller, N

    2003-07-01

    Measurements during solar particle events with dosemeters flying permanently on-board Concorde are used to develop a semi-empirical model, called SiGLE. The model is intended to calculate, for a given flight plan, the dose equivalent received during a solar particle event observed with ground-based neutron monitors. It is successfully in operation in the SIEVERT computerised system intended to improve monitoring of radiation dose received by aircrews, in application to a European Directive. The semi-empirical model is applied to evaluate, for most exposed routes, the radiation doses corresponding to the GLEs observed since 1942 with ion chambers or neutron monitors. The results for the largest GLEs observed in the past are discussed in terms of radiation risk, and guidelines are suggested concerning possible alerts to the aeroplanes in case of events of exceptional magnitude. (author)

  3. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant p...

  4. Nocturnal radiation from a solar collector

    Science.gov (United States)

    Wang, H. F.; Chiang, C. W.

    1980-11-01

    As the sky temperature during the night is relatively low compared to the ambient temperature, the temperature of the absorber plate in a solar collector can be lower than the ambient temperature due to nocturnal radiation. Measurements have been made for Lennox Solar Collectors installed in a solar heating and cooling project, a same collector in Rapid City and a simple home-made collector in the laboratory. The home-made collector consists of a brass-copper plate sprayed with flat-black paint, covered with glass sheets and boxed with two inch thick styrofoam insulation. A cooling as much as 10 C in winter has been observed. It is expected to be appreciably more in summer. This suggests a potential utilization of nocturnal radiation for air conditioning. Theoretical analysis is presented.

  5. Radiometric gains of satellite sensors of reflected solar radiation - Results from NASA ER-2 aircraft measurements

    Science.gov (United States)

    Abel, Peter; Galimore, Reginald; Cooper, John

    1992-01-01

    A method for using congruent aircraft-satellite observations to calibrate a satellite sensor is presented. A calibrated spectroradiometer at an altitude of 19 km above White Sands, NM, is oriented to view White Sands at the satellite overpass time along the same view vector as the satellite sensor. Collected data are transformed into corresponding estimates of sensor band radiance at the satellite (derived from the aircraft measurements), and average count (from the sensor measurements). These are both averaged across the footprint of the spectroradiometer. Results are presented for the evolution of NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) (Bands 1 and 2) gain between November 1988 and October 1990, and for GOES-6 and GOES-7 VISSR/VAS visible bands during the same period. Estimates of uncertainty in the results are presented, as well as ideas for their reduction in future flights.

  6. Precise estimation of total solar radiation on tilted surface

    African Journals Online (AJOL)

    rajeev

    A new correction factor (CF) which depends upon the longitude and altitude of the location, has been used for the estimation of hourly and total solar radiation at different orientation and inclination for. Delhi. The estimated values of hourly solar radiation have also been compared with 15 years measured data of Delhi to ...

  7. Solar radiation maps fot Ethiopia | Bayou | Zede Journal

    African Journals Online (AJOL)

    Estimates of solar radiation maps for Ethiopia are prepared from measured solar radiation data of 6 sites and estimates from sunshine hour records of 136 sites. The estimates for the 136 sites are determined from their sunshine hour data using the Angstrom's linear correlation for the inland regions and that of Schuepp's for ...

  8. New Setup of the UAS ALADINA for Measuring Boundary Layer Properties, Atmospheric Particles and Solar Radiation

    Directory of Open Access Journals (Sweden)

    Konrad Bärfuss

    2018-01-01

    Full Text Available The unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting in situ Aerosols has been established as an important tool for boundary layer research. For simplified integration of additional sensor payload, a flexible and reliable data acquisition system was developed at the Institute of Flight Guidance, Technische Universität (TU Braunschweig. The instrumentation consists of sensors for temperature, humidity, three-dimensional wind vector, position, black carbon, irradiance and atmospheric particles in the diameter range of ultra-fine particles up to the accumulation mode. The modular concept allows for straightforward integration and exchange of sensors. So far, more than 200 measurement flights have been performed with the robustly-engineered system ALADINA at different locations. The obtained datasets are unique in the field of atmospheric boundary layer research. In this study, a new data processing method for deriving parameters with fast resolution and to provide reliable accuracies is presented. Based on tests in the field and in the laboratory, the limitations and verifiability of integrated sensors are discussed.

  9. Emhanced pond efficiency through solar radiation | Agunwamba ...

    African Journals Online (AJOL)

    The effect of enhanced solar radiation on the performance of waste stabilization pond (WSP) was investigated in this study. The analysis was performed with data collected from four pilot ponds operated in parallel; one without enhanced solar radiation and the rest with solar irradiation. The latter gave higher efficiency.

  10. Aerosol Optical Properties in the Iranian Region Obtained by Ground-Based Solar Radiation Measurements in the Summer Of 1991.

    Science.gov (United States)

    Nakajima, Teruyuki; Hayasaka, Tadahiro; Higurashi, Akiko; Hashida, Gen; Moharram-Nejad, Naser; Najafi, Yahya; Valavi, Hamzeh

    1996-08-01

    Solar radiation measurements were made using sun photometers and pyranometers during 31 May-7 June 1991 at several places in Iran and during 12 June-17 September 1991 at a fixed place, Bushehr, Iran. In the first period the aerosol optical thickness had values about 0.4 at the wavelength of 0.5 m in the coastal area and about 0.2 in the plateau area. The Ångström's exponent, which is the slope of optical thickness spectrum, had values around 1 for large city areas and less than 0.5 for inland arid areas. Chemical analyses of sampled air indicate an effect of fossil fuel burning from local sources. Such optical and chemical characteristics of atmospheres suggest that soil-derived coarse particles contributed considerably to the atmospheric turbidity in arid areas, whereas an active generation of aerosols was dominant near large cities.Significant rises in atmospheric turbidity were observed in the earlier part of the second period at Bushehr about once a week with a duration of about one day, which may have been caused by smoke from oil-well fires in Kuwait. The aerosol optical thickness in these events had values of about 1.5, which is equivalent to a columnar aerosol volume of 4.4 × 104 cm3 cm2. The absorption index ranged from 0.005 to 0.02 with several peaks reaching 0.1 in the second period. These peaks can be attributed to prevailing smoke particles. In spite of the large variety of optical thicknesses and absorption indices, there existed stable power-law size distributions with an exponent about 3.7.

  11. Space Radiation Effect on Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Jae-Jin Lee

    2008-12-01

    Full Text Available High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1 was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  12. Real-time measurement of outdoor worker’s exposure to solar ultraviolet radiation in Pretoria, South Africa

    CSIR Research Space (South Africa)

    Makgabutlane, M

    2015-05-01

    Full Text Available significant amount of time outside and are thus susceptible to this risk. In this case study, we estimated, for the first time, the real-time solar UVR exposure of an outdoor worker in Pretoria. Measurements were made on 27 and 28 May 2013 using a handheld...

  13. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation.

    Science.gov (United States)

    da Cunha, Antonio Ribeiro

    2015-05-01

    This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.

  14. IMPACT OF SOLAR RADIATION CHANGE ON THE COLLECTOR EFFICIENTLY

    Directory of Open Access Journals (Sweden)

    Danuta Proszak-Miąsik

    2017-01-01

    Full Text Available In October 2014 in a building of Rzeszow University of Technology, a series of measurements was taken to calculate the parameters of a solar system with a flat collector, as installed on the roof of the building. The following parameters were obtained: the value of solar radiation intensity, the temperature of external air, the temperature on the collector, the temperature of water in the tank and the temperature of glycol on the supply and return lines. On the basis of the data received, charts were made to visually present how changes of solar radiation intensity affected parameters of the system. The study was conducted in autumn when the intensity of solar radiation decreases, compared with summer months. The publication aims to show that the solar system brings energy gains in periods of transition, and the instantaneous intensity of solar radiation are comparable to those in the summer.

  15. A comparison of experimental and estimated data analyses of solar radiation, in Adiyaman, Turkey

    OpenAIRE

    Bozkurt, Ismail; Calis, Nazif; Sogukpinar, Haci

    2015-01-01

    The world's main energy source is the sun. Other energy sources are caused directly or indirectly from the sun. Turkey has a rich potential in terms of solar energy and interest in solar power systems is increasing in the rapidly evolving technology. In all of the solar energy studies needs solar radiation data but solar radiation measurements are not possible on each area. Therefore, estimation of the solar radiation by using a variety of methods are emerging importance. In this study, ...

  16. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  17. Direct effect of aerosol on incident solar radiation at the surface as a function of aerosol mixtures measured in the center of Rome.

    Science.gov (United States)

    Campanelli, M.; Bassani, C.; Cacciani, M.; Siani, A. M.; Perrino, C.; Canepari, S.; Di Sarra, A.; Salzano, R.; Casasanta, G. P.; Tirelli, C.; Estelles, V.

    2012-04-01

    Aerosols determine a radiative effect in the atmosphere by affecting the amount of solar radiation reaching the surface and then acting on the temperature of both the layer where they are located and the surface. The presence of very absorbent particles typical of the urban environment, is therefore dangerous not only for human health but also because they are able to increase the temperature of the atmospheric layer in which they are located interacting with the "heath island" phenomenon. The resulting variation of both surface temperature and temperature vertical profile influences the dilution of atmospheric pollutants and needs to be studied in more detail, particularly in the summer period when heat waves are more frequent. Chemical analysis of surface particulate matter performed at the urban site of Rome (Perrino et al. 2009) showed that sea salt, locally produced urban aerosol and desert dust can be recognized depending on the intensity of the episodes transporting different particles types. As a result: i) the direct effect of aerosol at the surface change as a function of aerosol mixtures; ii) the variation of incident solar radiation affects the local convective air motion modifying the low level circulation and having an effect on the particles deposition and hence on the chemical characterization of the mixture. On the base of above issues a day-time intensive field campaign was held in Rome (Italy) in June and July 2011 at the University of Rome, La Sapienza, located in the city center (lat 41.9°N, long 12.5 °E). Chemical analysis of the aerosol particles was performed on particulate collected by PM10 collectors. Columnar aerosol optical and physical properties in clear sky were retrieved by using a PREDE sun-sky radiometer, part of ESR/SKYNET network. Vertical profiles of aerosol were obtained by a Lidar and incoming total solar radiation was measured by a Black and White Pyranometer . A Brewer spectrophotometer, a Sodar, and a MFRSR provided

  18. Solar radiation and human health

    Science.gov (United States)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  19. Solar radiation and human health

    Energy Technology Data Exchange (ETDEWEB)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo (Norway); Brekke, Paal [Norwegian Space Centre, PO Box 113, Skoeyen, N-0212 Oslo (Norway); Dahlback, Arne [Department of Physics, University of Oslo, Blindern, 0316 Oslo (Norway); Andersson-Engels, Stefan [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Reichrath, Joerg [Klinik fuer Dermatologie, Venerologie und Allergologie, Universitaetsklinikum des Saarlandes, D-66421 Homburg/Saar (Germany); Holick, Michael F [Department of Medicine, Section of Endocrinology, Nutrition and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, 85 E. Newton St., M-1013, Boston, MA 02118 (United States); Grant, William B, E-mail: asta.juzeniene@rr-research.no, E-mail: kmoan@hotmail.com, E-mail: paal.brekke@spacecentre.no, E-mail: arne.dahlback@fys.uio.no, E-mail: j.e.moan@fys.uio.no, E-mail: stefan.andersson-engels@fysik.lth.se, E-mail: joerg.reichrath@uks.eu, E-mail: mfholick@bu.edu, E-mail: wbgrant@infionline.net [Sunlight, Nutrition and Health Research Center (SUNARC), PO Box 641603, San Francisco, CA 94164-1603 (United States)

    2011-06-15

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  20. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey.

    Science.gov (United States)

    Greenfield, Jamie A; Park, Philip S; Farahani, Ellie; Malik, Suneil; Vieth, Reinhold; McFarlane, Norman A; Shepherd, Theodore G; Knight, Julia A

    2012-08-15

    Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n = 4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m² increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P = 0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.

  1. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey

    Directory of Open Access Journals (Sweden)

    Greenfield Jamie A

    2012-08-01

    Full Text Available Abstract Background Exposure to solar ultraviolet-B (UV-B radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OHD using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS. Methods Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OHD (n = 4,398. Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OHD and solar UV-B adjusted for other predictors and to explore effect modification. Results Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B prior to blood draw correlated significantly with 25(OHD. Independent of other predictors, a 1 kJ/m2 increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8 increase in mean 25(OHD (P = 0.0001. The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OHD for the population. Conclusions In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OHD concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.

  2. Solar radiation data manual for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W.; Wilcox, S.

    1995-09-01

    Architects and engineers use solar resource information to help design passive solar and daylighting features for buildings. Solar resource information includes data on how much solar radiation and illuminance are available for different window orientations, and how they vary. This manual provides solar radiation and illuminance values for a horizontal window and four vertical windows (facing north, east, south, and west) for 239 stations in the United States and its territories. The solar radiation values are monthly and yearly averages for the period of 1961--1990. Included are values showing the solar radiation incident on the window and the amount transmitted into the living space, with and without exterior shading of the window. Illuminance values are presented r average dismal profiles for 4 months of the year. In addition to the solar radiation and illuminance data, this manual contains tables listing climatic condition such as average temperature, average daily minimum and maximum temperature, record minimum and maxi mum temperature, average heating and cooling degree days, average humidity ratio, average wind speed, an average clearness index. The solar radiation, illuminance, and climatic data a presented in tables. Data for each station are presented on a single page, and the pages are arranged alphabetically by the state or territory two-letter abbreviation. Within a state or territory, the pages are arranged alp betically by city or island.

  3. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  4. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  5. Surface solar radiation from geostationary satellites for renewable energy

    Science.gov (United States)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  6. An automatic measuring system for mapping of spectral and angular dependence of direct and diffuse solar radiation; Et automatisk maalesystem for kartlegging av vinkel- og spektralfordeling av direkte og diffus solstraaling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Oddbjoern

    1997-12-31

    In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.

  7. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  8. Forecasting of global solar radiation using anfis and armax techniques

    Science.gov (United States)

    Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi’u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.

    2018-01-01

    Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.

  9. Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau.

    Science.gov (United States)

    Norsang, Gelsor; Chen, Yi-Chun; Pingcuo, Nima; Dahlback, Arne; Frette, Øyvind; Kjeldstad, Berit; Hamre, Børge; Stamnes, Knut; Stamnes, Jakob J

    2014-02-01

    We compare results for the UV index (UVI), the total ozone column (TOC), and the radiation modification factor (RMF, being 1 in the absence of clouds and aerosols) at four sites on the Tibetan Plateau. The results were obtained by analyzing ground measurements by multichannel moderate-bandwidth filter instruments for the period July 2008-September 2010, and radiative transfer modeling was used to aid the interpretation of the results. The highest UVI of 20.6 was measured in Tingri (28.7°N; 4335 m). For July, monthly mean UVI values were 14.5 and 12.9 in Tingri and Lhasa (29.7°N; 3683 m), respectively. Generally, the UVI levels in Tingri and Lhasa were higher than in Nagchu (31.5°N; 4510 m) and Linzhi (29.7°N; 2995 m), due to less cloud cover at the former two sites. In 2009, the annual mean UVI and RMF values were 6.8 and 0.7 for Linzhi, 8.8 and 0.92 for Lhasa, 10.5 and 0.92 for Tingri, and 6.7 and 0.7 for Nagchu. Radiative transfer simulations indicate that the latitude difference would correspond to an increase in the UVI of about 0.3 from Nagchu to Tingri; whereas, the altitude difference would correspond to a reduction of about 1.5%, implying that the observed difference is due to the difference in cloud cover. The annual mean TOC values were found to be 260-264 Dobson units (DU) in Lhasa, Linzhi, and Nagchu, and 252 DU in Tingri. TOC values in Lhasa were found to agree within 3% with those derived from Ozone Monitoring Instrument (OMI) measurements.

  10. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  11. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    1996-10-01

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  12. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  13. Solar and artificial radiation: health effects and protective measures -- position statement and overview. (RSU 118/OT0799)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-16

    Sunburn is the skin's visible reaction to acute overexposure to ultraviolet radiation (UVR). It is estimated that in any given year there are about 3,150 new cases of malignant melanoma, the deadliest kind of skin cancer, and 64,000 new cases of non-melanoma skin cancers in Canada. Between 1986 and 1995 the age-standardized mortality of malignant melanoma increased by an annual average of 2.7 per cent among men and 1.7 per cent among women, the largest increase in mortality of all cancers in men and the second largest among women. This report provides a brief overview of the main characteristics, sources and health effects of ultraviolet radiation, along with a description of general protective measures and recommendations for specific settings. The expectation is that the document will help to promote sound UVR exposure reduction practices, and by so doing, help to reduce the negative health effects of overexposure to UVR among Canadians. The recommended protective measures include minimizing sun exposure (including exposure to sunlamps which are not considered a safe way to get a tan); seeking shade, especially from 11.00 AM to 4.00 PM; covering up; using a sunscreen with SPF 15 or higher that has both UV and UVB protection; and using lip and eye protection. Practising regular skin self-examination is also recommended.

  14. Solar radiation in the Brazilian northeast

    Energy Technology Data Exchange (ETDEWEB)

    Tiba, Chigueru [Federal University of Pernambuco, Pernambuco (Brazil)

    2000-07-01

    The significant increase in recent years of the number of rural electrification systems (some thousands of them do exist) using photovoltaic technology installed in the Northeast of Brazil (1,500,000 km{sup 2}, approximately 42 million people) used for illumination or water pumping, calls for an improvement on the design procedures in order to reduce the burden of capital costs per unit of generated power. Such objective can be accomplished as long as a better knowledge about the solar resource is achieved, considering how much these applications depend on it. The sources of information on solar radiation in Brazil are quite varied at both institutional and publication level. At institutional Meteorology (INMET), State Departments of Agriculture, research institute, universities and electric power generation and distribution utilities. Progress reports or scientific and technical journals are the main publishing vehicles where this information can be found. This way, data quality varies considerably, showing, spatial and temporal discontinuities, in addition to the fact that measurement instruments and physical units of registered data are not standardized. The Solarimetric Atlas of Brazil was recently published and it contains that information, which is grouped, evaluated, qualified, and presented in a standardized way. It is one of the best currently existing sources of information, and in certainly consists of almost the entirety of the existing information on the solar resource (data on solar radiation and sunshine hours) in Brazil. By using this database, simultaneous records of solar radiation (measured with pyranoghaps or pyranometers) and sunshine hours with heliographs were obtained in 35 different places in the Northeast region. Coefficients a and b were calculated for those different places using Angstrom's correlation. Using the geostatistical interpolation method known as kriging, the values of a and b were placed on contour maps, the coverage of

  15. Solar radiation - to - power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    Science.gov (United States)

    Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer

    2017-11-01

    In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  16. Solar radiation – to – power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    Directory of Open Access Journals (Sweden)

    Filik Tansu

    2017-01-01

    Full Text Available In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times, which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  17. Solar radiation data manual for flat-plate and concentrating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, M.A. [ed.; Marion, W.; Wilcox, S.

    For designers and engineers of solar energy-related systems, the Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors gives the solar resource available for various types of collectors for the US and its territories. The data in the manual were modeled using hourly values of direct beam and diffuse horizontal solar radiation from the National Solar Radiation Data Base (NSRDB). The NSRDB contains modeled (93%) and measured (7%) global horizontal, diffuse horizontal, and direct beam solar radiation for 1961-1990.

  18. Radiation From Solar Activity | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  19. Biological Sensors for Solar Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André P. Schuch

    2011-04-01

    Full Text Available Solar ultraviolet (UV radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products.

  20. Excitation of XUV radiation in solar flares

    Science.gov (United States)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  1. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-06-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  2. Measurements of plasma spectra from hot dense elements and mixtures at conditions relevant to the solar radiative zone

    Science.gov (United States)

    Hoarty, D. J.; Hill, E.; Beiersdorfer, P.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hobbs, L. M. R.; James, S. F.; Morton, J.; Sircombe, N.; Upcraft, L.; Harris, J. W. O.; Shepherd, R.; Marley, E.; Magee, E.; Emig, J.; Nilsen, J.; Rose, S. J.

    2017-03-01

    X-ray emission spectroscopy has been used to study hot dense plasmas produced using high power laser irradiation of dot samples buried in low Z foils of plastic or diamond. By combining a high contrast short pulse (picosecond timescale) laser beam operating in second harmonic with long pulse (nanosecond timescale) laser beams in third harmonic, and with pulse shaping of the long pulse beams, a range of plasma temperatures from 400eV up to 2.5keV and electron densities from 5e22 up to 1e24/cc have been accessed. Examples are given of measurements of dense plasma effects such as ionization potential depression and line-broadening from the K-shell emission spectra of a range of low Z elements and mixtures and compared to model prediction. Detailed spectra from measurements of the L-shell emission from mid-Z elements are also presented for an example spectrum of germanium. These data are at conditions found in stellar interiors and in particular in the radiative zone of the sun. The plasma conditions are inferred from comparison of the measured spectra to detailed modeling using atomic kinetics and spectral synthesis codes.

  3. Solar radiation in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Jerzy Dera

    2010-12-01

    Full Text Available The influx of solar radiation to the Baltic Sea and its penetration into its waters is described on the basis of selected results of optical and bio-optical studies in the Baltic published by various authors during the past ca 50 years. The variability in the natural irradiance of this sea is illustrated on time scales from short-term fluctuations occurring during a single day to differences in mean monthly values over a period of many years. Data on variability of the proportions between UV, VIS and IR energy in the light reaching the sea surface are also discussed.Long-term monthly mean values of the incident solar radiation flux at the surface of the Baltic Proper are given; they were obtained from meteorological and solar radiation measurements and model approximations. The transmittances of these mean monthly radiation fluxes across the surface of the Baltic are given, as are the typical energyand spectral characteristics of the underwater irradiance, its attenuation with depth in the sea and the associated euphotic zone depths, as well as typical ranges of variability of these characteristics in different Baltic basins. Some of these characteristics are illustrated by typical empirical data. These mean values are not fully representative, however, because with the sole use of classical in situ measurement methods from on board research vessels in the Baltic, it has not been possible to gather a sufficientlyrepresentative set of empirical data that would adequately reflect the variability of the optical characteristics of all the basins of this sea. The article goes on to introduce the statistical model of vertical distributions of chlorophyll a concentration in the Baltic and the bio-optical model of Baltic Case 2 waters, the use of which contribute very significantly to this description of the optical characteristics and will enable this data set to be hugely expanded to include all the Baltic basins. This opportunity is presented by the

  4. Orbiter radiator panel solar focusing test

    Science.gov (United States)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  5. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  6. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  7. Life under solar UV radiation in aquatic organisms

    Science.gov (United States)

    Sinha, R. P.; Häder, D.-P.

    Aquatic photosynthetic organisms are exposed to solar ultraviolet (UV) radiation while they harvest longer wavelength radiation for energetic reasons. Solar UV-B radiation (280 - 315 nm) affects motility and orientation in motile organisms and impairs photosynthesis in cyanobacteria, phytoplankton and macroalgae as measured by monitoring oxygen production or pulse amplitude modulated fluorescence analysis. Upon moderate UV stress most organisms respond by photoinhibition which is an active downregulation of the photosynthetic electron transport in photosystem II by degradation of UV-damaged D1 protein. Photoinhibition is readily reversible during recovery in shaded conditions. Excessive UV stress causes photodamage which is not easily reversible. Another major target is the DNA where UV-B mainly induces thymine dimers. Cyanobacteria, phytoplankton and macroalgae produce scytonemin, mycosporine-like amino acids and other UV-absorbing substances to protect themselves from short wavelength solar radiation.

  8. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  9. models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    2016-10-12

    Oct 12, 2016 ... The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration ...

  10. Solar Position Algorithm for Solar Radiation Applications (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Andreas, A.

    2008-01-01

    This report is a step-by-step procedure for implementing an algorithm to calculate the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of ?0.0003/. It is written in a step-by-step format to simplify otherwise complicated steps, with a focus on the sun instead of the planets and stars in general. The algorithm is written in such a way to accommodate solar radiation applications.

  11. Spectral variations of UV-A and PAR solar radiation in estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Silveira, N.; Desa, E.; Matondkar, S.G.P.; Lotlikar, A.

    The spectral solar radiation measurements in the range 350-800 nm were carried out in the estuarine waters of Goa using hyperspectral radiometer. The results of the analysis of solar light in the spectral range of photosynthetically available...

  12. Obliquity Modulation of the Incoming Solar Radiation

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  13. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Bhaduri, Budhendra L [ORNL; Kodysh, Jeffrey B [ORNL

    2012-01-01

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  14. Gallium Arsenide solar cell radiation damage experiment

    Science.gov (United States)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  15. Normal Incident Solar Radiation Atlas

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were originally downloaded from the National Renewable Energy Laboratory (NREL) web site http://www.nrel.gov/gis/data_solar.html in units of...

  16. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  17. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  18. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    Science.gov (United States)

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  19. Sunsets and Solar Diameter Measurement

    Science.gov (United States)

    Sigismondi, Costantino

    2012-03-01

    A sunset over the sea surface offers the possibility to chronometrate a solar transit across the horizon. The vertical solar diameter is proportional to the duration of the sunset, the cosine of the azimuth and the cosine of the latitude of the observing site. The same formula applies to every circle of equal height, called in arabic almucantarat, and it is exploited in the measurements of the solar diameter made with the Danjon's solar astrolabes. The analogies between sunsets and astrolabes observations are presented, showing advantages and sources of errors of these methods of solar astrometry.

  20. Measurement and Applications of Radiation Pressure

    Science.gov (United States)

    Ma, Dakang; Garrett, Joseph; Murray, Joseph; Munday, Jeremy; Munday Lab Team

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Measuring and utilizing radiation pressure have aroused growing interest in a wide spectrum of research fields. Micromechanical transducers and oscillators are good candidates for measuring radiation pressure, but accompanying photothermal effects often obscure the measurement. In this work, we investigate the accurate measurement of the radiation force on microcantilevers in ambient conditions and ways to separate radiation pressure and photothermal effects. Further, we investigate an optically broadband switchable device based on polymer dispersed liquid crystal which has potential applications in solar sails and maneuvering spacecraft without moving parts. The authors would like to thank NASA Early Career Faculty Award and NASA Smallsat Technology Partnership Award for their funding support.

  1. Solar Occultation Measurements With Sciamachy

    Science.gov (United States)

    Meyer, J.; Lutomsky, M.; Emde, C.; Rozanov, A.; Rozanov, V.; Schlesier, A.; Bovensmann, H.; Burrows, J.

    SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Char- tography) is planned to be launched in March this year. It will measure earthshine and solar spectra in the UV-Vis-IR range in nadir, limb, and occultation geometry. This presentation focuses on occultation geometry where direct radiation transmitted by the atmosphere is measured. From a theoretical point of view, retrieval of trace gas profiles from occultation measurements is very simple as signal-to-noise ratios are high and forward model is based on Lambert-Beer-Law of extinction only. In practice, some difficulties arise from side effects like atmospheric refraction and inhomogeneities of the sun disc itself, which is scanned permanently during occultation measurements. Since the whole area of the sun disc is caught within the scanning process by SCIA- MACHY's field of view, which has an effective height of 0.045, these effects have considerable impact on evaluation. In addition to it, horizontal inhomogeneities along the line of sight in the atmosphere caused by dynamical and photochemical processes can further complicate retrieval of trace gas profiles. Our retrieval algorithm is based on optimal estimation method. It has been tested successfully under various conditions with simulated data whereas some retrieval aspects mentioned above remain problem- atic...

  2. Comparison Of Diffuse Solar Radiation Models Using Data For ...

    African Journals Online (AJOL)

    Measurements of global solar radiation and sunshine duration data during the period from 1984 to 1999 were supplied by IITA (International Institute of Tropical Agriculture) at Onne. The data were used to establish empirical relationships that would connect the daily monthly average diffuse irradiation with both relative ...

  3. Study on Solar Radiation Models in South Korea for Improving Office Building Energy Performance Analysis

    Directory of Open Access Journals (Sweden)

    Kee Han Kim

    2016-06-01

    Full Text Available Hourly global solar radiation in a weather file is one of the significant parameters for improving building energy performance analyses using simulation programs. However, most weather stations worldwide are not equipped with solar radiation sensors because they tend to be difficult to manage. In South Korea, only twenty-two out of ninety-two weather stations are equipped with sensors, and there are large areas not equipped with any sensors. Thus, solar radiation must often be calculated by reliable solar models. Hence, it is important to find a reliable model that can be applied in the wide variety of weather conditions seen in South Korea. In this study, solar radiation in the southeastern part of South Korea was calculated using three solar models: cloud-cover radiation model (CRM, Zhang and Huang model (ZHM, and meteorological radiation model (MRM. These values were then compared to measured solar radiation data. After that, the calculated solar radiation data from the three solar models were used in a building energy simulation for an office building with various window characteristics conditions, in order to identify how solar radiation differences affect building energy performance. It was found that a seasonal solar model for the area should be developed to improve building energy performance analysis.

  4. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    Air temperature of monthly mean minimum temperature, maximum temperature and relative humidity obtained from Nigerian Meteorological Agency (NIMET) were used as inputs to the ANFIS model and monthly mean global solar radiation was used as out of the model. Statistical evaluation of the model was done based on ...

  5. Handbook of Solar Radiation Data for India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 11. Handbook of Solar Radiation Data for India. Anna Mani. Classics Volume 13 Issue 11 November 2008 pp 1082-1086. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/11/1082-1086 ...

  6. Solar radiation observation stations updated to 1979

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Cristina, J.R.; Williams, B.B.

