WorldWideScience

Sample records for solar house heating

  1. Solar heating systems for houses. A design handbook for solar combisystems

    International Nuclear Information System (INIS)

    Weiss, W.

    2003-11-01

    A handbook giving guidance on systems for providing combined solar space heating and solar water heating for houses has been produced by an international team. The guidance focuses on selection of the optimum combi-system for groups of single-family houses and multi-family houses. Standard classification and evaluation procedures are described. The book should be a valuable tool for building engineers, architects, solar manufacturers and installers of solar solar energy systems, and anyone interested in optimizing combined water and space heating solar systems

  2. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank is a......, the control strategy of intelligent solar heating systems is investigated and the yearly auxiliary energy use of the systems and the electricity price for supplying the consumers with domestic hot water and space heating are calculated....... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys......Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...

  3. SOLAR ENERGY APPLICATION IN HOUSES HEATING SYSTEMS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Zhanna Mingaleva

    2017-06-01

    Full Text Available The solar energy is widely used around the world for electricity generation and heating systems in municipal services. But its use is complicated in the number of territories with uneven receipts of solar radiation on the earth’s surface and large number of cloudy days during a year. A hypothesis on the possibility of application of individual solar collectors for heating of houses in the number of cities of Russia has been tested. The existing designs of solar collectors and checking the possibility of their application in northern territories of Russia are investigated. The analysis was carried out taking into account features of relief and other climatic conditions of the Perm and Sverdlovsk regions. As the result of research, the basic recommended conditions for application of solar batteries in houses of the northern Russian cities have been resumed.

  4. Information campaign on solar heating for houses heated by electricity

    International Nuclear Information System (INIS)

    West, M.

    1995-09-01

    A number of NESA's (Danish electric power company) customers were offered the use of a solar water heating system for a short period of time. NESA was responsible for the marketing and consultancy service and worked in cooperation with local plumbers in connection with the delivery of the systems. The company contacted 450 households and its representatives visited 25 of these. 4 customers decided to purchase a solar heating system, fourteen decided to think about it, and four declared that they would not buy one. The company had reckoned with 25 purchases. It is concluded that the price of the solar heating systems was too high for prospective customers and the fact that they were not given a special offer had a negative effect. The economic aspect was absolutely the most important for them, especially the length of the payback period on the higher purchase system. Environmental protection aspects came second in their deliberations. NESA has a positive attitude to their customers' use of solar heating plants and recommends that households are offered very high quality consultancy services in connection with marketing. The project is described in detail. (AB)

  5. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    Kozak, Tadeeusz; Majchrzycka, Anna

    2009-01-01

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  6. Modelling and Control of Collecting Solar Energy for Heating Houses in Norway

    Directory of Open Access Journals (Sweden)

    Mehran Dehghan

    2017-09-01

    Full Text Available In this research, a new model was developed and modified with a combined solar heating system which works with solar radiation and electricity. In order to model the system, the outdoor temperature of the location and solar irradiance has been considered. The case study of this research has been done in Porsgrunn City in the south of Norway. The building which was modelled in this research is a passive solar building which is able to store heat by using phase change materials, which are mounted on the floor and release the heat when the temperature of the house decreases. The model of the house was designed based on some assumptions about ambient temperature, solar collector size, transmitting lines length and some specific properties like air density and specific heat. The results of this research show that a solar heating system which is working with electricity can provide a sufficient temperature for the house in winter time. With using the phase change materials in order to have a passive solar building design, an improvement in the temperature inside the house was seen. Based on the simulation results which were achieved, a solar heating system which works with electricity can be an efficient system to heat the house, especially in the winter times.

  7. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... (PCM). The ground heat exchanger acts as the heat sink and heat source for cooling and heating seasons, respectively. Free cooling enables the same cooling effect to be delivered with 8% of the energy consumption of a representative chiller. The heating and cooling needs of the house are addressed...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  8. THE USE OF PASSIVE SOLAR HEATING SYSTEMS AS PART OF THE PASSIVE HOUSE

    Directory of Open Access Journals (Sweden)

    Bryzgalin Vladislav Viktorovich

    2018-05-01

    Full Text Available Subject: systems of passive solar heating, which can, without the use of engineering equipment, capture and accumulate the solar heat used for heating buildings. Research objectives: study of the possibility to reach the passive house standard (buildings with near zero energy consumption for heating in climatic conditions of Russia using the systems of passive solar heating in combination with other solutions for reduction of energy costs of building developed in the past. Materials and methods: search and analysis of literature, containing descriptions of various passive solar heating systems, examples of their use in different climatic conditions and the resulting effect obtained from their use; analysis of thermophysical processes occurring in these systems. Results: we revealed the potential of using the solar heating systems in the climatic conditions of parts of the territories of the Russian Federation, identified the possibility of cheaper construction by the passive house standard with the use of these systems. Conclusions: more detailed analysis of thermophysical and other processes that take place in passive solar heating systems is required for creation of their computational models, which will allow us to more accurately predict their effectiveness and seek the most cost-effective design solutions, and include them in the list of means for achieving the passive house standard.

  9. Performance of the second generation solar heating system in the solar house of the Eindhoven University of Technology

    NARCIS (Netherlands)

    Bisschops, R.W.G.; van Koppen, C.W.J.; Veltkamp, W.B.; Ouden, den C.

    1984-01-01

    Summer 1981 a new solar heating system has been installed in the Solar House at the E.U.T. The principal features of the system are Philips VTR 261 evacuated tube collectors, integration of the auxiliary heater with the (stratified water) storage and application of the new, balanced flow control

  10. Absorption heat pump for a potable water supply in a solar house

    Energy Technology Data Exchange (ETDEWEB)

    Elshamarka, S [Military Technical Coll., Cairo (EG)

    1991-01-01

    Solar houses usually have good potential in arid areas. These areas often suffer from not only a shortage of conventional energy sources, but also of potable water supplies. In this study, a solar air-conditioning system including an absorption heat pump, already in production since the early 1980s, is described for potable water production while performing its air-conditioning duty in a solar house. Compiled weather-conditions of the Hurgada area, on the Red Sea coast of Egypt, were employed for the prediction of the system's productivity, if it were installed in such a locality. An evaluation of the system's feasibility has been conducted. (author).

  11. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  12. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  13. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer in the combi...

  14. Water heating solar system for popular houses; Sistema solar de aquecimento de agua para residencias populares

    Energy Technology Data Exchange (ETDEWEB)

    Mogawer, Tamer; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    In this paper we present a case study for the design of a low cost solar heating system for a popular residence in an isolated rural community in the state of Rio Grande do Norte. This scaling can be extended to several rural communities that are in the same situation in Brazil as well as the wider use of solar power between the low-income people who do not have the benefits of electricity in their homes or want to have a lower cost of electricity. In this context, there are very interesting alternatives, among which is the replacement of electric heating bath water by heating by solar energy. According to several sources the electric shower, as it is now simple and extremely cheap, is the villain of the national electrical system. It is used in peak hours of consumption, something like 10% of electric generating capacity installed in Brazil, forcing many industries to switch off the machines because of the high cost of electricity during this period. Using the heating by solar energy, we can reduce consumption of electric shower and also increase the use of clean energy in popular homes and in isolated rural communities. This paper will address the use of solar energy with the basic purpose of heating water for bathing in popular residences and in isolated rural areas, using low cost systems, built with easily materials that is found in any area of the country. (author)

  15. Planning of solar heated plant for low-energy houses and passive houses. An introduction; Planlegging av solvarmeanlegg for lavenergiboliger og passivhus. En introduksjon

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Inger

    2008-07-01

    This guide gives an introduction to the most important principles in planning and projecting of solar heated plant in low-energy houses and passive houses. It is written mainly for architects and consultants involved in housing projects with ambitions to achieve low-energy or passive house standard, but will also be of value for builders and others interested in the topic. (AG). 35 refs., 27 figs

  16. Electricity savings with pellet stoves and solar heating in electrically heated houses; Elbesparing med pelletkaminer och solvaerme i direktelvaermda smaahus

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas [Hoegskolan Dalarna, Borlaenge (Sweden)

    2004-07-01

    The aim of this study was to investigate how electrically heated houses can be converted to using wood pellet and solar heating. There are a large number of wood pellet stoves on the market. Many stoves have a water jacket, which gives an opportunity to distribute the heat to domestic hot water and a radiator heating system. Three typical Swedish houses with electric resistance heating have been studied. Fourteen different system concepts using wood pellet stoves and solar heating systems have been evaluated. The systems and the houses have been simulated in detail using TRNSYS. The houses have been divided in up to 10 different zones and heat transfer by air circulation through doorways and open doors have been simulated. The pellet stoves were simulated using a recently developed TRNSYS component, which models the start- and stop phases, emissions and the dynamic behaviour of the stoves. The model also calculates the CO-emissions. Simulations were made with one stove without a water jacket and two stoves with different fractions of the generated heat distributed in the water circuit. Simulations show that the electricity savings using a pellet stove are greatly affected by the house plan, the system choice, if the internal doors are open or closed and the desired level of comfort. Installing a stove with a water-jacket connected to a radiator system and a hot water storage has the advantage that heat can be transferred to domestic hot water and be distributed to other rooms. Such systems lead to greater electricity savings, especially in houses having a traditional layout. It was found that not all rooms needed radiators and that it was more effective in most cases to use a stove with a higher fraction of the heat distributed by the water circuit. The economic investigation shows that installing a wood pellet stove without a water jacket gives the lowest total energy- and capital costs in the house with an open plan (for today's energy prices and the

  17. 'Eco-house 99' - Full-scale demonstration of solar walls with building integrated heat storages

    Energy Technology Data Exchange (ETDEWEB)

    Hummelshoej, R.M.; Rahbek, J.E. [COWI Consulting Engineers and Planners AS (Denmark)

    2000-07-01

    A critical issue for solar systems in northern latitudes is the economic profitability. It is often said that the techniques for solar utilisation are expensive and unprofitable. This is, however, not always the case. A new project with 59 low energy terrace houses was carried out in Kolding, Denmark. The houses are designed as ecological buildings with emphasis on total economy based on low operation and maintenance costs, energy conservation and passive/hybrid solar utilisation. Besides direct solar gain through windows, each house has a solar wall of 6-8.5 m{sup 2} on the south facade. The solar walls are used both for heating of ventilation air and for space heating. The solar walls deliver heat to the dwellings during the heating season. To optimise the energy utilisation from the solar walls, the energy is stored internally in building integrated heat storages. Two different new types of prefabricated heat storages are built into the houses. One is an internal concrete wall with embedded ventilation pipes, and the other is a hollow concrete element with integrated stone bed. The heat storages are mainly designed to store solar energy from the day to the evening and the night. Because the solar walls and the heat storages have been a part of the design process from the start, the additional expenses are as low as 30-140 Euro/m{sup 2} solar wall compared with the alternative facade. This is far less than what it costs to add a solar wall on an existing building. Measurements over one year show that the yield of the solar walls is in the range of 115-125 kWh/m{sup 2}/year as expected. With the actual financing, the annual payment of the additional expenses for the solar systems is between 1-6 Euro/m{sup 2} solar wall, while the annual savings are about 5 Euro/year/m{sup 2} (with an energy price of 0.042 Euro/kWh). Dependent on which alternative facade construction the solar wall system is compared with, the profit of the system is in the range of 1 to +4 Euro

  18. Inventory of existing heat pump projects and the use of solar energy for heat pumps in the Dutch house construction sector

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the title inventory is to learn from the experiences with heat pump projects in the Netherlands. Descriptions are given of practical experiences with heat pump applications in the last 15 years in the housing sector. Possible and feasible heat pump system concepts are analyzed and energy balances and energy consumption are calculated. Special attention is paid to the use of solar energy in combination with electric (compression) heat pumps. One of the most important bottlenecks is the method and availability of heat extraction: the choice for the different options is determined by investment costs, permission, regulations, and local conditions. 14 refs., 4 appendices

  19. The solar house that rotates

    International Nuclear Information System (INIS)

    Miloni, R.P.

    2001-01-01

    This article describes an innovative solar building in Weiz, Austria, that uses passive solar technologies, photovoltaics and a ground-coupled heat pump to cover its minimal energy requirements. The house, which follows the sun by rotating around its central axis, is described in detail, including its climatic design and its 'plus-energy' concept. Details are also given on the materials used in the house's construction and the functioning of its thermal insulation. The various operating modes of the house from the systems point of view are described for differing seasons and climatic extremes. Marketing aspects for this standardised house, featuring personal-computer-based on-line definition of facade cladding, fittings, photovoltaic power, furnishings etc. and real-time rendering of the house are also discussed

  20. Prospects for jointly using solar and wind energy for heat supply and hot water supply to private houses under the conditions of Baku

    International Nuclear Information System (INIS)

    Salamov, O. M.; Aliev, F. F.

    2013-01-01

    This paper analyzes the discovery of the potential for jointly using solar and wind energy for heat supply (HS) and hot water supply (HWS) to a one-family private house located in the Apsheron Peninsula. (authors)

  1. Social anthropological and interdisciplinary research on the conversion of electrically heated single family houses to heating by combined pellet-solar systems

    International Nuclear Information System (INIS)

    Henning, Annette

    2004-01-01

    The social anthropological research presented here is part of the interdisciplinary research project PESTO, which focuses on the (partial or complete) conversion of single family houses from electric heating to heating by combined pellet-solar heating systems. Basic to this research is the assumption that it is more likely that energy conversions are carried through, and that they are successful on a long-term basis, if the new products are designed to fit as well as possible into the everyday lives of people. The anthropological interest in the project can be divided into two parts; motives for or against a conversion among men and women in Swedish households, and product design and placement in (previously) electrically heated single-family houses. Literature studies and semi-structured qualitative interviews are the main methods used in the anthropological part of the project. During the next 3-year project period, these investigations will be used to support information and marketing, and to formulate recommendations for conversion practice of electrically heated single-family houses to combined pellet-solar heating. (Author)

  2. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  3. Solar heating system with seasonal storage for the 'Heumatt' housing development in Zurich; Solare Waermeversorgung mit saisonalem Speicher fuer die Wohnsiedlung Heumatt, Zuerich Seebach

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, P.; Juzi, H.

    2003-07-01

    This final report for the Swiss Federal Office of Energy describes a project proposal for the seasonal storage of heat produced by solar collectors to provide a fifty-percent coverage of the space heating and hot water demands of a housing scheme with 140 dwellings in Zurich, Switzerland. The report describes the project, including the collection of solar energy and the storage of heat in an underground storage area. Figures are given on the estimates of energy requirements and energy production. The investments needed for the realisation of the project are quoted. The report also includes a detailed report on the concept and reviews of the project made by the University of Applied Technology in Winterthur and that of Southern Switzerland.

  4. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  5. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  6. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  7. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H; Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  8. Smart Solar Housing Renovation

    NARCIS (Netherlands)

    Ham, M.; Bruijn, de D.M.P.; Vos, S.J.H.; Weijers, K.A.M.; Straver, M.C.W.; Scartezzini, J.L.