    1979-04-01

    The type of sensing and recording equipment for 420 stations in the US are listed alphabetically by states. The stations are divided according to whether or not they are in the basic National Weather Service, NOAA, network. Reports of summarized solar radiation data are listed in an appendix. (MHR)

  7. Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data

    OpenAIRE

    Danny H. W. Li; Tony N. T. Lam

    2007-01-01

    A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces ...

  8. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  9. Solar Radiation effect on the bituminous binder; Efecto de la radiacion solar sobre el ligante bituminoso

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Rico, A.; Torres Perez, A.

    2010-07-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  10. Estimation of clear sky hourly global solar radiation in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  11. Turning collectors for solar radiation

    Science.gov (United States)

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  12. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    Science.gov (United States)

    Vasar, C.; Prostean, O.; Prostean, G.

    2016-02-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models.

  13. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.

  14. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  15. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    Science.gov (United States)

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  16. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  17. Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms

    Directory of Open Access Journals (Sweden)

    Neelamegam Premalatha

    2016-06-01

    Full Text Available Global solar radiation (GSR is an essential parameter for the design and operation of solar energy systems. Long-standing records of global solar radiation data are not available in many places because of the cost and maintenance of the measuring instruments. The major objective of this work is to develop an ANN model for accurately predicting solar radiation. Two ANN models with four different algorithms are considered in the present study. Meteorological data collected for the last 10 years from five different locations across India have been used to train the models. The best ANN algorithm and model are identified based on minimum mean absolute error (MAE and root mean square error (RMSE and maximum linear correlation coefficient (R. Further, the present study confirms that prediction accuracy of the ANN model depends on the complete set of data being used for training the network for the intended application. The developed ANN model has a low mean absolute percentage error (MAPE which ascertains the accuracy and suitability of the model to predict the monthly average global radiation so as to design or evaluate solar energy installations, where the meteorological data measuring facilities are not in place in India.

  18. Assessment of Solar Ultraviolet A Radiation in Hamadan City

    Directory of Open Access Journals (Sweden)

    N. Rostampour

    2013-01-01

    Full Text Available Introduction & Objective: Biological effects of ultraviolet (UV radiation on the body of live organisms, have been studied by researchers in recent years. UV affects human organs such as skin, eyes and immune system, as well as animals and plants. The main natural source of UV radiation is the Sun. So, the integral observation of UV levels and their effects at ground level is important to determine the present and future environmental and health implications of the solar UV radiation. Since the amount of UVR (UV radiation has not already been measured in Hamadan, the aim of this study was to measure the amount in Hamadan city in different months of the year. Materials & Methods: This work was a cross-sectional study and has assessed the solar UVA radiation, by calibrated Hagner digital radiometer, model EC1 UV-A. The monthly quantity of solar UVR was measured in Hamadan during one year (2011-2012. Results: The maximum UVA received on the ground level was 27.3±1.09 W/m2 in Shahrivar month (Aug 23 – Sep 22 while the minimum was 11.8±1.32 W/m2 in Azar month (Nov 22 – Dec 21 . Total UVA radiation received on the ground level was 19.74±1.56 W/m2 during the period of measurment.Conclusion: According to the results of this study, it seems that the annual UVA in Hamadan city exceeded the amounts recommended by the WHO and further studies are needed to measure UVB and UVC to determine the total UV radiation level in thecity. Based on these results, it is recommended to wear appropriate sunglasses and minimize sun exposure during the midday hours.(Sci J Hamadan Univ Med Sci 2013; 19 (4:69-74

  19. Interanual variability os solar radiation in Peninsula Iberica; Variabilidad interanual de la radiacion solar en la Peninsula Iberica

    Energy Technology Data Exchange (ETDEWEB)

    Pozo-Vazquez, D.; Tovar-Pescador, J.; Gamiz-Fortis, S.; Esteban-Parra, M.; Castro-Diez, Y.

    2004-07-01

    The NAO climatic phenomenon is the main responsible for the interanual cloud cover variability in Europe. We explore the relationship between the NAO and the solar radiation spatio-temporal variability in Europe during winter. Measured monthly sums of sunshine duration and short-wave downward solar flux reanalysis data have been used. Correlation analysis between the NAO index and the measured sunshine duration shows a maximum positive value (+0.75) over the Iberian Peninsula. Accordingly, solar radiation in this area undergoes an interanual variability that can reach up to 30%, with the derived consequences for a reliable solar energy resources evaluation. (Author)

  20. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  1. Predicting solar radiation based on available weather indicators

    Science.gov (United States)

    Sauer, Frank Joseph

    Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.

  2. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  3. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  4. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  5. Denoising solar radiation data using coiflet wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  6. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2015-01-01

    This fourth edition reflects recent major developments that have occurred in radiation detector materials, systems, and applications. It continues to provide the most practical and up-to-date introduction to radiation detector technology, proper measurement techniques, and analysis of results for engineers and scientists using radiation sources. New chapters emphasize the expanded use of radiation detection systems in nuclear non-proliferation, homeland security, and nuclear medicine. The book also discusses the correct ways to perform measurements following current health physics procedures.

  7. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-10-24

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  8. Global solar radiation estimation using sunshine duration in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Almorox, J.; Hontoria, C. [Universidad Politecnica de Madrid (Spain). Dpto. de Edafologia

    2004-06-01

    Several equations were employed to estimate global solar radiation from sunshine hours for 16 meteorological stations in Spain, using only the relative duration of sunshine. These equations included the original Angstrom-Prescott linear regression and modified functions (quadratic, third degree, logarithmic and exponential functions). Estimated values were compared with measured values in terms of the coefficient of determination, standard error of the estimate and mean absolute error. All the models fitted the data adequately and can be used to estimate global solar radiation from sunshine hours. This study finds that the third degree models performed better than the other models, but the linear model is preferred due to its greater simplicity and wider application. It is also found that seasonal partitioning does not significantly improve the estimation of global radiation. (author)

  9. Generation of hourly solar radiation for inclined surfaces using monthly mean sunshine duration in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mefti, A.; Bouroubi, M.Y. [Centre of Development of Renewable Energy, Lab. of Energy Resources, Algiers (Algeria); Adane, A. [Univ. of Science and Technology of Algiers (U.S.T.H.B.), Lab. of Image Processing and Radiation, Algiers (Algeria)

    2003-11-01

    Hourly global solar radiation flux incident on an inclined surface is evaluated in any site of Algeria using monthly mean daily sunshine duration measurements. The methodology used consists of successive transformations of solar data, respectively, based on the exponential probability distribution of daily sunshine duration, Angstrom equation, beta probability distribution of hourly global solar radiation flux, polynomial correlations of hourly direct and diffuse radiation with global solar radiation and the Klucher model. Monthly mean values of daily sunshine duration data recorded in 54 meteorological stations of Algeria and hourly solar radiation data collected in Algiers, Bechar and Tamanrasset are available for this study. Knowing the monthly mean daily sunshine duration measurements, the hourly global solar radiation data are then obtained on a tilted surface for the locations of Algiers, Tamanrasset and Bechar. The monthly mean hourly global solar radiation data estimated for Algiers are in reasonably good agreement with the experimental ones. Associated with the principal component analysis, the above method has been extended to all the other meteorological stations, and monthly mean values of hourly global solar radiation flux incident on an inclined surface have been simulated for every site of Algeria. This yields an important database useful for solar energy applications. (Author)

  10. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  11. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  12. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  13. A NOVEL APPROACH FOR LONG TERM SOLAR RADIATION PREDICTION

    Directory of Open Access Journals (Sweden)

    Manju Khanna

    2018-10-01

    Full Text Available With present stress, being laid on green energy worldwide, harnessing solar energy for commercial use has importance in sizing and long-term prediction of solar radiation. However, with continuous changing environment parameters, it is quite difficult for long-term prediction of solar radiation. In the past research scholars, have carried out solar prediction only for a few days, which is insufficient to exploit the radiation for sizing and harnessing the solar energy for commercial use. To overcome this gap, present work utilizes application of lifting wavelet transform along with ANFIS to predict the radiation for long duration.

  14. Shining On: A primer on solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, M.A.; Cook, G. [eds.; Marion, B.; Riordan, C.; Renne, D.

    1992-05-01

    This document is a primer on solar radiation data. General uses of solar energy are presented. The manner in which solar radiation data is used to aid engineers in optimizing the use of solar thermal conversion and photovoltaic conversion is discussed. Methods for acquiring and assimilating the solar radiation data are illustrated. This would include the design and use of pyranometers and pyrheliometers. Seasonal and geographical variations in solar flux reaching the earth are evaluated. Other uses of compiled data include the determination of meteorological impacts of atmospheric disturbances such as volcano eruptions.

  15. al solar radiation distribution and utilization seasons at ilorin, nigeria

    African Journals Online (AJOL)

    2014-07-01

    Jul 1, 2014 ... solar systems require the probability of the expected number of days with global solar radiation above or below certain threshold values. In some specialized applications, the-number of consecutive days above or below a given threshold value of solar radiation is an important factor especially where.

  16. Estimation of Solar Radiation in South Eastern Nigeria | Nwokocha ...

    African Journals Online (AJOL)

    Knowledge of global solar radiation is of fundamental importance for all solar energy conversion systems. In this work is presented the Sayigh equation for estimating the global solar radiation, analyzing data from 1972 to 2004 in the Southeastern Nigeria using Umudike (lat. 5.29oN, long. 7.33oE) as a case study.

  17. Assessing the Performance of Global Solar Radiation Empirical ...

    African Journals Online (AJOL)

    In the region where solar radiation data are scarce, the next alternative method is to use solar radiation models to estimate the data needed for some applications such as simulation of crop performance and the design of solar energy conversion devices. In this paper, the validations of fifteen models for estimating monthly ...

  18. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  19. al solar radiation distribution and utilization seasons at ilorin, nigeria

    African Journals Online (AJOL)

    2008-02-21

    Feb 21, 2008 ... The need for storage or auxiliary heating for those times when solar radiation values fall below solar system's efficiency threshold during a solar utilization season requires that the maximum number of days or consecutive number of days for which one will require this service be known. The solar utilization ...

  20. Solar radiation affects grapevine susceptibility to Plasmopara Viticola

    OpenAIRE

    Anna Dalla Marta; Valentina Di Stefano; Cerovic, Zoran G.; Giovanni Agati; Simone Orlandini

    2008-01-01

    Solar radiation plays an important role in the development of some fungal diseases due to its direct action on the microorganisms and also its indirect effect on the production of specific plant compounds. This experiment examined the effect of two light environments (100% and 35% of full strength) on the polyphenolic content of grapevine leaves and quantified their relation to resistance to downy mildew (Plasmopara viticola). Leaf epidermal polyphenolic contents were non-destructively measur...

  1. The radiation in the atmosphere during major solar particle events

    Science.gov (United States)

    Clucas, Simon N.; Dyer, Clive S.; Lei, Fan

    Major solar particle events can give rise to greatly enhanced radiation throughout the entire atmosphere including at aircraft altitudes. These particle events are very hard to predict and their effect on aircraft is difficult to calculate. A comprehensive model of the energetic radiation in the atmosphere has been developed based on a response matrix of the atmosphere to energetic particle incidence. This model has previously been used to determine the spectral form of several ground level neutron events including February 1956 and September/October 1989. Significant validation of the model has been possible using CREAM data flying onboard Concorde during the September/October 1989 events. Further work has been carried out for the current solar maximum, including estimates of the solar particle spectra during the July 2000, April 2001, and October 2003 events and comparisons of predicted atmospheric measurements with limited flight data. Further CREAM data have been obtained onboard commercial airlines and high altitude business jets during quiet time periods. In addition, the atmospheric radiation model, along with solar particle spectra, have been used to calculate the neutron flux and dose rates along several commercial aircraft flight paths including London to Los Angeles. The influence of rigidity cut-off suppression by geomagnetic storms is examined and shows that the received flight dose during disturbed periods can be significantly enhanced compared with quiet periods.

  2. Ultraviolet Radiation in the Solar System

    CERN Document Server

    Vázquez, M

    2006-01-01

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequ...

  3. Summary information and data sets for NREL's Solar Radiation Research Laboratory, 1981 - 1991

    Science.gov (United States)

    Marion, W.

    1993-01-01

    This report summarizes the solar radiation and meteorological data collected at the Solar Radiation Research Laboratory in Golden, Colorado, from 1981 through 1991. The data collection was part of the National Renewable Energy Laboratory's Solar Radiation Resource Assessment Project. The report includes long-term averages and monthly and annual variability for key solar radiation elements and describes the hourly data sets for 1981 through 1991. Described in the report are how the elements were measured and how the data were collected and processed into hourly values. Procedures used for quality assessment of the hourly data values are presented, and the position of the solar radiation and meteorological elements in the data sets are defined; samples of read statements are provided.

  4. Radiative transfer model for estimation of global solar radiation; Modelo de transferencia radiativa para la estimacion de la radiacion solar global

    Energy Technology Data Exchange (ETDEWEB)

    Pettazzi, A.; Sabon, C. S.; Souto, G. J. A.

    2004-07-01

    In this work, the efficiency of a radiative transfer model in estimating the annual solar global radiation has been evaluated, over different locations at Galicia, Spain, in clear sky periods. Due to its quantitative significance, special attention has been focused on the analysis of the influence of visibility over the global radiation. By comparison of both estimated and measured global solar radiation along year 2002, a typical annual visibility series was obtained over every location. These visibility values has been analysed in order to identify patterns and typical values, in order to be used to estimate the global solar radiation along a different year. Validation was done over the year 2003, obtaining an annual estimation less than 10 % different to the measured value. (Author)

  5. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2015-01-01

    Full Text Available This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that the proposed model has better prediction accuracy compared to some empirical and statistical models. Two error statistics are used in this research to evaluate the proposed model, namely, mean absolute percentage error and root mean square error. These values for the proposed model are 11.8% and −3.1%, respectively. Finally, the proposed model shows better ability in overcoming the sophistic nature of the solar radiation data.

  6. A diagram for defined solar radiation absorbed per unit area of flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Y.; Altuntop, N. [Erciyes University, Dept. of Mechanical Engineering (Turkey); Cengel, Y.A. [Nevada Reno University, Dept. of Mechanical Engineering, NV (United States); Cengel, Y.A. [Nevada University, Dept. Mechanical Engineering, Reno, NV (United States)

    2000-07-01

    In Erciyes University, the Solar House (28.75 m{sup 2}) is heated from the floor by using flat plate liquid solar collectors. Required solar radiation for heating and heat losses are calculated. In this work, the required calculations for Erciyes Solar House were generalized and required calculation were done to evaluate absorbed solar radiation per unit surface of the flat plate liquid collector. At the end, three generalized diagrams for nine different months are obtained using obtained numerical values. The goal of preparing diagrams is to determine absorbed solar radiation per unit surface area of flat plate liquid collector at any instant at any latitude, In this work, the diagram is explained by means of sample calculations for November. This diagram was prepared to find out absorbed solar radiation per unit area of black surface collector by means obtained equations. With this diagram, all instant solar radiation can be evaluated in 19 steps. (authors)

  7. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  8. Machine learning methods for solar radiation forecasting: a review

    OpenAIRE

    Voyant, C; Notton, G; KALOGIROU S.; M.L. Nivet; C. Paoli; Motte, F.; A. Fouilloy

    2017-01-01

    Forecasting the output power of solar systems is required for the good operation of the power grid or for the optimal management of the energy fluxes occurring into the solar system. Before forecasting the solar systems output, it is essential to focus the prediction on the solar irradiance. The global solar radiation forecasting can be performed by several methods; the two big categories are the cloud imagery combined with physical models, and the machine learning models. In this context, th...

  9. Detecting solar chameleons through radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baum, S., E-mail: sebastian.baum@cern.ch [Uppsala Universitet, Box 516, SE 75120, Uppsala (Sweden); European Organization for Nuclear Research (CERN), Gèneve (Switzerland); Cantatore, G. [Università di Trieste, Via Valerio 2, 34127 Trieste (Italy); INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Hoffmann, D.H.H. [Institut für Kernphysik, TU-Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Karuza, M. [INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Phys. Dept. and CMNST, University of Rijeka, R. Matejcic 2, Rijeka (Croatia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research (IBS), Daejeon 305-701 (Korea, Republic of); Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Upadhye, A. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Zioutas, K., E-mail: konstantin.zioutas@cern.ch [European Organization for Nuclear Research (CERN), Gèneve (Switzerland); University of Patras, GR 26504 Patras (Greece)

    2014-12-12

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  10. Detecting solar chameleons through radiation pressure

    Directory of Open Access Journals (Sweden)

    S. Baum

    2014-12-01

    Full Text Available Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  11. The Temperature of Various Surfaces Exposed to Solar Radiation: An Experiment.

    Science.gov (United States)

    Russell, Dena G.; Bartels, Richard A.

    1989-01-01

    Examines the effect of solar radiation on colored shingles. Describes the experimental procedure, results, and discussion. Presents a picture of the experimental arrangement and three graphs of data measured at different dates. (YP)

  12. Best Practices of Uncertainty Estimation for the National Solar Radiation Database (NSRDB 1998-2015): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    It is essential to apply a traceable and standard approach to determine the uncertainty of solar resource data. Solar resource data are used for all phases of solar energy conversion projects, from the conceptual phase to routine solar power plant operation, and to determine performance guarantees of solar energy conversion systems. These guarantees are based on the available solar resource derived from a measurement station or modeled data set such as the National Solar Radiation Database (NSRDB). Therefore, quantifying the uncertainty of these data sets provides confidence to financiers, developers, and site operators of solar energy conversion systems and ultimately reduces deployment costs. In this study, we implemented the Guide to the Expression of Uncertainty in Measurement (GUM) 1 to quantify the overall uncertainty of the NSRDB data. First, we start with quantifying measurement uncertainty, then we determine each uncertainty statistic of the NSRDB data, and we combine them using the root-sum-of-the-squares method. The statistics were derived by comparing the NSRDB data to the seven measurement stations from the National Oceanic and Atmospheric Administration's Surface Radiation Budget Network, National Renewable Energy Laboratory's Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement program's Southern Great Plains Central Facility, in Billings, Oklahoma. The evaluation was conducted for hourly values, daily totals, monthly mean daily totals, and annual mean monthly mean daily totals. Varying time averages assist to capture the temporal uncertainty of the specific modeled solar resource data required for each phase of a solar energy project; some phases require higher temporal resolution than others. Overall, by including the uncertainty of measurements of solar radiation made at ground stations, bias, and root mean square error, the NSRDB data demonstrated expanded uncertainty of 17 percent - 29 percent on hourly

  13. The Homogeneity of the Potsdam Solar Radiation Data

    Science.gov (United States)

    Behrens, K.

    2009-04-01

    At Meteorological Station in Potsdam (Germany) the measurement of sunshine duration started already in 1983. Later on, in 1937 the registration of global, diffuse and direct solar radiation was begun with pyranometers and a pyrheliometer. Since 1983 sunshine duration has been measured with the same method, the Campbell-Stokes sunshine recorder, at the same site, while the measurements of solar radiation changed as well as in equipment, measurement methods and location. Furthermore, it was firstly necessary to supplement some missing data within the time series and secondly, it was desirable to extend the series of global radiation by regression with the sunshine duration backward to 1893. Because solar radiation, especially global radiation, is one of the most important quantities for climate research, it is necessary to investigate the homogeneity of these time series. At first the history was studied and as much as possible information about all parameters, which could influence the data, were gathered. In a second step these metadata were reviewed critically followed by a discussion about the potential effects of local factors on the homogeneity of the data. In a first step of data rehabilitation the so-called engineering correction (data levelling to WRR and SI units) were made followed by the supplementation of gaps. Finally, for every month and the year the so generated time series of measured data (1937/2008) and the complete series, prolonged by regression and measurements (1893/2008), were tested on homogeneity with the following distribution-free tests: WILCOXON (U) test, MANN-KENDALL test and progressive analysis were used for the examination of the stability of the mean and the dispersion, while with the Wald-Wolfowitz test the first order autocorrelation was checked. These non-parametric test were used, because frequently radiation data do not fulfil the assumption of a GAUSSian or normal distribution. The investigations showed, that discontinuities

  14. Prediction of Hourly Solar Radiation on Horizontal and Inclined Surfaces for Muscat/Oman

    Directory of Open Access Journals (Sweden)

    N.Z. Al-Rawahi

    2011-12-01

    Full Text Available In this paper, hourly terrestrial radiation: direct beam, diffuse and global solar radiation are modelled and calculated based on daily measured data for a horizontal surface. In addition, the same parameters were modelled for inclined surfaces. Most of the parameters modelled in this work represent a part of the input data required by building thermal simulation and solar energy systems software. Important trends of the solar radiation on tilted surfaces as a function of time and direction are being presented and discussed. The comparison of some of the results with measured data from other sources shows good agreement. The effect of tilt angle and orientation on the incident solar radiation fluxes arepresented along with optimum surface tilt angles and directions for maximum solar radiation collection in Muscat area. The results presented in this paper are quite useful for quick estimation of solar radiation for calculations of cooling load and solar collector performance. Also, the models and the computer code developed in this work form the backbone of any computer-aided building thermal design and solar systems design calculations.

  15. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    Climate variation based on temperature and solar radiation data over a 29 year period in Lilongwe City, Malawi. CC Kaonga, IBM Kosamu, C Tenthani. Abstract. Economies that mainly depend on agriculture are to a large extent being negatively impacted by climate change. In this study, temperature and solar radiation data ...

  16. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2011-01-01

    This is an update of the standard textbook for the field of radiation measurement. It includes illustrative examples and new problems. The research and applications of nuclear instrumentation have grown substantially since publication of the previous editions. With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines, including nuclear nonproliferation, homeland security, and nuclear medicine. Continuing in the tradition of its bestselling predecessors, "Measurement and Detection of Radiation, Third Edition" illustrates the fundamentals of nuclear interactions and radiation detection with a multitude of examples and problems. It offers a clearly written, accessible introduction to nuclear instrumentation concepts. The following are new to the third edition: a new chapter on the latest applications of radiation detection, covering nuclear medicine, dosimetry, health physics, no...

  17. Aerosol Characterization at PSA from Spectral and Broadband Measurements of Solar Radiation; Caracterizacion de los Aerosoles en la PSA a partir de Medidas Espectrales y de Banda Ancha de Radiacion Solar

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P.; Polo, J.; Campos, A.; Espinar, B.

    2006-07-01

    When passing through the atmosphere, the solar radiation suffers extinction processes with and intensity that depends on the atmosphere state. Some of the attenuation mechanisms, in particular those oflicht scattering, are spectrally selective, and thus, the solar spectrum at the earth's surface can change drastically from one place to another. This fact can be used on the determination of some of the Earth atmosphere components. The case of aerosol turbidity has a particular interest due to its high variability. In mis work different methodologies for aerosol characterization are presented, Aerosol optical depth, turbidity and Angstrom exponent are determined by them. Moreover, a comparison among the different methods is established and two heat haze events occurring during summer in PSA (Tabernas) are analyzed. (Author) 18 refs.

  18. Correlation of total, diffuse, and direct solar radiation

    Science.gov (United States)

    Buyco, E. H.; Namkoong, D.

    1977-01-01

    Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.

  19. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  20. Photovoltaic Advanced Research and Development Project: Solar Radiation Research annual report

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C.; Hulstrom, R.; Cannon, T.; Myers, D.; Stoffel, T.

    1990-11-01

    This report gives an overview of the fiscal year 1990 research activities and results under the Solar Radiation Research Task of the Photovoltaic Advanced Research and Development Project at the Solar Energy Research Institute. The activities under this task include developing and applying measurement techniques, instrumentation, and data and models to understand and quantify the response of photovoltaic devices to variations in broadband and spectra solar radiation. The information presented in this report was presented at the SERI Photovoltaic Advanced Research and Development Project 10th Review Meeting, October 1990, and will be published in a special issue of Solar Cells dedicated to the meeting.

  1. The National Solar Radiation Database (NSRDB): A Brief Overview

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.

  2. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  3. Climatic zones of solar radiation of Galicia; Zonas climaticas de radiacion solar de Galicia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Izquierdo, P.; Pose, M.; Prado, M. T.; Santos, J.

    2008-07-01

    The paper shows the results of a research on the solar radiation received in Galicia that allows assigning each one of the 315 Galician municipalities to one of the Climatic Zones of solar radiation, defined in the Spanish Building Technical Code (BTC). It is proposed to complete the assignment of climatic Zones in the BTC with a new zone, named Climatic Zone 0, with the objective to differentiate the geographical areas in Galicia with less than 3.4 kWh/m{sup 2}.day of yearly daily average solar radiation. The study is completed with the realization of a map of the Climate Zones of solar radiation of Galicia. (Author)

  4. Evaluation of linear interpolation method for missing value on solar radiation dataset in Perlis

    Energy Technology Data Exchange (ETDEWEB)

    Saaban, Azizan; Zainudin, Lutfi [School of Science Quantitative, UUMCAS, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia); Bakar, Mohd Nazari Abu [Faculty of Applied Science, Universiti Teknologi MARA, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    This paper intends to reveal the ability of the linear interpolation method to predict missing values in solar radiation time series. Reliable dataset is equally tends to complete time series observed dataset. The absence or presence of radiation data alters long-term variation of solar radiation measurement values. Based on that change, the opportunities to provide bias output result for modelling and the validation process is higher. The completeness of the observed variable dataset has significantly important for data analysis. Occurrence the lack of continual and unreliable time series solar radiation data widely spread and become the main problematic issue. However, the limited number of research quantity that has carried out to emphasize and gives full attention to estimate missing values in the solar radiation dataset.

  5. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  6. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    Directory of Open Access Journals (Sweden)

    Lorentz Jäntschi

    2008-02-01

    Full Text Available The paper presents a solar radiation monitoring system, using two scientificpyranometers and an on-line computer home-made data acquisition system. The firstpyranometer measures the global solar radiation and the other one, which is shaded,measure the diffuse radiation. The values of total and diffuse solar radiation arecontinuously stored into a database on a server. Original software was created for dataacquisition and interrogation of the created system. The server application acquires the datafrom pyranometers and stores it into a database with a baud rate of one record at 50seconds. The client-server application queries the database and provides descriptivestatistics. A web interface allow to any user to define the including criteria and to obtainthe results. In terms of results, the system is able to provide direct, diffuse and totalradiation intensities as time series. Our client-server application computes also derivateheats. The ability of the system to evaluate the local solar energy potential is highlighted.

  7. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System.

    Science.gov (United States)

    Balan, Mugur C; Damian, Mihai; Jäntschi, Lorentz

    2008-02-19

    The paper presents a solar radiation monitoring system, using two scientificpyranometers and an on-line computer home-made data acquisition system. The firstpyranometer measures the global solar radiation and the other one, which is shaded,measure the diffuse radiation. The values of total and diffuse solar radiation arecontinuously stored into a database on a server. Original software was created for dataacquisition and interrogation of the created system. The server application acquires the datafrom pyranometers and stores it into a database with a baud rate of one record at 50seconds. The client-server application queries the database and provides descriptivestatistics. A web interface allow to any user to define the including criteria and to obtainthe results. In terms of results, the system is able to provide direct, diffuse and totalradiation intensities as time series. Our client-server application computes also derivateheats. The ability of the system to evaluate the local solar energy potential is highlighted.

  8. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    Science.gov (United States)

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  9. CLASSICS Handbook of Solar Radiation Data for India

    Indian Academy of Sciences (India)

    Srimath

    Handbook of Solar Radiation Data for India. By Anna Mani. CHAPTER 1. Introduction. 1.1. The sun and its radiation. The electromagnetic radiation emitted by the sun covers a very large range of wave- lengths, from radiowaves through the infrared, visible and ultraviolet to X-rays and gamma rays. However, 99 per cent of ...

  10. Measurement and Modeling of Solar and PV Output Variability: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.

    2011-04-01

    This paper seeks to understand what temporal and spatial scales of variability in global horizontal radiation are important to a PV plants and what measurements are needed to be able to characterize them. As solar radiation measuring instruments are point receivers it is important to understand how those measurements translate to energy received over a larger spatial extent. Also of importance is the temporal natural of variability over large spatial areas. In this research we use high temporal and spatial resolution measurements from multiple sensors at a site in Hawaii to create solar radiation fields at various spatial and temporal scales. Five interpolation schemes were considered and the high resolution solar fields were converted to power production for a PV power plant. It was found that the interpolation schemes are robust and create ramp distributions close to what would be computed if the average solar radiation field was used. We also investigated the possibility of using time averaged solar data from 1 sensor to recreate the ramp distribution from the 17 sensors. It was found that the ramping distribution from using appropriately time averaged data from 1 sensor can reasonably match the distribution created using the 17 sensor network.

  11. Solar radiation is inversely associated with inflammatory bowel disease admissions.

    Science.gov (United States)

    Jaime, Francisca; Riutort, Maria C; Alvarez-Lobos, Manuel; Hoyos-Bachiloglu, Rodrigo; Camargo, Carlos A; Borzutzky, Arturo

    To explore the associations between latitude and solar radiation with inflammatory bowel disease admission rates in Chile, the country with the largest variation in solar radiation in the world. This is an ecological study, which included data on all hospital-admitted population for inflammatory bowel disease between 2001 and 2012, according to different latitudes and solar radiation exposures in Chile. The data were acquired from the national hospital discharge database from the Department of Health Statistics and Information of the Chilean Ministry of Health. Between 2001 and 2012 there were 12,869 admissions due to inflammatory bowel disease (69% ulcerative colitis, 31% Crohn's disease). Median age was 36 years (IQR: 25-51); 57% were female. The national inflammatory bowel disease admission rate was 6.52 (95% CI: 6.40-6.63) per 100,000 inhabitants with increasing rates over the 12-year period. In terms of latitude, the highest admission rates for pediatric ulcerative colitis and Crohn's disease, as well as adult ulcerative colitis, were observed in the southernmost region with lowest annual solar radiation. Linear regression analysis showed that regional solar radiation was inversely associated with inflammatory bowel disease admissions in Chile (β: -.44, p = .03). Regional solar radiation was inversely associated with inflammatory bowel disease admission rates in Chile; inflammatory bowel disease admissions were highest in the southernmost region with lowest solar radiation. Our results support the potential role of vitamin D deficiency on inflammatory bowel disease flares.

  12. Relationships between surface solar radiation and wheat yield in Spain

    Science.gov (United States)

    Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepción

    2017-04-01

    Here we examine the role of solar radiation to describe wheat-yield variability in Spain. We used Partial Least Square regression to capture the modes of surface solar radiation that drive wheat-yield variability. We will show that surface solar radiation introduces the effects of teleconnection patterns on wheat yield and also it is associated with drought and diurnal temperature range. We highlight the importance of surface solar radiation to obtain models for wheat-yield projections because it could reduce uncertainty with respect to the projections based on temperatures and precipitation variables. In addition, the significance of the model based on surface solar radiation is greater than the previous one based on drought and diurnal temperature range (Hernandez-Barrera et al., 2016). According to our results, the increase of solar radiation over Spain for 21st century could force a wheat-yield decrease (Hernandez-Barrera et al., 2017). Hernandez-Barrera S., Rodríguez-Puebla C. and Challinor A.J. 2016 Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology. DOI: 10.1007/s00704-016-1779-9 Hernandez-Barrera S., Rodríguez-Puebla C. 2017 Wheat yield in Spain and associated solar radiation patterns. International Journal of Climatology. DOI: 10.1002/joc.4975

  13. Radiation Belt Electron Intensity Variations: Van Allen Probes era vs. Previous two Solar Cycles

    Science.gov (United States)

    Li, X.; Baker, D. N.; Zhao, H.; Zhang, K.; Jaynes, A. N.; Schiller, Q.; Kanekal, S. G.; Blake, J. B.

    2016-12-01

    Long term (>2 solar cycles) measurements of solar wind speed, geomagnetic storm index (Dst), >2MeV electrons at geostationary orbit, 2MeV electrons in different L-shells measured at and normalized to low earth orbit show that the solar wind speed and the geomagnetic activity have been extremely low, so have been the MeV electron fluxes, during this current solar cycle, including years before and during Van Allen Probes era. There have been no 2MeV electrons enhancements deep inside L 2.6 since 2009, while numerous deep penetrations of MeV electrons into Lsolar wind conditions (high solar wind speed and sustained southward Bz) and thus stronger geomagnetic activity existed. We note that results from Van Allen Probes, which have been providing the finest measurements but in operation during an extremely quiet solar activity period, may not represent the overall radiation belt dynamics during other solar cycle phases.

  14. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  15. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  16. Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Lopez, Anthony

    2017-04-01

    This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for

  17. A simple solar radiation index for wildlife habitat studies

    Science.gov (United States)

    Keating, Kim A.; Gogan, Peter J.; Vore, John N.; Irby, Lynn R.

    2007-01-01

    Solar radiation is a potentially important covariate in many wildlife habitat studies, but it is typically addressed only indirectly, using problematic surrogates like aspect or hillshade. We devised a simple solar radiation index (SRI) that combines readily available information about aspect, slope, and latitude. Our SRI is proportional to the amount of extraterrestrial solar radiation theoretically striking an arbitrarily oriented surface during the hour surrounding solar noon on the equinox. Because it derives from first geometric principles and is linearly distributed, SRI offers clear advantages over aspect-based surrogates. The SRI also is superior to hillshade, which we found to be sometimes imprecise and ill-behaved. To illustrate application of our SRI, we assessed niche separation among 3 ungulate species along a single environmental axis, solar radiation, on the northern Yellowstone winter range. We detected no difference between the niches occupied by bighorn sheep (Ovis canadensis) and elk (Cervus elaphus; P = 0.104), but found that mule deer (Odocoileus hemionus) tended to use areas receiving more solar radiation than either of the other species (P solar radiation component.

  18. Solar radiation and its penetration in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Qasim, S.Z.; Bhattathiri, P.M.A.; Abidi, S.A.H.

    The Cochin Backwater which is an estuarine area on the west coast of India receives maximum solar radiation from December to March and minimum from June to September. During the monsoon months the estuary becomes highly turbid as a result...

  19. Radiative efficiency of lead iodide based perovskite solar cells

    National Research Council Canada - National Science Library

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J; Dyakonov, Vladimir; Bolink, Henk J

    2014-01-01

    .... We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device...

  20. Porphyrin nanorods-polymer composites for solar radiation harvesting applications

    CSIR Research Space (South Africa)

    Mongwaketsi, NP

    2014-09-01

    Full Text Available The interest in exploring porphyrin-based nanostructures for artificial solar radiation harvesting stems from their structural similarity to chlorophylls. In nature, the precise organization and orientation of the chlorophylls result in efficient...

  1. New model to estimate and evaluate the solar radiation

    Directory of Open Access Journals (Sweden)

    Y. El Mghouchi

    2014-12-01

    The results indicate that the proposed model can be successfully used to estimate the solar radiation during all the seasons of year for studied position and for considered day, using as input the altitude (degrees, longitude (degrees and latitude (m.

  2. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    potentially high, sunburn-causing solar UV radiation levels while at school. Method. ... Some sun exposure is important for vitamin D production1 and protection ..... However, many schools schedule lunch breaks in the 2-hour period either.

  3. Physical model SOLARMET for determining total and direct solar radiation by meteosat satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Cogliani, E.; Maccari, A. [ENEA, Agency for New Technologies, Energy and Environment, C.R. Casaccia, Solterm-Svil, P.O. Box 117, Via Anguillarese 301-00123, S. Maria di Galeria, Rome (Italy); Ricchiazzi, P. [ICESS, Institute for Computational Earth System Science, University of California at Santa Barbara, Santa Barbara, CA 93106-3060 (United States)

    2007-06-15

    A vigorous R and D program on solar concentrating power plants has been recently funded in Italy in order to demonstrate the feasibility of these technologies. Maps of direct normal radiation (DNI) are needed for the selection of construction sites for demonstration plants. This paper describes SOLARMET, a physical model that simulates the atmospheric effect on solar radiation. The SOLARMET model may be used to determine the solar radiation, total and direct, reaching the ground, based on information provided by satellite images. Atmosphere transmissivity, ground reflection coefficient, and other essential parameters in the model were determined from SBDART, a radiative transfer model, developed at University of California. Validation of the model have been carried out at Casaccia (Rome-Italy) ENEA centre. The results obtained in the 2002 year are encouraging. The difference between measured and calculated data, during this year, either for direct or global radiation, are lower than 6% on monthly basis. (author)

  4. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    Science.gov (United States)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  5. Effects of radiation on solar cells as photovoltaic generators

    Directory of Open Access Journals (Sweden)

    Radosavljević Radovan Lj.

    2012-01-01

    Full Text Available The growing need for obtaining electrical energy through renewable energy sources such as solar energy have lead to significant technological developments in the production of the basic element of PV conversion, the solar cell. Basically, a solar cell is a p-n junction whose characteristics have a great influence on its output parameters, primarily efficiency. Defects and impurities in the basic material, especially if located within the energy gap, may be activated during its lifetime, becoming traps for optically produced electron-hole pairs and, thus, decreasing the output power of the cell. All of the said effects could be induced in many ways over a lifetime of a solar cell and are consistent with the effects that radiation produces in semiconductor devices. The aim of this paper is to investigate changes in the main characteristics of solar cells, such as efficiency, output current and power, due to the exposure of solar systems to different (hostile radiation environments.

  6. Solar radiation budget and radiative forcing due to aerosols and clouds

    Science.gov (United States)

    Kim, Dohyeong; Ramanathan, V.

    2008-01-01

    This study integrates global data sets for aerosols, cloud physical properties, and shortwave radiation fluxes with a Monte Carlo Aerosol-Cloud-Radiation (MACR) model to estimate both the surface and the top-of-atmosphere (TOA) solar radiation budget as well as atmospheric column solar absorption. The study also quantifies the radiative forcing of aerosols and that of clouds. The observational input to MACR includes data from the Multiangle Imaging Spectroradiometer (MISR) for aerosol optical depths, single scattering albedos, and asymmetry factors; satellite retrieved column water vapor amount; the Total Ozone Mapping Spectrometer (TOMS) total ozone amount; and cloud fraction and cloud optical depth from the Cloud and Earth's Radiant Energy System (CERES) cloud data. The present radiation budget estimates account for the diurnal variation in cloud properties. The model was validated against instantaneous, daily and monthly solar fluxes from the ground-based Baseline Surface Radiation Network (BSRN) network, the Global Energy Balance Archive (GEBA) surface solar flux data, and CERES TOA measurements. The agreement between simulated and observed values are within experimental errors, for all of the cases considered here: instantaneous fluxes and monthly mean fluxes at stations around the world and TOA fluxes and cloud forcing for global annual mean and zonal mean fluxes; in addition the estimated aerosol forcing at TOA also agrees with other observationally derived estimates. Overall, such agreements suggest that global data sets of aerosols and cloud parameters released by recent satellite experiments (MISR, MODIS and CERES) meet the required accuracy to use them as input to simulate the radiative fluxes within instrumental errors. Last, the atmospheric solar absorption derived in this study should be treated as an improved estimate when compared with earlier published studies. The main source of improvement in the present estimate is the use of global distribution

  7. Prostate cancer incidence in Australia correlates inversely with solar radiation.

    Science.gov (United States)

    Loke, Tim W; Seyfi, Doruk; Sevfi, Doruk; Khadra, Mohamed

    2011-11-01

    What's known on the subject? and What does the study add? Increased sun exposure and blood levels of vitamin D have been postulated to be protective against prostate cancer. This is controversial. We investigated the relationship between prostate cancer incidence and solar radiation in non-urban Australia, and found a lower incidence in regions receiving more sunlight. In landmark ecological studies, prostate cancer mortality rates have been shown to be inversely related to ultraviolet radiation exposure. Investigators have hypothesised that ultraviolet radiation acts by increasing production of vitamin D, which inhibits prostate cancer cells in vitro. However, analyses of serum levels of vitamin D in men with prostate cancer have failed to support this hypothesis. This study has found an inverse correlation between solar radiation and prostate cancer incidence in Australia. Our population (previously unstudied) represents the third group to exhibit this correlation. Significantly, the demographics and climate of Australia differ markedly from those of previous studies conducted on men in the United Kingdom and the United States. • To ascertain if prostate cancer incidence rates correlate with solar radiation among non-urban populations of men in Australia. • Local government areas from each state and territory were selected using explicit criteria. Urban areas were excluded from analysis. • For each local government area, prostate cancer incidence rates and averaged long-term solar radiation were obtained. • The strength of the association between prostate cancer incidence and solar radiation was determined. • Among 70 local government areas of Australia, age-standardized prostate cancer incidence rates for the period 1998-2007 correlated inversely with daily solar radiation averaged over the last two decades. •  There exists an association between less solar radiation and higher prostate cancer incidence in Australia. © 2011 THE AUTHORS. BJU

  8. Solar oscillations instrumentation and measurement theory

    Science.gov (United States)

    Appourchaux, T.

    1988-01-01

    Solar-oscillation instruments are reviewed. Common characteristics include detecting solar radial velocities on Fraunhofer lines with a 2-point measuring technique, high spectral resolution and stability, etc. The choice of the spectral line for getting a high signal to solar noise ratio is addressed. Velocity imaging of solar oscillations modes is detailed, including spatial sampling and span, highest observable degree. Applications of these different analyses is applied to existing or future helioseismology instruments.

  9. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    similar studies among schoolchildren in New Zealand,11 Denmark12 and England,13 and activity was the .... The solar UV-B radiation levels at the six geographical areas followed a similar annual cycle, with maximum ... exposures by geographical location as well as potential sunburn risk by skin type. Required solar UV ...

  10. Solar radiation calculation methodology for building exterior surfaces

    Energy Technology Data Exchange (ETDEWEB)

    De la Flor, Francisco Jose Sanchez; Ortiz Cebolla, Rafael; Luis Molina Felix, Jose; Alvarez Dominguez, Servando [E S. Ingenieros. Grupo de Termotecnia, Avda. de los descubrimientos, s/n 41092 Sevilla (Spain)

    2005-11-01

    The present article shows a new methodology of calculation of the direct, diffuse and reflected incident solar radiation, in all type of surfaces, either in open urban environments or inside buildings. This methodology is applicable in problems related to solar access (space heating in buildings, shadowing of open spaces), solar gains (space cooling in buildings), and daylighting. Solar radiation is the most important contribution to the surface and volumetric energy balance during the daytime. Particularly, solar radiation is the main contributor to heat gains in buildings, especially in residential buildings, where internal gains are very low. Utilization of daylight in buildings may result in significant savings in electricity consumption for lighting while creating a higher quality indoor environment. Additional energy savings may also be realized during cooling season, when reduction of internal heat gains due to electric lighting results in a corresponding reduction of cooling energy consumption. The analysis of the existing calculation methods and proposed in the scientific bibliography for the calculation of the solar radiation in problems of solar access in winter, solar gains in summer, and daylighting, takes us to the necessity of outlining a new and complete methodology. This new methodology is applicable to all these problems with a great accuracy and calculation speed. (author)

  11. estimation of global solar radiation from sunshine hours for warri ...

    African Journals Online (AJOL)

    DJFLEX

    Key words: Sunshine hours, Relative humidity, rainfall, wind speed. ... meteorological parameters. This is because it plays a very major role in the determination of global solar radiation data. It is also the parameter with the best correlation with global solar ... enables spatial interpolation thus filling in gaps left by missing or ...

  12. Auroral kilometric radiation triggered by type II solar radio bursts

    Science.gov (United States)

    Calvert, W.

    1985-01-01

    The previously-reported triggering of auroral kilometric radiation (AKR) during type III solar radio bursts was attributed to the incoming radio waves rather than other aspects of the burst's causative solar flare. This conclusion has now been confirmed by ISEE-1 and ISEE-3 observations showing AKR which seems to have been triggered also by a subsequent type II solar radio burst, up to eleven hours after the flare.

  13. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    Science.gov (United States)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  14. Measuring Earth's Radiation Imbalance using Cubesat Constellations

    Science.gov (United States)

    Collins, W. D.; Courtade, S.; Immel, T. J.; Feldman, D.; Lorentz, S. R.; Dyrud, L. P.

    2016-12-01

    At present, the global annual-mean Earth Radiation Imbalance (ERI) is estimated to be of order 1 W/m2, although the uncertainty in ERI is much larger than this estimate. The best current satellite-only observational determinations of ERI range from -2 to +7 W/m2 unless major adjustments are made using ocean observations. Since measurements of ERI accurate to better than 0.5 W/m2 are essential for understanding and predicting changes in our climate, new missions to determine ERI in conjunction with ongoing ocean observations are urgently needed. These missions should reliably determine Earth's radiation balance at the temporal and spatial scales sufficient for relating ERI to the physical processes responsible for variability. The compelling objective of measuring ERI can be met using a constellation of satellites making global, high-frequency radiation measurements of the solar energy reflected and infrared energy radiated back to space with sufficient accuracy to determine the ERI to within 0.5 W/m2. In this presentation, we discuss the reasons and prospects for deploying a Cubesat constellation to realize this objective, simulations of the data that could be produced by this constellation, and the advantages of the spatial coverage and high temporal frequency afforded by the constellation. These advantages apply both to estimating long-term ERI and to quantifying the radiation budgets of individual synoptic-scale weather systems. The innovations in this system involve both the use of Cubesats and of compact, continuously calibrated wide-field-of-view radiometers. We demonstrate the feasibility of such a constellation using the ongoing proof-of-concept deployment of the target radiometers onboard the upcoming NASA RAVAN (Radiometer Assessment using Vertically Aligned Nanotubes) mission.

  15. Insolation data manual and direct normal solar radiation data manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-07-01

    The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

  16. The Energy Under Our Feet: A Study of Solar Radiation

    Science.gov (United States)

    Weiss, I.

    2016-12-01

    In this experiment I tested if asphalt pavement can produce enough solar heat to produce energy through a system that uses water, solar energy and heat. A setup that can conserve the water and prevent it from evaporating, as well as measuring the energy production is required to run this experiment. I have done a lot of research on this experiment and found that there are several variables that impact the results of this experiment. 1. The surface temperature compared to the air temperature 2. The Geographical location of the pavement 3. The time of the year 4. Cloud coverage for the day Overall there will be many variables I will have to keep out of the experiment such as temperature ranges, season changes and geographical location. My constant will be my location at 33.7086o North and 117.9564o West. Asphalt pavements do not reflect the sunlight and hence heat up faster than a light surface that would reflect the sunlight. This means the Asphalt absorbs the solar radiation, which increases the temperature of the air around the asphalt contributing to what is known as the urban heat island effect. This heating in turn contributes to the formation of smog and ozone products. With the population still growing this would also mean an increase in this temperature and hence an increase in smog and ozone, creating a significant health concern. Cities need to start looking at ways to cool their pavement and find ways to harvest the energy created by their streets. Installing pipes with water can provide that solution and not only reduce the heat reflected from the pavement but also harvest energy from this setup, and decrease the smog production and maintain a balance in ozone levels. As well as the asphalt needed to run the testing, a Stirling engine is required. A Stirling Engine is a highly efficient engine that can run on a variety of heat sources. Because it is highly compatible with alternative energy and renewable energy sources it could become increasingly

  17. The effects of solar radiation and black body re-radiation on thermal comfort.

    Science.gov (United States)

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  18. New typical meterological years and solar radiation data manual

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    A new solar radiation data manual and new typical meterological years (TMYs) were developed by the National Renewable Energy Laboratory (NREL) Analytic Studies Division under the Solar Radiation Resource Assessment Project. These tasks were funded and monitored by the Photovoltaics Branch of the Department of Energy Office of Energy Efficiency and Renewable Energy. The new manual and the new TMYs were derived from the 1961-1990 National Solar Radiation Data Base (NSRDB). The new manual is entitled Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors. It provides designers and engineers of solar-energy-related systems with average monthly and yearly solar radiation values for various types of collectors for 239 stations in the United States and its territories. The new TMY data sets are referred to as TMY2s. This distinguishes them from earlier TMY data sets derived from the 1952-1975 SOLMET/ERSATZ data base. This paper describes the new data manual and the new TMY2s.

  19. Performance of the meteorological radiation model during the solar eclipse of 29 March 2006

    Directory of Open Access Journals (Sweden)

    B. E. Psiloglou

    2007-12-01

    Full Text Available Various solar broadband models have been developed in the last half of the 20th century. The driving demand has been the estimation of available solar energy at different locations on earth for various applications. The motivation for such developments, though, has been the ample lack of solar radiation measurements at global scale. Therefore, the main goal of such codes is to generate artificial solar radiation series or calculate the availability of solar energy at a place.

    One of the broadband models to be developed in the late 80's was the Meteorological Radiation Model (MRM. The main advantage of MRM over other similar models was its simplicity in acquiring and using the necessary input data, i.e. air temperature, relative humidity, barometric pressure and sunshine duration from any of the many meteorological stations.

    The present study describes briefly the various steps (versions of MRM and in greater detail the latest version 5. To show the flexibility and great performance of the MRM, a harsh test of the code under the (almost total solar eclipse conditions of 29 March 2006 over Athens was performed and comparison of its results with real measurements was made. From this hard comparison it is shown that the MRM can simulate solar radiation during a solar eclipse event as effectively as on a typical day. Because of the main interest in solar energy applications about the total radiation component, MRM focuses on that. For this component, the RMSE and MBE statistical estimators during this study were found to be 7.64% and −1.67% on 29 March as compared to the respective 5.30% and +2.04% for 28 March. This efficiency of MRM even during an eclipse makes the model promising for easy handling of typical situations with even better results.

  20. Stray light correction of array spectroradiometers for solar UV measurements.

    Science.gov (United States)

    Nevas, Saulius; Gröbner, Julian; Egli, Luca; Blumthaler, Mario

    2014-07-01

    An approach is presented to characterize and correct stray light in spectra measured with array spectroradiometers and caused by out-of-spectral range radiation. A prerequisite for out-of-range stray light correction is knowledge of the spectral irradiance not measured by the instrument itself. A way of solving this problem for solar UV measurements is shown. The effect of out-of-range stray light is especially important for solar UV spectroradiometers typically having a spectral range narrower than that of the silicon detectors in use. Two different types of instruments used for solar UV measurements were characterized and corrected for out-of-range and in-range stray light. As a hardware solution to the out-of-range stray light problem, a bandpass filter was fitted in one array spectroradiometer. Results of test measurements using this modified instrument are also shown.

  1. Solar radiation pumped solid state of lasers for Solar Power Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruiyi [New Jersey (United States)

    2000-07-01

    The Laser Solar Power Satellites (L-SPS) is the most promising way to overcome global energy and environmental and economical problems. The purpose was to use the favorable combination of solar radiation, modern lasers and the extremely promising phenomenon Optical Phase Conjugation (OPC). Direct conversion of solar energy to energy of a high-power laser beam has the advantage of high efficiency and precise energy transportation. In this paper, direct solar radiation pumping of the laser is compared with the pumping using the intermediate stage of the conversion of the solar radiation in electrical energy. Possible solid-state lasers that can be used in L-SPS are also discussed (including optical system and cooling system). [Spanish] Los Satelites de Energia Solar Laser (L-SPS) son la forma mas prometedora para contrarrestar los problemas globales de energia, ambientales y problemas economicos. El proposito fue el de usar la combinacion favorable de radiacion solar, laseres modernos y el fenomeno extremadamente prometedor de conjugacion de fase optica (OPC). La conversion directa de energia solar a energia de un rayo laser de alta potencia tiene la ventaja de la alta eficiencia y precision de la transportacion de la energia. En este documento la radiacion solar directa impulsada por el laser se compara con la impulsion usando el estado intermedio de conversion de la radiacion solar en energia electrica. Tambien se analizan los posibles laseres de estado solido que pueden usarse en L-SPS (incluyendo el sistema optico y el sistema de enfriamiento).

  2. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    Science.gov (United States)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2017-04-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  3. Solar radiation and thermal performance of solar collectors for Denmark

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark.......This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark....

  4. Progress Report for Annex II--Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amoudi, Anmed; Alawaji, Saleh H.; Cornwall, Chris; Mahfoodh, Mohammed bin; Marion, Bill; Maxwell, Eugene L.; Wilcox, Stephen M.

    1999-08-20

    In 1987, the United States Department of Energy (DOE) and the King Abdulaziz City for Science and Technology (KACST) signed a five-year Agreement for Cooperation in the Field of Renewable Energy Research and Development (R and D), which has been extended to 2000. Tasks include: (1) upgrade solar radiation measurements in Saudi Arabia; (2) assemble a database of concurrent solar radiation, satellite (METEOSAT), and meteorological data; (3) adapt NREL models and other software for Saudi Arabia; (4) develop procedures, algorithms, and software to estimate solar irradiance; and (5) prepare a grid of solar radiation data for preparing maps and atlases and estimating solar radiation resources and solar energy system performances at locations in Saudi Arabia.

  5. National Solar Radiation Database (NSRDB) SolarAnywhere 10 km Model Output for 1989 to 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Solar Radiation Database (NSRDB) was produced by the National Renewable Energy Laboratory under the U.S. Department of Energy's Office of Energy...

  6. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  7. Effect of Antarctic solar radiation on sewage bacteria viability.

    Science.gov (United States)

    Hughes, Kevin A

    2005-06-01

    The majority of coastal Antarctic research stations discard untreated sewage waste into the near-shore marine environment. However, Antarctic solar conditions are unique, with ozone depletion increasing the proportion of potentially damaging ultraviolet-B (UV-B) radiation reaching the marine environment. This study assessed the influence of Antarctic solar radiation on the viability of Escherichia coli and sewage microorganisms at Rothera Research Station, Adelaide Island, Antarctic Peninsula. Cell viability decreased with increased exposure time and with exposure to shorter wavelengths of solar radiation. Cell survival also declined with decreasing cloud cover, solar zenith angle and ozone column depth. However, particulates in sewage increased the persistence of viable bacteria. Ultraviolet radiation doses over Rothera Point were highest during the austral summer. During this time, solar radiation may act to partially reduce the number of viable sewage-derived microorganisms in the surface seawater around Antarctic outfalls. Nevertheless, this effect is not reliable and every effort should be made to fully treat sewage before release into the Antarctic marine environment.

  8. Correlations during the day of diffuse solar radiation to the global solar radiation in Vigo (Spain); Correlaciones minutarias, horarias y diarias de la radiacion solar difusa a la radiacion solar global en Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Santos, J.

    2004-07-01

    In the Solar Energy Lab of the University of Vigo a weather station has been in operation since October 2001. Two Kipp and Zonen pyranometers, one of them with a shade ring, have been measuring global and diffuse solar radiation. From these data of the years 2002 and 2003, the diffuse-to-global minute, hourly and daily correlations are obtained and shown in graphs. These correlations are also plotted together with other correlations referred in the literature for comparison. The graphs show the effect of the clear-cloudy behaviour of the solar radiation for short periods of time, effect that is not seen for larger periods of time as daily periods. (Author)

  9. Equipment for measuring radiation. Part 3. Technique of measuring radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radwanowski, L.J.

    1979-01-01

    Difficulties are noted in measuring the effects of radiation because of the excessively low energy of the measured fields. In nature there are different magnetic-dynamic and magnetic-hydrodynamic generators which are sources of very low intensity which changes in time. The equipment of measurements is examined in the example of one of the generators, underground water current. The apparatus is described in detail for measuring the intensity of the electromagnetic SHF field. Under the underground water currents a change is observed in the intensity of the electromagnetic field. The possibilities are also examined of direct measurement of ultrasonic elastic fluctuations caused by the underground current, as well as the possibility of recording other physical fields (spontaneous polarization, soil temperature). A study was made of the effect of the underground water current on the occurrence of physical, chemical and biological processes: photochemical reactions, reactions of metal oxidation, Golomb effect (change in the rate of sedimentation of argillaceous particles in water under the influence of a biofield), change in air humidity and soil water content, change in intensity of the magnetic field, Hall effect, change in luminescence of certain organisms or the luminophore released by them. Basic plans are presented of certain measurement and recording devices.

  10. Remote diagnostic of the hydrogen wall through measurements of the backscattered solar Lyman alpha radiation by Voyager 1/UVS in 1993-2003

    Science.gov (United States)

    Katushkina, O. A.; Quémerais, E.; Izmodenov, V. V.; Alexashov, D. B.; Sandel, B. R.

    2016-01-01

    We perform a new analysis of the Lyman alpha data obtained by Voyager 1 during the spatial scans in 1993-2003 while Voyager 1 was at 53-88 AU from the Sun. These data are the important source of information on the hydrogen distribution in the outer heliosphere. A sophisticated global kinetic-MHD model of the heliospheric interface and a radiative transfer model are used for the analysis. It is shown for the first time that the ratio of the Lyman alpha intensities detected in the downwind and upwind lines of sight in the outer heliosphere is sensitive to the configuration (peak value and location) of the hydrogen wall. The hydrogen wall is a source of Doppler-shifted backscattered Lyman alpha photons, so it can be seen from inside the heliosphere. Therefore, Voyager 1/ultraviolet spectrometer (UVS) Lyman alpha data can be used for remote sensing of the hydrogen wall. We show that our current global model of the outer heliosphere, which is consistent with many other measurements including Lyman alpha data from both Voyager 1 and 2 in 1980-1993, provides a systematically larger downwind to upwind intensity ratio compared with the UVS data in 1993-2003. In order to decrease the ratio, a higher and/or closer hydrogen wall is needed.

  11. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  12. Solar ultraviolet-B radiation in urban environments: Baltimore, Maryland

    Science.gov (United States)

    Heisler, Gordon M.; Grant, Richard H.; Gao, Wei; Slusser, James R.; Ehrlich, Corinne

    2003-06-01

    Ultraviolet radiation from the sun, especially the UVB (280 to 320 nm), has important roles in urban ecosystems, including effects on human health. Broadband UVB radiation is being continuously monitored in the city of Baltimore, MD as part of a long-term ecological research program, the Baltimore Ecosystem Study. This paper compares above-canopy broadband UVB irradiance at the Baltimore station to broadband UVB irradiance at a more-rural station 64 km SE (at Wye Research Center in Queenstown, MD) and a station characterized as suburban within the Baltimore-Washington metropolitan area, 42 km SW (at Beltsville Agricultural Experiment Station). The Baltimore data are from the initial 14 months of measurements there. The solar radiation monitoring station in Baltimore is located on a 33-m-tall building on a high point with no significant obstructions to sky view. The broadband instruments, all of which were provided by the USDA UVB Monitoring and Research Program, were calibrated in the same facility, the NOAA Central UV Calibration Facility in Colorado. In general, UVB irradiances at the three sites were similar. Over all conditions, Baltimore and the suburban site measured 3.4% less irradiance than the rural site. This difference is within the anticipated +/-3% calibration uncertainty of the broadband pyranometers. On the 59 days with cloud-free conditions at all three sites, the average differences between measured UVB at the three sites was even smaller; Baltimore measured 1.2% less irradiance than the rural site. On the clear days, differences between total daily irradiance and the trend of daily irradiance through the year were clearly related to total column ozone as indicated by the EPTOMS satellite. High aerosol optical thickness strongly reduced daily UVB dose; whereas [SO2] had no influence. Surface O3 increased with increasing UVB dose when [NO2] exceeded 10 ppb.