    2009-01-01

    After World War II, the demand for houses in the Netherlands was enormous. Large housing construction programs were established in the fifties, sixties and seventies. Nowadays, these houses are facing some societal, economic and technological problems. On the other hand, many of the occupants are

  9. In Middle Europe, heating of an industrial building only with solar energy. First solar house industrial building with passive house standard in this size; In Mitteleuropa ein Industriegebaeude nur mit der Sonne heizen. Erstes Sonnenhaus Industriegebaeude mit Passivhaus-Standard in dieser Groesse

    Energy Technology Data Exchange (ETDEWEB)

    Huemer, Herbert [Xolar Renewable Energy Group HQ, Eberstalzell (Austria)

    2010-07-01

    Since 2008, Xolar Renewable Energy Group (Eberstalzell, Austria) combines the companies Sunmaster and Xolar in the most modern solar house in Europe with passive house standard. The contribution under consideration reports on the development of an industrial building which is heated entirely by solar energy and meets the standards of passive houses. All working places in the building should be sunny and free of draught. It does not use electrically powered heat pumps or refrigerators. All energy values calculated by simulation were achieved or partly exceeded. The savings in annual operating costs compared to conventional construction in factory buildings is approximately 192,000 Euro per year.

  10. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  11. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  12. ANALYSIS AND THINKING OF ACTIVE SOLAR HEATING HOUSE%太阳能主动式采暖实测与分析

    Institute of Scientific and Technical Information of China (English)

    李元哲; 单明; 何端练

    2009-01-01

    通过对一栋位于北京昌平地区的主动式太阳房的全冬季测试数据进行分析,得到了太阳能保证率及其若干重要影响因素,并给出了其辅助热源的合理设计和运行方式.%It has provided widest application prospect for more and more attentions are paid to energy saving and discharge reduction all over the world. As an important aspect of solar energy utilization of low temperature, active solar energy heating is involved in many factors, which can influence the running effect and economy of the whole system dramatical-ly. Detailed testing data about an active solar house in Beijing Changping district has been analyzed in this paper. Solar fraction and its several influencing factors were discussed. Based on the results, the reasonable design method and opera-tion way has been established when an air-source heat pump was acted as auxiliary source of solar energy.

  13. Tomorrow's house: solar housing in 1940s America.

    Science.gov (United States)

    Barber, Daniel A

    2014-01-01

    In the years surrounding World War II, solar house heating was seen by many American architects, journal editors, and policymakers as a necessary component of the expansion into suburbia. As the technological and financial aspects of home ownership came to take on broad social implications, design strategies of architectural modernism--including the expansive use of glass, the open plan and façade, and the flexible roof line--were seen as a means to construct suburbs that were responsive to anticipated concerns over materials allocations, over energy-resource scarcity, and over the economic challenges to postwar growth. As this article demonstrates, experiments in passive solar house design were a prominent means for envisioning the suburbs as an opportunity for new kinds of building and new ways of living. The article documents these developments and places them in the context of related efforts to think about the future.

  14. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  15. Instrumentation at the Decade 80 solar house in Tucson, Arizona

    Science.gov (United States)

    1978-01-01

    Modifications, problems and solutions for the instrumentation system that occurred during the period from May through September, 1978, are described. The solar house was built to show the use of copper in home building and to demonstrate the use of solar energy to provide space heating and cooling and domestic hot water. The auxiliary energy sources are electrical resistance heating for the domestic hot water and a gas-fired boiler for space heating and operation of the adsorption air conditioning units.

  16. Mississauga solar house (Mississauga, Ontario, Canada)

    National Research Council Canada - National Science Library

    Sasaki, J. R

    1978-01-01

    .... Winter space heating is favoured over annual water heating. A description is given of system components, including flat plate collectors, a solar heat exchanger, a water-to-air heat pump and concrete water tanks for heat storage...

  17. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  18. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  19. Solar water heating in the hotel industry

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A

    1981-01-01

    There is an increasing number of hotels, pensions, guest-houses and boarding-houses whose owners attempt to lower their energy cost - especially for water heating in summer - by installing solar systems. The article presents some examples of buildings in West Germany.

  20. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  1. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  2. Passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, K

    1981-11-10

    The present work treats the possibilities for heating according to the passive solar heating method. Problems of 'spatial organization in an energy-saving society' are distinguished from among other social problems. The final delimination of the actual problems under investigation consists of the use of passive solar heating and especially the 'consequences of such solar heating exploitation upon the form and structures' of planning and construction. In the concluding chapter an applied example shows how this method can be used in designing an urban area and what are its limitations. The results indicate the possibilities and difficulties in attempting to transfer this ideal and general method into models and directives for form and structure from which examples of the actual possibilities in practical planning can be given.

  3. NCSU solar energy and conservation house. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A passive solar energy house has been built adjacent to the NCSU McKimmon Continuing Education Center. The house contains a two-story embedded sunspace, two Trombe walls, active solar hot water heating, thermal storage in a rock filled ceiling/floor, and numerous research treatments, and energy conservation features. (See attached photo brochure; Appendix 1). The house is completely decorated and furnished in an attractive manner and the exterior architecture is traditional and has broad consumer appeal. It is also thoroughly instrumented to monitor performance. The house is open to the public on weekends and numerous people come to visit on their own initiative and others take advantage of the close proximity to McKimmon while there attending conferences. The house will influence and motivate large numbers of people to consider solar and energy conservation facets in their homes and will provide data to substantiate performance to prospective home buyers and meaningful data on design and construction for builders.

  4. Improved model for solar heating of buildings

    OpenAIRE

    Lie, Bernt

    2015-01-01

    A considerable future increase in the global energy use is expected, and the effects of energy conversion on the climate are already observed. Future energy conversion should thus be based on resources that have negligible climate effects; solar energy is perhaps the most important of such resources. The presented work builds on a previous complete model for solar heating of a house; here the aim to introduce ventilation heat recovery and improve on the hot water storage model. Ventilation he...

  5. The SURE House (Solar Decathlon 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Nastasi, John [Stevens Inst. of Technology, Hoboken, NJ (United States); May, Edwin [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-02-21

    architecture for New Jersey and beyond. This is what informed the architectural design of the house. Configured about a compact form, thickly insulated and air-sealed walls eliminate thermal bridging and minimize energy losses while advanced glazing brings in free solar heat during the winter months. As a result of these passive design strategies, the SURE HOUSE has a greatly reduced carbon footprint requiring 91% less energy than a typical New Jersey home. Photovoltaic (PV) arrays on both the rooftop and operable shutters easily provide energy in excess of the home’s modest demands. The Stevens team considers a truly sustainable home in the era of climate change, one that prioritizes low energy use, and integrates right-sized renewable generation to supply the home’s needs. Low consumption, low production. RESILIENT In October of 2012, Hurricane Sandy wreaked havoc along the east coast of the US. In New Jersey alone there was an estimated 29.4 billion dollars in damages, 346,000 homes affected, and almost two and a half million people left without power, in some cases for over 10 days. Recovery from this storm and associated flooding is ongoing to this day, as many New Jersey homeowners grapple with the large costs of rebuilding and struggle to adapt to complicated new home building regulations. Damage from this storm to Hoboken, the home of the Stevens Institute of Technology’s campus, and to the New Jersey shore was extensive and many students on the SURE HOUSE team were directly affected by this historic event. The Stevens design team recognizes that in a world of more frequent and stronger storms, the ability to absorb and adapt to change is more important than ever. Successfully weathering the next storm and its aftermath is one of the primary goals in the design of the SURE HOUSE prototype. The SURE HOUSE introduces unique ‘dry flood-proofing’ methods to residential construction. Innovative wall and floor flood-proofing, utilizing durable composite sheathing

  6. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  7. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  8. R&D of Thermochemical reactor concepts to enable seasonal heat storage of solar energy in residential houses

    NARCIS (Netherlands)

    Zondag, H.A.; Bakker, M.; Schuitema, R.; Bleijendaal, L.P.J.; Cot Gores, J.; Essen, van V.M.; Helden, van W.G.J.

    2009-01-01

    About 30% of the energy consumption in the Netherlands is taken up by residences and offices. Most of this energy is used for heating purposes. In order to reduce the consumption of fossil fuels, it is necessary to reduce this energy use as much as possible by means of insulation and heat recovery.

  9. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  10. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  11. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  12. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  13. Effect of solar radiation on drying house performance

    International Nuclear Information System (INIS)

    Rachmat, R.

    2000-01-01

    Solar drying is one of thermal utilization where radiation energy can be utilized efficiently. Solar drying of all sorts of agricultural products have been thoroughly studied and reported in literature, but brown rice drying system has not yet done as many as other products. The aim of the present study is to investigate the effect of solar radiation on drying house performance and brown rice drying characteristics. A construction of drying house is made from FRP sheets with 30 deg. of root slope faces southern part and inside the drying house is installed a flat bed dryer. The site of construction has 136 deg. 31.4'E in longitude and 34 deg. 43.8N in latitude with 3 m in elevation from sea level. The investigated parameters are global solar radiation, absorbed and net radiation and brown rice drying characteristics. The results showed that in unload condition, the air temperature inside drying house was higher (10 deg. C - 12 deg. C) than ambient air when there was not collector and temperature rise become higher (16 deg. C) when there was a black FRP collector inside drying house. The effect of solar radiation on temperature rise has the trend as a linear function. The heat collection efficiency of drying house with black FRP collector was two times higher (36.9 percent) than that without collector (16.3 percent). These phenomena exhibited significant result of collector utilization to the advantageous condition for a drying purpose [in

  14. Passive Solar Heating Residences.

    Science.gov (United States)

    1979-07-01

    sunshine is the percentage of time during the average year that the sun is bright enough to cast a shadow Pcross a surface, divided by the number of hours...The Markle House in Vermont has 1,100 square feet of living area with a heat loss cf 17,500 BTU/hr. Particular attention was paid to reducing the...Determ.ine enierg;y savings of fossil fuel and electrical poweCr. 2. Determi.:ne the ftriction of the building’s hot)’ waiter , heting and/ur cooling load

  15. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  16. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  17. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  18. Good planning for maximum efficiency. Part 1. Housing development of passive buildings with solar district heat supply; Sauber geplant is halb gewonnen. Teil 1. Passivhaussiedlung mit solarer Nahwaermeversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, R. [Ritter Energie- und Umwelttechnik, Karlsbad (Germany)

    2003-06-01

    A new development of 12 single-family dwellings was constructed with complex technical facilities and many innovative elements by Gewerbepark Ritter and Messrs. Paradigma, a provider of thermal solar systems. [German] Der Gewerbepark Ritter und die auf thermische Solarindustrie spezialisierte Firma Paradigma haben bei der Errichtung einer Siedlung mit 12 Einfamilienhaeusern mit einem komplexen Haustechnikkonzept ein wegweisendes Projekt mit vielen innovativen Neuerungen erfolgreich in die Tat umgesetzt. (orig.)

  19. Sustainable Heating, Cooling and Ventilation of a Plus-Energy House via Photovoltaic/Thermal Panels

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Sevela, Pavel

    2014-01-01

    Present work addresses the HVAC and energy concerns of the Technical University of Denmark's house, Fold, for the competition Solar Decathlon Europe 2012. Various innovative solutions are investigated; photovoltaic/thermal (PV/T) panels, utilization of ground as a heat source/sink and phase change...... two separate systems. PV/T panels enable the house to perform as a plus-energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively. The ground heat exchanger acts as the heat sink/source of the house. Free cooling enables the same cooling effect...

  20. Performance of passive solar and energy conserving houses in California

    Science.gov (United States)

    Mahajan, S.; Newcomb, C.; Shea, M.; Mort, D.

    1983-11-01

    This report provides a technical description of the methodology and the results of a two year effort to collect field data on the performance of passive solar and energy conserving houses in California. Sixty-three passive solar houses were visited and several hours were spent with the homeowner obtaining building details, management procedures, architectural plans, photographs, and at least a year of billing data. With this information thermal performance parameters were calculated for each of the houses. Eleven of the above sixty-three Class C sites (nine passive solar and two energy conserving houses) were instrumented and monitored using the SERI Class B methodology as a guideline. Continuous data were collected for one year using up to 18 different sensors to measure temperatures, electric power, insolation, and the status of fans, gas burners, and moveable insulation. In addition careful one time measurements were made to determine the loss coefficient, infiltration rate, and furnace efficiency. Analysis of this data giving comfort conditions maintained and energy uses for a complete heating and cooling season for each of the houses is presented.

  1. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  2. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  3. Financial analysis on the proposed renewable heat incentive for residential houses in the United Kingdom: A case study on the solar thermal system

    International Nuclear Information System (INIS)

    Abu-Bakar, Siti Hawa; Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Mallick, Tapas Kumar; McLennan, Campbell; Abdul Rahim, Ruzairi

    2014-01-01

    This short communication paper focuses on the renewable heat incentive (RHI) scheme in the United Kingdom (UK); and in particular, on its implication on domestic installations of solar thermal systems (STSs). First, a short review on the STS in the UK is provided. Then, a detailed description of the RHI is discussed. A financial analysis is presented afterwards, analysing the impact of the RHI scheme on the applicants, in terms of the net present value and the internal rate of return. From the financial analysis it has been found that the RHI scheme for domestic installations is only attractive if a longer period of RHI payment, i.e. 17 years, or a higher RHI rate i.e. £0.32 per kW h is implemented. The current proposal from the UK government is not financially viable, and as a result, it may hinder the penetration of domestic solar thermal systems in the residential sector in the UK. - Highlights: • A short review on solar thermal system (STS) is presented. • The renewable heat incentive (RHI) scheme is discussed. • A financial analysis is evaluated under the RHI scheme in the UK. • The analysis indicates the current proposal is not desirable to consumers

  4. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  5. Solar Heating in Uppsala : A case study of the solar heating system in the neighbourhood Haubitsen in Uppsala

    OpenAIRE

    Blomqvist, Emelie; Häger, Klara; Wiborgh, Malin

    2012-01-01

    The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar heating system is expectedto generate and which factors could improve theefficiency. Simulations suggest that the solar heatingsystem can to cover about 22 per cent of the domestichot water demand in Haubitsen, which corresponds to50 MWh for a year. If some factors, such as the tilt ofthe solar collectors would have be...

  6. Radon in houses utilizing stone magazines for heat accumulation

    International Nuclear Information System (INIS)

    Stranden, E.

    1981-01-01

    Measurements of 222 Rn and its daughters in three solar energy houses utilizing stone magazines for heat accumulation are reported. Theoretical calculations of the radon contribution from the stone magazines seem to be in good agreement with the measured values. The survey indicated that this method for heat accumulation could give a significant increase in the indoor radon concentration if the radium concentration of the stone material is high. The theoretical considerations suggest that a radium concentration of 1 pCi/g of the stone material could give an increment of the radon concentration in the indoor air of about 1 pCi/l. during the heating season in a house with air volume of 250 m 3 and a 10 5 -kg stone magazine. (author)

  7. Energy house - dream house

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    An energy house a prefabricated house with an extensive minimization of heat losses, is air-conditioned by means of a combined heating system consisting of hot water cycle and recirculating heating. The energy system is trivalent: wind power, solar energy with heat pumps and normal oil heating.

  8. Solar Living House Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Bradley [Univ. of Florida, Gainesville, FL (United States)

    2017-03-09

    The Solar Living House is a high-performance solar-powered dwelling designed by a team of faculty and students from the University of Florida, in collaboration with Santa Fe College, the National University of Singapore, and Alachua Habitat for Humanity. The project was designed in accordance with the Solar Decathlon 2015, a research, design, education, and outreach program developed by the U.S. Department of Energy (DOE). The Solar Living House is fundamentally a house for living, centered on people and the activities of daily life while quietly introducing advanced design, construction, and engineering technologies. The 993 square-foot two-bedroom one-bath home was designed to embrace and frame an exterior courtyard space. This courtyard acts as an extension of the interior living spaces, maximizing the spatial potentials of a modest building footprint and introducing natural light into the primary living spaces of the house. Research Outcomes: The Solar Living House advances work on high-performance buildings through three principal technological innovations: wet/dry modular construction, a building automation system, and solar dehumidification systems. Wet / Dry Modular Construction: The house is designed as a series of five modules, including one that is designated as the “wet core.” The wet core consolidates the mechanical systems and bathroom into a single module to reduce plumbing runs, efficiency losses, and on-site construction time. The other four modules are designed to eliminate interior load bearing walls to allow for maximum flexibility in the reconfiguring of the space over time. The modules are designed to meet the structural challenges of both Florida’s hurricanes and California’s earthquakes. Building Automation System: The house is equipped with an integrated building automation system, allowing the houses environmental systems, lights, security systems, and smoke detectors to be programmed, monitored, and controlled through any mobile

  9. Potential for solar space heating in Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Macgregor, A W.K.

    1980-07-01

    This paper investigates the relative effectiveness of passive-type solar-assisted space heating systems at various latitudes within the British Isles. A comparison is made of the useful solar gain of the same system linked to the same house at four different locations. Month-by-month energy balances indicate that the annual useful solar contribution at the highest latitude (Lerwick, 60 deg N) is about 35% higher than at the lowest latitude (Kew, 53 deg N). The main reason for this difference is the higher heating loads in the north, particularly outside the winter months. The estimated available irradiation on south-facing vertical surfaces was almost the same at all four locations. Previous work in the UK indicates that, contrary to the conclusions in this paper, more southerly latitudes were the most favorable for solar space heating. The reasons for the disparity are discussed. It is recommended that research and development of passive solar-assisted space heating systems should be most vigorously pursued in the more northerly latitudes of the British Isles, where both the potential benefit and the need are greatest.

  10. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  11. CISBAT 2007 - Solar collectors (heat and electricity)

    International Nuclear Information System (INIS)

    2007-01-01

    This is the third part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of Building and urban integration of renewables the following oral contributions are summarised: 'Facade integration of solar thermal collectors: present and future', 'Long term experiences with a versatile PV in roof system', 'Development of a design and performance prediction tool for the ground source heat pump and underground thermal storage system', 'Hygrothermal performance of earth-to-air heat exchanger: long-term data evaluation and short-term simulation' as well as 'The real cost of heating your home: a comparative assessment of home energy systems with external costs'. Poster-sessions on the subject include 'Central solar heating plants with seasonal heat storage', 'Analysis of forced convection for evaporative air flow and heat transfer in PV cooling channels', 'Renewable energy technology in Mali: constraints and options for a sustainable development', 'Effect of duct width in ducted photovoltaic facades', 'Design and actual measurement of a ground source heat pump system using steel foundation piles as ground heat exchangers', 'Development of an integrated water-water heat pump unit for low energy house and its application', 'PV effect in multilayer cells and blending of fullerene/poly (3-hexylthiophene) and phthalocyanine having NIR charge transfer absorption band', 'CdTe photovoltaic systems - an alternative energetic', 'Integration of renewable energy sources in a town, examples in Grenoble', 'A prospective analysis method for the conception of solar integration solutions in buildings' and 'Energy and aesthetic improvements for building integration of cost effective solar energy systems'. Further groups of presentations at the conference are reported on in separate database records. An index of authors completes the proceedings

  12. NexusHaus: Solar Decathlon House

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Michael Lynn [University of Texas at Austin

    2017-04-04

    The University of Texas at Austin and The Technical University of Munich 2015 Solar Decathlon house is called Nexushaus because it combines UT Austin and TUM students in an affordable modular residential green building in the context of Austin, Texas, based on shape forming principles found in nature that demonstrates transformative technologies in Zero Net Energy, Zero Net Water and Carbon Neutrality. To meet the needs of the competition, a portable modular design has been developed with an assembly that enables ease of installation and both quantitative and qualitative performance in the design. The prefabricated house sits lightly on the land and forms the superstructure for photovoltaic technologies, rainwater collection, aquaculture and permaculture gardening and indoor/outdoor living. The ultimate goal of Nexushaus is to serve as a potential prototype for a next-generation modular home that could be reproduced in mass in an assembly plant in Austin.

  13. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  14. Study of non-domestic applications for active solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Stammers, J.R.

    1997-11-01

    The UK Department of Trade and Industry (through ETSU) commissioned this study as part of its active solar programme. It was carried out from October 1996 to June 1997. The objective was to assess the potential for the use of active solar heating in non-domestic applications. The study was carried out by searching the literature, carrying out case studies and interviewing members of the solar industry and experts in other fields. There are currently about 45-50 active solar non-domestic schemes in operation in the UK, mostly for heating tap water in buildings of different types. The biggest potential for future non-domestic sales also lies in solar water heating for buildings. Most of the opportunities seem to be in the following building types: ablutions blocks in caravan and holiday camps, sheltered flats and hostels, nursing homes, office buildings, hotels and guest houses, and schools occupied during the summer. There are some other building types which might present niche markets for solar water heating. The market for active solar systems in space heating and cooling appears to be negligible. There is one other market for active solar heating in the non-domestic building sector. This is for warming water used to maintain stand-by generators at a temperature which allows them to kick in without delay in the event of a mains power failure. The main market is in buildings housing computers which control the provision of vital services, e.g. electricity, water and gas. (author)

  15. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for new detached houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    R and D was made on solar systems for new detached houses, and design and construction of the experimental house were carried out. In system analysis, assessment of solar cooling/heating systems, improvement of a simulation model based on measured data, and improvement of cooling/heating systems by simulation were conducted. In development of equipment and materials for the experimental house, R and D was made on component materials, connection method and installation method on houses for vacuum glass tube type solar collectors, and a solar collector was fabricated. R and D was also made on combination of absorbent and coolant, drop type coolant generator and performance experiment for absorption refrigerators, and a refrigerator was fabricated. The experimental house is 2-stored RC wall construction of 79.94m{sup 2} in building area, and 133.26m{sup 2} in total floor area. From the viewpoint of energy saving, outside insulation, double window, and insulating rain shutter door were adopted. The newly developed vacuum glass tube type solar collector is applicable to existing houses because of its higher flexibility. (NEDO)

  16. Solar House Obdach: experiences with a solar ground-coupled storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, M; Blum, P; Held, E; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    Within the framework of the Solar House Obdach-project, a system consisting of a ground heat exchanger, a low-temperature collector, a water-glycol/water heat pump and a low-temperature heating system was examined with regard to its suitability as only heat source of a house. With the design chosen (1 m/sup 2/ ground collector area and 0.3 m/sup 2/ low-temperature collector area per 80 W load), a seasonal performance factor of 2.83 could be obtained. About 40% of the low-temperature heat supplied to the heat pump were delivered directly or indirectly (by means of short-term storage in the ground) by the low-temperature collector, whereas about 60% came from the natural sources of energy of the ground (air heat, radiation, precipitation, ground water and slope water). The results obtained are used to verify and improve a computer model design program for ground collectors and ground-coupled storage systems which should help to optimize the design of solar plants, particularly under difficult conditions.

  17. Fundamentals of Solar Heating. Correspondence Course.

    Science.gov (United States)

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  18. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  19. Passive solar ranch house for the mass market

    Energy Technology Data Exchange (ETDEWEB)

    Albanes, M.N.

    1981-01-01

    To promote the building of passive solar housing in the Denver metropolitan area, a solar ranch style house was designed for a builder, Unique Homes, as part of a group of thirteen passive solar houses built for the mass market under SERI's Denver Metro Home Builders Program. The project, process of design, thermal performance analysis, cost and consumer/media response are reviewed. The final design was a direct gain, attached greenhouse system that used brick as interior mass.

  20. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply system for apartment houses. In the system research, comparative study was made on facility costs and operation costs per heat load between previous and solar cooling/heating and hot water supply systems for apartment houses. In the working design for apartment houses, various calculation necessary for start of work, and preparation of detail drawings and specifications were made. In development of solar collector, the test loop and collector were prepared using full-scale collector elements for medium-scale performance tests. In development of heat accumulator, inorganic hydrate was selected as heat storage material using latent heat for the confirmation test of basic physical properties. In development of solar cooling/heating equipment, the confirmation test of Rankine engine's performance, controllability and durability was made under real load. In addition, the refrigerator of nearly 20 tons of refrigeration driven by Rankine engine was fabricated, (NEDO)

  1. Prototype solar house. Study of the scientific evaluation and feasibility of a research and development project

    Science.gov (United States)

    Bundschuh, V.; Grueter, J. W.; Kleemann, M.; Melis, M.; Stein, H. J.; Wagner, H. J.; Dittrich, A.; Pohlmann, D.

    1982-08-01

    A preliminary study was undertaken before a large scale project for construction and survey of about a hundred solar houses was launched. The notion of solar house was defined and the use of solar energy (hot water preparation, heating of rooms, heating of swimming pool, or a combination of these possibilities) were examined. A coherent measuring program was set up. Advantages and inconveniences of the large scale project were reviewed. Production of hot water, evaluation of different concepts and different fabrications of solar systems, coverage of the different systems, conservation of energy, failure frequency and failures statistics, durability of the installation, investment maintenance and energy costs were retained as study parameters. Different solar hot water production systems and the heat counter used for measurements are described.

  2. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  3. Closed loop solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-01-01

    The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs

  4. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for new detached houses); 1994 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This report describes the fiscal 1974 result on the solar cooling/heating and hot water supply system. The report includes the system analysis result (collection of existing technical data, analysis of weather conditions, profitability assessment, concept design of the primary experimental house), and the research result on equipment and materials (view and evaluation of existing technologies, selective transparent and absorption materials, the primary prototype solar heat collector model, refrigerator). As the study result, the spheroidal experimental house was adopted. The solar heat utilization system is a central air-conditioning equipment composed of heating by hot water obtained from the solar heat collector, and cooling by absorption refrigerator. Heat collection efficiencies were measured for (1) stainless steel substrate collector, (2) copper substrate collector, and (3) glass pipe collector prepared as prototype collectors. (2) was higher in heat collection efficiency than (1). The efficiency of (3) hardly increased by rise in heat collection temperature due to vacuum structure and selective absorption membrane. Further measurement of such characteristics is necessary at higher temperatures. (NEDO)

  5. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  6. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for newly built private housing); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This report is for the results of fiscal 1979 on a solar cooling/heating and hot-water supply system for newly-built private housing. The research reports for fiscal 1974 to 1978 are as reported so far; for example, the research on energy-saving construction including thermal insulation method was used in an experimental housing completed in fiscal 1976. The solar heat collecting device was built in the experimental housing by increasing the scale of and utilizing the heat collecting device of a vacuum glass tube type on which research was done before fiscal 1975. The absorption refrigerating machine incorporated in the housing was of a forced circulation type which was high in temperature stability using the result of the research carried out until then. In fiscal 1979, as in fiscal 1978, one year residential experiment was conducted in which a family of a couple and two children lived in a house under an improved system as a result of a system variation and the like, and made an evaluation on the performance. Simultaneously, a control management system was developed in which a micro-computer was introduced for the purpose of improving the system performance, with the operation carried out under the micro-computer control. In addition, a fundamental experiment was also completed concerning a long-term heat accumulation by underground heat reserve. (NEDO)

  7. Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting

    Directory of Open Access Journals (Sweden)

    Atsushi Yona

    2014-08-01

    Full Text Available This paper proposes the re-planning operation method using Tabu Search for direct current (DC smart house with photovoltaic (PV, solar collector (SC, battery and heat pump system. The proposed method is based on solar radiation forecasting using reported weather data, Fuzzy theory and Recurrent Neural Network. Additionally, the re-planning operation method is proposed with consideration of solar radiation forecast error, battery and inverter losses. In this paper, it is assumed that the installation location for DC smart house is Okinawa, which is located in Southwest Japan. The validity of proposed method is confirmed by comparing the simulation results.

  8. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage...... of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it possible...

  9. Passive annual heat storage principles in earth sheltered housing, a supplementary energy saving system in residential housing

    Energy Technology Data Exchange (ETDEWEB)

    Anselm, Akubue Jideofor [Green Architecture Department, School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-07-01

    This paper looks through the many benefits of earth not only as a building element in its natural form but as a building mass, energy pack and spatial enclosure which characterized by location, unique physical terrain and climatic factors can be utilized in developing housing units that will provide the needed benefits of comfort alongside the seasons. Firstly the study identifies existing sunken earth houses in the North-west of China together with identifying the characters that formed the ideas behind the choice of going below the ground. Secondly, the study examines the pattern of heat exchange, heat gains and losses as to identify the principles that makes building in earth significant as an energy conservation system. The objective of this, is to relate the ideas of sunken earth home design with such principles as the passive annual heat storage systems (PAHS) in producing houses that will serve as units used to collect free solar heat all summer and cools passively while heating the earth around it and also keeping warm in winter by retrieving heat from the soil while utilizing the free solar heat stored throughout the summer as a year-round natural thermal resource. (author)

  10. Use of waste heat from a dairy for heating of a community house

    Energy Technology Data Exchange (ETDEWEB)

    Rehn, C

    1976-01-01

    In a dairy, a lot of cooling capacity is needed. This article describes how this waste heat can be used for heating a community house including a sport establishment and producing hot water for that house. Four different technical solutions are discussed; (1) floor heat, (2) heat transfer connected to the ventilation, (3) regenerative heat exchanger, and (4) use of heat pumps.

  11. Appropriate technology for solar energy system aiming water heating for human bath in houses of rural areas; Tecnologia apropriada para sistema de energia solar visando aquecimento de agua para o banho humano em moradias do meio rural

    Energy Technology Data Exchange (ETDEWEB)

    Rispoli, Italo Alberto Gatica [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo], e-mail: gatica@dglnet.com.br; Mariotoni, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico], e-mail: cam@fec.unicamp.br

    2004-07-01

    The Brazilian land receives a great amount of solar radiation all over the year, therefore, because both the culture and practical aspects, Brazilians use in a non-moderate way the electricity to boil the water for human bath in the rural homes, in the lower income residences even at part of the medium class homes. That happens due to the very low price of an electrical shower, about US$ 6,5. In fact, that way of heating water is largely used because, besides the very low electrical shower price, it is not necessary to install a complete hot water both hydraulic and electrical building systems, but just both single hydraulic pipes and electrical devices. On the other hands, at rural regions where the electricity does not achieve the rural people uses firewood in order to get hot water for human bath. At the rural places the use of electrical showers has meaning an increase in the electrical transformers powers, heavier electrical transmission rural lines, with greater prices and, at the urban zones, the use of electrical showers in the lower social classes has contributed to a more expressive electrical load at the nacional electrical system load peck, between 5:30 to 8:30 a.m. The public administration, mostly, does not take into account both social, economic and environmental costs in order to think about the electricity offer. The solar heating systems, generally used in Brazil, conserves the same reservoirs used in France at 1880. Therefore, this paper presents some technical subsidies applied to rural homes, even to lower income people's homes aiming to stimulate the Brazilian public authorities to make a public police to facilitate both the industrialization and dissemination of solar heating systems, appropriate to the rural area, with lower costs, compounded by good technology equipment, with guarantee of lasting and quality. (author)

  12. Building with integral solar-heat storage--Starkville, Mississippi

    Science.gov (United States)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  13. Research and demonstration facilities for energy conservation and solar heating in the home

    Science.gov (United States)

    Newman, J. O.; Godbey, L. C.; Davis, M. A.; Ezell, D. O.; Allen, W. H.