  13. Applying measured reflection from the ground to simulations of thermal perfromance of solar collectors

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    2009-01-01

    Solar radiation on tilted and vertical surfaces in the Arctic is, in large parts of the year, strongly influenced by reflection from snow. In connection with planning and optimization of energy efficient buildings and solar energy systems in the Arctic, it is important to have an accurate...... representation of the reflection from the ground. In this study a more accurate description of the albedo is obtained based on detailed measurements from a solar hat, installed at ASIAQ’s climate station in Sisimiut, Greenland. The solar hat measures the global radiation on horizontal, the total radiation...... on vertical surfaces facing north, south, east and west, and radiation reflected from the ground on vertical surfaces facing north, south, east and west. Based on measured data from 2004-2007 the albedo is determined for each month of the year as a function of the difference between the solar azimuth...

  14. A Preliminary Analysis of Solar Irradiance Measurements at TNB Solar Research Centre for Optimal Orientation of Fixed Solar Panels installed in Selangor Malaysia

    Science.gov (United States)

    Hashim, A. M.; Ali, M. A. M.; Ahmad, B.; Shafie, R. M.; Rusli, R.; Aziz, M. A.; Hassan, J.; Wanik, M. Z. C.

    2013-06-01

    The well established rule for orienting fixed solar devices is to face south for places in the northern hemisphere and northwards for the southern hemisphere. However for regions near the equator such as in Selangor Malaysia, the position of the sun at solar noon is always near zenith both to the north and south depending on location and month of year. This paper reports an analysis of global solar radiation data taken at TNB Solar Research Centre, Malaysia. The solar radiation is measured using both shaded and exposed pyranometers together with a pyrheliometer which is mounted on a sun-tracker. The analysis on the solar measurements show that a near regular solar irradiation pattern had occurred often enough during the year to recommend an optimum azimuth orientation of installing the fixed solar panels tilted facing towards east. Even though all the solar measurements were done at a single location in TNBR Solar Research Centre at Bangi, for locations near the equator with similar weather pattern, the recommended azimuth direction of installing fixed solar panels and collectors tilted eastward will also be generally valid.

  15. Color Portion of Solar Radiation in the Partial Annular Solar Eclipse, October 3rd, 2005, at Helwan, Egypt

    Directory of Open Access Journals (Sweden)

    A. H. Hassan

    2010-01-01

    Full Text Available Measurements were made of various solar radiation components, global, direct and diffuse and their fractions during the partial annular solar eclipse on October 3rd, 2005 at Helwan, Egypt (Lat. 29.866◦ N and Long. 31.20◦ E, and an analysis has been made. The duration of the solar eclipse was 3 h 17 min, and the maximum magnitude of the eclipse in this region was 0.65. The optical depth of the direct component and the relative humidity decreased, while both the transparency and the air temperature increased towards the maximum eclipse. The general trends of the global components are decreasing optical depth and increasing transparency between the first contact and the last contact. The prevailing color during the eclipse duration was diffused infrared (77 % of the total diffuse radiation level.

  16. Convective instability of sludge storage under evaporation and solar radiation

    Science.gov (United States)

    Tsiberkin, Kirill; Tatyana, Lyubimova

    2014-05-01

    The sludge storages are an important part of production cycle at salt manufacturing, water supply, etc. A quality of water in the storage depends on mixing of pure water and settled sediment. One of the leading factors is thermal convection. There are two main mechanisms of the layer instability exist. First, it is instability of water due to evaporation from the free surface [1]. It cools the water from upside, increases the particles concentration and leads to the instability in the near-surface layer. Second, the sediment absorbs a solar radiation and heats the liquid from below making it unstable in the near-bottom area. We assume the initial state is the mechanical equilibrium. The water and sediment particles are motionless, the sediment forms a uniform sludge layer of thickness z0, there are no evaporation and heating by solar energy, and the temperature has a linear profile is determined by fixed upper and bottom temperatures of the layer. Taking into account the evaporation and solar radiation absorption, we obtain a non-stationary solution for the temperature using Fourier series method. The local temperature gradients increases rapidly with time, and local Rayleigh number can be estimated by thermal conduction length Lt: Raloc(z,t) = gβ(δT(z,t)/δz)L4t-/νΞ , Lt ~ √Ξt, (1) where g is gravity acceleration, β, ν and Ξ are thermal volume expansion coefficient, kinematic viscosity and thermal conductivity of the liquid, respectively. Raloc* reaches the critical value at finite time t* and water motion begins. The maximal power of solar radiation in visible band equals 230 Wt/m2 at the latitude of "Uralkalii" salt manufacturer (Berezniki, Perm Region, Russian Federation). We neglect IR and UV radiation because of its huge absorption by water [2]. The evaporation speed is found using results for shallow water reservoir [3] and meteorological data for Berezniki [4]. We get the t*~ 6 · 102 s (10 min) for the layer of 1 m depth and t*~ 2 · 103 s (40

  17. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    Science.gov (United States)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  18. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    Science.gov (United States)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  19. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  20. Measurement of solar extinction in tower plants with digital cameras

    Science.gov (United States)

    Ballestrín, J.; Monterreal, R.; Carra, M. E.; Fernandez-Reche, J.; Barbero, J.; Marzo, A.

    2016-05-01

    Atmospheric extinction of solar radiation between the heliostat field and the receiver is accepted as a non-negligible source of energy loss in the increasingly large central receiver plants. However, the reality is that there is currently no reliable measurement method for this quantity and at present these plants are designed, built and operated without knowing this local parameter. Nowadays digital cameras are used in many scientific applications for their ability to convert available light into digital images. Its broad spectral range, high resolution and high signal to noise ratio, make them an interesting device in solar technology. In this work a method for atmospheric extinction measurement based on digital images is presented. The possibility of defining a measurement setup in circumstances similar to those of a tower plant increases the credibility of the method. This procedure is currently being implemented at Plataforma Solar de Almería.

  1. Daily tropical cyclone intensity response to solar ultraviolet radiation

    Science.gov (United States)

    Elsner, J. B.; Jagger, T. H.; Hodges, R. E.

    2010-05-01

    An inverse relationship between hurricane activity over the Caribbean and the number of sunspots has recently been identified. Here we investigate this relationship using daily observations and find support for the hypothesis that changes in ultraviolet (UV) radiation rather than changes in other concomitant solar and cosmic variations are the cause. The relationship is statistically significant after accounting for annual variation in ocean heat and the El Niño cycle. A warming response in the upper troposphere to increased solar UV forcing as measured by the Mg II index (core-to-wing ratio) decreases the atmosphere's convective available potential energy leading to a weaker cyclone. The response amplitude at a cyclone intensity of 44 m s-1 is 6.7 ± 2.56 m s-1 per 0.01 Mg II units (s.d.), which compares with 4.6 m s-1 estimated from the heat-engine theory using a temperature trend derived from observations. The increasing hurricane response sensitivity with increasing strength is found in the observations and in an application of the theory.

  2. Statistical analysis of solar measurements in Algeria using beta distributions

    Energy Technology Data Exchange (ETDEWEB)

    Ettoumi, F. Youcef; Adane, A. [Univ. of Sciences and Technology of Algiers (U.S.T.H.B.), Dept. of Telecommunications, Algiers (Algeria); Mefti, A.; Bouroubi, M.Y. [Centre de Developpement des Energies Renouvelables (CDER), Algiers (Algeria)

    2002-05-01

    A method of smoothing solar data by beta probability distributions is implemented in this paper. In the first step, this method has been used to process daily sunshine duration data recorded at thirty- three meteorological stations in Algeria for eleven year periods or more. In the second step, it has been applied to hourly global solar irradiation flux measured in Algiers during the 1987/89 period. For each location and each month of the year, beta probability density functions fitting the monthly frequency distributions of the daily sunshine duration measurements are obtained. Both the parameters characterising the resulting beta distributions are then mapped, enabling us to build the frequency distributions of sunshine duration for every site in Algeria. In the case of solar radiation for Algiers, the recorded data have been processed following two different ways. The first one consists in sorting the hourly global solar irradiation data into eight typical classes of the daily clearness index. The second one is based on the repartition of these data per month. The results of the first classification show that for each class of daily clearness index, the hourly data under consideration are modelled by only one beta distribution. When using the second classification, linear combinations of two beta distributions are found to fit the monthly frequency distributions of the hourly solar radiation data. (Author)

  3. A link between solar events and congenital malformations: Is ionizing radiation enough to explain it?

    CERN Document Server

    Overholt, A C; Atri, D

    2015-01-01

    Cosmic rays are known to cause biological effects directly and through ionizing radiation produced by their secondaries. These effects have been detected in airline crews and other specific cases where members of the population are exposed to above average secondary fluxes. Recent work has found a correlation between solar particle events and congenital malformations. In this work we use the results of computational simulations to approximate the ionizing radiation from such events as well as longer term increases in cosmic ray flux. We find that the amounts of ionizing radiation produced by these events are insufficient to produce congenital malformations under the current paradigm regarding muon ionizing radiation. We believe that further work is needed to determine the correct ionizing radiation contribution of cosmogenic muons. We suggest that more extensive measurements of muon radiation effects may show a larger contribution to ionizing radiation dose than currently assumed.

  4. Modified empirical Solar Radiation Pressure model for IRNSS constellation

    Science.gov (United States)

    Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.

    2017-11-01

    Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.

  5. Detection of Ionizing Radiation using Solar Blind Air Fluorescence

    Science.gov (United States)

    2013-06-01

    either PMTs or MCPs . These detectors are intrinsically solar blind and may provide much higher detection efficiency (10-25%) than CsTe/Filter PMT or MCP ...possibility of detection in full daylight. If a practical detector could be realized utilizing this detection technique it would offer the following...benefits over existing radiation detection methods: • Standoff imaging detection of ionizing radiation. Such a detector would provide information on source

  6. Inconsistency in Chinese solar radiation data caused by instrument replacement: Quantification based on pan evaporation observations

    Science.gov (United States)

    Yang, Hanbo; Li, Zhe; Li, Mingliang; Yang, Dawen

    2015-04-01

    Solar radiation determines our climate and hydrological cycle, and it has been widely measured by pyrometers at meteorological stations. In the early 1990s, a large-scale instrument replacement occurred across China, leading to inconsistent solar radiation observations. Fortunately, China has consistent pan evaporation (Epan) observations from Chinese micropans (with a diameter of 20 cm) from the 1950s to 2001. This study parameterized the PenPan-20 model for estimating Epan from these pans using a Bayesian approach. Furthermore, based on the PenPan-20 model, a shift in the solar radiation data (~1.4 ± 0.5 MJ/(d m2) or 16 ± 7 W/m2) in the early 1990s was revealed; this change was likely due to the large-scale retrofitting of new instruments and irregular calibration operations.

  7. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    Directory of Open Access Journals (Sweden)

    Huashan Li

    2014-01-01

    Full Text Available Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China.

  8. Cloud effects on the solar and thermal radiation budgets of the Mediterranean basin

    Science.gov (United States)

    Pyrina, M.; Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Papadimas, C. D.; Pavlakis, K. G.; Vardavas, I.

    2015-01-01

    The cloud effects on the shortwave (SW), longwave (LW) and net all-wave radiation budgets of the Mediterranean basin were computed using a detailed radiative transfer model together with satellite and reanalysis data for surface and atmospheric properties. The model radiation fluxes at TOA were validated against CERES and ERBE satellite data, while at the Earth's surface they were validated against ground-based GEBA and BSRN station measurements. The cloud radiative effects were obtained for low, middle, high-level clouds, and for total cloud cover. Overall for the basin, the effect on solar radiation is to produce radiative cooling at the top of atmosphere (TOA) and at the surface that more than balances the warming effects on terrestrial radiation. The result is a net radiative cooling at TOA and at the surface, equal to - 18.8 and - 15.9 Wm- 2, respectively. The low-level clouds are most important for the TOA budget through significant SW reflection and little LW emission to space. High clouds play an important role in net surface cooling (- 9.8 Wm- 2) through the combination of SW reflection to space and a much reduced LW warming effect at the surface. The geographical patterns of the effects are mainly characterized by a strong south to north increasing gradient. The seasonal variation of net radiative effects is dominated by solar radiation with maxima in spring and minima in winter.

  9. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  10. Occupational exposure to solar radiation in Australia: who is exposed and what protection do they use?

    Science.gov (United States)

    Carey, Renee N; Glass, Deborah C; Peters, Susan; Reid, Alison; Benke, Geza; Driscoll, Timothy R; Fritschi, Lin

    2014-02-01

    Solar ultraviolet radiation (UVR) exposure is widely recognised as a leading cause of skin cancer, with outdoor workers being particularly at risk. Little is known on a national level about how many workers are exposed to solar radiation, the circumstances in which they are exposed, or their use of protective measures. The Australian Work Exposures Study (AWES) was a cross-sectional telephone survey of 5,023 Australian workers aged 18 to 65. A subset of 1,113 respondents who indicated they worked outdoors was asked about their exposure to solar radiation in terms of the amount of time they spent working outdoors, their working location and their use of sun protective measures. A total of 1,100 respondents (22% overall) were assessed as being exposed to solar radiation at work. Exposure was more likely among males and those residing in lower socioeconomic and regional areas. Sun protection was used by 95% of the respondents, although the level of protection varied among workers, with only 8.7% classified as fully protected. This study provides valuable information regarding solar exposure that has not previously been available. The results of this study will inform strategies for risk reduction. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  11. Validation of a Meteosat Second Generation solar radiation dataset over the northeastern Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    J. Cristóbal

    2013-01-01

    Full Text Available Solar radiation plays a key role in the Earth's energy balance and is used as an essential input data in radiation-based evapotranspiration (ET models. Accurate gridded solar radiation data at high spatial and temporal resolution are needed to retrieve ET over large domains. In this work we present an evaluation at hourly, daily and monthly time steps and regional scale (Catalonia, NE Iberian Peninsula of a satellite-based solar radiation product developed by the Land Surface Analysis Satellite Application Facility (LSA SAF using data from the Meteosat Second Generation (MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI. Product performance and accuracy were evaluated for datasets segmented into two terrain classes (flat and hilly areas and two atmospheric conditions (clear and cloudy sky, as well as for the full dataset as a whole. Evaluation against measurements made with ground-based pyranometers yielded good results in flat areas with an averaged model RMSE of 65 W m−2 (19%, 34 W m−2 (9.7% and 21 W m−2 (5.6%, for hourly, daily and monthly-averaged solar radiation and including clear and cloudy sky conditions and snow or ice cover. Hilly areas yielded intermediate results with an averaged model RMSE (root mean square error of 89 W m−2 (27%, 48 W m−2 (14.5% and 32 W m−2 (9.3%, for hourly, daily and monthly time steps, suggesting the need of further improvements (e.g., terrain corrections required for retrieving localized variability in solar radiation in these areas. According to the literature, the LSA SAF solar radiation product appears to have sufficient accuracy to serve as a useful and operative input to evaporative flux retrieval models.

  12. Effects of solar radiation on the abiotic and bacterially mediated carbon flux in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Anesio, A.M.

    2000-05-01

    In this thesis, I studied some of the current aspects of organic matter photochemistry. I analyzed abiotic photo transformations of several types of dissolved (DOM) and particulate organic matter (POM). I also evaluated the effects of photo transformation of several types of DOM on bacteria. Finally, in a field experiment, I analyzed net effects of solar radiation on organic matter decomposition. DOM undergoes several transformations due to solar irradiation. One such transformation is photooxidation of organic matter into inorganic carbon. Results of this Thesis show that photooxidation is ubiquitous to all kinds of organic matter in both dissolved and particulate forms. The intensity of this process depends on several factors, including DOM composition, radiation type and time of exposure. Besides mineralization to inorganic carbon, DOM undergoes other chemical transformations due to UV radiation, with profound consequences to DOM availability for bacteria. Bioavailability was tested by measuring bacterial growth and respiration on irradiated and nonirradiated DOM from several types of humic matter and plant leachates. Irradiation of freshly-leached DOM often produced negative effects on bacteria, whereas irradiation of humic material was followed by stimulation of bacterial growth. The degree of stimulation seems to be related to the initial bioavailability of the DOM and to the capability of the DOM to produce hydrogen peroxide upon irradiation. Other factors also accounted for differences in bacterial response to photochemical modification of DOM, including length and type of irradiation exposure. The effects of solar radiation on litter decomposition were also evaluated using experiments that more closely mimic natural conditions. I could not observe differences between dry weight loss of leaves and culms exposed to solar radiation or kept in darkness, which may be explained by the fact that abiotic decomposition under solar radiation is counterbalanced by

  13. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    Science.gov (United States)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  14. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain

    Science.gov (United States)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor ( SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated ( R 2 = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site productivity.

  15. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTM runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy

  16. Evaluation of temperature-based global solar radiation models in China

    DEFF Research Database (Denmark)

    Liu, Xiaoying; Mei, Xurong; Li, Yuzhong

    2009-01-01

    Estimation of global solar radiation (Rs) from the daily range of air temperature (¿T) offers an important alternative in the absence of measured Rs or sunshine duration because of the wide availability of air temperature data. In this paper, we assessed 16 Rs models including modified versions...

  17. Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Weekley, Andrew; Habte, Aron; Lopez, Anthony; Molling, Christine

    2015-09-15

    Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite and creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and

  18. Regional trends in surface solar radiation derived from satellite-based data sets

    Science.gov (United States)

    Trentmann, Jörg; Sanchez-Lorenzo, Arturo; Posselt, Rebekka; Krähenmann, Stefan; Müller, Richard W.; Wild, Martin; Stöckli, Reto; Ahrens, Bodo

    2013-04-01

    The monitoring of the surface solar radiation and the detection of its variability and possible changes is highly relevant for our understanding of the climate system. Clouds and aerosols are the main contributors to the observed changes in the solar energy reaching the surface. Clouds are well observed from satellites, especially during daytime, making satellite-derived data sets of the surface radiation a potentially powerful source of information to assess the spatial structure of surface solar radiation. Surface-based observations, e.g., from the BSRN and GEBA networks, have been used to assess the temporal variability and trend of the surface radiation. Due to the limited spatial distribution of the surface stations, a generalization of the trends derived from measurements at individual stations is difficult. Satellite-derived data of the surface radiation, providing up to global coverage, are available since the 1980s allowing an analysis of the regional variability of temporal changes of the surface radiation. Here, we use surface solar radiation data generated and provided by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF, www.cmsaf.eu) based on geostationary and polar-orbiting satellites. The ability of the satellite-derived data sets to detect trends is tested and assessed by comparison with surface reference observations in Europe. It is shown that, at least for part of the available time series, the satellite data is stable and can be used to derive trend estimates. Substantial regional differences in the trend of the surface solar radiation are detected across Europe between 1994 and 2005, with strong positive trends over Central Europe (brightening) and negative trends over the Mediterranean Sea (dimming).

  19. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    City, Malawi for a 29-year period (1985 to 2013) were assessed for the possibility of climate variation. In addition, the concentration of carbon ... Key words: Climate variation, solar radiation, temperature, weather. INTRODUCTION. The world's climate ..... changes and nocturnal global warming. Science 283 (5399):229-231.

  20. Evaluation of the effectiveness of solar radiation for the disinfection ...

    African Journals Online (AJOL)

    The aim of the study was to evaluate the effectiveness of solar radiation as a disinfection agent for EPEC contaminated water. Effectiveness of SODIS was determined using viable coliform counts on VRBA medium and inactivation was determined by a reduction in growth of the organisms. The results show that it is possible ...

  1. Prediction of monthly mean daily global solar radiation using ...

    Indian Academy of Sciences (India)

    In this study, a multilayer feed forward (MLFF) neural network based on back propagation algorithm was developed, trained, and tested to predict monthly mean daily global radiation in Tamil Nadu, India. Various geographical, solar and meteorological parameters of three different locations with diverse climatic conditions ...

  2. Prediction of monthly mean daily global solar radiation using ...

    Indian Academy of Sciences (India)

    In this study, a multilayer feed forward (MLFF) neural network based on back propagation algorithm was developed, trained, and tested to predict monthly mean daily global radiation in Tamil Nadu,. India. Various geographical, solar and meteorological parameters of three different locations with diverse climatic conditions ...

  3. Evaluation of the effects of solar radiation on glasses

    Science.gov (United States)

    Harada, Y.

    1981-01-01

    Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance while optical crown glass and ultra low expansion glass darkened appreciably. A complete analysis of the 500 hour simulated space exposure test was conducted. Additionally, studies were performed to aid in sample selection for a 100 hour simulated exposure test.

  4. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    ... including fair-skinned individuals and African albinos, and people spending extended unprotected periods outdoors are at risk of sunburn, a risk factor for skin cancer. Sunburn becomes increasingly likely during the high solar UV radiation hours around midday, and previous studies have shown that children are exposed ...

  5. Ambient solar UV radiation and seasonal trends in potential sunburn ...

    African Journals Online (AJOL)

    Background. The detrimental effects of excess personal solar ultraviolet (UV) radiation exposure include sunburn, immunosuppression and skin cancer. In South Africa, individuals with minimum natural protection from melanin, including fair-skinned individuals and African albinos, and people spending extended ...

  6. A comparison of outer electron radiation belt dropouts during solar ...

    Indian Academy of Sciences (India)

    O Ogunjobi

    2017-06-06

    Jun 6, 2017 ... study identifies radiation belt electron dropouts which are ultimately triggered when solar wind stream interfaces (SI) arrived at ... (Plasmapause); indicating a combination of electron cyclotron harmonic (ECH) and whistler mode waves as the contributing ... density known as the slot (Van-Allen 1959). Elec-.

  7. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  8. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  9. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  10. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters

    DEFF Research Database (Denmark)

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim

    2017-01-01

    with our specialist knowledge as occupational physicians. Conclusions: Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support......Background: Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet...... radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. Methods: We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high...

  11. Coastal-inland solar radiation difference study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  12. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  13. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. GLOBAL SOLAR RADIATION INTERCEPTION BY GRAPEVINES TRAINED TO A VERTICAL TRELLIS SYSTEM

    Directory of Open Access Journals (Sweden)

    CLAUDIA GUIMARÃES CAMARGO CAMPOS

    2016-01-01

    Full Text Available ABSTRACT In this paper we assess the utilization of radiant energy in the growing of grapevines (Cabernet Sauvignon trained to a vertical trellis system, and estimate the global solar radiation interception taking into account the physical characteristics of the training system at different phenological stages. The experiment was based on daily measurements of global solar radiation made by an automatic weather station placed at the vineyard of a winery located in the municipality of São Joaquim, in the southern Brazilian State of Santa Catarina (Villa Francioni winery, 28º 15’ 14” S, 49º 57’ 02” W, 1294m a.s.l.. Growth and phenological development of the shoots were evaluated. The global solar radiation is intercepted by the canopy (trained to a vertical trellis system in different orientations and the accumulated total is slightly greater on the east than on the west face of the canopy, especially after flowering. The daily variability of global solar radiation intercepted by the canopy is greater after flowering. The accumulated solar energy incident on the canopy increases until the onset of ripening. From the results, vineyards trained to a vertical trellis system in the north-south direction provide favorable sunlight exposure to leaves and fruits and are promising in quality and productivity.

  15. On the relative role of clouds and aerosols in the decadal changes of solar radiation

    Science.gov (United States)

    Chiacchio, M.; Vitolo, R.; Wild, M.

    2009-04-01

    This study aims at quantifying the most important factors for the decadal variations in the surface shortwave downward radiation. With reports describing global variations of this radiation parameter using surface and satellite-derived measurements, emphasis has recently been placed on regional studies to further understand the mechanisms that are contributing to the local changes in solar radiation. Analysis of this radiative parameter is performed on surface observations in Europe from the Global Energy Balance Archive (GEBA) from 1970 through 2005. This dataset is comprised of monthly mean surface downward radiation around the globe. The time series of these measurements are evaluated on an annual and seasonal basis to determine their trends using linear regression techniques. Since cloud cover and aerosols are major contributors for the variability of solar radiation, we assess the relative role of these two factors. Time series of cloud cover are taken from the Carbon Dioxide Information Analysis Center (CDIAC) from 1971 to 1996. Monthly averages from this dataset are used to compute annual and seasonal trends. In addition, decadal changes in the total aerosol optical depth from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model are analysed. The effect of cloud cover and aerosols on surface shortwave downward radiation is evaluated through generalized linear models where these two factors act as covariates.

  16. Measurement and detection of radiation

    National Research Council Canada - National Science Library

    Tsoulfanidis, Nicholas; Landsberger, Sheldon

    2011-01-01

    .... With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines...

  17. A solar cycle lengthwise series of solar diameter measurements

    Science.gov (United States)

    Penna, J. L.; Andrei, A. H.; Boscardin, S. C.; Neto, E. Reis; d'Ávila, V. A.

    2010-02-01

    The measurements of the solar photospheric diameter rank among the most difficult astronomic observations. Reasons for this are the fuzzy definition of the limb, the SNR excess, and the adverse daytime seeing condition. As a consequence there are very few lengthy and consistent time series of such measurements. Using modern techniques, just the series from the IAG/USP and from Calern/OCA span more than one solar cycle. The Rio de Janeiro Group observations started in 1997, and therefore in 2008 one complete solar cycle time span can be analyzed. The series shares common principles of observation and analysis with the ones afore mentioned, and it is complementary on time to them. The distinctive features are the larger number of individual points and the improved precision. The series contains about 25,000 single observations, evenly distributed on a day-by-day basis. The typical error of a single observation is half an arc-second, enabling us to investigate variations at the expected level of tens of arc-second on a weekly basis. These features prompted to develop a new methodology for the investigation of the heliophysical scenarios leading to the observed variations, both on time and on heliolatitude. The algorithms rely on running averages and time shifts to derive the correlation and statistical incertitude for the comparison of the long term and major episodes variations of the solar diameter against activity markers. The results bring support to the correlation between the diameter variation and the solar activity, but evidentiating two different regimens for the long term trend and the major solar events.

  18. Radiation belt electron dynamics at low L (Van Allen Probes era versus previous two solar cycles

    Science.gov (United States)

    Li, X.; Baker, D. N.; Zhao, H.; Zhang, K.; Jaynes, A. N.; Schiller, Q.; Kanekal, S. G.; Blake, J. B.; Temerin, M.

    2017-05-01

    Long-term (>2 solar cycles) measurements reveal that MeV electron fluxes, solar wind speed, and geomagnetic activity have been extremely low during this current solar cycle, including years before and during the Van Allen Probes era. This study examines solar wind speed, the geomagnetic storm index (Dst), >2 MeV electrons at geostationary orbit, and 2 MeV electrons across various L shells measured by Solar Anomalous Magnetospheric Particle Explorer in low Earth orbit (LEO) and by the Van Allen Probes/Relativistic Electron and Proton Telescope (REPT) in a geotransfer-like orbit; the latter measurements are normalized to LEO based on comparison with Colorado Student Space Weather Experiment/Relativistic Electron and Proton Telescope integrated little experiment (REPTile) measurements in LEO. The average ratio of REPTile/REPT varies in a systematic manner with L, 16% at L = 2.7, decreasing with L and reaching 0.7% at L = 4.7, and increasing again with L though with greater uncertainty. We show that there have been no 2 MeV electron enhancements inside L 2.6 since 2006, prior to which numerous penetrations of 2 MeV electrons into L Van Allen Probes, which have been providing the finest measurements but in operation during a quiet solar activity period, may not be representative of radiation belt dynamics, particularly for the inner edge of the outer belt, during other solar cycle phases.

  19. An Algorithm to Determine the Optimum Tilt Angle of a Solar Panel from Global Horizontal Solar Radiation

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2013-01-01

    Full Text Available This paper proposes an algorithm to calculate the optimum tilt angle of solar panels by means of global horizontal solar radiation data, provided from Earth-based meteorological stations. This mathematical modeling is based on the maximization of the theoretical expression of the global solar irradiation impinging on an inclined surface, with respect to the slope and orientation of the panel and to the solar hour angle. A set of transcendent equations resulted, whose solutions give the optimum tilt and orientation of a solar panel. A simulation was carried out using global horizontal solar radiation data from the European Solar Radiation Atlas and some empirical models of diffuse solar radiation. The optimum tilt angle resulted was related to latitude by a linear regression with significant correlation coefficients. The standard error of the mean values resulted increased significantly with latitude, suggesting that unreliable values can be provided at high latitudes.

  20. Evaluation of global solar radiation using multiple weather parameters as predictors for South Africa provinces

    Directory of Open Access Journals (Sweden)

    Adeala Adeyemi A.

    2015-01-01

    Full Text Available Models for estimating monthly average daily global solar radiation were developed for South African provinces. These models, in addition to the traditional sunshine hours used in existing models incorporates ambient temperature, relative humidity and wind speed as variable parameters for predicting global solar radiation, making it different from most of the existing models that use only sunshine hours as variable. Meteorological data obtained for nine locations in South Africa were employed in the model formulation. The accuracy of the models were verified by comparing estimated values with measured values in terms of the following statistical error tests: mean bias error (MBE, mean absolute bias error (MABE, mean absolute percentage error (MAPE, root mean square error (RMSE, and the regression coefficient (R2.The values of R2 for the formulated models are between the ranges of 90% - 99%. It was also observed that for an accurate estimation of global solar radiation in Eastern Cape Province, all weather elements are needed. This implies that the models give an excellent prediction for global solar radiation for their corresponding locations. Also, different errors calculated for the formulated models are close to zero especially MAPE. The result shows that the formulated models are good enough to be used to predict monthly average daily radiation for South Africa and also, the inclusion of some other elements in some of the models improved the accuracy of the predictions made by the models.

  1. Solar radiation on a catenary collector

    Science.gov (United States)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  2. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  3. Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation

    Science.gov (United States)

    Garfinkel, Chaim; silverman, vered; harnik, nili; Erlich, caryn

    2016-04-01

    Superposed epoch analysis of meteorological reanalysis data is used to demonstrate a significant connection between intraseasonal solar variability and temperatures in the stratosphere. Decreasing solar flux leads to a cooling of the tropical upper stratosphere above 7hPa, while increasing solar flux leads to a warming of the tropical upper stratosphere above 7hPa, after a lag of approximately six to ten days. Late winter (February-March) Arctic stratospheric temperatures also change in response to changing incoming solar flux in a manner consistent with that seen on the 11 year timescale: ten to thirty days after the start of decreasing solar flux, the polar cap warms during the easterly phase of the Quasi-Biennal Oscillation. In contrast, cooling is present after decreasing solar flux during the westerly phase of the Quasi-Biennal Oscillation (though it is less robust than the warming during the easterly phase). The estimated composite mean changes in Northern Hemisphere upper stratospheric (~ 5hPa) polar temperatures exceed 8K, and are potentially a source of intraseasonal predictability for the surface. These changes in polar temperature are consistent with the changes in wave driving entering the stratosphere. Garfinkel, C.I., V. Silverman, N. Harnik, C. Erlich, Y. Riz (2015), Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation, J. Geophys. Res. Atmos., 120, 7648-7660. doi: 10.1002/2015JD023244.

  4. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    Science.gov (United States)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  5. Summary information and data sets for the HBCU Solar Measurements Network

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W

    1994-08-01

    Since 1985, the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), has operated a solar radiation measurement network of six stations located at Historically Black Colleges and Universities (HBCUs) in the southeastern United States. NREL initiated this network to provide better regional coverage and to comply with President Reagan`s Executive Order 12320, dated September 15, 1981, directing all federal agencies to implement programs to strengthen the nation`s HBCUs. Funding for the HBCU network has been provided by the Department of Energy`s (DOE`s) Resource Assessment Program, Photovoltaic Program, and Solar Thermal Program, and it is currently funded by the Solar Radiation Resource Assessment Project. The objectives of the HBCU network are (1) To significantly improve the assessment of solar radiation resources in the southeastern United States; (2) To enlist the help of the HBCUs in collecting high-quality solar radiation data; (3) To encourage the distribution of solar radiation resource information and the development of solar energy applications in the Southeast; (4) To encourage the development of academic and research programs in solar energy at HBCUs.

  6. Variability and trends of surface solar radiation in Europe based on CM SAF satellite data records

    Science.gov (United States)

    Trentmann, Jörg; Pfeifroth, Uwe; Sanchez-Lorenzo, Arturo; Urbain, Manon; Clerbaux, Nicolas

    2017-04-01

    The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based high-quality climate data records, with a focus on the global energy and water cycle. Here, the latest releases of the CM SAF's data records of surface solar radiation, Surface Solar Radiation Data Set - Heliosat (SARAH), and CM SAF cLouds, Albedo and Radiation dataset from AVHRR data (CLARA), are analyzed and validated with reference to ground-based measurements, e.g., provided by the Baseline Surface Radiation Network (BSRN), the World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). Focus is given to the trends and the variability of the surface irradiance in Europe as derived from the surface and the satellite-based data records. Both data sources show an overall increase (i.e., brightening) after the 1980s, and indicate substantial decadal variability with periods of reduced increase (or even a decrease) and periods with a comparable high increase. Also the increase shows a pronounced spatial pattern, which is also found to be consistent between the two data sources. The good correspondence between the satellite-based data records and the surface measurements highlight the potential of the satellite data to represent the variability and changes in the surface irradiance and document the dominant role of clouds over aerosol to explain its variations. Reasons for remaining differences between the satellite- and the surface-based data records (e.g., in Southern Europe) will be discussed. To test the consistency of the CM SAF solar radiation data records we also assess the decadal variability of the solar reflected radiation at the top-of-the atmosphere (TOA) from the CM SAF climate data record based on the MVIRI / SEVIRI measurements from 1983 to 2015. This data record complements the SARAH data record in its temporal and spatial coverage; fewer and different assumptions are used in the retrieval to generate the TOA reflected solar

  7. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    Science.gov (United States)

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-11-12

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  8. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Science.gov (United States)

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  9. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    2017-07-06

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at the surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.

  10. Solar radiation and age-related macular degeneration.

    Science.gov (United States)

    Young, R W

    1988-01-01

    Age-related macular degeneration (AMD) involves a progressive impairment of the outer layers in the center of the retina. Experimental studies have demonstrated that bright light preferentially damages precisely the region that degenerates in AMD. The evidence that solar radiation is responsible for some of the deteriorative changes that lead to AMD is examined in this review. In the primate eye, the high-energy portion of the solar spectrum is most hazardous to retinal molecules, with damaging effects increasing as photon energy rises. This action spectrum is explicable by the quantum laws which describe the interaction of radiation with matter. High-energy visible and ultraviolet photons can produce molecular damage by a photochemical mechanism. The lesion is exacerbated by oxygen, which initiates free-radical chain reactions (photodynamic effects). Melanin exerts a protective effect against damage from sunlight. In the human retina, documented lesions from solar radiation range from the acute effects of sun-gazing to injuries resulting from prolonged periods of exposure in brightly illuminated environments. The damage occurs in the same region that degenerates in AMD. A cataractous lens and ocular melanin both protect the retina against AMD, as predicted by the radiation hypothesis. Identification of an environmental factor that evidently plays a role in the etiology of AMD provides the basis for a program of preventive medicine.

  11. Intercomparison of spectral-UV-radiation measurement systems.

    Science.gov (United States)

    Seckmeyer, G; Thiel, S; Blumthaler, M; Fabian, P; Gerber, S; Gugg-Helminger, A; Häder, D P; Huber, M; Kettner, C; Köhler, U; Köpke, P; Maier, H; Schäfer, J; Suppan, P; Tamm, E; Thomalla, E

    1994-11-20

    The results of what is to our knowledge the first intercomparison of seven independent spectroradiometers measuring solar UV irradiances are presented. The intercomparison was carried out in the GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg (near Munich, Germany), on 13 July 1990. The spectroradiometric measurements were supplemented by other meteorological, optical, and chemical measurements at the same time. As this day was cloudless, the data can be compared with the measurements taken by Bener in Switzerland in the 1960's and with the results of radiative transfer models. The measured irradiances at noon differed by factors of up to 100. These large differences demonstrate the great difficulties with this type of measurement. Some instrument systems, however, ranged within tolerances of ±10%, thus allowing us to make recommendations for the spectroradiometry of solar UV irradiances.

  12. Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt

    Science.gov (United States)

    Hassan, Gasser E.; Youssef, M. Elsayed; Ali, Mohamed A.; Mohamed, Zahraa E.; Shehata, Ali I.

    2016-11-01

    Different models are introduced to predict the daily global solar radiation in different locations but there is no specific model based on the day of the year is proposed for many locations around the world. In this study, more than 20 years of measured data for daily global solar radiation on a horizontal surface are used to develop and validate seven models to estimate the daily global solar radiation by day of the year for ten cities around Egypt as a case study. Moreover, the generalization capability for the best models is examined all over the country. The regression analysis is employed to calculate the coefficients of different suggested models. The statistical indicators namely, RMSE, MABE, MAPE, r and R2 are calculated to evaluate the performance of the developed models. Based on the validation with the available data, the results show that the hybrid sine and cosine wave model and 4th order polynomial model have the best performance among other suggested models. Consequently, these two models coupled with suitable coefficients can be used for estimating the daily global solar radiation on a horizontal surface for each city, and also for all the locations around the studied region. It is believed that the established models in this work are applicable and significant for quick estimation for the average daily global solar radiation on a horizontal surface with higher accuracy. The values of global solar radiation generated by this approach can be utilized in the design and estimation of the performance of different solar applications.

  13. Solar radiation durability framework applied to acrylic solar mirrors

    Science.gov (United States)

    Murray, Myles P.; Gordon, Devin; Brown, Scott A.; Lin, Wei-Chun; Shell, Kara A.; Schuetz, Mark A.; Fowler, Sean; Elman, Jim; French, Roger H.

    2011-09-01

    Mirror augmented photovoltaic (MAPV) systems utilize low cost mirrors to couple more light into a photovoltaic (PV) absorber. By increasing the light absorbed, they are expected to produce less expensive electricity. As a substrate candidate for back surface reflector mirrors, two grades of PMMA have been exposed to UV stress from two sources at two intensities for two doses in an effort to see the response of materials under different states of stress and after exposure to different amounts of total stress. By developing a framework for correlating stresses, such as short wave ultraviolet radiation, with responses, such as induced absorbance and yellowing, mirror durability we have made progress in developing lifetime and degradation science using mirror durability as a case study. All of the samples showed similarities in their degradation characteristics. The UV stress acceleration factor was quantized as 10.2 in short wave ultraviolet irradiance, and 15.8 in total shortwave UV dose. The effects of UV absorbers in protecting the polymer from degradation are discussed. Further study into degradation mechanisms will elucidate the exact phenomena that contribute to these material responses to stress.

  14. Automated Radiation Measurements for Aviation Safety (ARMAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Commercial aircrew members and frequent flyers face radiation hazards from the effects of cosmic rays and solar energetic particles. During significant solar events,...

  15. Electron Radiation Effects on Candidate Solar Sail Material

    Science.gov (United States)

    Edwards, David L.; Hollerman, William A.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this propulsion method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the irradiation of candidate solar sail materials to energetic electrons, in vacuum, to determine the hardness of several candidate sail materials.

  16. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  17. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    Energy Technology Data Exchange (ETDEWEB)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  18. Carotenoids and protection against solar UV radiation.

    Science.gov (United States)

    Stahl, Wilhelm; Sies, Helmut

    2002-01-01

    Upon exposure to UV light photooxidative reactions are initiated which are damaging to biomolecules and affect the integrity of cells and tissues. Photooxidative damage plays a role in pathological processes and is involved in the development of disorders affecting the skin. When skin is exposed to UV light, erythema is observed as an initial reaction. Carotenoids like beta-carotene or lycopene are efficient antioxidants scavenging singlet molecular oxygen and peroxyl radicals generated in during photooxidation. When beta-carotene was applied as such or in combination with alpha-tocopherol for 12 weeks, erythema formation induced with a solar light simulator was diminished from week 8 on. Similar effects were also achieved with a diet rich in lycopene. Ingestion of tomato paste corresponding to a dose of 16 mg lycopene/ day over 10 weeks led to increases in serum levels of lycopene and total carotenoids in skin. At week 10, erythema formation was significantly lower in the group that ingested the tomato paste as compared to the control group. No significant difference was found at week 4 of treatment. Thus, protection against UV light-induced erythema can be achieved by ingestion of a commonly consumed dietary source of lycopene. Such protective effects of carotenoids were also demonstrated in cell culture. The in-vitro data indicate that there is an optimal level of protection for each carotenoid. Copyright 2002 S. Karger AG, Basel

  19. Radiative Diagnostics in the Solar Photosphere and Chromosphere

    Science.gov (United States)

    de la Cruz Rodríguez, J.; van Noort, M.

    2017-09-01

    Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying and modeling polarized light from the target star. In this review we present an overview of techniques that are used to study the atmosphere of the Sun, and particularly those that allow to infer magnetic fields. We have combined a small selection of theory on polarized radiative transfer, inversion techniques and we discuss a number of results from chromospheric inversions.

  20. Effects of solar radiation torque on satellite spin and attitude

    Science.gov (United States)

    Zanardi, Maria Cecilia; Vilhena de Moraes, Rodolpho

    An analytical solution for the system of equations describing the rotational motion of an artificial satellite under the influence of the direct solar radiation pressure is presented. Here is considered a satellite of cylinder circular shape and the method to obtain the analytical solution is the Lagrange's method of the variation of parameters. Andoyer's vaiables are used to describe the rotational motion. The analytical solution obtained shows that, due to solar radiation, all the Andoyer's angular variables have secular and periodical variations but, the modulus of the rotational angular momentum and its projection on the z-axis of the system of principal axis of inertia vary periodically only. In order to validate the range of the analytical solution, Burlirsch-Stoer's method is used to perform a numerical integration of the system of equations of motion. Considering a hypothetical satellite, a numerical application is exhibited.

  1. Solar radiation and out-of-hospital cardiac arrest in Japan.

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2017-11-01

    Although several studies have estimated the effects of temperature on mortality and morbidity, little is known regarding the burden of out-of-hospital cardiac arrest (OHCA) attributable to solar radiation. We obtained data for all cases of OHCA and meteorological data reported between 2011 and 2014 in 3 Japanese prefectures: Hokkaido, Ibaraki, and Fukuoka. We first examined the relationship between daily solar radiation and OHCA risk for each prefecture using time-varying distributed lag non-linear models and then pooled the results in a multivariate random-effects meta-analysis. The attributable fractions of OHCA were calculated for low and high solar radiation, defined as solar radiation below and above the minimum morbidity solar radiation, respectively. The minimum morbidity solar radiation was defined as the specific solar radiation associated with the lowest morbidity risk. A total of 49,892 cases of OHCA occurred during the study period. The minimum morbidity solar radiation for each prefecture was the 100th percentile (72.5 MJ/m 2 ) in Hokkaido, the 83rd percentile (59.7 MJ/m 2 ) in Ibaraki, and the 70th percentile (53.8 MJ/m 2 ) in Fukuoka. Overall, 20.00% (95% empirical confidence interval [eCI]: 10.97-27.04) of the OHCA cases were attributable to daily solar radiation. The attributable fraction for low solar radiation was 19.50% (95% eCI: 10.00-26.92), whereas that for high solar radiation was 0.50% (95% eCI: -0.07-1.01). Low solar radiation was associated with a substantial attributable risk for OHCA. Our findings suggest that public health efforts to reduce OHCA burden should consider the solar radiation level. Large prospective studies with longitudinal collection of individual data is required to more conclusively assess the impact of solar radiation on OHCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests

    OpenAIRE

    Sonohat, Gabriela; Balandier, Philippe; Ruchaud, Felix

    2004-01-01

    International audience; The amount of transmitted light in the understories of forest stands affects many variables such as biomass and diversity of the vegetation, tree regeneration and plant morphogenesis. Therefore, its prediction according to main tree or stand characteristics, without the need for difficult and costly light measurements, would be most useful for many different users and scientists. Transmitted global solar radiation was measured using tube solarimeters in the understorie...

  3. Focusing of 3C144 Source Radiation by the Solar Corona

    Science.gov (United States)

    Galanin, V. V.; Derevjagin, V. G.; Kravetz, R. O.

    The research of solar corona by the compact cosmic source radiation was made on URAN-4 radio telescope. In the period from June 6 to June 20 2012 the flow of Crab nebula was measured on the 20 MHz and 25 MHz frequencies. During the eclipse we observe the great increase of 3C144 flow, which is compare with the flow of 3C461 source. Data and results of measurement analysis is presented.

  4. Solar Radiation Data Base for Nigeria | Chineke | Discovery and ...

    African Journals Online (AJOL)

    Solar Radiation Data Base for Nigeria. T C Chineke, J I Aina, S S Jagtap. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/dai.v11i3.15556 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  5. Assessing surface solar radiation fluxes in CMIP5 model simulations

    Science.gov (United States)

    Loew, Alexander; Itkin, Mikhail; Andersson, Axel; Trentmann, Jörg; Fennig, Karsten; Schröder, Marc

    2014-05-01

    Sophisticated Earth System models (ESM) are an essential research tool for better understanding the global climate system and its interactions. They are indispensable tools for providing projections about potential evolutions of the Earth climate in the future. Given the complexity of these deterministic models, it is essential to have a solid knowledge of the uncertainties of the model results in difference aspects of the models. The present paper presents results from a comprehensive study analyzing the shortwave surface radiation fluxes. State-of-the-art globals datasets of surface radiation components (surface solar radiation flux, surface albedo, surface net radiation flux) are used to benchmark results from the recent Coupled Model Intercomparison Project (CMIP5) in a standardized manner at the regional to global scale. Different skill score metrices are compared. All CMIP5 models are ranked according to their performance skill scores. The uncertainties from current observational records compared to uncertainties in climate model simulations are also analyzed. The results indicate that there are still large uncertainties (inconsistencies) among the different existing global surface radiation dataset which lead to rather different (relative) model rankings. In other words, the rank of a model is not only determined by the skill of the model itself, but also largely by the choice of a benchmarking (reference) dataset. As the differences resulting from the choice of different observational datasets are larger than between different models, progress in surface radiation flux simulations of climate models might depend on further progress in achieving consistent observations of surface radiation fluxes from space.

  6. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  7. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  8. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  9. Investigation of transient cooling of an automobile cabin with a virtual manikin under solar radiation

    Directory of Open Access Journals (Sweden)

    Sevilgen Gökhan

    2013-01-01

    Full Text Available The aim of the paper is to present a three dimensional transient cooling analysis of an automobile cabin with a virtual manikin under solar radiation. In the numerical simulations the velocity and the temperature distributions in the automobile cabin as well as around the human body surfaces were computed during transient cooling period. The surface-to-surface radiation model was used for calculations of radiation heat transfer between the interior surfaces of the automobile cabin and a solar load model that can be used to calculate radiation effects from the sun's rays that enter from the glazing surfaces of the cabin was used for solar radiation effects. Inhomogeneous air flow and non-uniform temperature distributions were obtained in the automobile cabin and, especially in ten minutes of cooling period, high temperature gradients were computed and measured and high temperature values were obtained for the surfaces which were more affected from the sunlight. Validations of the numerical results were performed by comparing numerical data with the experimental data presented in this study. It is shown that the numerical results were good agreement with the experimental data.

  10. Introduction to the solar magnetic field measurements in China

    Science.gov (United States)

    Deng, Yuanyong

    2017-04-01

    The solar magnetic field measurement is always an enormous challenge to the solar community. We firstly overview the history of solar magnetic field measurement since last early century and analyze the difficulty and progress of pratical methods. Then we introduce an infrared system for the accurate measurement of solar magnetic field (AIMS) under development, which is supported by National Natural Science Foundation of China and also the current ongoing space & Ground based projects to measure the solar magnetic field in China.

  11. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  12. Characterization of candidate solar sail materials subjected to electron radiation

    Science.gov (United States)

    Edwards, David L.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.; Albarado, Tesia L.; Hollerman, William A.

    2003-09-01

    Solar sailing is a unique form of propulsion in which a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the light-weight film in the space environment and the distance to the Sun. Once considered difficult or impossible, solar sailing has left the realm of science fiction for the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra light-weight, and radiation-resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is concentrating research into the use of ultra light-weight materials for spacecraft propulsion. MSFC's Space Environmental Effects Team is actively characterizing candidate solar sail materials to evaluate thermo-optical and mechanical properties after exposure to space environmental effects. This paper describes irradiation of candidate materials with energetic electrons in vacuum to determine the hardness of several candidate sail materials. [Hardness is defined as the amount of electron fluence (electrons/area) required to cause the sail material to fail.] This paper describes the testing procedure and preliminary results of this investigation. Comparisons to approximate the engineering functional lifetimes of candidate sail materials will be shown.

  13. Effect of solar radiation on severity of soybean rust.

    Science.gov (United States)

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  14. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    Science.gov (United States)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  15. Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation.

    Science.gov (United States)

    Reina, Alejandro Cabrera; Martínez-Piernas, Ana B; Bertakis, Yannis; Brebou, Christina; Xekoukoulotakis, Nikolaos P; Agüera, Ana; Sánchez Pérez, José Antonio

    2018-01-01

    This paper deals with the photochemical fate of two representative carbapenem antibiotics, namely imipenem and meropenem, in aqueous solutions under solar radiation. The analytical method employed for the determination of the target compounds in various aqueous matrices, such as ultrapure water, municipal wastewater treatment plant effluents, and river water, at environmentally relevant concentrations, was liquid chromatography coupled with hybrid triple quadrupole-linear ion trap-mass spectrometry. The absorption spectra of both compounds were measured in aqueous solutions at pH values from 6 to 8, and both compounds showed a rather strong absorption band centered at about 300 nm, while their molar absorption coefficient was in the order from 9 × 10 3 -10 4  L mol -1  cm -1 . The kinetics of the photochemical degradation of the target compounds was studied in aqueous solutions under natural solar radiation in a solar reactor with compound parabolic collectors. It was found that the photochemical degradation of both compounds at environmentally relevant concentrations follows first order kinetics and the quantum yield was in the order of 10 -3  mol einsten -1 . Several parameters were studied, such as solution pH, the presence of nitrate ions and humic acids, and the effect of water matrix. In all cases, it was found that the presence of various organic and inorganic constituents in the aqueous matrices do not contribute significantly, either positively or negatively, to the photochemical degradation of both compounds under natural solar radiation. In a final set of photolysis experiments, the effect of the level of irradiance was studied under simulated solar radiation and it was found that the quantum yield for the direct photodegradation of both compounds remained practically constant by changing the incident solar irradiance from 28 to 50 W m -2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solar radiation as a forest management tool: a primer of principles and application

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  17. The effects of solar radiation on plant growth

    Science.gov (United States)

    Agard, Joslyn

    1995-01-01

    This phase of this continuing project was completed in April, 1994, using Dahlgren #855 hybrid sunflower seeds and Park Seeds #0950 non-hybrid sunflower seeds in both the control groups and the tests groups. The control groups (1, 2, 3, 4, 5, and 6) were grown under normal, un-radiated, conditions. The tests groups (1a, 2a, 3a, 4a, 5a, and 6a) were grown onboard the Space Shuttle Discovery on the STS-60 flight in February 1994. All data from this experiment (both control and test groups) will be taken and recorded in a data log and compared against each other to determine the radiation effects of solar radiation on plant germination and growth.

  18. Drift in interference filters. II - Radiation effects. [for solar instrumentation

    Science.gov (United States)

    Title, A. M.

    1974-01-01

    Studies of peak transmission drift in narrow-band interference filters have shown that there exist two mechanisms that cause drift toward shorter wavelengths. One is dependent on the thermal history of the filter and is discussed in Part 1 of this paper. The other is dependent on the exposure of the filter to radiation. For ZnS-cryolite filters of particular design, it is experimentally demonstrated that the filters are most sensitive to radiation in a 100-A band centered at approximately 3900 A. The drift rate in the focal plane of an f/20 solar image is approximately 3 A/100 hr of exposure. Further, it is also shown by model calculations that the observed radiation-induced drift is consistent with the hypothesis that the optical thickness of ZnS decreases in proportion to the radiant energy absorbed.

  19. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    Science.gov (United States)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  20. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano

    Science.gov (United States)

    Hernández, Klaudia L.; Yannicelli, Beatriz; Olsen, Lasse M.; Dorador, Cristina; Menschel, Eduardo J.; Molina, Verónica; Remonsellez, Francisco; Hengst, Martha B.; Jeffrey, Wade H.

    2016-01-01

    In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m-2 s-1, 72 W m-2 and 12 W m-2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO43- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis

  1. Microbial activity response to solar radiation across contrasting environmental conditions in Salar de Huasco, Northern Chilean Altiplano

    Directory of Open Access Journals (Sweden)

    Klaudia Liliana Hernández

    2016-11-01

    Full Text Available In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (3H-leucine incorporation, BSP response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: a source stations, with recently emerged groundwater (no-previous solar exposure; b stream running water stations; c stations connected to source waters but far downstream from source points; and d isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 µE m-2 s-1, 72 W m-2 and 12 Wm-2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by PCA analyses (near to groundwater sources and isolated systems where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates and bacteria plus higher salinities and PO43- concentrations. BSP short-term response (4 h to solar radiation was measured by 3H-Leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g. isolated ponds had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure hypothesis where the more

  2. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano.

    Science.gov (United States)

    Hernández, Klaudia L; Yannicelli, Beatriz; Olsen, Lasse M; Dorador, Cristina; Menschel, Eduardo J; Molina, Verónica; Remonsellez, Francisco; Hengst, Martha B; Jeffrey, Wade H

    2016-01-01

    In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3 H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m -2 s -1 , 72 W m -2 and 12 W m -2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO 4 3- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3 H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure

  3. Analysis and adaptation of a mathematical model for the prediction of solar radiation; Analisis y adaptacion de un modelo matematico de prediccion de radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, Lorenzo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    There is an abundant, reliable, free, source of energy whose use can be planned and besides, practicably inexhaustible: the solar energy. In Mexico it constitutes an important resource, because of its geographical position; for this reason it is fundamental to know it well, either by means of measurements conducted for several years or by mathematical models. These last ones predict with meteorological variables, the values of the solar radiation with acceptable precision. At the Instituto de Investigaciones Electricas (IIE) a model is studied for the prediction of the solar radiation to be adapted to the local conditions of Mexico. It is used in simulation studies of the solar plants functioning and other solar systems. [Espanol] Existe una fuente de energia abundante, confiable, gratuita, cuyo uso puede planearse y, ademas, es practicamente inagotable: la solar. En Mexico constituye un recurso importante, por la posicion geografica del pais; por eso es fundamental conocerlo bien, ya mediante mediciones realizadas durante algunos anos, ya mediante modelos matematicos. Estos ultimos predicen, con datos de variables meteorologicas, los valores de la radiacion solar con precision aceptable. En el Instituto de Investigaciones Electricas (IIE) se estudia un modelo de prediccion de radiacion solar para adaptarlo a las condiciones locales de Mexico. Se usa en estudios de simulacion del funcionamiento de plantas helioelectricas y otros sistemas solares.

  4. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  5. Human projected area factors for detailed direct and diffuse solar radiation analysis

    DEFF Research Database (Denmark)

    Kubaha, K.; Fiala, D.; Toftum, Jørn

    2004-01-01

    Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...

  6. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  7. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  8. Assessment of the radiation tolerance of LaBr3 : Ce scintillators to solar proton events

    NARCIS (Netherlands)

    Owens, A.; Bos, A.J.J.; Brandenburg, S.; Buis, E.-J.; Dathy, C.; Dorenbos, P.; van Eijk, C.W.E.; Kraft, S.; Ostendorf, R.W.; Ouspenski, V.; Quarati, F.

    2007-01-01

    Radiation effects caused by solar proton events will be a common problem for many types of sensors on missions to the inner solar system because of the long cruise phases coupled with the inverse square scaling of solar particle events. In support of the BepiColombo and Solar Orbiter missions we

  9. Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems

    Directory of Open Access Journals (Sweden)

    Hussein Al-Taani

    2018-02-01

    Full Text Available Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect.

  10. Solar Spectrum Prediction and Comparison With Measurements

    Science.gov (United States)

    Norton, Matthew; Dobbin, Alison; Georghiou, George E.

    2011-12-01

    Concentrator photovoltaic systems that use multijunction cells can suffer from suboptimal performance due to changes in the solar spectrum. Performance improvements may be achieved through tailoring the spectral response of cells to a given location. Reliable spectral data for the site of installation is required for this and is often unavailable or costly to obtain. Measurements of the solar spectrum have been taken at the University of Cyprus, alongside detailed environmental parameters. Simulations of the spectrum in the same location have been performed using the SMARTS program and a variety of different environmental data sets. The output of the model has been compared with the real data over the same time period using the metrics of direct normal irradiance (DNI) and average photon energy (APE). Good agreement has been found between the modeled and the measured data. Seasonality is observable in both the measured and simulated APE values, and ambient temperature is found to be a reasonable indicator of this variation.

  11. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat.

    Science.gov (United States)

    Otani, Hidenori; Goto, Takayuki; Goto, Heita; Shirato, Minayuki

    2017-01-01

    High solar radiation has been recognised as a contributing factor to exertional heat-related illness in individuals exercising outdoors in the heat. Although solar radiation intensity has been known to have similar time-of-day variation as body temperature, the relationship between fluctuations in solar radiation associated with diurnal change in the angle of sunlight and thermoregulatory responses in individuals exercising outdoors in a hot environment remains largely unknown. The present study therefore investigated the time-of-day effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during moderate-intensity outdoor exercise in the heat of summer. Eight healthy, high school baseball players, heat-acclimatised male volunteers completed a 3-h outdoor baseball trainings under the clear sky in the heat. The trainings were commenced at 0900 h in AM trial and at 1600 h in PM trial each on a separate day. Solar radiation and solar elevation angle during exercise continued to increase in AM (672-1107 W/m 2 and 44-69°) and decrease in PM (717-0 W/m 2 and 34-0°) and were higher on AM than on PM (both P  0.05). Tympanic temperature measured by an infrared tympanic thermometer and mean skin temperature were higher in AM than PM at 120 and 180 min (P  0.05). The current study demonstrates a greater thermoregulatory strain in the morning than in the afternoon resulting from a higher body temperature and heart rate in relation to an increase in environmental heat stress with rising solar radiation and solar elevation angle during moderate-intensity outdoor exercise in the heat. This response is associated with a lesser net heat loss at the skin and a greater body heat gain from the sun in the morning compared with the afternoon.

  12. Southern Great Plains Atmospheric Radiation Measurement Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  13. A Proposal for a Thesaurus for Web Services in Solar Radiation

    Science.gov (United States)

    Gschwind, Benoit; Menard, Lionel; Ranchin, Thierry; Wald, Lucien; Stackhouse, Paul W., Jr.