    1981-10-01

    The design, testing and evaluation of two prototype solar holes are discussed. The first prototype is a greenhouse-residence designed with 6-in. wall cavities (to increase insulation thickness), a 381 sq. ft. solar collector used primarily for space heating, and a greenhouse that was utilized as a solar collector for growing vegetables. The house does feature a domestic hot water preheating system and an electrical resistance back-up heating system. The second prototype is an earth-insulated house designed primarily to study the physical features of the house in relation to the soil around it and the thermal interaction between the soil and the house environment. This house features a high temperature air collector that is used for domestic water heating. A special effort was made to have adequate daylight in the solar-earth house. A special study was conducted on the geometric configuration of the rock storage and the methods of admitting air to the rock storage.

  14. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  15. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply systems for existing detached houses. The program for calculating heat collection rates was prepared by integrating peripheral conditions and every calculation step of heat collection rate, mean value, accumulated value and changes caused by disturbance. The cooling/heating load calculation program was also prepared for unsteady dynamic thermal analysis of houses. Another program was prepared for hot water supply load because of a large difference in life pattern. The profitability and energy conservation of 644 systems different in heat source, heat discharge, heat collection, heat storage, auxiliary heat source and equipment were evaluated by heat balance calculation program. Survey and study were also made on various heat engines such as heat pump, absorption refrigerator and Rankine cycle engine. Based on the survey result on existing technology for plane collectors, the optimum design method of collectors were established through various characteristic tests. Some kinds of suitable fusion latent heat type heat media were selected, and their operation stabilities were studied. (NEDO)

  16. Annual experimental results on heat and cool storage modes for natural energy autonomous house, HARBEMAN house; Shizen energy jiritsu house (HARBEMAN house) no chikunetsu chikurei mode no jissoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T; Fujino, T; Suzuki, M [Tohoku University, Sendai (Japan)

    1997-11-25

    Outlined herein is performance of the solar system, followed for a year, installed in a solar house (HARBEMAN HOUSE) built in 1996 in City of Sendai. The house is equipped, on the roof, with a 30.42m{sup 2} wide solar collector on the south and sky radiator on the north. They are connected to a heat-insulated tank (31m{sup 3}) installed underground, storing hot or cool water which carries energy for heating/air-conditioning and hot water. The solar system operates in a long-term hot or cool water storage mode. In the hot water storage mode, the solar collector is connected to the underground main tank, where pumped-up water heated by solar heat is stored to be supplied as hot water. Heat collected is low during the December-February period, and recovered in March. In the cool water storage mode, the radiator is connected to the underground main tank, where pumped-up water is cooled by radiation and stored to be supplied to a fan coil unit in each room for air-conditioning. The recorded lowest temperature of water in the tank is 5.1degC. No air-conditioning load is observed, on account of the unseasonal weather. 3 refs., 10 figs., 2 tabs.

  17. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  18. Long-term energy storage tanks for dwellings and solar house architecture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The design and installation of hot water storage tanks as accumulators of solar energy is presented. Solar house architecture which maximizes roof, solar collector energy absorption potential is then considered. Proposals for residential areas which include solar houses are made.

  19. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  20. Online short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    . Every hour the hourly heat load for each house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation, and wind speed. A computationally efficient recursive least squares scheme is used......This paper presents a method for forecasting the load for heating in a single-family house. Both space and hot tap water heating are forecasted. The forecasting model is built using data from sixteen houses in Sønderborg, Denmark, combined with local climate measurements and weather forecasts...... variations in the heat load signal (predominant only for some houses), peaks presumably from showers, shifts in resident behavior, and uncertainty of the weather forecasts for longer horizons, especially for the solar radiation....

  1. Simulation of a passive house coupled with a heat pump/organic Rankine cycle reversible unit

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Randaxhe, François

    2014-01-01

    This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible ...... presents a higher global COP because the heat produced on the roof can heat the storage directly.......This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible...... modes that need to be chosen optimally depending on the weather conditions, the heat demand and the temperature level of the storage. The ORC mode is activated, as long as the heat demand of the house is covered by the storage to produce electricity based upon the heat generated by the solar roof...

  2. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  3. The Modern Solar House: Architecture, Energy, and the Emergence of Environmentalism, 1938--1959

    Science.gov (United States)

    Barber, Daniel A.

    This dissertation describes the active discourse regarding solar house heating in American architectural, engineering, political, economic, and corporate contexts from the eve of World War II until the late 1950s. Interweaving these multiple narratives, the aim of the project is threefold: to document this vital discourse, to place it in the context of the history of architecture, and to trace through it the emergence of a techno-cultural environmentalism. Experimentation in the solar house relied on the principles of modern architecture for both energy efficiency and claims to cultural relevance. A passive "solar house principle" was developed in the late 30s in the suburban houses of George Fred Keck that involved open plans and flexible roof lines, and emphasized volumetric design. Spurred by wartime concern over energy resource depletion, architectural interest in solar heating also engaged an engineering discourse; in particular, an experimental program at the Massachusetts Institute of Technology led to four solar houses and a codification of its technological parameters. Attention to the MIT projects at the UN and in the Truman and Eisenhower administrations placed the solar house as a central node in an emergent network exploring the problems and possibilities of a renewable resource economy. Further experimentation elaborated on connections between this architecturalengineering discourse and the technical assistance regimes of development assistance; here by MIT researcher Maria Telkes, who also collaborated, at different junctures, with the architects Eleanor Raymond and Aladar Olgyay. The solar house discourse was further developed as a cultural project in the 1958 competition to design a solar heated residence, "Living With the Sun," which coalesced the diverse formal tendencies of midcentury modernism to promote the solar house as an innovation in both lifestyle and policy. Though the examples described are not successful as either technological

  4. House-internal heating systems; Husinterna vaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof; Wollerstrand, Janusz [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2005-07-01

    In this report the placement of the circulation-pump in of waterborne radiator systems, as well as their filling and deairation are investigated. The study was done by literature studies and interviews with consultants and companies active on the HVAC-market. It was concluded that different placements of the pump in relationship to the heat exchanger exist, and the arguments for the choice of placement are varying. The main explanation of the choice of placement is that it is based on experience/or by practical reasons. The most important factor influencing the placement of the pump found, was how the pump is situated in relation to the expansion-tank. To maintain pressure in the whole system the expansion-tank should be placed on the suction side of the pump without any intermediate pressure-dropping devices in between. This placement ensures overpressure in the whole radiator-system and reduces the risk of unwanted leak in of air. To avoid cavitation sufficient static pressure on the suction side of the pump is necessary. The pressure increases with the temperature, which must be taken into consideration if the pump is placed on the warm side of the heat-exchanger. From this point of view a placement in the return-pipe from the radiator-system is to be preferred. Before advices for HVAC-branch regarding placement of the circulation-pump in the heating systems can be implemented, it is of big importance to analyse and clearly specify the advantages and disadvantages of a certain placement of the pump. There is a need of directions to get house-internal systems to operate properly together with district heating system. This is especially important when older heating systems with burners and shunt valves are being connected. Filling and deairation of the radiator system is of great importance for the function of the system. A radiator-system with significant level of air remains is difficult to adjust and will not work properly. Air in the radiators leads to

  5. Proceedings of the General Assembly 2016 on solar heat

    International Nuclear Information System (INIS)

    Gibert, Francois; Porcheyre, Edwige; Mouvet, Celine; Humbert, Adrien; SEGUIS, Anne-Sophie; Manteau, Olivier; Roland, Joel; LAPLAGNE, Valerie; Chavagnac, Jean-Francois; Godin, Olivier; Long, Guy; Tamri, Laila; Parrens, Gael; Neveux, Guillaume; Fourmessol, Thomas; Cholin, Xavier; Mugnier, Daniel; Berthomieu, Nadine; Loyen, Richard; Benabdelkarim, Mohamed; Daclin, Julien; Dejonghe, Joseph; Bealu, Christophe; Alsafar, Thaer; Crozier, Benoit; Ramonet, Corinne; Meriau, Jean-Paul

    2016-10-01

    After an opening speech, a first set of contributions addressed the impact of the evolutions of building energetic regulations on the solar heat market for new buildings: towards positive energy and low carbon buildings with the Energy-Carbon experimentation; results of the RT2012 study on technical and economic solutions of solar hot water; opportunities and constraints of the integration of solar energy into projects. The second set addressed new opportunities in terms of technical innovations and services for connected thermal solar: a harmonised framework proposed by industries for individual equipment; returns on experience from industrials; impact of connected solar on the operator's profession. The third session discussed perspectives for the French sector: synthesis of a prospective study on the economic and social potential of the solar sector in France; a new MOOC on energy labelling of solar heating and water heaters. The fourth session presented some recent advances dealing with SOCOL for a collective, performing and sustainable production of solar heat: new SOCOL tools; a new design and sizing software; integration of the SOCOL quality approach in the 2017 Heat Fund. The fifth set of contributions addressed the issue of self-consumption and its possible dynamic impact on the production of solar electrons and calories: approach to burden management and reduction of CO_2 emissions; innovation at the service of photovoltaic performance by using phase-change materials; the example of the future House of the Ile-de-France in Paris. The last session addressed local dynamics noticed in relationship with the use of solar heat: the SOLTHERM plan in Wallonia; local initiatives in the farming sector; a large project by Lyon Habitat within the frame of an ADEME program (large installations). A closing speech proposes a synthesis on how to find growth again and reach the national ambitious objective for solar heat by 2023

  6. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  7. Solar heat and heat pump. What benefits?; Solarthermie und Waermepumpe. Was bringt's?

    Energy Technology Data Exchange (ETDEWEB)

    Droescher, Angela; Heinz, Andreas [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik; Gerardts, Bernhard [Solid GmbH, Graz (Austria)

    2013-11-08

    If solar heating and heat pumps work together, then usually in a single-family house. The fact that there is another way, shows a large solar heating system in Graz. Investigations show what potential there is in this type of system and where special attention is needed. [German] Wenn Solarwaerme und Waermepumpen zusammenarbeiten, dann meist im Einfamilienhaus. Dass es auch anders geht, zeigt eine Grossanlage bei Graz. Untersuchungen zeigen, welche Potenziale es bei Systemen dieser Art gibt und worauf besonders zu achten ist.

  8. Possible schemes for solar-powered air-conditioning in 2-storey terrace houses

    International Nuclear Information System (INIS)

    Chu, C.M.; Bono, A.; Prabhakar, A.

    2006-01-01

    Space cooling is required all year round in the tropics, and probably accounts for a considerable proportion of the cost of electricity. Solar radiation can be channeled into cooling by photovoltaic powered systems and through the relatively new adsorption cycle technology. Two-storey terrace housing appear to have the greatest potential of introducing solar-powered cooling to residential homes. There are two schemes to cool a two-storey terrace housing: 1) By spraying water down the roof a tank, circulated by a pump powered by PV panels on the roof or 2) By replacing the roof with solar hot water collectors and use adsorption cooling chillers to produce air-conditioning for the entire block of terrace houses. In scheme number 1, a preliminary, rough technical evaluation showed that it is possible to pump water to the roof to flow down as a thin film and cool the roof by evaporation to about 40 degree C from about 70 degree C if without water evaporation at the highest insolation rate of the day. Scheme number 2, which uses adsorption chilling technology, requires communal sharing of the air-conditioning facility. The effect of collecting solar heat using the roof is two fold: to absorb solar energy for producing hot water and reducing excess heat input to the house. Preliminary costing demonstrates that solar-powered air-conditioning is within reach of commercialisation, bearing in mind that bulk purchases will dramatically lower the price of a product

  9. Solar process heat is becoming sexy

    Energy Technology Data Exchange (ETDEWEB)

    Morhart, Alexander

    2011-07-01

    Linear concentrating solar collectors for solar medium-temperature process heat: an exotic niche market has turned into a wide range of offers for commercial and private customers - and there is no end in sight to the technical developments. (orig.)

  10. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  11. Development of an air heating system for single family housing

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gunner, Amalie; Nikolaisen, Christian Grønborg

    2017-01-01

    The initial objective of the project was to break with common thinking about Space heating and to document that air heating can be used as the sole source of heating in a single Family house. The basic idea is that the ventilation must be installed in any case and it may equally well form the heat...

  12. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  13. The solar house of CRESESB: seven years of success

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio; Souza, Hamilton Moss de, E-mail: marcoag@cepel.br

    2005-07-01

    The solar house is located in the facilities of CEPEL - Centro de Pesquisas de Energia Eletrica (Electric Power Research Centre) at Fundao Island, Rio de Janeiro, Brazil. It is powered by a stand-alone PV system and is operated by CRESESB - Centro de Referencia para Energia Solar e Eolica Sergio de Salvo Brito (Reference Centre for Solar and Wind Energy Sergio de Salvo Brito) as a demonstration centre. The solar house was built in 1997, and during seven years of operation it received about 9.000 visitors (up to middle 2004). The present paper shares some aspects of the experience gained with the solar house, including technical details of the systems installed, the experience in operation and maintenance, and the divulgation and training of personnel so far obtained. (author)

  14. Solar collectors and heat pump: Market review and preliminary simulation results

    International Nuclear Information System (INIS)

    Tepe, Rainer; Roennelid, Mats

    2002-01-01

    Heating systems that combine solar collectors and a heat pump available on the market in Sweden have been studied. A majority of the systems found combine the solar collectors with a ground source heat pump. The technology for combining the collectors and the heat pump does however vary considerably. In the most simple systems, the collectors heat the return water from the heat pump, i.e. the collectors are used for raising the temperature in the boreholes for the heat pump. In the advanced systems, the solar heat is used for tap water, space heating and for raising the temperature of the heat pump's evaporator. There exist only very few comparative evaluations of the contributions from solar collectors in heat pump systems, and there is a need for finding the potential for this technique. In the present study, results are reported from preliminary simulations of solar collectors and ground source heat pumps installed in one-family houses. Simulations are made for two heating loads: 8,650 and 16,500 kWh/year resp., and a hot water load of 3,000 kWh/year. The study shows that: the temperature of the borehole decreases when solar collectors are not used (about 1.2 deg C in three years): 8 m 2 glazed solar collectors used for hot water production can reduce the electricity consumption with up to 13%, with best results in the house with low heating load: 50 m 2 unglazed solar collectors coupled to the evaporator or the borehole can give reductions of up to 14%, largest reduction in the house with high heating load, where the heat extraction from the borehole is large: the unglazed collectors have the highest economic potential, and can be cost effective for houses with high heating load: the simulations do not include a thorough system optimization, better results can be expected from continued optimization work

  15. Solar district heating and seasonal heat storage - state of the art; Solare Nahwaerme und Saisonale Waermespeicherung - Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Pfeil, M.; Hahne, E. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Geschaeftsbereich Solarthermische Energietechnik; Lottner, V. [BEO Biologie, Energie Oekologie, Juelich (Germany); Schulz, M. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-02-01

    Solar energy technology becomes more and more important for space and water heating of residential buildings. Compared to small systems for single-family houses, the specific investment cost of big solar plants is lower and a higher contribution of solar energy can be achieved. In central solar heating plants with seasonal storage (CSHPSS), more than 50% of the total heat demand of residential areas can be covered by solar energy. The first pilot plants for CSHPSS are operating in Germany since 1996. The first results of the accompanying monitoring program show good agreement between calculated and actual solar contribution. (orig.) [Deutsch] Die Nutzung solarer Niedertemperaturwaerme zur Brauchwassererwaermung und zur Beheizung von Wohngebaeuden erfaehrt in Deutschland ein immer groesseres Interesse. Solare Grossanlagen haben gegenueber solaren Kleinanlagen den Vorteil, dass mit geringeren Investitions- und Waermekosten groessere Anlagenertraege erzielt werden koennen. In Verbindung mit saisonaler Waermespeicherung erreichen solare Grossanlagen Deckungsanteile von 50% und darueber am Gesamtwaermebedarf von Wohnsiedlungen. Die ersten Pilotanlagen zur solaren Nahwaerme mit saisonalem Waermespeicher gingen 1996 in Betrieb und werden derzeit detailliert vermessen. Erste Ergebnisse zeigen, dass die vorausberechneten Werte fuer den Jahresenergieertrag erreicht werden koennen. (orig.)