    2007-01-01

    Metadata are necessary to discover, describe and exchange any type of information, resource and service at a large scale. A significant amount of effort has been made in the field of geography and environment to establish standards. Efforts still remain to address more specific domains such as renewable energies. This communication focuses on solar energy and more specifically on aspects in solar radiation that relate to geography and meteorology. A thesaurus in solar radiation is proposed for the keys elements in solar radiation namely time, space and radiation types. The importance of time-series in solar radiation is outlined and attributes of the key elements are discussed. An XML schema for encoding metadata is proposed. The exploitation of such a schema in web services is discussed. This proposal is a first attempt at establishing a thesaurus for describing data and applications in solar radiation.

  14. Characteristics of solar radiation photovoltaic pyranometers licor 200SZ and matrix 1G

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajinder

    2012-07-01

    The measurement of solar radiation is required in the various fields of research, including agriculture, astrophysics, biology, forestry, meteorology, building construction and energy assessment. In order to measure the radiation, various types of instruments are used. Pyranometers are applied to measure the global, direct or diffuse radiation. Depending on the type of their sensors, they are classified as thermal or photovoltaic pyranometers. In the present work, the characteristics of three instruments - the CM11 - Kipp and Zonen, Licor 200SZ and Matrix 1G - are studied in detail. The results show that by applying cosine, air mass and clear sky index corrections, the cheaper PV pyranometers can yield comparable results to the expensive thermal pyranometers. The results are much more convincing under clear sky conditions than under overcast conditions.

  15. Preface: Solar energetic particles, solar modulation and space radiation: New opportunities in the AMS-02 Era

    Science.gov (United States)

    Bindi, Veronica

    2017-08-01

    Solar Energetic Particle (SEP) acceleration at high energies and their propagation through the heliosphere and into the magnetosphere are not well understood and are still a matter of debate. Our understanding of solar modulation and transport of different species of galactic cosmic rays (GCR) inside the heliosphere has been significantly improved; however, a lot of work still needs to be done. GCR and SEPs pose a significant radiation risk for people and technology in space, and thus it is becoming increasingly important to understand the space radiation environment. AMS-02 will provide brand new information with unprecedented statistics about GCR and SEPs. Both GCR and heliophysics experiments will contribute to the increased understanding of acceleration physics, and transport of particles in space with improved models. This will inevitably lead to better predictions of space weather and safer operations in space.

  16. Solar Extreme UV radiation and quark nugget dark matter model

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  17. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Directory of Open Access Journals (Sweden)

    Pedro M. Ferreira

    2012-11-01

    Full Text Available Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are importantfor different areas of applications, such as agriculture, renewable energy and energymanagement, or thermal comfort in buildings. For this reason, an intelligent, light-weightand portable sensor was developed, using artificial neural network models as the time-seriespredictor mechanisms. These have been identified with the aid of a procedure based on themulti-objective genetic algorithm. As cloudiness is the most significant factor affecting thesolar radiation reaching a particular location on the Earth surface, it has great impact on theperformance of predictive solar radiation models for that location. This work also representsone step towards the improvement of such models by using ground-to-sky hemisphericalcolour digital images as a means to estimate cloudiness by the fraction of visible skycorresponding to clouds and to clear sky. The implementation of predictive models inthe prototype has been validated and the system is able to function reliably, providingmeasurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  19. Assessment on Time-Varying Thermal Loading of Engineering Structures Based on a New Solar Radiation Model

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2014-01-01

    Full Text Available This paper aims to carry out the condition assessment on solar radiation model and thermal loading of bridges. A modification factor is developed to change the distribution of solar intensities during a whole day. In addition, a new solar radiation model for civil engineering structures is proposed to consider the shelter effects induced by cloud, mountains, and surrounding structures. The heat transfer analysis of bridge components is conducted to calculate the temperature distributions based on the proposed new solar radiation model. By assuming that the temperature along the bridge longitudinal direction is constant, one typical bridge segment is specially studied. Fine finite element models of deck plates and corrugate sheets are constructed to examine the temperature distributions and thermal loading of bridge components. The feasibility and validity of the proposed solar radiation model are investigated through detailed numerical simulation and parametric study. The numerical results are compared with the field measurement data obtained from the long-term monitoring system of the bridge and they shows a very good agreement in terms of temperature distribution in different time instants and in different seasons. The real application verifies effectiveness and validity of the proposed solar radiation and heat transfer analysis.

  20. Studies of the Solar Radiations' Influence About Geomembranes Used in Ecological Landfill

    Science.gov (United States)

    Vasiluta, Petre; Cofaru, Ileana Ioana; Cofaru, Nicolae Florin; Popa, Dragos Laurentiu

    2017-12-01

    The study shown in this paper presents the behavior of geomembranes used at the ecological landfills. The influences of the solar radiations has a great importance regarding the correct mounting of the geomembranes. The mathematical model developed for the determination anytime and anywhere in the world for the next values and parameters: apparent solar time, solar declination, solar altitude, solar azimuth and incidence angle, zone angle, angle of sun elevation, solar declination, solar constant, solar flux density, diffuse solar radiation, global radiation, soil albedo, total radiant flux density and relational links of these values. The results of this model was used for creations an AutoCAD subroutines useful for choosing the correct time for correct mounting anywhere of the geomembranes

  1. Solar radiation concentrators paired with multijunction photoelectric converters in ground-based solar power plants (Part II)

    Science.gov (United States)

    Ionova, E. A.; Ulanov, M. V.; Davidyuk, N. Yu.; Sadchikov, N. A.

    2017-04-01

    The present work is devoted to determining the conditions of the joint operation of photoelectric converter-solar concentrator pairs, which are used in solar power plants with concentrators. Three-cascade photoconverters based on A3B5 materials with different distributions of solar radiation in spectral ranges are studied. Concentrators of solar radiation are designed as the Fresnel lenses with silicon-on-glass structure. Refractive lens profile fabricated on the basis of Wacker RT604 silicone rubber is characterized by significant changes in refractive index with temperature. The effect of geometric parameters of the Fresnel lenses and their operating temperature on characteristics of solar radiation concentration in specified spectral intervals have been examined. The parameters of concentrators being paired with a photoelectric converter, which may ensure the efficient functioning of the solar power plant, have been calculated.

  2. Traceability of solar UV measurements using the Qasume reference spectroradiometer.

    Science.gov (United States)

    Hülsen, Gregor; Gröbner, Julian; Nevas, Saulius; Sperfeld, Peter; Egli, Luca; Porrovecchio, Geiland; Smid, Marek

    2016-09-10

    One major objective of the European Joint Research Project "Traceability for surface spectral solar ultraviolet (UV) radiation" was to reduce the uncertainty of spectral UV measurements. The measurement instrument used for this work was the portable UV European reference spectroradiometer Qasume. The calibration uncertainty of this instrument was decreased and validated by a comparison of direct calibrations against a primary standard for spectral irradiance, a high temperature blackbody radiator, and against a reference detector using a spectrally tunable laser as a monochromatic source. The spectral irradiance responsivity of the reference detector is traceable to the primary standard of optical power, realized through a cryogenic radiometer, and to the SI unit of meter. The measuring technique was improved by the construction of a new reference spectroradiometer, QasumeII. An improved input optics removes the dependences of the measured solar irradiance on the angle of incident for solar zenith angle smaller than 75 deg. Moreover, a hybrid photon detection system enables continuous tracking of the instrument's responsivity changes. For both spectroradiometer systems an uncertainty budget was calculated. The improvements have reduced the measurement uncertainties of solar spectral UV irradiance measurements from 4.8% in 2005 to 2.0% (k=2) in the spectral region above 310 nm. The largest sources of uncertainty were the absolute spectral irradiance responsivity calibration, the angular response uncertainty, and the instrument stability using the hybrid detector, which were reduced from 3.6% to 1.1%, from 1.2% to 0.6%, and from 0.65% to 0.4%, with respect to the situation prior to the project. The new instrument was validated during a four month intercomparison relative to the Qasume reference. The mean ratio of the solar irradiance scans between the two reference spectroradiometers has an offset of +0.7% and a standard deviation of ±1.5% for a wavelength greater

  3. Monthly and yearly maps of daily average global solar radiation of the Madeira archipelago (Portugal), obtained from Meteosat images and six meteorological stations

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Izquierdo, P.; Santos, J.M.; Prado, M.T. [Solar Energy Lab, Univ. of Vigo, ETSI Industriales, Vigo (Spain); Magro, C. [Lab. Regional de Engenharia Civil, Governo Regional da Madeira, Sao Martinho, Funchal (Portugal)

    2008-07-01

    In this paper, the Atlas of Global Solar Radiation of the Madeira Archipelago (Portugal) is presented. In a first approach, horizontal global solar irradiances at ground level are obtained applying the Heliosat-2 method to earth images taken by the Meteosat-6 satellite. These values are then integrated and averaged to obtain the ''first approach'' monthly average daily global solar radiation values in each pixel of the image. These results are, in turn, calibrated (normalized) with data of solar radiation measured in six meteorological stations in the region. Both data base are from the period January 2002-December 2005. Twelve monthly tables of daily average global solar radiation in each pixel of the image included in the study are obtained and yearly values are calculated from them. The thirteen tables are taken to the ArcGIS application to obtain yearly and monthly radiation maps for the region. (orig.)

  4. Determination of incoming solar radiation in major tree species in Turkey.

    Science.gov (United States)

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p solar radiation values of sites and light requirements of forest trees ranked similarly.

  5. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    Science.gov (United States)

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  6. Impact of Solar Radiation on Gene Expression in Bacteria

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    2013-07-01

    Full Text Available Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another.

  7. Solar UV Radiation and the Origin of Life On Earth

    Science.gov (United States)

    Heap, S. R.; Lanz, T.; Hubeny, I.; Gaidos, E.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield and energy source for life. Here, we give a progress report on the first phase of this program to establish the UV radiation from the early Sun. We have obtained ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun We are making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. Once validated, these models will allow us to extrapolate our theoretical spectra to other metallicities and to unobserved spectral regions.

  8. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  9. Nighttime radiative cooling potential of unglazed and PV/T solar collectors: parametric and experimental analyses

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Olesen, Bjarne W.

    2015-01-01

    Nighttime radiative cooling technology has been studied both by means of simulations and experiments, to evaluate its potential and to validate the existing theoretical models used to describe it. Photovoltaic/thermal panels (PV/T) and unglazed solar collectors have been chosen as case studies....... The obtained values showed a good agreement with the ones found in the literature about solar panels or other kinds of heat sinks used for radiative cooling applications. The panels provided a cooling performance per night ranging between 0.2 and 0.9 kWh/m2 of panel. The COP values (defined as the ratio....... An experimental setup has been constructed and tested during summer of 2014, at the Technical University of Denmark. The cooling performance (heat loss) has been measured simultaneously for both types of panels, installed side-by-side. The experimental results have been compared with the results from a commercial...

  10. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depth can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.

  11. Baseline Surface Radiation Network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station

    Science.gov (United States)

    Zo, Il-Sung; Jee, Joon-Bum; Kim, Bu-Yo; Lee, Kyu-Tae

    2017-02-01

    Gangneung-Wonju National University (GWNU) radiation station has been collecting data on global, direct, and diffuse solar radiation since 2011. We conducted a quality control (QC) assessment of GWNU data collected between 2012 and 2014, using procedures outlined by the Baseline Surface Radiation Network (BSRN). The QC process involved the comparison of observations, the correction of observational equipment, the examination of physically possible limits, and the comparative testing of observations and model calculations. Furthermore, we performed a shading check of the observational environment around the GWNU solar station. For each solar radiation element (observed every minute), we performed a QC check and investigated any flagged problems. 98.31% of the data were classified as good quality, while the remaining 1.69% were flagged as bad quality based on the shading check and comparison tests. We then compared the good-quality data to the global solar radiation data observed at the Gangwon Regional Office of Meteorology (GROM). After performing this comparison, the determination coefficient (R2; 0.98) and standard deviation (SD; 0.92 MJ m-2) increased compared to those computed before the QC check (0.97 and 1.09 MJ m-2). Even considering the geographical differences and weather effects between the two stations, these results are statistically significant. However, we also confirmed that the quality of the GROM data deteriorated in relation to weather conditions because of poor maintenance. Hence, we conclude that good-quality observational data rely on the maintenance of both observational equipment and the surrounding environment under optimal conditions.

  12. Solar radiation and precipitable water modeling for Turkey using artificial neural networks

    Science.gov (United States)

    Şenkal, Ozan

    2015-08-01

    Artificial neural network (ANN) method was applied for modeling and prediction of mean precipitable water and solar radiation in a given location and given date (month), given altitude, temperature, pressure and humidity in Turkey (26-45ºE and 36-42ºN) during the period of 2000-2002. Resilient Propagation (RP) learning algorithms and logistic sigmoid transfer function were used in the network. To train the network, meteorological measurements taken by the Turkish State Meteorological Service (TSMS) and Wyoming University for the period from 2000 to 2002 from five stations distributed in Turkey were used as training data. Data from years (2000 and 2001) were used for training, while the year 2002 was used for testing and validating the model. The RP algorithm were first used for determination of the precipitable water and subsequently, computation of the solar radiation, in these stations Root Mean Square Error (RMSE) between the estimated and measured values for monthly mean daily sum for precipitable water and solar radiation values have been found as 0.0062 gr/cm2 and 0.0603 MJ/m2 (training cities), 0.5652 gr/cm2 and 3.2810 MJ/m2 (testing cities), respectively.

  13. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  14. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    Science.gov (United States)

    Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.

    2012-08-01

    For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 W m-2). Although a planetary cooling is found over most of the region, of up to -7 W m-2, large positive DRETOA values (up to +25 W m-2) are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 W m-2) and to decrease SSR (DREsurf = -16.5 W m-2 and DREnetsurf-13.5 W m-2) inducing thus significant atmospheric warming and surface

  15. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  16. [Solar ultraviolet radiation risk in outdoor workers: a specific project of Tuscany Region (Italy)].

    Science.gov (United States)

    Miligi, Lucia; Benvenuti, Alessandra; Legittimo, Patrizia; Badiali, Anna Maria; Cacciarini, Valentina; Chiarugi, Alessandra; Crocetti, Emanuele; Alberghini Maltoni, Simona; Pinto, Iole; Zipoli, Gaetano; Grifoni, Daniele; Carnevale, Francesco; Pimpinelli, Nicola; Cherubini Di Simplicio, Francesca; Poggiali, Sara; Sartorelli, Pietro; Sirna, Riccardo; Amati, Rodolfo; Centi, Letizia; Festa, Gianluca; Fiumalbi, Carla; Fedi, Aldo; Giglioli, Senio; Mancini, Rossana; Panzone, Tina; Petrioli, Giuseppe; Trombetti, Alessandra; Volpi, Daniela

    2013-01-01

    The aims of Tuscany Regional project were: to study the sun protection attitude of outdoor workers; to measure solar ultraviolet (UV) exposure in work environment; to describe the frequency of photoaging, precancerous lesions, and skin cancers in outdoor workers; to collect information on solar ultraviolet radiation exposure from incident cases of Non-Melanoma Skin Cancer (NMSC) recruited from Tuscany Cancer Registry. Outdoor workers completed a questionnaire devoted to collect information on sun protection attitudes during a typical summer working week. Environmental and personal measurements were carried out. Expert dermatologists examined outdoor workers to assess the frequency of photoaging, precancerous lesions, and skin cancer. A structured questionnaire was mailed to incident cases of NMSC. Information were collected on personal habits and working history, focusing on solar ultraviolet radiation exposure. Agriculture, construction, quarrying and fishing activities were considered: 292 employees responded to questions about the type of clothing used in the morning and in the afternoon,while working outdoors; 637 outdoor workers underwent skin examination. We contacted 743 cases of NMSC occurred in 2004; 498 subjects accepted to participate in this study. The clothing worn by surveyed subjects was often inadequate compared to the high level of exposure to UV. The skin examination of 637 outdoor workers highlighted 2 melanomas, 7 epitheliomas and 35 actinic keratoses. Among the 498 cases of NMSC, 135 (27%) were diagnosed in outdoor workers. Most represented economic activity sectors were: agriculture, construction, transport, sports. The characterization of outside workers revealed unsatisfactory sun protection behaviours. Moreover, previously undetected skin cancers were diagnosed. The study on MNSC confirms the complexity of studying the exposure to UV radiation. The Tuscany Regional project provided useful information on the risk of solar ultraviolet

  17. Development of a gridded surface solar radiation dataset from the Global Energy Balance Archive

    Science.gov (United States)

    Arabini, E.; Chiacchio, M.; Wild, M.

    2010-09-01

    The need for a gridded solar radiation dataset from surface observations is important for the study of long-term changes in the surface shortwave downward component of the radiation budget as well as for the assessment of modeled and satellite derived data of this radiative parameter. This will be accomplished by applying spatial statistical techniques, such as kriging and inverse distance to interpolate irregularly distributed solar radiation station data over Europe from the Global Energy Balance Archive (GEBA) onto regular grids of different spatial resolutions. The GEBA database is currently maintained at the Institute for Atmospheric and Climate Science ETH in Zurich, Switzerland and has been updated to 2007. Quality controlled procedures have been applied to this dataset with a measurement random error of about 5% for the monthly mean. In order to reduce additional biases introduced from a lack of stations within a particular region, we combine it with other gridded datasets, such as those derived from reanalysis and satellite remote sensing. To evaluate the interpolated gridded dataset, we validate it separately for each interpolation method by comparing co-located boxes to the original station data from GEBA as well as to the Baseline Surface Radiation Network (BSRN). From this validation the usefulness of this gridded dataset will be assessed as well as its applicability for climate research.

  18. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  19. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  20. Engineering imaginaries: Anticipatory foresight for solar radiation management governance.

    Science.gov (United States)

    Low, Sean

    2017-02-15

    Since solar radiation management (SRM) technologies do not yet exist and capacities to model their impacts are limited, proposals for its governance are implicitly designed not around realities, but possibilities - baskets of risk and benefit that are often components of future imaginaries. This paper reports on the project Solar Radiation Management: Foresight for Governance (SRM4G), which aimed to encourage an anticipatory mode of thinking about the future of an engineered climate. Leveraging the participation of 15 scholars and practitioners heavily engaged in early conversations on SRM governance, SRM4G applied scenario construction to generate a set of alternative futures leading to 2030, each exercising different influences on the need for - and challenges associated with - development of SRM technologies. The scenarios then provided the context for the design of systems of governance with the capacity and legitimacy to respond to those challenges, and for the evaluation of the advantages and drawbacks of different options against a wide range of imaginary but plausible futures. SRM4G sought to initiate a conversation within the SRM research community on the capacity of foresight approaches to highlight the centrality of conceptions of the future to discussions of SRM's threats and opportunities, and in doing so, examined and challenged the assumptions embedded in conceptualizing SRM's aims, development and governance, and discussed the capacity of governance options to adapt to a wide range of possibilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multiple spacecraft formation reconfiguration using solar radiation pressure

    Science.gov (United States)

    Shahid, Kamran; Kumar, Krishna Dev

    2014-10-01

    In this paper the use of solar radiation pressure for spacecraft formation reconfiguration at the L2 Sun-Earth/Moon collinear libration point is presented. The system consisting of a leader and three follower spacecraft is considered. The leader spacecraft is assumed to be in a fixed halo trajectory and the follower spacecraft position relative to the leader satellite is controlled using two angles and area; these are varied based on a variable structure model reference adaptive control technique to achieve the desired formation reconfiguration. This approach ensures that all follower spacecraft complete the required maneuver in the same time. An intertially fixed circular trajectory, which is suitable for interferometer missions, is used in this paper. The stability of the proposed controller is established using Lyapunov theory. The performance of the proposed controller is tested through numerical simulation of the governing nonlinear equations of motion and is applied for formation initialization, resizing, retargeting, and rotation. The numerical results demonstrate the effectiveness of the proposed control technique for spacecraft formation reconfiguration using solar radiation pressure at the L2 libration point. Furthermore, control inputs on the order of 15 degrees and 2 m2 for area change are sufficient to execute the maneuvers.

  2. Effects of increased solar ultraviolet radiation on materials.

    Science.gov (United States)

    Andrady, A L; Hamid, S H; Hu, X; Torikai, A

    1998-10-01

    Synthetic polymers such as plastics, as well as naturally occurring polymer materials such as wood, are extensively used in building construction and other outdoor applications where they are routinely exposed to sunlight. The UV-B content in sunlight is well known to affect adversely the mechanical properties of these materials, limiting their useful life. Presently their outdoor lifetimes depend on the use of photostabilizers in the case of plastics and on protective surface coatings in the case of wood. Any increase in the solar UV-B content due to a partial ozone depletion would therefore tend to decrease the outdoor service life of these materials. It is the synergistic effect of increased UV radiation with other factors such as the temperature that would determine the extent of such reduction in service life. The increased cost associated with such a change would be felt unevenly across the globe. Those developing countries that depend on plastics as a prime material of construction and experience high ambient temperatures are likely to be particularly affected in spite of the relatively small fractional decrease in ozone at those locations. Assessment of the damage to materials, associated with ozone depletion, requires a knowledge of the wavelength dependence as well as the dose-response characteristics of the polymer degradation processes of interest. While the recent literature includes some reliable spectral sensitivity data, little dose-response information has been reported, so it is difficult to make such assessments reliably at the present time. This is particularly true for the naturally occurring materials popularly used in construction applications. To maintain polymers at the same useful lifetime in spite of increased solar UV-B content, the amount of photostabilizers used in the formulations might be increased. This strategy assumes that conventional stabilizers will continue to be effective with the spectrally altered UV-B-enhanced solar

  3. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  4. A Technique for Mapping the Distribution of Diffuse Solar Radiation over the Sky Hemisphere.

    Science.gov (United States)

    McArthur, L. J. Bruce; Hay, John E.

    1981-04-01

    A technique to map the distribution of diffuse solar radiation over the sky hemisphere is described. The method is based on an analysis of all-sky, visible photographs and concurrent actinometric measurements of diffuse solar radiance. The photographs were digitized and the resulting relative density values correlated with directly measured radiances. The resulting relationship was then used to determine the radiance for each density value, enabling a map of diffuse solar radiation for the celestial dome to be constructed.The validity and utility of the approach are assessed by several tests. In the first test, the estimated radiances were integrated over the hemisphere and compared with measured diffuse irradiances for a horizontal surface. These were found to be within ±10% for the variety of sky conditions examined. A second test, under clear sky conditions, was performed to estimate the shortwave irradiance on several south-facing inclined surfaces. The results were found to be within ±5% of the measured irradiances. In a third test, comparisons with the normalized radiance distributions of Steven (1977) indicated good qualitative agreement.Finally, problems and deficiencies in the technique are reviewed and possible means of surmounting them are discussed.

  5. Phantoms for Radiation Measurements of Mobile Phones

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund

    2001-01-01

    Measurements of radiation efficiency for a handheld phone equipped with a patch and a helical antenna operated near the human user have been performed. Both measurements include a simple head plus hand phantom and live persons are considered. The position of the hand on the phone is found...

  6. Impacts of Solar Radiation Management on Surface Ozone

    Science.gov (United States)

    Xia, L.; Nowack, P. J.; Tilmes, S.; Robock, A.

    2016-12-01

    We investigate the impact of solar radiation management (SRM) on atmospheric O3. Using the chemistry-climate model CESM-CAM4-Chem, we compare surface O3 changes under simulations following the RCP6.0 scenario with two geoengineering scenarios in which either stratospheric aerosols (G4SSA) or a solar irradiance reduction (G4SSA-S) is used to achieve surface cooling. In the latter, the model's solar constant is reduced to attain the same negative radiative forcing at the top of the atmosphere as induced by the aerosols in G4SSA. Resulting surface O3 changes between the geoengineering scenarios and the RCP6.0 scenario strongly depend on the geoengineering method used. For example, global mean surface O3 changes under G4SSA and G4SSA-S show opposite signs; during the geoengineering period (2020-2069) global annual mean surface O3 concentrations under G4SSA significantly drops by 0.55 ppm relative to RCP6.0 as compared to an increase of 0.45 ppm under G4SSA-S. The surface O3 changes are consistent with tropospheric O3 budget changes. Compared with RCP6.0, stratosphere-troposphere exchange (STE) of O3 in G4SSA and G4SSA-S is reduced by 137 Tg/yr and 31 Tg/yr, respectively, whereas the net tropospheric chemical change (production minus loss of O3) is increased in the two scenarios by 127 Tg/yr and 38 Tg/yr. The larger reduction of STE under G4SSA is mainly due to increased stratospheric O3 depletion as a result of the injected sulfate aerosols. A key tropospheric chemistry player is lower specific humidity (by 5-20%) due to the cooling effect of SRM that affects both O3 loss and production. Less water vapor in remote areas results in less O3 chemical loss, with coupled reactions contributing 90% to the overall O3 chemical loss change. Comparing G4SSA and G4SSA-S directly, we find that changes in ultraviolet (UV) radiation fluxes into the troposphere are central to the surface O3 response. Stratospheric O3 depletion in G4SSA allows more UV radiation to penetrate into the

  7. On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure

    Science.gov (United States)

    Funase, Ryu; Shirasawa, Yoji; Mimasu, Yuya; Mori, Osamu; Tsuda, Yuichi; Saiki, Takanao; Kawaguchi, Jun'ichiro

    2011-12-01

    This paper introduces a new attitude control system for a solar sail, which leverages solar radiation pressure. This novel system achieves completely fuel-free and oscillation-free attitude control of a flexible spinning solar sail. This system consists of thin-film-type devices that electrically control their optical parameters such as reflectivity to generate an imbalance in the solar radiation pressure applied to the edge of the sail. By using these devices, minute and continuous control torque can be applied to the sail to realize very stable and fuel-free attitude control of the large and flexible membrane. The control system was implemented as an optional attitude control system for small solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). In-orbit attitude control experiments were conducted, and the performance of the controller was successfully verified in comparison with the ground-based analytical performance estimation.

  8. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  9. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    Science.gov (United States)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  10. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Science.gov (United States)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  11. A statistical study of solar type III bursts and auroral kilometric radiation onsets

    Science.gov (United States)

    Farrell, W. M.; Gurnett, D. A.

    1985-01-01

    Simultaneous occurrences of type III solar radio bursts and auroral kilometric radiation were observed by Calvert (1981) using ISEE 1 spectrograms. Calvert presented evidence suggesting that the incoming type III burst stimulates the onset of auroral kilometric radiation (AKR). This paper presents a statistical study of the correlation between type III bursts and auroral kilometric radiation. A superposed epoch analysis was performed on as many as 186 type III events. The type III bursts were detected by the ISEE 3 spacecraft on the sunward side of the earth. At the same time the IMP 8 spacecraft was used to detect onsets of kilometric radiation on the nightside of the earth. For each event the intensities measured by ISEE 3 (type III intensities) were subtracted from the intensities measured by IMP 8 (type III and possible AKR intensities). The resulting intensities for each event were then added to determine if kilometric radiation was preferentially observed following a type III burst. This analysis was performed at frequencies of 100, 178, and 500 kHz. The results of this study show that a statistically significant correlation exists between incoming type III bursts from the sun and kilometric radiation from the earth.

  12. Calibration and Evaluation of Different Estimation Models of Daily Solar Radiation in Seasonally and Annual Time Steps in Shiraz Region

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fooladmand

    2017-06-01

    Full Text Available Introduction: Solar radiation on the earth surface has a wide range of applications in hydrology, agriculture and meteorology. Solar radiation is an important parameter of estimated models of reference crop potential evapotranspiration such as the Penman–Monteith equation. Also, total sunshine hours are one of the most important factors affecting climate and environment, and its long-term variation is of much concern in climate studies. Reference crop potential evapotranspiration is one of the most important parts of water cycle in the nature but, direct measurement of this crop parameter is so difficult and not practical. Therefore, equations that can estimate the value of evapotranspiration only by using meteorological data are necessary. As mentioned before, the Penman–Monteith equation can be used for estimating reference crop potential evapotranspiration, however this equation needs solar radiation data, and the measurement of solar radiation is done in a limited numbers of weather stations in Iran, and also in Fars province, south of Iran. Since, the measurement of solar radiation is expensive, therefore many models have been derived for its estimation in different climates of the world., Many investigators also have been tried to estimate solar radiation for different locations of the world based on more simple measured weather data such as air temperature (minimum, maximum or mean and sunshine hours. Hence, the derived equations for estimating solar radiation based on other weather data can be used for estimating reference crop potential evapotranspiration with the Penman–Monteith equation. Materials and Methods: In this study, solar radiation was estimated in Shiraz, central part of the Fars province in south of Iran. For this purpose, the daily measured of solar radiation data in Shiraz synoptic station were used. Also, other needed weather data were used. All available data was for the years 2006 to 2010. Measured data of years

  13. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  14. Development and investigation of solar collectors for conversion of solar radiation into heat and/or electricity

    Directory of Open Access Journals (Sweden)

    Stefanović Velimir P.

    2006-01-01

    Full Text Available This article describes work on two projects of the National Energy Efficiency Program NEEP 709300036 and NPEE 271003 titled "The model of solar collector for middle temperature conversion of solar radiation in heat" and "Development and investigation on hybrid solar collector for heat and electricity generation", respectively. This first project deals with solar collector that transfers solar radiation in heat in area of middle temperature conversion (at temperatures above 100 ºC. During entire year it can realize significant saving of electric energy used for preparation of warm water and in central and district heating. During work on the second project, two hybrid solar collectors, their installation, mathematical model, software, and experimental set-up were designed and realized. The first collector had the photovoltaic panel located above the absorber and the second collector had the panel located on the absorber. For both collectors, the results show that efficiency of fossil fuel replacement is 85%. .