  16. New solar components studied in an experimental solar house in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Trimboli, A [IBESA (ES); Cusido, J A; Puigdomenech, J [Escola Tecnica Superior d' Arquitectura del Valles, Barcelona (ES)

    1990-09-01

    A prototype experimental solar building has been built in the School of Architecture of Valles, Spain. Its final design takes advantage of beneficial climatic effects in order to maintain indoor thermal comfort and to lower auxiliary energy usage. The building has 100 sq m of usable surface, 55 sq m of which are habitable. The remaining area is a greenhouse which is intended for experimental hydroponic cultivation. One of the main features is a thermal regulation system named the ''thermal shield''. This device, placed on the South facade of the building, is composed of a series of plastic translucent layers. Fan-forced air passes through the outer layer and circulates through the special recticular structure of the building to provide daytime heating. A heat absorbing fluid circulating through the innermost layer transfers heat via an exchanger to a storage tank of eutectic salts. The diurnal stored energy can be retrieved to heat the house at night. The thermal shield, which is computer controlled, can also be used to reduce solar gains in summer. (author).

  17. Solar heating action plan; Solvarme handlingsplan

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jan Erik

    2011-10-15

    This solar action plan should be seen as a follow-up to the Danish Energy Agency's solar heating strategy from 2007, which showed great potential and opportunities for exploitation and use of solar heat in Denmark. In relation to the strategy from 2007, this action plan adjusted the distribution of solar heat from district heating plants and individual plants, but it is still the objective of this action plan to achieve the strategy's overall goal for 2030. With the implementation of the Action Plan in early 2012, it is estimated that in 2030 there will be about. 10 million m2 of solar collectors in operation, 8 million m2 for district heating and 2 million m2 for individual heating, equivalent to an installed capacity totaling 7 GW. The budget for actions in the Action Plan is about 80 million DKK annually over the next 5 years to initiate and ensure this development. (LN)

  18. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  19. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  20. Solar district heating and cooling: A review

    DEFF Research Database (Denmark)

    Perez-Mora, Nicolas; Bava, Federico; Andersen, Martin

    2018-01-01

    and decentralized solar district heating as well as block heating. For the different technologies, the paper describes commonly adopted control strategies, system configurations, types of installation, and integration. Real‐world examples are also given to provide a more detailed insight into how solar thermal...... technology can be integrated with district heating. Solar thermal technology combined with thermally driven chillers to provide cooling for cooling networks is also included in this paper. In order for a technology to spread successfully, not only technical but also economic issues need to be tackled. Hence......Both district heating and solar collector systems have been known and implemented for many years. However, the combination of the two, with solar collectors supplying heat to the district heating network, is relatively new, and no comprehensive review of scientific publications on this topic could...

  1. Study on indoor pollution by microbes grown in a solar house in Tokyo; Tokyo no solar house ni okeru kabi no jittai chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Aihara, M; Nakanishi, R; Ito, H [Ochanomizu University, Tokyo (Japan)

    1997-11-25

    Indoor pollution by microbes grown in a solar house is studied. It is a reinforced concrete building, having a total floor area of 260m{sup 2}, equipped with a flat type solar collector on the roof and a lighting window on the north, the former having an area of 16m{sup 2} and slanted at 60deg and the latter slanted at 60deg. It is also provided with a semi-underground room, to utilize heat capacity of soil for coolness in summer and warmness in winter. It provides a residential space throughout the year, with no artificial heating or air-conditioning system, naturally ventilated with air taken into the underground room and released out of a triangular shape on the roof. The building is also passively conditioned, being totally insulated with expanded polystyrene. Energy saving is the most important consideration for the solar house, slightly forcing the residents to exercise patience. For this reason, the solar house often smells musty, and pollution with microbes is quantitatively investigated. Microbes evolve more in the underground room than in the space above groun, because of higher humidity in the former. Accelerated ventilation or slight artificial air-conditioning will solve the trouble. 1 refs., 7 figs.

  2. ANALYSIS OF THE EFFECTS OF THE ROOFING DESIGN ON HEAT STRESS IN DAIRY COW HOUSING

    Directory of Open Access Journals (Sweden)

    Paolo Liberati

    2008-12-01

    Full Text Available A simulation model determining the heat flow exchange between housed animals and the roofing was developed considering various relevant factors: constructive materials, slope, height, orientation, latitude, external air temperature, solar load, animal position. Results show that the most important factor to reduce heat load is the insulation. For non-insulated roofing the slope and the orientation are the most relevant factors. Considering the total exchanged energy, the non insulated roof has a good nocturnal global behaviour.

  3. ANALYSIS OF THE EFFECTS OF THE ROOFING DESIGN ON HEAT STRESS IN DAIRY COW HOUSING

    OpenAIRE

    Paolo Liberati

    2008-01-01

    A simulation model determining the heat flow exchange between housed animals and the roofing was developed considering various relevant factors: constructive materials, slope, height, orientation, latitude, external air temperature, solar load, animal position. Results show that the most important factor to reduce heat load is the insulation. For non-insulated roofing the slope and the orientation are the most relevant factors. Considering the total exchanged energy, the non insulated roof ha...

  4. Energy Analysis of a Student-Designed Solar House

    Directory of Open Access Journals (Sweden)

    Samantha Wermager

    2013-12-01

    Full Text Available This paper presents the findings from an undergraduate research project concerning the energy efficiency, consumption, and generation of a 1000 ft2 (92.9 m2 solar house. The results were compared to a home of similar size and layout, built using traditional construction methods. The solar house was modeled after the Chameleon House: Missouri University of Science and Technology’s 2013 entry in the U.S. Department of Energy Solar Decathlon. The efficiency of the design was analyzed using Energy-10 Version 1.8 software. For this comparison, a fictional American couple was created and a breakdown of their energy-use habits was recorded to accurately depict the magnitude of energy consumption. A 71% energy savings was forecasted using the Energy-10 software through the incorporation of various energy-conserving strategies in the home’s design. In addition, if a 9.1 kW photovoltaic array is also installed on a home of this size, it is possible to fully offset the energy consumption of the home. The forecasted energy usage and production detailed in this report shall be used for analyzing the integrity of the design of the Chameleon House as well as future solar houses constructed by the Missouri S&T Solar House Team.

  5. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  6. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  7. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  8. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  9. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated....... The model calculates heating demand, room temperatures, and thermal comfort parameters for a person in the room. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer...... to the room air and between the room surfaces. The simulation model has been used to calculate heating demand and room temperature in a typical well insulated Danish single-family house with a heating demand of approximately 6000 kWh per year, for a 130 m² house. Two different types of floor heating systems...

  10. Cheap type solar bioclimatic individual houses for residential areas

    Directory of Open Access Journals (Sweden)

    Mihailescu Teofil

    2016-01-01

    Full Text Available In the Romanian architectural practice for individual houses in residential areas, designing the architectural object in order to function together with the nature is neglected in the majority of the situations. This happens despite of a great variety of the solar bioclimatic solutions materialized in the traditional houses of all the Romanian geographical regions in a history of over 2000 years of traditional architecture. Unfortunately, in the local real estate realities, other choices are preferred in instead those of the solar bioclimatic architecture. The approach starts with a historical approach, analyzing several examples of traditional houses from all the regions of Romania, in order to identify the traditional bioclimatic solutions used to better adapt to the environment. This constitutes the source of inspiration for the modern cheap type solar bioclimatic houses presented. But a way of thinking should be changed for it, with the help of the Romanian state transformed in financial and legislative realities. These cheap type solar bioclimatic individual houses are destined for the middle class families and involve minimum costs for building and living, creating the best premises to efficiently use one or all of the complementary systems for producing, storage and/or transforming the energy from the environment (using solar, wind, water and/or earth energy.

  11. Emerging large-scale solar heating applications

    International Nuclear Information System (INIS)

    Wong, W.P.; McClung, J.L.

    2009-01-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  12. Emerging large-scale solar heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.P.; McClung, J.L. [Science Applications International Corporation (SAIC Canada), Ottawa, Ontario (Canada)

    2009-07-01

    Currently the market for solar heating applications in Canada is dominated by outdoor swimming pool heating, make-up air pre-heating and domestic water heating in homes, commercial and institutional buildings. All of these involve relatively small systems, except for a few air pre-heating systems on very large buildings. Together these applications make up well over 90% of the solar thermal collectors installed in Canada during 2007. These three applications, along with the recent re-emergence of large-scale concentrated solar thermal for generating electricity, also dominate the world markets. This paper examines some emerging markets for large scale solar heating applications, with a focus on the Canadian climate and market. (author)

  13. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    Science.gov (United States)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  14. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-27

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for existing detached houses. In system analysis, various evaluation items of the primary experimental house to be constructed and the titled thermal system were determined, and its measurement/control online program was developed. In the R and D on equipment and materials, the performance of the vacuum collector prepared in last fiscal year was tested, and based on its result and study on optimum structure, the new prototype vacuum collector was fabricated. In the study on heat transfer and heat storage system equipment, the medium-scale latent heat type heat storage tank (1 x 10{sup 4}kcal in thermal capacity, 8 x 10{sup 3}kcal/h in thermal output) using ammonium alum was prepared. For a preventive mechanism against supercooling, reconsideration of structure of a crystal nucleus formation plate was necessary. In the study on refrigerator driven by Rankine cycle engine, the prototype compressor more than 3,000kcal/h in refrigeration capacity was fabricated. Construction of the experimental house and trial operation of the cooling/heating system were promoted. (NEDO)

  15. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  16. Simulation prototyping of an experimental solar house

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, A.; Baur, S. [Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1401 Pine Street, Rolla, MO 65409 (United States); Grantham, K. [Department of Engineering Management, Missouri University of Science and Technology, 600 W. 14th Street, Rolla, MO 65409 (United States)

    2010-06-15

    This paper presents a comparative analysis between an energy simulation model and an actual solar home. The case study used was the Team Missouri's 2009 Solar Decathlon entry. The home was evaluated using the predicted data developed with the use of Energy-10 Version 1.8. The software simulates the energy use performance of building strategies ranging from building envelope and system efficiency options. The performance data used was collected during the 2009 Solar Decathlon competition. Results comparing energy efficient strategies, consumption and generation are explored with future implications discussed. (authors)

  17. Solar heating - a major source of renewable energy

    International Nuclear Information System (INIS)

    Bosselaar, L.

    2001-01-01

    Actions that can be taken to increase the uptake of technology for solar water heaters and solar buildings are discussed. An overview of existing technology covers solar water heating, solar buildings, space heating, solar cooling, solar drying, solar desalination. Solar water heating, solar buildings and solar crop drying are discussed individually under the sub-headings of (a) the technology; (b) the market; (c) potential; (d) economics and (e) market acceleration strategies. Other subjects discussed are market acceleration, main opportunities, R and D needs and conclusions. The IEA solar heating and solar cooling programme is described

  18. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  19. The solarisation of welfare housing: Is passive solar design a boon to those who don`t choose it?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. [Australian National Univ., Canberra, ACT (Australia)

    1994-12-31

    The solarized housing built for what is now the ACT Housing Trust in Canberra in the early 1980`s is revisited to see what lessons can be learned. Several hundred solarized (solar efficient) houses were built by the Federal Government and were the first `passive solar` public housing in Australia. Some houses, due to a combination of slope and expansive soil foundations, were constructed with foil-insulated suspended timber floors instead of concrete slabs and thus had negligible effective thermal mass irrespective of the floor finish chosen by the tenant. It is apparent that many occupants of the early solarized dwellings revisited are not getting the full measure of energy savings and enhanced comfort that the designs allow. In several cases, occupant action in building out their own solar access indicates a low or possible even negative value is placed on their solar heating capabilities. Alternatively, it may indicate that the conceptual extension of living spaces onto a northerly patio, an integral part of many of the original designs, is so attractive as to tempt the owners into extending the roof in translucent material to protect the pleasurable times they have there. This post-occupancy evaluation suggests that acceptance of solar housing should be more closely examined to ensure that future low energy designs fully accommodate the preferred living patterns and needs of their target audience and that further attempts at occupant education are effective in reducing actual home energy consumption. (author). photos. 2 refs.

  20. EIR solar heating plant OASE

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1982-03-01

    For a corrosion surveillance program of the EIR solar heating unit, OASE, the coolant of the flat collector circuit is controlled and material samples mounted in a circuit by-pass are tested periodically. The results of the first year of surveillance have been evaluated and interpreted. Furthermore water-ethyleneglycol mixtures without and with corrosion inhibiting additives have been tested. Only the ethyleneglycol and inhibitor contents may be controlled by means of pH and electrical conductivity tests. The metal content in the coolant as a corrosion indicator is not recorded by pH or electrical conductivity readings - they must be determined by chemical analysis. Samples of different materials used in the coolant circuit, mounted in a test by-pass of the circuit and taken out every year for testing give information on the corrosion behaviour of these materials under service conditions. Corrosion can be prevented or reduced by adding inhibitors to the coolant. The optimum inhibitor composition for the concerned material combinations and for the coolant must be determined in laboratory tests. The inhibitor composition used in the flat collector circuit proved not to be the optimum: corrosion on the aluminium of the rollbond absorber plate was not prevented. (Auth.)

  1. Short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a method for forecasting the load for space heating in a single-family house. The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark, combined with local climate measurements and weather forecasts. Every hour the hourly heat load for each...... house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation and wind speed. A computationally efficient recursive least squares scheme is used. The models are optimized to fit the individual...... noise and that practically all correlation to the climate variables are removed. Furthermore, the results show that the forecasting errors mainly are related to: unpredictable high frequency variations in the heat load signal (predominant only for some houses), shifts in resident behavior patterns...

  2. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  3. Solar heating and employment in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Victor, P A

    1978-01-01

    If solar heating technology is to be introduced into sections of Canada as a way to alleviate unemployment problems and stimulate the manufacturing sector, realistic expectations must be grounded in better estimates of solar energy's potential than were made by early nuclear power enthusiasts. A study by Middleton Associates identified a number of factors affecting employment. These include implementation rates, choice of technologies, industry size, government involvement, location, and the share of solar heating relative to other heating sources. An employment simulation model using available technologies as inputs suggests that solar heating is feasible on the basis of both energy source and employment strategy. Model results are favorable for direct and indirect employment, while displacement effects on employment in conventional fuel industries are minor. Direct employment is affected more by implementation rates than by variations in the amount of imported equipment.

  4. Solar pond for heating anaerobic digesters

    International Nuclear Information System (INIS)

    Song Kehui; Li Shensheng

    1991-10-01

    A theoretical analysis and numerical results calculated for solar pond heating anaerobic digesters in Beijing area in China are presented. The effect of temperature rise is evident and rather steady. 3 refs, 1 fig., 1 tab

  5. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This report describes the fiscal 1974 R and D result on solar cooling/heating and hot water supply systems for apartment houses. In system analysis, the system plan was selected through basic data survey, modeling by combining some kinds of such systems and energy flow calculation. On solar heat collector, theoretical analysis was made on a stationary plane collector, and study was made on cover glass material and absorption surface performances. On Rankine's engine, studies on advanced selective absorption film, transmissive film, prevention of heat radiation and converging collector were necessary. As solar heat driving refrigerators, absorptive one and Rankine's one were promising. As heat media for refrigerators, R-11 and 113, and R-114 and 11 were suitable for turbo one and displacement one, respectively. Since a displacement compressor is featured by high-efficiency lower-speed operation than that of turbo one without any constraint, its direct connection with a motor or generator is possible. Screw compressor belonging to displacement one was promising. Rotary displacement one was also promising in a small-capacity range within 20-50RT. (NEDO)

  6. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for existing private house); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-05-31

    The following technologies were developed for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for an existing private house economically by solar energy: (1) development of equipment constituting solar cooling/heating and hot-water supply system, and (2) development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. The results of the research were as follows. A latent heat type heat storage tank was developed in a small low-loss type in which ammonium alum was selected for a high temperature heat storage tank and in which NaCH{sub 3}COO(center dot)3H{sub 2}O were selected for a combination latent heat/cold water heat storage tank. A refrigerator was developed driven by a small Rankine cycle engine of a result coefficient of 0.47. A flat plate type heat collecting device was developed in a type having a BrNi selective absorbing film and materials of copper tube, aluminum plate and double glass. A vacuum heat collecting device was developed in a high efficient type with the outside dimension of {phi} (diameter) 70 x 1,270 mm, selective absorbing film BrNi, and a degree of vacuum of 10{sup -3}Torr. A heat receiving/releasing storm shutter was developed in a type using a latent heat storing material of paraffin wax. A heat absorbing/insulating outside wall panel was developed using FRP and aluminum as the materials. The system analysis also achieved success. (NEDO)

  7. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  8. Solar heat-pipe wick modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C.E.

    1999-07-01

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimental work, the author has demonstrated that a heat pipe receiver can significantly improve system performance over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement, yet it can more than double the performance of the wick. In this study, the author developed a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

  9. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  10. A Review of Heat Transfer in Terraced Houses of Tropical Climate

    Directory of Open Access Journals (Sweden)

    Azzmi Norazura Mizal

    2014-01-01

    Full Text Available Heat is the process of energy circulation and replacement of air from hot to cold. In tropical climates, more heat is received because of the location of Malaysia of the equatorial line. Excessive heat in buildings causes discomfort to the occupants in tropical climate. Tropical rainforest climate receives higher solar radiation and terrestrial radiation reaching the building envelopes contributes to this problem. The design of the building should be more concern on reducing this heat. This paper provides a review of heat contribution in a terraced house indoor environment for tropical climate. A good comfortable home is part of the sustainable development agenda to improve the quality of life. Terraced houses are the most living quarters in mass living scheme for urban areas. The incoming solar energy from the sun into the building surface cannot be changed, therefore a consideration of passive building design need to be applied in terraced house design. Data collection gathered from this literature survey will assist to identify problems of discomfort occupant. This strategy would assist in improving the building industry in promoting sustainable development in Malaysia.

  11. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  12. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  13. Energy retrofit via Social Housing: a proposal from Solar Decathlon

    Directory of Open Access Journals (Sweden)

    Chiara Tonelli

    2012-10-01

    Full Text Available Solar Decathlon is an annual university challenge where nearly zeroenergy housing prototypes enter in international competition, through a series of ten tests. The contest aims for superior energy performance, high standards of interior comfort, architectural aesthetics, positive electrical balances, industrialisation, and contained costs and feasibility as a marketable proposal. Seven editions of the Solar Decathlon have been held, with a total of 140 competing proposals both realized and placed on the market, representing a notable pool of experimental research to be studied and evaluated for applications in social housing. After a consideration of the competition features, the article describes the prototype presented by City College of New York at Solar Decathlon 2011, Washington DC, as a proposal of an energy retrofit suitable for many urban buildings with flat roofs.

  14. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  15. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  16. Combined system of solar heating and cooling using heat pump

    International Nuclear Information System (INIS)

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  17. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.; Lysen, E.H.; van Egmond, S.; van Sark, W.G.J.H.M.

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  18. Solar-Heated Office Building -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    Solar heating system designed to supply 87 percent of space heating and 100 percent of potable hot-water needs of large office building in Dallas, Texas. Unique feature of array serves as roofing over office lobby and gives building attractive triangular appearance. Report includes basic system drawings, test data, operating procedures, and maintenance instructions.

  19. Workshop - Solar cells and daylight. Solar cell house. House building with integrated solar cell systems; Workshop - Solceller og dagslys. Solcellehus. Boligbyggeri med integrerede solcelleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Mio; Hansen, Ellen Kathrine

    2005-04-15

    The workshop 'Solar cells and daylight' at Aarhus School of Architecture aimed at studying and developing architectural potentials of integrating solar cell systems in building components for future house building. The aim of the process was to stress that technical conditions such as energy technological component design might work as central points of support in the future shaping and organisation of qualitative and functional design of houses. (BA)

  20. Self-adjusting house-heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, O; Ott, M

    1983-01-01

    Only small expenditure in terms of hard- and software is needed for the heating-control system described here to keep the house-room temperature in day- and night (reduced temperature)-operation precisely at the desired degree C. No control adjustment is needed as the computer - in this case an EMUF-model - adapts itself to changing conditions like type of house, weather conditions etc. Perfect control and good control dynamic lead to considerable savings of energy.

  1. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  2. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  3. SOLTECH 92 proceedings: Solar Process Heat Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  4. Fiscal 1976 Sunshine Project result report (Drawings). R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho zumenshu. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Working design was made on an apartment house for R and D on solar cooling/heating and hot water supply system, and its drawings were prepared. The design was made on the experimental medium-rise square pyramid apartment house (3- storied, 28 dwelling units, RC structure, 1,566.63m{sup 2} in building area, 2,309.05m{sup 2} in total floor area). The house was equipped with normal high-voltage receiving panel, indoor cubicle of 300kVA, common antenna TV, telephone piping, door chime, direct water supply system with individual meters, LPG gas piping with individual meters, central hot water supply system with individual meters, and central cooling/heating system with individual fan coil units. The exterior of the house was finished with asphalt-waterproofing normal concrete-finished roofs of 1/50 in gradient, epoxy system resin-coated exposed concrete exterior walls, Al sash slide pair-glass window and alumite-finished Al door openings, and foamed polystyrene insulation plates (60mm, 50mm and 50mm thick for roofs, floors and walls, respectively). (NEDO)

  5. Renewable energy for passive house heating. Part 1. Building description

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics

    2003-12-01

    A passive house is a cost-efficient building that can manage throughout the heating period, due to its specific construction design, with more than 10 times less heat energy than the same building designed to standards presently applicable across Europe. Its extended thermal insulation and enhanced air-tightness removes the need for temperatures higher than 50 {sup o}C. This makes renewable energy sources particularly suitable for heating, cooling and domestic hot water production. Modeling of renewable energy usage for space heating requires as a preliminary stage the detailed description of the building structure, of the HVAC equipment and of the internal heat sources. This paper shows the main data used to model the thermal behavior of a passive house. Details about Pirmasens Passive House (Rhineland Palatinate, Germany) are given, as for example, the internal heat sources, including electric appliances, heat and humidity released by human bodies, thermal internal facilities as hot and cold water pipes. All these are quantified by using statistically derived data. A detailed time schedule for a standard German family with two adults and two children was prepared. It takes into account the national celebrations, vacation and weekends among others. (Author)

  6. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  7. Performance evaluation of a state-of-the-art solar air-heating system with auxiliary heat pump

    Science.gov (United States)

    1980-01-01

    The system in Solar House 2 consists of 57.9 sq. m. of Solaron Series 300 Collectors, 10.3 cu. m. of pebble bed storage, domestic water preheating capability and a Carrier air-to-air heat pump as an auxiliary heater. Although the control subsystem was specially constructed to facilitate experimental changes and data reduction, the balance of the solar system was assembled with off-the-shelf components. Since all components of the system are commercially available the system is considered to be a state of the art solar air-heating system. The system design is one that is recommended for residential and small office buildings.

  8. Wave heating of the solar atmosphere

    Science.gov (United States)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  9. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  10. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  11. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model was evaluated. Comparisons of measured and calculated fuel consumptions showed a good degree of similarity. With the boiler model...... gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this paper....

  12. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated......In this paper the realistic behaviour and efficiency of heating systems were analysed, based on long term monitoring projects. Based on the measurements a boiler model used to calculate the boiler efficiency on a monthly basis was evaluated. Comparisons of measured and calculated fuel consumptions...

  13. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  14. Three story residence with solar heat--Manchester, New Hampshire

    Science.gov (United States)

    1981-01-01

    When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.

  15. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  16. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  17. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2016-01-01

    Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.

  18. Solar heat gain through vertical cylindrical glass

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-10-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  19. Solar heat gain through vertical cylindrical glass

    International Nuclear Information System (INIS)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F.

    1999-01-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  20. Solar heat gain through vertical cylindrical glass

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-07-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  1. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zheng, Maoyu; Zhang, Wenyong; Zhang, Shu; Yang, Tao [School of Municipal and Environmental Engineering, Harbin Institute of Technology, NO 202 Haihe Road, Harbin, Hei Longjiang 150090 (China)

    2010-11-15

    This paper presents the experimental study of a solar-assisted ground-coupled heat pump system (SAGCHPS) with solar seasonal thermal storage installed in a detached house in Harbin. The solar seasonal thermal storage was conducted throughout the non-heating seasons. In summer, the soil was used as the heat sink to cool the building directly. In winter, the solar energy was used as a priority, and the building was heated by a ground-coupled heat pump (GCHP) and solar collectors alternately. The results show that the system can meet the heating-cooling energy needs of the building. In the heating mode, the heat directly supplied by solar collectors accounted for 49.7% of the total heating output, and the average coefficient of performance (COP) of the heat pump and the system were 4.29 and 6.55, respectively. In the cooling mode, the COP of the system reached 21.35, as the heat pump was not necessary to be started. After a year of operation, the heat extracted from the soil by the heat pump accounted for 75.5% of the heat stored by solar seasonal thermal storage. The excess heat raised the soil temperature to a higher level, which was favorable for increasing the COP of the heat pump. (author)

  2. A review of large-scale solar heating systems in Europe

    International Nuclear Information System (INIS)

    Fisch, M.N.; Guigas, M.; Dalenback, J.O.

    1998-01-01

    Large-scale solar applications benefit from the effect of scale. Compared to small solar domestic hot water (DHW) systems for single-family houses, the solar heat cost can be cut at least in third. The most interesting projects for replacing fossil fuels and the reduction of CO 2 -emissions are solar systems with seasonal storage in combination with gas or biomass boilers. In the framework of the EU-APAS project Large-scale Solar Heating Systems, thirteen existing plants in six European countries have been evaluated. lie yearly solar gains of the systems are between 300 and 550 kWh per m 2 collector area. The investment cost of solar plants with short-term storage varies from 300 up to 600 ECU per m 2 . Systems with seasonal storage show investment costs twice as high. Results of studies concerning the market potential for solar heating plants, taking new collector concepts and industrial production into account, are presented. Site specific studies and predesign of large-scale solar heating plants in six European countries for housing developments show a 50% cost reduction compared to existing projects. The cost-benefit-ratio for the planned systems with long-term storage is between 0.7 and 1.5 ECU per kWh per year. (author)

  3. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  4. Balancing of solar heating options

    NARCIS (Netherlands)

    Veltkamp, W.B.; van Koppen, C.W.J.; Ouden, den C.

    1984-01-01

    In the field of energy conservation many options are presently competing. This study aims at providing more rational criteria for selection between these options.The options considered are; insulation of the walls, regeneration of the heat in the waste air, double glazing, attached sunspace at the

  5. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  6. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present ...

  7. Central solar heating plants with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, D; Hadorn, J C; Van Gilst, J; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    On May 9, 1979, the Federal Department for Buildings released instructions concerning the use of alternative energies. The federal energy policy is to be as much as possible independent on oil imports. The canton Fribourg decided to equip the new maintenance and service center for the national high-road N12, with alternative energy, resources, and to apply new concepts with respect to passive and active solar energy. The project uses active solar energy with an earth-storage and heat pump. A conventional oil-heating system provides energy for peak-loads and can be operated in stand-by. A delay in the construction of the earth storage sub system was requested because it was intended to optimize the system with respect to the solar sub system, and heat pump sub system. The design work was done by SORANE which also is the coordinator for Switzerland in the I.E.A. Task VII. However, the preplanning of the project started in 1978 before the I.E.A. Task VII started. As a consequence, many design parameters were determined before 1980. The optimization of the solar collector, heat-pump etc. sub system was performed by a simulation approach developed by SORANE. The Vaulruz service center has been commissioned during the winter 1981/82.

  8. Solar Heating Considerations for Green Schools

    Science.gov (United States)

    Kelley, Brian; Fiedler, Lon

    2012-01-01

    As energy costs continue to rise, many schools and universities are considering energy-saving solutions, including solar heating options, to lower costs and to attract students and staff that support environmentally friendly practices. However, administrators and facility engineers should take several issues into account before pursuing a solar…

  9. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her

    2017-01-01

    was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  10. The Marstal Central Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Jochen, Dahm

    1999-01-01

    The central solar heating plant in Marstal is running since 1996 and has been monitored since. The resulting data from the plant is analysed and the plant performance evaluated. A TRNSYS-model (computersimulation) id prepared and validated based on the measured data from the plant. Acceptable good...

  11. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  12. Active solar heating industry development study

    International Nuclear Information System (INIS)

    1995-01-01

    Despite the fact that solar water heating systems are technologically viable and commercially available, this Energy Technology Support Unit report shows that there is no established market in the United Kingdom. The Solar Trade Association (STA) has undertaken an Active Solar Heating Industry Development Study which is reported here. The data is derived from a questionnaire survey completed by companies, organizations and individuals operating within the industry. Information was also gathered from utility companies, and STAs elsewhere in Europe. Barriers which need to be overcome include lack of public awareness, especially in the construction industry, lack of capital investment and other financial disincentives, little or no government support, and lack of organization and quality monitoring and assurance within the industry itself. (UK)

  13. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  14. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  15. Scout house in Koeniz - Refurbishment of the heating system; Pfadiheim Weiermatt, Sanierung Waermeversorgung - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, A. [Neuenschwander - Neutair AG, Berne (Switzerland); Jenni, H. [Heimverein Falkenstein, Koeniz (Switzerland)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project carried out in Koeniz, Switzerland. The report examines how the energy situation at the local scout house was improved. The work included the refurbishment of the heating system using solar collectors, intelligently controlled heat pumps, a photovoltaics installation and even solar-powered street lighting. The project, which received a substantial echo from the general public, is described. The scouts were directly involved in the project and, in part, in the construction work. This, according to the authors, enhanced the educational aspect of the project. The report presents details on the various installations and is illustrated with schematics and photos. Also, the results of monitoring and measurements made are presented.