  15. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  16. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  17. Transmission components of solar radiation in pine stands in relation to climatic and stand variables

    Science.gov (United States)

    Robert A. Muller

    1971-01-01

    In a new approach, transmission was studied by relating to stand biomass the ratio of incoming solar radiation beneath tree crowns to that within the atmosphere. Several assumptions were used to estimate analytically the various ways in which solar radiation penetrates through crowns of three pine species in northern California. Sunflecks accounted for much of the...

  18. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    invariance: Iq(f) ~ f-?(q) , ?(q) is the scaling exponent. This allows to characterize the scaling behavior of a process: fractal or multifractal with intermittent properties. For q = 2, the Hilbert spectrum is defined. In this work, The data are collected at the University site of Guadeloupe, an island in the West Indies, located at 16°15 N latitude 60°30 W longitude. Our measurements sampled at 1 Hz were performed during one year period. The analyzed data present a power spectral density E(f) displaying a power law of the form E(f) ~ f-β with 1.6 ˜ β ˜ 2.2 for frequencies f ˜ 0.1 Hz, corresponding to time scales T × 10 s. Furthermore, global solar radiation data possesses multifractal properties. For comparison, other multifractal analysis techniques such as structure functions, MDFA, wavelet leaders are also used. This preliminary work set the basis for further investigation dedicated to simulate and forecast a sequence of solar energy fluctuation under different meteorological conditions, in the multifractal framework.

  19. SOLAR RADIATION ESTIMATION ON BUILDING ROOFS AND WEB-BASED SOLAR CADASTRE

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2012-07-01

    Full Text Available The aim of this study is the estimation of solar irradiance on building roofs in complex Alpine landscapes. Very high resolution geometric models of the building roofs are generated by means of advanced automated image matching methods. Models are combined with raster and vector data sources to estimate the incoming solar radiation hitting the roofs. The methodology takes into account for atmospheric effects, site latitude and elevation, slope and aspect of the terrain as well as the effects of shadows cast by surrounding buildings, chimneys, dormers, vegetation and terrain topography. An open source software solution has been developed and applied to a study area located in a mountainous site and containing some 1250 residential, commercial and industrial buildings. The method has been validated by data collected with a pyranometer and results made available through a prototype WebGIS platform.

  20. Solar Radiation Estimation on Building Roofs and Web-Based Solar Cadastre

    Science.gov (United States)

    Agugiaro, G.; Nex, F.; Remondino, F.; De Filippi, R.; Droghetti, S.; Furlanello, C.

    2012-07-01

    The aim of this study is the estimation of solar irradiance on building roofs in complex Alpine landscapes. Very high resolution geometric models of the building roofs are generated by means of advanced automated image matching methods. Models are combined with raster and vector data sources to estimate the incoming solar radiation hitting the roofs. The methodology takes into account for atmospheric effects, site latitude and elevation, slope and aspect of the terrain as well as the effects of shadows cast by surrounding buildings, chimneys, dormers, vegetation and terrain topography. An open source software solution has been developed and applied to a study area located in a mountainous site and containing some 1250 residential, commercial and industrial buildings. The method has been validated by data collected with a pyranometer and results made available through a prototype WebGIS platform.

  1. Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region

    Directory of Open Access Journals (Sweden)

    Mawloud GUERMOUI

    2016-07-01

    Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.

  2. Comparative Study of Gamma Radiation Effects on Solar Cells, Photodiodes, and Phototransistors

    Directory of Open Access Journals (Sweden)

    Dejan Nikolić

    2013-01-01

    Full Text Available This paper presents the behavior of various optoelectronic devices after gamma irradiation. A number of PIN photodiodes, phototransistors, and solar panels have been exposed to gamma irradiation. Several types of photodiodes and phototransistors were used in the experiment. I-V characteristics (current dependance on voltage of these devices have been measured before and after irradiation. The process of annealing has also been observed. A comparative analysis of measurement results has been performed in order to determine the reliability of optoelectronic devices in radiation environments.

  3. An assessment of radiation damage in space-based germanium detectors due to solar proton events

    NARCIS (Netherlands)

    Owens, Alan; Brandenburg, S.; Buis, E. -J.; Kliewiet, H.; Kraft, S.; Ostendorf, R. W.; Peacock, A.; Quarati, F.; Quirin, P.

    2007-01-01

    Radiation effects caused by solar proton events will be a common problem for many types of sensors on missions to the inner solar system because of the long cruise phases coupled with the inverse square scaling of solar particle events. As part of a study in support of the BepiColombo mission to

  4. Transmission and absorption of solar radiation by Arctic sea ice during the melt season

    Science.gov (United States)

    Light, Bonnie; Grenfell, Thomas C.; Perovich, Donald K.

    2008-03-01

    The partitioning of incident solar radiation between sea ice, ocean, and atmosphere strongly affects the Arctic energy balance during summer. In addition to spectral albedo of the ice surface, transmission of solar radiation through the ice is critical for assessing heat and mass balances of sea ice. Observations of spectral irradiance profiles within and transmittance through ice in the Beaufort Sea during the summer of 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA) are presented. Sites representative of melting multiyear and first-year ice, along with ponded ice were measured. Observed spectral irradiance extinction coefficients (Kλ) show broad minima near 500 nm and strong increases at near-infrared wavelengths. The median Kλ at 600 nm for the bare ice cases is close to 0.8 m-1 and about 0.6 m-1 for ponded ice. Values are considerably smaller than the previously accepted value of 1.5 m-1. Radiative transfer models were used to analyze the observations and obtain inherent optical properties of the ice. Derived scattering coefficients range from 500 m-1 to 1100 m-1 in the surface layer and 8 to 30 m-1 in the ice interior. While ponded ice is known to transmit a significant amount of shortwave radiation to the ocean, the irradiance transmitted through bare, melting ice is also shown to be significant. The findings of this study predict 3-10 times more solar radiation penetrating the ice cover than predicted by a current GCM (CCSM3) parameterization, depending on ice thickness, pond coverage, stage of the melt season, and specific vertical scattering coefficient profile.

  5. Radiation measurements aboard the fourth Gemini flight.

    Science.gov (United States)

    Janni, J F; Schneider, M F

    1967-01-01

    Two special tissue-equivalent ionization chambers and 5 highly sensitive passive dosimetry packages were flown aboard the recent Gemini 4 flight for the purpose of obtaining precise values of instantaneous dose rate, accumulated dose. and shielding effectiveness. This experiment marked the first time that well-defined tissue dose and radiation survey measurements have been carried out in manned spaceflight operations. Since all measurements were accomplished under normal spacecraft environmental conditions, the biological dose resulted primarily from trapped inner Van Allen Belt radiation encountered by the spacecraft in the South Atlantic Anomaly. The experiment determined the particle type, ionizing and penetrating power, and variation with time and position within the Gemini spacecraft. Measured dose rates ranged from 100 mrad/hr for passes penetrating deeply into the South Atlantic Anomaly to less than 0.1 mrad/hr from lower latitude cosmic radiation. The accumulated tissue dose measured by the active ionization chambers, shielded by 0.4 gm/cm2 for the 4-day mission, was 82 mrad. Since the 5 passive dosimetry packages were each located in different positions within the spacecraft, the total mission surface dose measured by these detectors varied from 73 to 27 mrad, depending upon location and shielding. The particles within the spacecraft were recorded in nuclear emulsion, which established that over 90% of the tissue dose was attributable to penetrating protons. This experiment indicates that the radiation environment under shielded conditions at Gemini altitudes was not hazardous.

  6. Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind.

    Science.gov (United States)

    Lugaz, Noé; Farrugia, Charles J; Huang, Chia-Lin; Winslow, Reka M; Spence, Harlan E; Schwadron, Nathan A

    2016-10-03

    The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.

  7. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil.

    Science.gov (United States)

    Silva, Abel A

    2016-06-01

    The total ozone column of 265 ± 11 Dobson Units in the tropical-equatorial zones and 283 ± 16 Dobson Units in the subtropics of Brazil are among the lowest on Earth, and as a result, the prevalence of skin cancer due to solar ultraviolet radiation is among the highest. Daily erythemal doses in Brazil can be over 7,500 J m. Erythemal dose rates on cloudless days of winter and summer are typically about 0.147 W m and 0.332 W m, respectively. However, radiation enhancement events yielded by clouds have been reported with erythemal dose rates of 0.486 W m. Daily doses of the diffuse component of erythemal radiation have been determined with values of 5,053 J m and diffuse erythemal dose rates of 0.312 W m. Unfortunately, Brazilians still behave in ways that lead to overexposure to the sun. The annual personal ultraviolet radiation ambient dose among Brazilian youths can be about 5.3%. Skin cancer in Brazil is prevalent, with annual rates of 31.6% (non-melanoma) and 1.0% (melanoma). Governmental and non-governmental initiatives have been taken to increase public awareness of photoprotection behaviors. Resolution #56 by the Agência Nacional de Vigilância Sanitária has banned tanning devices in Brazil. In addition, Projects of Law (PL), like PL 3730/2004, propose that the Sistema Único de Saúde should distribute sunscreen to members of the public, while PL 4027/2012 proposes that employers should provide outdoor workers with sunscreen during professional outdoor activities. Similar laws have already been passed in some municipalities. These are presented and discussed in this study.

  8. Sweat Rate Prediction Equations for Outdoor Exercise with Transient Solar Radiation

    Science.gov (United States)

    2012-01-01

    clothing, aerobic fitness, and progressive dehydration . J Therm Biol 22: 331–342, 1997. 25. Matthew WT, Santee WR, Berglund LG. Solar Load Inputs for...code) Sweat rate prediction equations for outdoor exercise with transient solar radiation Richard R. Gonzalez,1 Samuel N. Cheuvront,2 Brett R. Ely,2...Moran DS, Hadid A, Endrusick TL, Sawka MN. Sweat rate prediction equations for outdoor exercise with transient solar radiation. J Appl Phys- iol 112

  9. Evaluation of the cloudy sky solar UVA radiation exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J

    2014-09-05

    The influence of cloud on the solar UVA (320-400 nm) exposures over five minute periods on a horizontal plane has been investigated. The first approach used cloud modification factors that were evaluated using the influence of clouds on the global solar exposures (310-2800 nm) and a model developed to apply these to the clear sky UVA exposures to allow calculation of the five minute UVA exposures for any cloud conditions. The second approach established a relationship between the UVA and the global solar exposures. The models were developed using the first six months of data in 2012 for SZA less than or equal to 70° and were applied and evaluated for the exposures in the second half of 2012. This comparison of the modelled exposures for all cloud conditions to the measured data provided an R(2) of 0.8 for the cloud modification model, compared to an R(2) of 0.7 for the UVA/global model. The cloud modification model provided 73% of the five minute exposures within 20% of the measured UVA exposures. This was improved to 89% of the exposures within 20% of the measured UVA exposures for the cases of cloud with the sun not obscured. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Solar radiation pressure resonances in Low Earth Orbits

    Science.gov (United States)

    Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.

    2018-01-01

    The aim of this work is to highlight the crucial role that orbital resonances associated with solar radiation pressure can have in Low Earth Orbit. We review the corresponding literature, and provide an analytical tool to estimate the maximum eccentricity which can be achieved for well-defined initial conditions. We then compare the results obtained with the simplified model with the results obtained with a more comprehensive dynamical model. The analysis has important implications both from a theoretical point of view, because it shows that the role of some resonances was underestimated in the past, and also from a practical point of view in the perspective of passive deorbiting solutions for satellites at the end-of-life.

  11. Artificial and Natural Radioactivity Measurements and Radiation ...

    African Journals Online (AJOL)

    Artificial and Natural Radioactivity Measurements and Radiation Dose Assessment in the Vicinity of Ghana Nuclear Research Reactor-1 (GHARR-1) ... In the case of water samples, the average value was higher than the guidance level of 0.1 mSv y-1, as recommended by the European Union and the World ...

  12. Impact of Atmospheric Attenuations Time Resolutions in Solar Radiation Derived from Satellite Imagery

    Science.gov (United States)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    Accurate knowledge of solar irradiance components at the earth surface is of highly interest in many scientific and technology branches concerning meteorology, climate, agriculture and solar energy applications. In the specific case of solar energy systems the solar resource analysis with accuracy is a first step in every project since it is a required data for design, power output estimations, systems simulations and risk assessments. Solar radiation measurement availability is increasing both in spatial density and in historical archiving. However, it is still quite limited and most of the situations cannot make use of a long term ground database of high quality since solar irradiance is not generally measured where users need data. Satellite-derived solar radiation estimations are a powerful and valuable tool for solar resource assessment studies that have achieved a relatively high maturity due to years of developments and improvements. However, several sources of uncertainty are still present in satellite-derived methods. In particular, the strong influence of atmospheric attenuation information as input to the method is one of the main topics of improvement. Since solar radiation attenuation by atmospheric aerosols, and water vapor in a second place, is, after clouds, the second most important factor determining solar radiation, and particularly direct normal irradiance, the accurate knowledge of aerosol optical depth and water vapor content is relevant in the final output of satellite-derived methods. This present work, two different datasets we are used for extract atmospheric attenuation information. On the one hand the monthly mean values of the Linke turbidity factor from Meteotest database, which are twelve unique values of the Linke turbidity worldwide with a spatial resolution of 1/12º. On the other hand, daily values of AOD (Aerosol Optical Depth) at 550 nm, Angstrom alpha exponent and water vapor column were taken from a gridded database that

  13. Missing Data Imputation of Solar Radiation Data under Different Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Concepción Crespo Turrado

    2014-10-01

    Full Text Available Global solar broadband irradiance on a planar surface is measured at weather stations by pyranometers. In the case of the present research, solar radiation values from nine meteorological stations of the MeteoGalicia real-time observational network, captured and stored every ten minutes, are considered. In this kind of record, the lack of data and/or the presence of wrong values adversely affects any time series study. Consequently, when this occurs, a data imputation process must be performed in order to replace missing data with estimated values. This paper aims to evaluate the multivariate imputation of ten-minute scale data by means of the chained equations method (MICE. This method allows the network itself to impute the missing or wrong data of a solar radiation sensor, by using either all or just a group of the measurements of the remaining sensors. Very good results have been obtained with the MICE method in comparison with other methods employed in this field such as Inverse Distance Weighting (IDW and Multiple Linear Regression (MLR. The average RMSE value of the predictions for the MICE algorithm was 13.37% while that for the MLR it was 28.19%, and 31.68% for the IDW.

  14. Global real-time dose measurements using the Automated Radiation Measurements for Aerospace Safety (ARMAS) system

    Science.gov (United States)

    Tobiska, W. Kent; Bouwer, D.; Smart, D.; Shea, M.; Bailey, J.; Didkovsky, L.; Judge, K.; Garrett, H.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R.; Bell, D.; Mertens, C.; Xu, X.; Wiltberger, M.; Wiley, S.; Teets, E.; Jones, B.; Hong, S.; Yoon, K.

    2016-11-01

    The Automated Radiation Measurements for Aerospace Safety (ARMAS) program has successfully deployed a fleet of six instruments measuring the ambient radiation environment at commercial aircraft altitudes. ARMAS transmits real-time data to the ground and provides quality, tissue-relevant ambient dose equivalent rates with 5 min latency for dose rates on 213 flights up to 17.3 km (56,700 ft). We show five cases from different aircraft; the source particles are dominated by galactic cosmic rays but include particle fluxes for minor radiation periods and geomagnetically disturbed conditions. The measurements from 2013 to 2016 do not cover a period of time to quantify galactic cosmic rays' dependence on solar cycle variation and their effect on aviation radiation. However, we report on small radiation "clouds" in specific magnetic latitude regions and note that active geomagnetic, variable space weather conditions may sufficiently modify the magnetospheric magnetic field that can enhance the radiation environment, particularly at high altitudes and middle to high latitudes. When there is no significant space weather, high-latitude flights produce a dose rate analogous to a chest X-ray every 12.5 h, every 25 h for midlatitudes, and every 100 h for equatorial latitudes at typical commercial flight altitudes of 37,000 ft ( 11 km). The dose rate doubles every 2 km altitude increase, suggesting a radiation event management strategy for pilots or air traffic control; i.e., where event-driven radiation regions can be identified, they can be treated like volcanic ash clouds to achieve radiation safety goals with slightly lower flight altitudes or more equatorial flight paths.

  15. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    Science.gov (United States)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  16. Spacecraft's Attitude Prediction: Solar Radiation Torque and the Earth's Shadow

    Science.gov (United States)

    Zanardi, M. C.; Vilhena de Moraes, R.; Cabette, R. S.; Garcia, R. V.

    A semi-analytical approach is proposed to study the rotational motion of a spacecraft under the influence of the solar radiation torque and taking into account the influence of the Earth's shadow. The equations of motion are given in an Hamiltonian formalism and Andoyer variables are used to describe the spacecraft rotational motion. The model for the shadow function was developed by Kabelac which considers geometric and physical factors and three specific regions: shadow, penumbra and total illuminated. Special attention is focused on the influence of the orbital elements and the positioning of the Sun in the duration of the Earth's shadow and penumbra. By mapping and computing the shadow function it is possible to get the periods in which the spacecraft is illuminated and when it is in the umbra (in this case the solar radiation torque is zero). The semi-analytical process is applied to get the solution for the equations of motion, using the mapping of the shadow function. When the satellite is illuminated or it is in the penumbra, a known analytical solution is used to predict the spacecraft's attitude. Numerical simulations are presented considering different sets of orbital characteristics for the satellite and positioning of the Sun in the Ecliptic. By numerical results it is possible to observe important influence of the orbital elements on the time for crossing penumbra and shadow regions. Numerical simulations show also that the transition from the shadow region to the illumined region was attenuated when of the penumbra region is included in the dynamical problem.

  17. Meteorological pre-processing of incoming solar radiation and heat flux over a sparse boreal forest at a northern site during winter conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2001-01-01

    Measurements from Northern Finland on radiation and turbulent fluxes over a sparse boreal forest with snow-covered ground were analysed. The measurements represent harsh winter conditions characterized by low sun angles. The absorption of incoming solar radiation in clear skies (turbidity......) was found to be a strong function of the solar elevation. At low solar elevation angles, commonly used expressions for turbidity did not fit the measurements well. A simple energy balance type met-processor performed well during daytime, but it was not satisfactory during night time. Simplifications...

  18. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    Science.gov (United States)

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Measuring Isotope Ratios Across the Solar System

    Science.gov (United States)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  20. Photocatalytic degradation of the vinasse under solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Veronice S.; Fernandes Machado, Nadia R.C. [Departamento de Engenharia Quimica, Universidade Estadual de Maringa, Av. Colombo 5790, Bloco D-90, CEP 87020-900, Maringa, Parana (Brazil)

    2008-04-15

    The objective of this work was to evaluate the efficiency of the photocatalytic process in the vinasse treatment using solar radiation. The degradation tests were carried out during 5 days consecutive with solar irradiation from 8:00 a.m. to 17:00 p.m. TiO{sub 2}, Nb{sub 2}O{sub 5}-TiO{sub 2} and immobilized TiO{sub 2} in glass beads (TiO{sub 2}/beads) were used as photocatalysts. The characterization results showed that the catalysts presented distinct textural, structural and morphologic properties, conferring distinct photocatalytic behavior to them. The degradation results showed that photolysis was not efficient in the vinasse mineralization and that Nb{sub 2}O{sub 5}-TiO{sub 2} was the most photoactive material. TiO{sub 2}/beads presented activity higher than the suspended TiO{sub 2}, indicating a positive interaction between TiO{sub 2} and glass beads. The vinasse toxicity was evaluated using bioassays with Artemia saline and it verified significant reduction in the vinasse toxicity after photocatalytic treatment, mainly with Nb{sub 2}O{sub 5}-TiO{sub 2} and TiO{sub 2}/beads. Evidencing that photocatalysis under sunlight was efficient in the vinasse treatment and that the Nb{sub 2}O{sub 5}-TiO{sub 2} is an excellent option as photocatalyst. (author)

  1. Investigating work-related neoplasia associated with solar radiation.

    Science.gov (United States)

    Turner, S; Forman, S D; McNamee, R; Wilkinson, S M; Agius, R

    2015-01-01

    Both solar and non-solar exposures associated with occupation and work tasks have been reported as skin carcinogens. In the UK, there are well-established surveillance schemes providing relevant information, including when exposures took place, occupation, location of work and dates of symptom onset and diagnosis. To add to the evidence on work-related skin neoplasia, including causal agents, geographical exposure and time lag between exposure and diagnosis. This study investigated incident case reports of occupational skin disease originating from clinical specialists in dermatology reporting to a UK-wide surveillance scheme (EPIDERM) by analysing case reports of skin neoplasia from 1996 to 2012 in terms of diagnosis, employment, suspected causal agent and symptom onset. The suspected causal agent was 'sun/sunlight/ultraviolet light' in 99% of the reported work-related skin neoplasia cases. Most cases reported (91%) were in males, and the majority (62%) were aged over 65 at the time of reporting. More detailed information on exposure was available for 42% of the cases, with the median time from exposure to symptom onset ranging from 44 (melanoma) to 57 (squamous cell carcinoma) years. Irrespective of diagnostic category, the median duration of exposure to 'sun/sunlight/ultraviolet light' appeared longer where exposures occurred in the UK (range 39-51 years) rather than outside the UK (range 2.5-6.5 years). It is important to provide effective information about skin protection to workers exposed to solar radiation, especially to outdoor workers based outside the UK. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Transmissividade a radiação solar do polietileno de baixa densidade utilizado em estufas Solar radiation transmissivity through low density polyethylene used in greenhouses

    Directory of Open Access Journals (Sweden)

    Galileo Adeli Buriol

    1995-01-01

    Full Text Available Determinou-se a transmissividade à radiação solar do polietileno de baixa densidade utilizado em estufas. O experimento foi conduzido em uma estufa tipo Capela com dimensões de 10m x 25m, coberta com polietileno transparente de baixa densidade, com espessura de 100µm e aditivado com anti-UV, instalada no Departamento de Fitotecnia da Universidade Federal de Santa Maria, RS - Brasil. A radiação solar global diária incidente no interior e exterior da estufa foi medida no período de julho de 1991 a janeiro de 1992 e também a fração difusa da radiação solar em dias com diferentes condições atmosféricas e de condensação no filme plástico durante o período de maio a julho de 1993. A transmissividade média da radiação solar global foi de 56,2% nas primeiras horas do dia e de 81,3% nas horas próximas ao meio-dia. A fração difusa da radiação solar global foi mais elevada no interior da estufa do que no exterior, evidenciando o efeito dispersante do plástico e da condensação do vapor d'água na superfície interna do filme.The transmissivity of the solar radiation by polyethylene cover used in plastic greenhouses was evaluated in the Central Region of the Rio Grande do Sul State, Brazil. The study was carried out inside a 10m x 25m greenhouse covered with low density transparent polyethylene with 100µm thickness, located at Federal University of Santa Maria. Incoming global solar radiation inside and outside was measured daily dunng July, 1991 to January, 1992. The effect of polyethylene cover on diffuse solar radiation was determined dunng 1993 year. The average transmissivity of global solar radiation was 56.2% early in the moming and 81.3% at near noonday. Diffuse solar radiation proportion was higher inside than outside the greenhouse and enhanced when water condenses on the inner surface of the film.

  3. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Gurman, Joseph B. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Olive, Jean-Philippe [Astrium SAS, 6 rue Laurent Pichat, F-75016 Paris (France); Cirtain, Jonathan W.; Hathaway, David H. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2013-03-10

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior-hemispheric asymmetry is the normal state-the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the

  4. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement

    Science.gov (United States)

    Yang, Jie; Liu, Qing-Quan; Ding, Ren-Hui

    2017-01-01

    Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

  5. Are Energetic Electrons in the Solar Wind the Source of the Outer Radiation Belt?

    OpenAIRE

    Li, Xinlin; Baker, D. N.; Temerin, M.; Larson, D.; Lin, R. P.; Reeves, G. D.; Looper, M.; Kanekal, S. G.; Mewaldt, R. A.

    1997-01-01

    Using data from WIND, SAMPEX (Solar Anomalous, and Magnetospheric Particle Explorer), and the Los Alamos National Laboratory (LANL) sensors onboard geostationary satellites, we investigate the correlation of energetic electrons in the 20–200 keV range in the solar wind and of high speed solar wind streams with relativistic electrons in the magnetosphere to determine whether energetic electrons in the solar wind are the source of the outer relativistic electron radiation belt. Though there is ...

  6. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    Science.gov (United States)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  7. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  8. Initial Results of Aperture Area Comparisons for Exo-Atmospheric Total Solar Irradiance Measurements

    Science.gov (United States)

    Johnson, B. Carol; Litorja, Maritoni; Fowler, Joel B.; Butler, James J.

    2009-01-01

    In the measurement of exo-atmospheric total solar irradiance (TSI), instrument aperture area is a critical component in converting solar radiant flux to irradiance. In a May 2000 calibration workshop for the Total Irradiance Monitor (TIM) on the Earth Observing System (EOS) Solar Radiation and Climate Experiment (SORCE), the solar irradiance measurement community recommended that NASA and NISI coordinate an aperture area measurement comparison to quantify and validate aperture area uncertainties and their overall effect on TSI uncertainties. From May 2003 to February 2006, apertures from 4 institutions with links to the historical TSI database were measured by NIST and the results were compared to the aperture area determined by each institution. The initial results of these comparisons are presented and preliminary assessments of the participants' uncertainties are discussed.

  9. Plant responses to current solar ultraviolet-B radiation and to supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison.

    Science.gov (United States)

    Rousseaux, M Cecilia; Flint, Stephan D; Searles, Peter S; Caldwell, Martyn M

    2004-01-01

    Field experiments assessing UV-B effects on plants have been conducted using two contrasting techniques: supplementation of solar UV-B with radiation from fluorescent UV lamps and the exclusion of solar UV-B with filters. We compared these two approaches by growing lettuce and oat simultaneously under three conditions: UV-B exclusion, near-ambient UV-B (control) and UV-B supplementation (simulating a 30% ozone depletion). This permitted computation of "solar UV-B" and "supplemental UV-B" effects. Microclimate and photosynthetically active radiation were the same under the two treatments and the control. Excluding UV-B changed total UV-B radiation more than did supplementing UV-B, but the UV-B supplementation contained more "biologically effective" shortwave radiation. For oat, solar UV-B had a greater effect than supplemental UV-B on main shoot leaf area and main shoot mass, but supplemental UV-B had a greater effect on leaf and tiller number and UV-B-absorbing compounds. For lettuce, growth and stomatal density generally responded similarly to both solar UV-B and supplemented UV-B radiation, but UV-absorbing compounds responded more to supplemental UV-B, as in oat. Because of the marked spectral differences between the techniques, experiments using UV-B exclusion are most suited to assessing effects of present-day UV-B radiation, whereas UV-B supplementation experiments are most appropriate for addressing the ozone depletion issue.

  10. Fundamental and harmonic radiation in type III solar radio bursts

    Science.gov (United States)

    Robinson, P. A.; Cairns, I. H.

    1994-01-01

    Type III solar radio bursts are investigated by modeling the propagation of the electron beam and the generation and subsequent propagation of waves to the observer. Predictions from this model are compared in detail with particle, Langmuir wave, and radio data from the International Sun Earth Explorer-3 (ISSE-3) spacecraft and with other observations to clarify the roles of fundamental and harmonic emission in type III radio bursts. Langmuir waves are seen only after the arrival of the beam, in accord with the standard theory. These waves persist after a positive beam slope is last resolved, implying that sporadic positive slopes persist for some time, unresolved but in accord with the predictions of stochastic growth theory. Local electromagnetic emission sets in only after Langmuir waves are seen, in accord with the standard theory, which relies on nonlinear processes involving Langmuir waves. In the events investigated here, fundamental radiation appears to dominate early in the event, followed and/or accompanied by harmonic radiation after the peak, with a long-lived tail of multiply scattered fundamental or harmonic emission extending long afterwards. These results are largely independent of, but generally consistent with, the conclusions of earlier works.

  11. A Solar Radiation Parameterization for Atmospheric Studies. Volume 15

    Science.gov (United States)

    Chou, Ming-Dah; Suarez, Max J. (Editor)

    1999-01-01

    The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.

  12. Solar neutrino measurements in Super-Kamiokande-I

    CERN Document Server

    Hosaka, J; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Obayashi, Y; Sakurai, N; Sarrat, A; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Yamada, S; Higuchi, I; Ishitsuka, M; Kajita, T; Kaneyuki, K; Mitsuka, G; Nakayama, S; Nishino, H; Okada, A; Okumura, K; Saji, C; Takenaga, Y; Clark, S; Desai, S; Kearns, E; Likhoded, S; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Kropp, W R; Liu, D W; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Scholberg, K; Walter, C W; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nitta, K; Oyama, Y; Totsuka, Y; Suzuki, A T; Hasegawa, M; Kato, I; Maesaka, H; Nakaya, T; Nishikawa, K; Sasaki, T; Sato, H; Yamamoto, S; Yokoyama, M; Haines, T J; Dazeley, S; Kim, B K; Lee, K B; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Cooley, J; Habig, A; Fukuda, Y; Sato, T; Itow, Y; Jung, C K; Kato, T; Kobayashi, K; Malek, M; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Yanagisawa, C; Tamura, N; Sakuda, M; Kuno, Y; Yoshida, M; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Nishijima, K; Ishino, H; Watanabe, Y; Koshiba, M; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A L; Washburn, K; Wilkes, R J

    2006-01-01

    The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of $^8$B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.