  16. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  17. Application of Breathing Architectural Members to the Natural Ventilation of a Passive Solar House

    Directory of Open Access Journals (Sweden)

    Kyung-Soon Park

    2016-03-01

    Full Text Available The efficient operation of a passive solar house requires an efficient ventilation system to prevent the loss of energy and provide the required ventilation rates. This paper proposes the use of “breathing architectural members” (BAMs as passive natural ventilation devices to achieve much improved ventilation and insulation performance compared to mechanical ventilation. Considering the importance of evaluating the ventilation and insulation performances of the members, we also propose numerical models for predicting the heat and air movements afforded by the members. The numerical model was validated by comparison with experimental results. The effectiveness of the BAMs was also verified by installation in houses located in an area with warm climate. For this purpose, chamber experiments were performed using samples of the BAMs, as well as numerical simulations to assess natural ventilation and heat load. The main findings of the study are as follows: (1 the one-dimensional chamber experiments confirmed the validity of the numerical models for predicting the heat and air movements afforded by the BAMs. Comparison of the experimental and calculated values for the temperature of air that flowed into the room from outside revealed a difference of less than 5%; (2 observations of the case studies in which BAMs were installed in the ceilings and exterior walls of Tokyo model houses revealed good annual ventilation and energy-saving effects. When BAMs with an opening area per unit area of A = 0.002 m2/m2 were applied to three surfaces, the required ventilation rate was 0.5 ACH (air changes per hour, and this was achieved consistently. Compared to a house with general insulation and conventional mechanical ventilation, heating load was reduced by 15.3%–40.2% depending on the BAM installation points and the differing areas of the house models.

  18. Buying a house with solar cells. Survey among subscribers and buyers of newly built houses in Amsterdam, Netherlands

    International Nuclear Information System (INIS)

    Van Mierlo, B.; Sprengers, M.

    1995-12-01

    In a new housing estate in Amsterdam in 1995 the regional energy utility (EBA) has integrated a photovoltaic (PV) system (250 kWp) into 63 houses out of 245 houses. The parts of these owner-occupied houses with PV panels are not owned by the occupants. In order to determine which are the motives to buy solar houses and in order to analyze changes in their attitudes questionnaires were sent to potential occupants twice. First to the people who registered for the new housing project (subscribers), and second to the people who bought one of the 245 houses either with or without PV (buyers). The overall conclusion is that PV does not play an important role in the decision making process when buying a new house. It is recommended to study differences in PV preferences and opinions a few years after the buyers have moved to their new houses. 10 figs., 17 tabs., 9 refs., 3 appendices

  19. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  20. Solar retrofitting in social housing: a case study in Savona

    Directory of Open Access Journals (Sweden)

    Andrea Giachetta

    2012-10-01

    Full Text Available In relation to the social Housing’s theme, sustainable requalification interventions on the building heritage in the urban fringes dating back to the WWII postwar play an important role as those are characterized by buildings which offer poor energy performances. These interventions are potentially very effective, although at the same time they raise implementation and management issues, with which it is fundamental to confront, with a view to pursue serious housing and social policies. With this object in view, the introduction of a recently completed intervention in a social housing borough in Savona, also through the use of passive solar systems, offers suggestions and hints for reflection, due to the repeatibility of some adopted solutions and design principles.

  1. Make the heat hotter. - marketing district heating to households in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Sernhed, Kerstin; Pyrko, Jurek

    2008-09-15

    For district heating (DH) companies, to expand in low heat density areas such as detached houses, it is essential to obtain a high rate of connections to the district-heating network in order to enhance the cost effectiveness. Marketing district heating to house owners is, however, a fairly different matter from selling it to customers in industrial, commercial, and multi-family buildings. Suitable market strategies need to be developed and the need for information about potential customers' preferences and attitudes are of great importance since the house-owners often constitute a heterogeneous group where different households have different requirements. This paper investigates a case of one Swedish district heating company's marketing activities and expansion strategies in a single family house area where the customers were offered conversion of their direct resistive electric heating (DEH) into district heating (DH). 88 out of 111 houses were converted in 2002. Four years later, interviews were carried out with 23 of the households in the area, both with those who had accept-ed the district heating offer and those who had not. The study shows that apart from the economic aspects, thermal comfort, aesthetics and practicalities also affected the buying decision. Since the different economic aspects of the offer were complex, it was very difficult for the households to make a strictly rational economical decision. Statistical analysis confirmed that variables such as age, type of household and energy use level could, to some extent, be related to the decision to convert from electric heating to district heating. Timing, low prices and the total solutions presented to the households were crucial factors in the success of the marketing strategy.

  2. Use of radiometer to reform and repair an old living house to passive solar one

    Science.gov (United States)

    Okamoto, Yoshizo; Inagaki, Terumi; Suzuki, Takakazu; Kurokawa, Takashi

    1994-03-01

    Japanese living houses mainly consist of wooden elements in high-temperature and moist conditions. To modify the hot and humid environment, a conventional old house was partially rebuilt and repaired. Especially in the winter season, a diagnostic thermographic test was used to find deteriorated and leaking parts of interior and exterior walls. Macroscopic deteriorated parts were checked again in detail. The deteriorated element was then removed. During the reconstruction process, a new solar heat and air conditioning system using a silica-gel adsorber and underground water was installed to cool and warm up the living room. Thermography tests of this remodeled house show that room temperature is always constant and mild to human beings, especially in the winter. Temperature and heat flow distribution of flowing air in the living room was measured using thermal net and wire methods. Leaking thermal streak flow of the gap was locally visualized by the IR radiometer and a highly sensitive video camera. It was verified that IR thermography is a useful measuring instrument to check thermal defects of a house.

  3. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  4. Heat pumps and heat exchangers in cow and pig houses in the Nordic countries. Utilization potentials

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, S [Statens Jordbrugstekniske Forsoeg, Horsens, Denmark

    1985-01-01

    An assessment is made of how many heat pumps it may be possible to establish in animal buildings in the Danish, Swedish, Norwegian, Finnish, and Icelandic agriculture. This assessment is based on the present livestock structure. Furthermore information is given of the yearly oil conservation that theoretically can be obtained, provided heat pumps and heat exchangers are installed every where with a sufficient livestock basis. The largest energy conservation can be obtained by heat recovery in cow- and pig houses and by heat exchangers in production of piglets.

  5. Solar heating for a village; Ein Dorf heizt solar

    Energy Technology Data Exchange (ETDEWEB)

    Roepcke, Ina

    2013-07-05

    In Buesingen (administrative district of Konstanz) a solar thermal system with 1091 sqm collector area is put into operation. Together with two wood chip boilers they supply more than 100 private and municipal buildings with regenerative heat. [German] In Buesingen im Landkreis Konstanz ist eine solarthermische Anlage mit 1091 qm Kollektorflaeche in Betrieb gegangen. Zusammen mit zwei Hackschnitzelkesseln versorgt sie ueber 100 private und kommunale Gebaeude mit regenerativer Waerme.

  6. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  7. Design, construction, and testing of a residential solar heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Loef, G.O.G.

    1976-06-01

    The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

  8. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  9. District Heating in Areas with Low Energy Houses

    DEFF Research Database (Denmark)

    Tol, Hakan Ibrahim

    -energy houses involved, together with the idea of utilizing booster pumps in the district heating network and (ii) use of network layouts of either a branched (tree-like) or a looped type. The methods developed were applied in a case study, the data of which was provided by the municipality of Roskilde...... in Denmark. The second case study was aimed at solving another regional energy planning scheme, one concerned with already existing houses, the heat requirements of which were currently being met by use of a natural gas grid or a conventional high-temperature district heating network. The idea considered......This PhD thesis presents a summary of a three-year PhD project involving three case studies, each pertaining to a typical regional Danish energy planning scheme with regard to the extensive use of low-energy district heating systems, operating at temperatures as low as 55°C for supply and 25°C...

  10. Passive Residential Houses with the Accumulation Properties of Ground as a Heat Storage Medium

    Science.gov (United States)

    Ochab, Piotr; Kokoszka, Wanda; Kogut, Janusz; Skrzypczak, Izabela; Szyszka, Jerzy; Starakiewicz, Aleksander

    2017-12-01

    Solar radiation is the primary source of life energy on Earth. The irradiance of the upper atmosphere is about 1360 W/m2, and it is estimated that about 1000 W/m2 reaches the ground. Long-term storage of heat energy is related to the use of a suitable thermal energy carrier. It may be either artificial or natural water tank, or artificial gravel-water tank, or aquifer or soil. It is justified to store the generated energy in large heating systems due to the nature of solar thermal energy. Typically, in such a solution storage space is a large solar collector farm. The reason for this is the proportionally small unit profits, which only in the case of large number of units provides sufficient energy that can be accumulated. It should be noted that Poland, a country located in a temperate and less harsh climate such as Scandinavia and Canada, has a relatively high potential for solar revenue. In the last decade, it has caused mainly small and individual heating installations. However, much of the municipal and industrial economy continues to rely on energy from non-renewable resources. This is due not only to the lack of a high-efficiency alternative to non-renewable energy resources, but also to the thermal state of buildings throughout the country, where old buildings require thermomodernization. This has the effect of both polluting the environment and the occurrence of smog, as well as pollutants in water and soil. This directly affects the occurrence of civilization diseases and other societal health problems. Therefore, the surplus of thermal clean energy that occurs during the spring and summer period should not only be used on a regular basis, but also stored for later winter use. The paper presents the concept of housing estate, which consists of 32 twin housing units. The solid character of buildings consistently refers to passive construction, and the materials meet the requirements for the passive buildings.

  11. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  12. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  13. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  14. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  15. Performance Analysis of a Savonius Wind Turbine in the Solar Integrated Rotor House

    Directory of Open Access Journals (Sweden)

    ABDUL LATIFMANGANHAR

    2017-07-01

    Full Text Available Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor.

  16. Performance analysis of a savonius wind turbine in the solar integrated rotor house

    International Nuclear Information System (INIS)

    Manganhar, A.L.

    2017-01-01

    Rooftop, building integrated and building augmented micro wind systems have the potential for small scale power generation in the built environment. Nevertheless, the expansion of micro wind technology is very slow and its market is strongly affected by the low efficiency of conventional wind generators. WAG-RH (Wind Accelerating and Guiding Rotor House) which is a new technique introduced to enhance the efficiency of vertical axis rotor. The present study utilizes other green energy element by integrating the WAG-RH with a solar heating system. In this effort roof of the WAG-RH has been utilized to heat air through micro solar chimney for creating buoyancy effect in the air flow channel at rotor zone in the WAG-RH. The integration is capable of improving the performance of rotor setup in the WAG-RH as well as providing hot air with sufficient air mass flow rate for space heating. The WAG-RH had brought about 138% increase in the performance coefficient(Cp) of conventional three bladed Savonius rotor, whereas solar integrated WAG-RH has contributed 162% increase in the Cp of the same rotor. (author)

  17. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the exent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost

  18. Solar heating system installed at Telex Communications, Inc. , Blue Earth, Minnesota. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEver, William S.

    1979-10-26

    The final results are summarized of a contract for space heating a 97,000 square foot building which houses administrative offices, assembly areas and warehouse space. Information is also provided on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature, and as-built drawings. The system began delivering space heating in February 1978. The Telex solar system is composed of four main subsystems; they are the solar collectors, controls, thermal storage and heat distribution. The ITC/Solar Mark III collector was used. The collector array consists of 10 rows of 36 collectors each. The control subsystem controls the operation of the system pumps and control valves. Thermal storage for the system is provided by a 20,000 gallon water storage tank located inside the building. Heating is accomplished by water-to-air heat exchangers and controlled by thermostats.

  19. A new insight into opaque envelopes in a passive solar house: Properties and roles

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Liu, Minghou

    2016-01-01

    Highlights: • A new insight into the opaque envelopes of a passive solar house was gained. • Five parts of envelopes, i.e., roof, south/east/west/north walls, were discussed. • Each part of envelopes were analyzed separately rather than treated as a whole. • Ideal properties of materials for each envelope are diverse from one another. • Differences are related to the envelopes’ leading roles as a heater or a cooler. - Abstract: Passive solar houses are effective solutions for minimizing the operating energy of buildings. The building envelopes of passive solar houses exert a significant influence on the degree of indoor thermal comfort. The focus of this study was the construction of high-performance opaque envelopes, i.e., the roof and walls, for a passive solar house, and a new conception of the envelopes from the perspective of the relation between the properties and roles was provided. The discussion was conducted based on a comprehensive range of envelope materials that were distinguished by the thermal conductivity and volumetric heat capacity. For the first time, each part of the envelopes was analyzed separately rather than considered as an entire envelope. By analyzing each envelope individually, the optimum properties of each envelope were found to be distinct from each other. The distinctions are determined by the dominant role of each envelope, which is associated with the location and absorbed solar irradiation. For summer or hot climate applications, when the dominant role is a cooler, the envelope, e.g., the south wall, should consist of materials with high thermal conductivity and large heat capacity; if a heater is the dominant role, the envelope, e.g., the roof, should consist of materials with low thermal conductivity. For winter or cold climate applications, the envelopes with a leading role of a heater or a cooler require materials with high or low thermal conductivity, respectively. Under the guidance of the results, a discussion

  20. Comparison of the solar collection efficiencies of various vinyl house

    Energy Technology Data Exchange (ETDEWEB)

    Park, K H; Shin, H N; Lee, D S; Shin, D H; Suh, K B

    1982-01-01

    Three plastic film solar dryers covered with different film layers were constructed by modifying a farm vinyl house and studying their performance. The collection efficiency and temperature raising of type C which was covered with double layers of transparent PE and black PVC film was most efficient, followed by B (which was covered with a double layer of transparent PE film) and type A (which was covered with single layer transparent PE film). The inside temperature of type C averaged 18/sup 0/C higher than ambient temperature and its collection efficiency was 31.5% with air flow rate of 3.8 m/sup 3//min. The solar energy collection efficiency of type C was increased in proportion to air flow rate up to 60.2% at 11.3 m/sup 3//min. In a demonstration drying test of red pepper in type C, drying capacity per unit area was 2.5 times higher than that of conventional solar drying on straw mat and drying time shortened to about half.

  1. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  2. Verification of the Performance of a Vertical Ground Heat Exchanger Applied to a Test House in Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    Koon Beng Ooi

    2017-10-01

    Full Text Available The ground heat exchanger is traditionally used as a heat source or sink for the heat pump that raises the temperature of water to about 50 °C to heat houses. However, in winter, the heating thermostat (temperature at which heating begins in the Australian Nationwide House Energy Rating Scheme (NatHERS is only 20 °C during daytime and 15 °C at night. In South-East Melbourne, the temperature at the bottom of a 50-meter-deep borehole has been recorded with an Emerson™ recorder at 17 °C. Melbourne has an annual average temperature of 15 °C, so the ground temperature increases by 2 °C per 50-m depth. A linear projection gives 23 °C at 200-m of depth, and as the average undisturbed temperature of the ground for a 400-m-deep vertical ground heat exchanger (VGHE. This study, by simulation and experimentation, aims to verify that the circulation of water in the VGHE’s U-tube to low-temperature radiators (LTRs could heat a house to thermal comfort. A literature review is included in the introduction. A simulation, using a model of a 60-m2 experimental house, shows that the daytime circulation of water in this VGHE/LTR-on-opposite-walls system during the 8-month cold half of the year, heats the indoors to NatHERS settings. Simulation for the cold half shows that this VGHE-LTR system could cool the indoors. Instead, a fan creating a cooling sensation of up to 4 °C is used so that the VGHE is available for the regeneration of heat extracted from the ground during the cold portion. Simulations for this hot portion show that a 3.4-m2 flat plate solar collector can collect more than twice the heat extracted from the ground in the cold portion. Thus, it can thus replenish the ground heat extracted for houses double the size of this 60-m2 experimental house. Therefore, ground heat is sustainable for family-size homes. Since no heat pump is used, the cost of VGHE-LTR systems could be comparable to systems using the ground source heat pump. Water

  3. District heating and energy efficiency in detached houses of differing size and construction

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Anna; Gustavsson, Leif [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2009-02-15

    House envelope measures and conversion of heating systems can reduce primary energy use and CO{sub 2} emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m{sup 2}. One of the houses was also analysed for three energy standards with differing heat loss rates. CO{sub 2} emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO{sub 2} emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures. (author)

  4. District heating and energy efficiency in detached houses of differing size and construction

    International Nuclear Information System (INIS)

    Joelsson, Anna; Gustavsson, Leif

    2009-01-01

    House envelope measures and conversion of heating systems can reduce primary energy use and CO 2 emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m 2 . One of the houses was also analysed for three energy standards with differing heat loss rates. CO 2 emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO 2 emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures

  5. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  6. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  7. A heat pipe solar collector system for winter heating in Zhengzhou city, China

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2017-01-01

    Full Text Available A heat pipe solar collector system for winter heating is investigated both experimentally and theoretically. The hourly heat collecting capacity, water temperature and contribution rate of solar collector system based on Zhengzhou city typical sunshine are calculated. The study reveals that the heat collecting capacity and water temperature increases initially and then decreases, and the solar collector system can provide from 40% to 78% heating load for a 200 m2 villa with in Zhengzhou city from November to March.