  13. Damage Induced by Neutron Radiation on Output Characteristics of Solar Cells, Photodiodes, and Phototransistors

    Directory of Open Access Journals (Sweden)

    Biljana Simić

    2013-01-01

    Full Text Available This study investigates the effects of neutron radiation on I-V characteristics (current dependance on voltage of commercial optoelectronic devices (silicon photodiodes, phototransistors, and solar panels. Current-voltage characteristics of the samples were measured at room temperature before and after irradiation. The diodes were irradiated using Am-Be neutron source with neutron emission of 2.7×106 n/s. The results showed a decrease in photocurrent for all samples which could be due to the existence of neutron-induced displacement defects introduced into the semiconductor lattice. The process of annealing has also been observed. A comparative analysis of measurement results has been performed in order to determine the reliability of optoelectronic devices in radiation environments.

  14. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    Science.gov (United States)

    Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.

    2010-01-01

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  15. Charged Particle Measurements with the Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD)

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C. J.; Kohler, J.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Böttcher, S. I.; Brinza, D. E.; Burmeister, S.; Guo, J.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Posner, A.; Rafkin, S. C.; Reitz, G.

    2014-12-01

    Since the Curiosity rover's landing in Gale crater on the surface of Mars, the Radiation Assessment Detector (RAD) on board the rover has been conducting the first-ever measurements of the Martian surface radiation field. This field is induced by Galactic Cosmic Rays (GCRs) and their interactions with the atoms of the Martian atmosphere and soil. Furthermore, sporadic Solar Energetic Particle (SEP) events can lead to large, but short-term enhancements in the intensity of the radiation field. A large part of the radiation environment is made up of charged particles, e.g., ions and their isotopes, electrons, and positrons amongst others. There are mainly two factors influencing the surface radiation field: the modulation of the incoming GCR flux due to the solar magnetic field correlating with the solar cycle; the amount of atmospheric column mass above Gale crater resulting in changes of GCR penetration depth into the atmosphere, as well as influencing the secondary particle production rate. Here, we focus on the temporal evolution of the radiation environment since the landing, analyzing changes in the measured particle spectra for different phases in the Martian seasonal cycle and solar activity. Furthermore, we present enhancements in the proton flux during directly observed SEP events.

  16. SERI Solar Radiation Resource Assessment Project: Fiscal Year 1990 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C; Maxwell, E; Stoffel, T; Rymes, M; Wilcox, S

    1991-07-01

    The purpose of the Solar Radiation Resource Project is to help meet the needs of the public, government, industry, and utilities for solar radiation data, models, and assessments as required to develop, design, deploy, and operate solar energy conversion systems. The project scientists produce information on the spatial (geographic), temporal (hourly, daily, and seasonal), and spectral (wavelength distribution) variability of solar radiation at different locations in the United States. Resources committed to the project in FY 1990 supported about four staff members, including part-time administrative support. With these resources, the staff must concentrate on solar radiation resource assessment in the United States; funds do not allow for significant efforts to respond to a common need for improved worldwide data. 34 refs., 21 figs., 6 tabs.

  17. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    Science.gov (United States)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  18. Features and causes of recent surface solar radiation dimming and brightening patterns

    Science.gov (United States)

    Hatzianastassiou, N.; Papadimas, C. D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I.

    2012-04-01

    Incoming solar radiation at the Earth's surface has undergone substantial decreases/increases on decadal timescales in the second half of 20th century. More specifically, surface measurements have indicated a widespread decrease of surface solar radiation (SSR) from the 1950s to the 1980s, described as global dimming, followed by a period with either no more decrease or even an increase at various locations worldwide till the end of 1990s, namely a global brightening. These measured patterns of SSR are, in general, in line with SSR fluxes computed with radiative transfer models (RTMs) using satellite input data, while efforts are currently being made to reproduce them with regional or global climate models. The advantage of reproducing SSR dimming/brightening with RTMs is that an almost complete coverage of the globe is possible, whereas dimming/brightening patterns are obtained under both clear- and all-sky conditions. Moreover, an even more important and incomparable advantage of the use of RTMs for reproducing SSR dimming/brightening, is that it makes possible the identification of their causes in terms of specific radiative forcing agents, and the assessment and quantification of their relative contribution to GDB, which is of major importance for understanding current and future climate changes. In the present study, first an update of SSR dimming/brightening at global scale beyond 2000 is attempted using a spectral RTM along with a variety of satellite and reanalyses input data. The results are obtained at scales varying from the regional to continental/hemispherical/global, and are validated through comparisons against quality surface measurements from reference global networks such as GEBA (Global Energy Balance Archive) and BSRN (Baseline Surface Radiation Network). An inter-hemispherical difference is revealed up to 2007, consisting in a clear dimming in the South Hemisphere (SH), against a no clear dimming/brightening signal in North Hemisphere (NH

  19. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production?

    Science.gov (United States)

    Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.

  20. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of long-term global radiation measurements in Denmark and Sweden

    DEFF Research Database (Denmark)

    Skalík, Lukáš; Lulkovičová, Otília; Furbo, Simon

    The climate, especially global radiation is one of the key factors influencing the energy yield of solar energy systems. In connection with planning and optimization of energy efficient buildings and solar energy systems it is important to know the climate data of the area where the buildings....../systems are located. This study is based on yearly and monthly values of global radiation based on measurements from a climate station placed on the roof of building 119 at Technical University of Denmark in Kgs. Lyngby, from different Danish climate stations runned by Danish Meteorological Institute and from...... different Swedish climate stations of Swedish Meteorological and Hydrological Institute. The global horizontal radiation has been measured for a high number of years at all of these stations. The values show a tendency of increased annual global radiation, most likely due to decreased pollution...

  2. The use of gamma radiation in fluid flow measurements

    CERN Document Server

    Tjugum, S A; Holstad, M B

    2001-01-01

    Different measurement techniques involving the use of gamma radiation in flow measurement are discussed. In the Dual Modality Densitometry project at the University of Bergen, salinity-independent gas volume fraction measurements are obtained by combining scattered and transmitted radiation.

  3. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation

    Science.gov (United States)

    Suter, Clemens; Tomeš, Petr; Weidenkaff, Anke; Steinfeld, Aldo

    2010-01-01

    A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrical potential are formulated, discretized and solved numerically by applying the finite volume (FV) method. The model is validated in terms of experimentally measured temperatures and voltages/power using a set of TEC demonstrator modules, subjected to a peak radiative flux intensity of 300 suns. The heat transfer model is then applied to examine the effect of the geometrical parameters (e.g. length/width of legs) on the solar-to-electricity energy conversion efficiency.

  4. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    Science.gov (United States)

    Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.

    2017-08-01

    Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  5. Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes

    Science.gov (United States)

    Dyer, C. S.; Lei, F.; Clucas, S. N.; Smart, D. F.; Shea, M. A.

    Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations

  6. [Analysis of the cumulative solar ultraviolet radiation in Mexico].

    Science.gov (United States)

    Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Portales-González, Bárbara; Martínez-Rosales, Karla; Hernández-Blanco, Diana

    2016-01-01

    The incidence of skin cancer has increased in Mexico in recent years. Ultraviolet radiation is the main risk factor associated. Due to the need to develop strategies to prevent skin cancer, the aim of the study was to estimate the UV intensity in several representative regions of Mexico, the average annual UV dose of these populations, and the potential benefit of applying sunscreen at different ages. The intensity of UV radiation was quantified by remote and terrestrial radiometry. The dose of UV exposure was measured in minimal erythema doses using validated models for face and arms. The benefit of using a sunscreen was calculated with the use of a sunscreen with SPF 15 from birth to age 70. The UV radiation is lower in December and greater in the period from May to July. The region with a lower annual dose is Tijuana; and the higher annual dose is in the Mexico City area. The annual difference between these regions was 58 %. Through life, a low SPF sunscreen can reduce up to 66 % of the received UV dose. The geographical location is a risk factor for accumulation of UV radiation in Mexico. Since childhood, people receive high amounts of it; however, most of this dose can be reduced using any commercially available sunscreen, if applied strategically.

  7. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment

    Science.gov (United States)

    Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel

    2017-03-01

    Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.

  8. Ultraviolet solar radiation in the tropical central Andes (12.0°S).

    Science.gov (United States)

    Suárez Salas, Luis F; Flores Rojas, Jose L; Pereira Filho, Augusto J; Karam, Hugo A

    2017-06-14

    Ultraviolet (UV) solar irradiance measurements performed in the central Andes, Huancayo, Peru (12.0°S, 75.3°W, 3313 m asl) at 1 min intervals between January 2003 and December 2006 were used to analyse daily, monthly, and annual cycles of UV solar irradiance. The measurements were performed using a GUV-511 multi-channel filter radiometer at four wavelengths: 305, 320, 340, and 380 nm. UV irradiance data under clear sky and all sky conditions were separated using a procedure based on calculation of normalized irradiance. In February, the highest hourly mean value at noon for the UV Index reached 18.8 for clear sky conditions and 15.5 for all sky conditions, with outlier peaks close to UVI = 28. In addition, the highest mean value for the daily erythemal dose was found also in February, reaching 7.5 kJ m-2 d-1 with a maximum outlier value close to 10.1 kJ m-2 d-1. Comparisons between the clear sky GUV measurements and TUV model estimations were evaluated with statistical quantities showing values of R2 close to 0.98. The total ozone column and trace gases were obtained from OMI. The aerosol parameters were obtained from MODIS. The enhancements due to clouds of spectral irradiance at 340 nm as compared to a cloudless sky reach maxima of 20%. These results indicate that tropical central Andes has among the highest incident ultraviolet solar radiation in the world.

  9. Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture

    Directory of Open Access Journals (Sweden)

    M. Fiebig

    2003-01-01

    Full Text Available During airborne in situ measurements of particle size distributions in a forest fire plume originating in Northern Canada, an accumulation mode number mean diameter of 0.34 mm was observed over Lindenberg, Germany on 9 August 1998. Realizing that this is possibly the largest value observed for this property in a forest fire plume, scenarios of plume ageing by coagulation are considered to explain the observed size distribution, concluding that the plume dilution was inhibited in parts of the plume. The uncertainties in coagulation rate and transition from external to internal mixture of absorbing forest fire and non-absorbing background particles cause uncertainties in the plume's solar instantaneous radiative forcing of 20-40% and of a factor of 5-6, respectively. Including information compiled from other studies on this plume, it is concluded that the plume's characteristics are qualitatively consistent with a radiative-convective mixed layer.

  10. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    accurately measures the radiation emitted from the source. The study included the interventional radiolo ... mined as most sensitive to radiation. The use of a thyroid guard also decreases the effective dose by approx- ... al radiation is necessary. Thermo- luminescent dosimetry is used to measure radiation and the apparatus.

  11. The Solar Radiation and Climate Experiment (SORCE) Mission Description and Early Results

    CERN Document Server

    Rottman, G; George, V

    2005-01-01

    This book describes the state-of-the art instruments for measuring the solar irradiance from soft x-ray to the near infrared and the total solar irradiance. Furthermore, the SORCE mission and early results on solar variability are presented along with papers that provide an overview of solar influences on Earth.

  12. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  13. The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements

    Science.gov (United States)

    Gröbner, Julian; Kröger, Ingo; Egli, Luca; Hülsen, Gregor; Riechelmann, Stefan; Sperfeld, Peter

    2017-09-01

    A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI) over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS) was combined from medium-resolution (bandpass of 0.86 nm) measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe) spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm) from a Fourier transform spectroradiometer (FTS) over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere) gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI) is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  14. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  15. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    Science.gov (United States)

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Solar Diameter Measurements from Eclipses as a Solar Variability Proxy

    Science.gov (United States)

    Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell

    2015-08-01

    Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.

  17. Measuring solar reflectance Part II: Review of practical methods

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23{sup o}], and to within 0.02 for surface slopes up to 12:12 [45{sup o}]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R*{sub g,0}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R*{sub g,0} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R*{sub g,0} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R*{sub g,0} to within about 0.01.

  18. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  19. Methods of and apparatus for radiation measurement, and specifically for in vivo radiation measurement

    Science.gov (United States)

    Huffman, D.D.; Hughes, R.C.; Kelsey, C.A.; Lane, R.; Ricco, A.J.; Snelling, J.B.; Zipperian, T.E.

    1986-08-29

    Methods of and apparatus for in vivo radiation measurements rely on a MOSFET dosimeter of high radiation sensitivity which operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  20. Simulating the Outer Radiation Belt During the Rising Phase of Solar Cycle 24

    Science.gov (United States)

    Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua; Chen, Sheng-Hsien; Kanekal, Shri; Nagai, Tsungunobu; Albert, Jay

    2011-01-01

    After prolonged period of solar minimum, there has been an increase in solar activity and its terrestrial consequences. We are in the midst of the rising phase of solar cycle 24, which began in January 2008. During the initial portion of the cycle, moderate geomagnetic storms occurred follow the 27 day solar rotation. Most of the storms were accompanied by increases in electron fluxes in the outer radiation belt. These enhancements were often preceded with rapid dropout at high L shells. We seek to understand the similarities and differences in radiation belt behavior during the active times observed during the of this solar cycle. This study includes extensive data and simulations our Radiation Belt Environment Model. We identify the processes, transport and wave-particle interactions, that are responsible for the flux dropout and the enhancement and recovery.

  1. National Solar Radiation Database 1991-2010 Update: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  2. A Study of Fitting the Generalized Lambda Distribution to Solar Radiation Data.

    Science.gov (United States)

    Öztürk, A.; Dale, R. F.

    1982-07-01

    The increased interest in the climatology of solar radiation dictates a need for a distribution to fit daily solar radiation totals which tend to have negatively-skewed probability distributions. Even daily mean solar radiation for weekly periods tends to have non-normal distributions. The generalized lambda distribution, which includes a wide variety of curve shapes, is discussed for fitting these data. The underlying probability distribution is a generalization of the lambda distribution from three to four parameters. Using the weekly averages of daily solar radiation totals for each of 12 weeks during the growing season and daily totals for the week 5-11 July at West Lafayette, Indiana, it is shown that the generalized lambda distribution model fits the data well. Some results concerning percentiles and quantiles, parameter estimates, and goodness-of-fit tests are also discussed.

  3. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  4. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    Science.gov (United States)

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Window model. Part 1. Short-wave solar radiation; Fenstermodell. Teil 1. Kurzwellige Solarstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, J. [Georg-Simon-Ohm-Fachhochschule Nuernberg (Germany)

    2005-05-01

    Modern external walls and window sizes require detailed calculations. The first part of the contribution discusses short-wave solar radiation while the second part will go into thermal exchange processes. (orig.)

  6. Mean annual solar radiation in the United States Pacific Northwest (1991-2005)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent mean annual solar radiation in the Pacific Northwest region of the United States...

  7. National Solar Radiation Database 1991-2005 Update: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  8. National Solar Radiation Database (NSRDB) Station Data Output for 1991 to 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Solar Radiation Database (NSRDB) was produced by the National Renewable Energy Laboratory under the U.S. Department of Energy's Office of Energy...

  9. An application of the multilayer perceptron: Solar radiation maps in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Grupo Investigacion y Desarrollo en Energia Solar y Automatica, Dpto. de Ingenieria Electronica, de Telecomunicaciones y Automatica, Escuela Politecnica Superior de Jaen, Campus de las Lagunillas, Universidad de Jaen, 23071 Jaen (Spain); Zufiria, P. [Grupo de Redes Neuronales, Dpto. de Matematica Aplicada a las Tecnologias de la Informacion, ETSI Telecomunicaciones, UPM Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2005-11-01

    In this work an application of a methodology to obtain solar radiation maps is presented. This methodology is based on a neural network system [Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4-22] called Multi-Layer Perceptron (MLP) [Haykin, S., 1994. Neural Networks. A Comprehensive Foundation. Macmillan Publishing Company; Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366]. To obtain a solar radiation map it is necessary to know the solar radiation of many points spread wide across the zone of the map where it is going to be drawn. For most of the locations all over the world the records of these data (solar radiation in whatever scale, daily or hourly values) are non-existent. Only very few locations have the privilege of having good meteorological stations where records of solar radiation have being registered. But even in those locations with historical records of solar data, the quality of these solar series is not as good as it should be for most purposes. In addition, to draw solar radiation maps the number of points on the maps (real sites) that it is necessary to work with makes this problem difficult to solve. Nevertheless, with the application of the methodology proposed in this paper, this problem has been solved and solar radiation maps have been obtained for a small region of Spain: Jaen province, a southern province of Spain between parallels 38{sup o}25' N and 37{sup o}25' N, and meridians 4{sup o}10' W and 2{sup o}10' W, and for a larger region: Andalucia, the most southern region of Spain situated between parallels 38{sup o}40' N and 36{sup o}00' N, and meridians 7{sup o}30' W and 1{sup o}40' W. (author)

  10. Impact of surface inhomogeneity on solar radiative transfer under overcast conditions

    Science.gov (United States)

    Li, Zhanqing; Cribb, Maureen C.; Trishchenko, Alexander P.

    2002-08-01

    The goal of this study was to assess the ability of the Moderate-Resolution Transmittance 4 (MODTRAN-4) code to simulate high-resolution shortwave (SW) fluxes given detailed and complete input information under overcast conditions. The study underlines the impact of surface inhomogeneity on the closure of SW radiative transfer. It also leads to a method of estimating surface spectral areal-mean albedo from downwelling solar transmittance measurements. The investigation made use of ample Atmospheric Radiation Measurement (ARM) field data collected by a suite of instruments, including broadband and narrowband radiometers and spectrometers, cloud radar and lidar, microwave radiometer, atmospheric sounding instruments, and satellite data. Furnishing the MODTRAN-4 code with observed atmospheric, cloud, and surface parameters generates spectral solar transmittance at the surface and reflectance at the top of the atmosphere (TOA). The transmittances were compared with the Rotating Shadowband Spectroradiometer measurements and showed significant discrepancies in the near-infrared (NIR) region, the bulk of which was attributed to the use of unrepresentative surface spectral albedos. A field campaign was undertaken to collect surface albedo data for a wide variety of land cover types near the ARM Central Facility. The sampled data were combined with thematic mapper/Landsat-based land cover classification data to map surface spectral albedo. Substitution of the derived areal-mean spectral albedo into the MODTRAN-4 model eliminates major discrepancies in the NIR, and also leads to good agreements with surface solar broadband fluxes and TOA satellite spectral reflectance. On the basis of these findings, one may use downwelling spectral transmittance data, together with detailed cloud and atmospheric information, to estimate surface effective areal-mean albedo. The estimated values agree well with those derived from the ground survey data. Following the method, a data set of

  11. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  12. Photocatalytic Active Radiation Measurements and Use

    Science.gov (United States)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  13. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    Science.gov (United States)

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-09-10

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  14. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    OpenAIRE

    Li, W; Thorne, RM; Bortnik, J; Baker, DN; Reeves, GD; Kanekal, SG; Spence, HE; Green, JC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations ( > 1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly c...

  15. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    OpenAIRE

    Smajo Sulejmanovic; Suad Kunosic; Ema Hankic

    2014-01-01

    This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to r...

  16. Empirical Models for Estimating Global Solar Radiation over the Ashanti Region of Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Quansah

    2014-01-01

    Full Text Available The performances of both sunshine and air temperature dependent models for the estimation of global solar radiation (GSR over Ghana and other tropical regions were evaluated and a comparison assessment of the models was carried out using measured GSR at Owabi (6°45′0′′N, 1°43′0′′W in the Ashanti region of Ghana. Furthermore, an empirical model which also uses sunshine hours and air temperature measurements from the study site and its environs was proposed. The results showed that all the models could predict very well the pattern of the measured monthly daily mean GSR for the entire period of the study. However, most of the selected models overestimated the measured GSR, except in April and November, where the empirical model using air temperature measurements underestimated the measured GSR. Nevertheless, a very good agreement was found between the measured radiations and the proposed models with a coefficient of determination within the range 0.88–0.96. The results revealed that the proposed models using sunshine hours and air temperature had the smallest values of MBE, MPE, and RMSE of −0.0102, 0.0585, and 0.0338 and −0.2973, 1.7075, and 0.9859, respectively.

  17. Passive-solar directional-radiating cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  18. Passive-solar directional-radiating cooling system

    Science.gov (United States)

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  19. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  20. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kutchenreiter, Mark C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Steve [Solar Resource Solutions, LLC, Lakewood, CO (United States); Stoffel, Tom [Solar Resource Solutions, LLC, Lakewood, CO (United States)

    2017-07-21

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of the path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.

  1. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    Directory of Open Access Journals (Sweden)

    C. D. Papadimas

    2012-08-01

    Full Text Available For the first time, the direct radiative effect (DRE of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM. The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA, DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR, DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000–2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2, Global Reanalysis projects (National Centers for Environmental Prediction – National Center for Atmospheric Research, NCEP/NCAR, and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer, are taken from the MODerate resolution Imaging Spectroradiometer (MODIS of NASA (National Aeronautics and Space Administration and they are supplemented by the Global Aerosol Data Set (GADS. The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA covering the period 2000–2007.

    A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = −2.4 W m−2. Although a planetary cooling is found over most of the region, of up to −7 W m−2, large positive DRETOA values (up to +25 W m−2 are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m−2. Aerosols are found to increase the absorption of solar radiation in the atmospheric

  2. Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale

    Directory of Open Access Journals (Sweden)

    C. Aguilar

    2010-12-01

    Full Text Available Distributed energy and water balance models require time-series surfaces of the climatological variables involved in hydrological processes. Among them, solar radiation constitutes a key variable to the circulation of water in the atmosphere. Most of the hydrological GIS-based models apply simple interpolation techniques to data measured at few weather stations disregarding topographic effects. Here, a topographic solar radiation algorithm has been included for the generation of detailed time-series solar radiation surfaces using limited data and simple methods in a mountainous watershed in southern Spain. The results show the major role of topography in local values and differences between the topographic approximation and the direct interpolation to measured data (IDW of up to +42% and −1800% in the estimated daily values. Also, the comparison of the predicted values with experimental data proves the usefulness of the algorithm for the estimation of spatially-distributed radiation values in a complex terrain, with a good fit for daily values (R2 = 0.93 and the best fits under cloudless skies at hourly time steps. Finally, evapotranspiration fields estimated through the ASCE-Penman-Monteith equation using both corrected and non-corrected radiation values address the hydrologic importance of using topographically-corrected solar radiation fields as inputs to the equation over uniform values with mean differences in the watershed of 61 mm/year and 142 mm/year of standard deviation. High speed computations in a 1300 km2 watershed in the south of Spain with up to a one-hour time scale in 30 × 30 m2 cells can be easily carried out on a desktop PC.

  3. Direct solar radiation on various slopes from 0 to 60 degrees north latitude.

    Science.gov (United States)

    John Buffo; Leo J. Fritschen; James L. Murphy

    1972-01-01

    Direct beam solar radiation is presented in graphical and tabular form for hourly, daily, and yearly values for seven slopes on each of 16 aspects from the Equator to 60 degrees north in 10-degree increments. Theoretical equations necessary for the calculations are given. Solar altitude and azimuth during the day and year are also presented for the same latitude.

  4. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014.

    Science.gov (United States)

    Mlynczak, Martin G; Hunt, Linda A; Mertens, Christopher J; Thomas Marshall, B; Russell, James M; Woods, Thomas; Earl Thompson, R; Gordley, Larry L

    2014-04-16

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO2, 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared cooling agents over a complete solar cycle. SABER has documented dramatic variability in the radiative cooling on time scales ranging from days to the 11 year solar cycle. Deep minima in global mean vertical profiles of radiative cooling are observed in 2008-2009. Current solar maximum conditions, evidenced in the rates of radiative cooling, are substantially weaker than prior maximum conditions in 2002-2003. The observed changes in thermospheric cooling correlate well with changes in solar ultraviolet irradiance and geomagnetic activity during the prior maximum conditions. NO and CO2 combine to emit 7 × 10(18) more Joules annually at solar maximum than at solar minimum. First record of thermospheric IR cooling rates over a complete solar cycleIR cooling in current solar maximum conditions much weaker than prior maximumVariability in thermospheric IR cooling observed on scale of days to 11 years.

  5. Assessment of the solar radiation potential of the Thika and Nairobi ...

    African Journals Online (AJOL)

    The raw data was first converted to MJ/m2/day and then subjected to quality control procedures. After quality control procedures, the data was analyzed in terms of the average monthly daily insolation. Extraterrestrial solar radiation was estimated using an empirical formula and by using the values of the extraterrestrial solar ...

  6. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available Solar ultraviolet radiation (UVR) levels are affected by airborne aerosols, such as particles and gases released during biomass burning events. Two large-scale fires in South Africa were identified and selected based on their proximity to solar UVR...

  7. CONVERTER SOLAR RADIATION INTO ELECTRICITY TO SUPPLY THE AUTOMOTIVE SEMICONDUCTOR THERMOELECTRIC AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2015-01-01

    Full Text Available The article considers the possibility to increase the efficiency of converters of solar radiation into electricity by combining constructive photoelectric effect, See-beck thermoeffect and semiconductor solar cells, which will create integrated device to provide power semiconductor thermoelectric automobile air conditioner. 

  8. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  9. Solar radiation increases suicide rate after adjusting for other climate factors in South Korea.

    Science.gov (United States)

    Jee, Hee-Jung; Cho, Chul-Hyun; Lee, Yu Jin; Choi, Nari; An, Hyonggin; Lee, Heon-Jeong

    2017-03-01

    Previous studies have indicated that suicide rates have significant seasonal variations. There is seasonal discordance between temperature and solar radiation due to the monsoon season in South Korea. We investigated the seasonality of suicide and assessed its association with climate variables in South Korea. Suicide rates were obtained from the National Statistical Office of South Korea, and climatic data were obtained from the Korea Meteorological Administration for the period of 1992-2010. We conducted analyses using a generalized additive model (GAM). First, we explored the seasonality of suicide and climate variables such as mean temperature, daily temperature range, solar radiation, and relative humidity. Next, we identified confounding climate variables associated with suicide rate. To estimate the adjusted effect of solar radiation on the suicide rate, we investigated the confounding variables using a multivariable GAM. Suicide rate showed seasonality with a pattern similar to that of solar radiation. We found that the suicide rate increased 1.008 times when solar radiation increased by 1 MJ/m 2 after adjusting for other confounding climate factors (P Solar radiation has a significant linear relationship with suicide after adjusting for region, other climate variables, and time trends. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves.

    Science.gov (United States)

    Sugiyama, Mari; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-08-01

    The functional components of mulberry leaves have attracted the attention of the health food industry, and increasing their concentrations is an industry goal. This study investigated the effects of solar radiation, which may influence the production of flavonol and 1-deoxynojirimycin (DNJ) functional components in mulberry leaves, by comparing a greenhouse (poor solar radiation) and outdoor (rich solar radiation) setting. The level of flavonol in leaves cultivated in the greenhouse was markedly decreased when compared with those cultivated outdoors. In contrast, the DNJ content in greenhouse-cultivated plants was increased only slightly when compared with those cultivated outdoors. Interestingly, the flavonol content was markedly increased in the upper leaves of mulberry trees that were transferred from a greenhouse to the outdoors compared with those cultivated only in the outdoors. Solar radiation conditions influence the synthesis of flavonol and DNJ, the functional components of mulberry leaves. Under high solar radiation, the flavonol level becomes very high but the DNJ level becomes slightly lower, suggesting that the impact of solar radiation is great on flavonol but small on DNJ synthesis. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Water disinfection with solar radiation; Desinfeccion del agua con radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alejandra; Cortes, Juana E; Rodriguez, Miriam; Mundo, Alfredo; Vazquez, Sandra [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Estrada, Claudio A [Centro de Investigacion en Energia, Temixco, Morelos (Mexico)

    2000-07-01

    Water disinfection by exposure to solar radiation is a low cost and easy application option to rural communities. The treatment of water can be done using plastic bags or plastic bottles of two litters setting on a reflective material. The efficient of the plastic bottles is lower than the one plastic bags, but the plastic bottles have a much better control of the treated water avoiding its recontamination. In order to increase the efficiency of disinfection using plastic bottles, two solar concentrators, using flat mirrors, were designed and built. Effluent water from a treatment plant of residual waters was used for the testing. Several comparison were carried out taking into account the position of the concentrators, the transparency of the bottles and the bags. The results show that using the concentrator that adjust its position to the sun every hour, a 100% disinfection is obtained in 4 hours of direct exposure to the sun rays in a sunny day. The period of time can be reduced up to 2 hours, if instead using transparent bottles, the bottles are black painted at their bottom half. With these results, the basis to design a cheap concentrator of easy construction to be used in rural communities have been settle. [Spanish] La desinfeccion del agua por exposicion a la luz solar fotodesinfeccion es una opcion de bajo costo y facil aplicacion para las comunidades rurales. El tratamiento puede llevarse a cabo utilizando bolsas o botellas de plastico transparente de dos litros de capacidad colocadas sobre un material reflejante. Las botellas son menos eficientes que las bolsas, pero permiten un mejor control del agua tratada evitando su recontaminacion. Para aumentar la eficiencia de la desinfeccion utilizando las botellas, se disenaron y construyeron dos concentradores solares de espejos planos que permitieron disminuir el tiempo de exposicion requerido cuando se utilizan estas. Para las pruebas de desinfeccion se utilizo agua del efluente de una planta de tratamiento

  12. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    Directory of Open Access Journals (Sweden)

    U. Feister

    2008-06-01

    Full Text Available Artificial Neural Networks (ANN are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model.

    Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  13. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  14. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric Relationship<