  8. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  9. Heat recovery from ground below the solar pond

    NARCIS (Netherlands)

    Ganguly, S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    The method of heat recovery from the ground below solar ponds is investigated in the present brief note. Solar ponds lose considerable amount of heat from its bottom to the ground due to temperature gradient between them. This waste heat from ground, which is at different temperature at different

  10. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  11. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  12. Farmers' willingness to convert traditional houses to solar houses in rural areas: A survey of 465 households in Chongqing, China

    International Nuclear Information System (INIS)

    Li, Xuesong; Li, Hao; Wang, Xingwu

    2013-01-01

    In rural China, reducing low-quality fuel consumption and adopting solar technologies can mitigate pollution problems and improve farmers' living conditions. Before advising farmers to convert traditional houses to solar houses, it is necessary to understand their willingness to do so. Based on the theory of planned behaviour (TPB), this study examined nine factors related to farmers' willingness (FW). A survey was conducted in Chongqing with 465 participants. Nine hypotheses were proposed based on literature studies. A binary logistic regression model was constructed to test the data with the SPSS software package. Three of the nine factors had positive and significant impacts on FW, which were quality of life, government commitments and neighbours'/friends' assessments; two factors had negative and significant impacts, which were additional monthly out-of-pocket expenses and switching cost; and the remaining four factors had no significant impacts, which were durability, popularity, timing and local solar market maturity. Based on the findings, suggestions are made to properly introduce solar houses to Chinese farmers and to quickly stimulate market activities. - Highlights: • We study farmers' willingness to convert traditional houses to solar houses. • We have nine hypotheses and test nine associated factors. • Three factors positively and significantly impact farmers' willingness. • Other two factors negatively and significantly impact farmers' willingness. • Remaining four factors do not significantly impact farmers' willingness

  13. Solar assisted heat pumps: A possible wave of the future

    Science.gov (United States)

    Smetana, F. O.

    1976-01-01

    With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.

  14. Standard house with integrated solar cell system. Technical final report; Typehus med integreret solcelleanlaeg. Faglig slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The interest in solar cell technology among Danish house owners is increasing, but there are many considerations to be made before the house owner choose to install solar cells on the house. Major barriers are the solar cell systems' price and appearance. This interdisciplinary development project will show that both aesthetic and economic advantages can be derived from integrating solar cells already when the first sketches of the house are being made. In order to promote utilization of solar cells in Denmark the solutions must be attractive, both economically and aesthetically. Therefore the solar cell solutions in this project are developed in preparation for marketing both as an aesthetic expression and a high-technological, green and prestigious element. (BA)

  15. Combined heat and power solar system

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    An Australian-designed photovoltaic (PV) power system that also supplies hot water is close to commercial release. PVs have been around for decades and solar concentrators have been efficiently heating water for nearly a century. The Australian National University, Department of Engineering - Centre for Sustainable Energy systems (CSES), has designed a domestic scale modular system that not only generates electricity but also provides concentrated thermal energy to heat water for a Solahart hot water system and is designed to be deployed into small to medium scale applications such as hospitals, schools and dwellings with an easily assembled galvanised steel frame. A market research was carried out and is envisaged that at least 7,500 units will be installed annually by the year 2005 and up to 25,000 units by 2008

  16. False Dawn of a Solar Age: A History of Solar Heating and Power During the Energy Crisis, 1973-1986

    Science.gov (United States)

    Scavo, Jordan Michael

    The unfolding of the energy crisis in the early 1970s brought solar to the fore as a topic for national discussion. National dialogues about solar power and national energy policy were one way that Americans interpreted their present and envisioned their nation's future. Yet, policy makers and the general public considered alternative energies, including solar, largely based on the economic conditions of their eras, considerations that, at least until the Reagan era, often transcended political ideologies and parties. Energy prices and the emerging political expediency of replacing fossil fuels were the primary drivers in shaping federal energy policies and public interest during this era. Enthusiasm for solar power often corresponded to the market price of petroleum. By the late 1970s, a lot of people believed the same. Amid growing public enthusiasm, President Carter eventually came out strongly in favor of solar energy, mounting solar panels on the White House and unveiling a plan to procure 20% of the nation's energy from the sun by the year 2000. During the 1960s and 1970s, Americans changed their energy values in response to concerns over environmentalism and the antinuclear movement. Pollution, environmental disasters, and energy crises during the 1960s and 1970s brought terms like "clean energy" and "renewable energy" into the national lexicon, and solar often served as the most prominent symbol of those ideas. At the same time, advocates presented solar as a stark contrast to nuclear: solar energy made life on earth possible; nuclear energy made it perilous. Science fiction and futurism shaped the American popular imagination through its presentation of solar technology. Each genre suffused the other and ingrained in the American national consciousness a sense of grandiose wonderment about the potential for solar energy, a potential that often did not match the contemporary applications for solar technology. The emergence of solar industries alarmed oil

  17. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    overall photovoltaic thermal efficiency will increase and also will save valuable space. ... sumption of RM95 per month for a medium cost house (Faridah 2003). ..... Hence, the use of solar water heater shall improve public awareness in.

  18. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  19. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  20. Thermo-economic Optimization of Solar Assisted Heating and Cooling (SAHC System

    Directory of Open Access Journals (Sweden)

    A. Ghafoor

    2014-12-01

    Full Text Available The energy demand for cooling is continuously increasing due to growing thermal loads, changing architectural modes of building, and especially due to occupants indoor comfort requirements resulting higher electricity demand notably during peak load hours. This increasing electricity demand is resulting higher primary energy consumption and emission of green house gases (GHG due to electricity generation from fossil fuels. An exciting alternative to reduce the peak electricity consumption is the possible utilization of solar heat to run thermally driven cooling machines instead of vapor compression machines utilizing high amount of electricity. In order to widen the use of solar collectors, they should also be used to contribute for sanitary hot water production and space heating. Pakistan lying on solar belt has a huge potential to utilize solar thermal heat for heating and cooling requirement because cooling is dominant throughout the year and the enormous amount of radiation availability provides an opportunity to use it for solar thermal driven cooling systems. The sensitivity analysis of solar assisted heating and cooling system has been carried out under climatic conditions of Faisalabad (Pakistan and its economic feasibility has been calculated using maximization of NPV. Both storage size and collector area has been optimized using different economic boundary conditions. Results show that optimum area of collector lies between 0.26m2 to 0.36m2 of collector area per m2 of conditioned area for ieff values of 4.5% to 0.5%. The optimum area of collector increases by decreasing effective interest rate resulting higher solar fraction. The NPV was found to be negative for all ieff values which shows that some incentives/subsidies are needed to be provided to make the system cost beneficial. Results also show that solar fraction space heating varies between 87 and 100% during heating season and solar fraction cooling between 55 and 100% during

  1. Flower garden trees' ability to absorb solar radiation heat for local heat reduction

    Science.gov (United States)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Hamdani

    2017-06-01

    Banda Aceh as an urban area tends to have a high air temperature than its rural surroundings. A simple way to cool Banda Aceh city is by planting urban vegetation such as home gardens or parks. In addition to aesthetics, urban vegetation plays an important role as a reducer of air pollution, oxygen producer, and reducer of the heat of the environment. To create an ideal combination of plants, knowledge about the ability of plants to absorb solar radiation heat is necessary. In this study, some types of flowers commonly grown by communities around the house, such as Michelia Champaka, Saraca Asoka, Oliander, Adenium, Codiaeum Variegatum, Jas Minum Sambac, Pisonia Alba, Variegata, Apium Graveolens, Elephantopus Scaber, Randia, Cordylin.Sp, Hibiscus Rosasinensis, Agave, Lili, Amarilis, and Sesamum Indicum, were examined. The expected benefit of this research is to provide information for people, especially in Banda Aceh, on the ability of each plant relationship in absorbing heat for thermal comfort in residential environments. The flower plant which absorbs most of the sun's heat energy is Hibiscus Rosasinensis (kembang sepatu) 6.2 Joule, Elephantopus Scaber.L (tapak leman) 4.l Joule. On the other hand, the lowest heat absorption is Oliander (sakura) 0.9 Joule.

  2. Heat index in migrant farmworker housing: implications for rest and recovery from work-related heat stress.

    Science.gov (United States)

    Quandt, Sara A; Wiggins, Melinda F; Chen, Haiying; Bischoff, Werner E; Arcury, Thomas A

    2013-08-01

    Although the health risk to farmworkers of working in hot conditions is recognized, potential for excessive heat exposure in housing affecting rest and recovery has been ignored. We assessed heat index in common and sleeping rooms in 170 North Carolina farmworker camps across a summer and examined associations with time of summer and air conditioning use. We recorded dangerous heat indexes in most rooms, regardless of time or air conditioning. Policies to reduce heat indexes in farmworker housing should be developed.

  3. Evaluation of performance for solar house with Trombe wall. Part 6; Trombe kabeshiki solar house no hyoka kenkyu (toki tan`i ni okeru Trombe heki naihyomen kyuhonetsuryo no santei hoho no kento)

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, R.; Nakajima, Y. [Kogakuin University, Tokyo (Japan); Yoshida, N. [Nishimatsu Construction Co. Ltd., Tokyo (Japan); Watanabe, T. [Tokyo Electric Power Service Co. Ltd., Tokyo (Japan); Abe, H. [National Land Agency, Tokyo (Japan); Yamaga, K. [Mitsubishi Estate Co. Ltd., Tokyo (Japan)

    1997-11-25

    `Equivalent heat loss factor` used in the simplified load calculation method for the Trombe wall is a version modified to fit a solar house equipped with a Trombe wall. To compute the factor, it is necessary to input the quantities of Trombe wall inner surface absorbed/radiated heat for whose calculation the effect of the delay in solar heat storage by the Trombe wall has to be taken into consideration. The daily summation of the quantities of absorbed/radiated heat can be easily calculated using the day`s and the previous day`s insolation amounts. In this report, the hourly summation of the quantities of Trombe wall surface absorbed/radiated heat is performed by use of two variables which are the day`s and the previous day`s insolation amounts. In calculating the hourly summation of the quantities of absorbed/radiated heat, the daily summation of the quantities of absorbed/radiated heat is first calculated using the chart of predicted lines for the Trombe wall and, based on the data thus obtained, the quantities of absorbed/absorbed heat are divided and assigned to the respective hours and, as the result, approximations are obtained for the calculation of the hourly summation of the quantities of Trombe wall absorbed/radiated heat. A `time-dependent performance prediction curves for the Trombe wall` is proposed, which enables the visual comprehension of the effect of Trombe wall hourly units. 1 ref., 10 figs., 2 tabs.

  4. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    Science.gov (United States)

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P heating the GHP house was significantly lower (P heating system for broiler chickens.

  5. The turbulent cascade and proton heating in the solar wind during solar minimum

    International Nuclear Information System (INIS)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-01-01

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  6. Interaction of regulation and innovation: Solar air heating collectors

    OpenAIRE

    Kramer, K.

    2012-01-01

    Solar Air Heating Collectors have still a very small share of 0.8% of the nominal installed capacity in the solar heating and cooling market (151.7 GWth) [1]. Although constituting a niche market, the potential of those kind of collectors to provide heat for industrial processes, processing food, room heating, air preheating, drying processes or air conditioning could be significant. However, the technical potentials of the various technological solutions are not easy to compare. Such a compa...

  7. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  8. Solar house in Altnau; Solarhaus Haeni - Ruf Altnau

    Energy Technology Data Exchange (ETDEWEB)

    Brune, F.; Dransfeld, P.

    2005-07-01

    In this illustrated final report for the Swiss Federal Office of Energy (SFOE), a single-family home built to low-energy consumption standards is described. The building features a very low annual energy consumption that is met using renewable forms of energy. The heating demands are met using vacuum-solar collectors on the building's flat roof and by a wood-fired oven. The construction of the building is described and plans are provided. Building technical services and a measurement system installed to monitor temperatures and other factors in the building's systems are described. Twelve monthly charts of the various temperature and humidity factors measured are presented. The results of the measurements are discussed.

  9. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.

  10. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  11. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  12. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  13. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Solar water heating systems are usually designed using simplified equation of annual efficiency of the heating system from solar radiation incident on the collector during the year and empirical values of annual efficiency. The pe1formance of the preliminary design is predicted by using either/chart method or by translate it ...

  14. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  15. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-01-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  16. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  17. A solar house self-sufficient of energy. Experiences on the way to energy autarky

    International Nuclear Information System (INIS)

    Voss, K.; Dohlen, K. v.; Lehmberg, H.; Stahl, W.; Wittwer, C.; Goetzberger, A.

    1994-01-01

    The solar house Freiburg which is self-sufficient of energy was completed in October 1992. After a long and complex planning phase now measuring and monitoring tasks as well as the realization fo improvement measures are to the fore. This article presents exemplary results of the first year of operation and compare them with the expectations. Self-sufficient operation of the building could be attained between April and October 1993. Here among others hydrogen was successfully produced by photovoltaic supplied electrolysis and was to a large degree used for thermal applications (cooking, heating). The fact that the supply of energy was not self-sufficient all the year round was due to the failure of the fuel cell used to produce electric power again with hydrogen. (orig./BWI) [de

  18. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  19. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  20. Heating of the outer solar atmosphere

    International Nuclear Information System (INIS)

    Parker, E.N.

    1983-01-01

    The author discusses the idea that there must be a source of magnetic fields somewhere below the solar surface. He starts by considering present day ideas about the sun's internal structure. The sun has a radius of approximately 700,000 km, of which the outer 100,000 km or so is the convective zone, according to mixing-length models. The dynamo is believed to operate in the convective zone, across which there may be a 5-10% variation in the angular velocity. There are the stretched east-west fields similar to the ones in the earth's core. Associated with these are poloidal fields which contribute to a net dipole moment of the sun and are generated by a dynamo. The author shows that essentially no magnetic field configuration has an equilibrium; they dissipate quickly in spite of the high conductivity in fluid motions and heating. This is probably the major part of the heating of the sun's outer atmosphere. (Auth.)

  1. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  2. COULD A MASONRY HEATER BE THE MAIN HEAT SOURCE IN A TIGHT HOUSE?

    OpenAIRE

    Kasiliauskas, Jonas

    2017-01-01

    Masonry heaters are the oldest heating method for one family houses. Earlier houses had high leakage air-flow rates because thermal efficient insulation material was combustible by that time /20/. The masonry heater perfectly fits for air leaky houses. Nowadays, houses are more insulated and have an air tight envelope. People don’t want to spend time for supervising heating systems, that’s the reason they choose a heating system with automatism. The main aim of my thesis is to evaluate if...

  3. HYBRID INDIRECT SOLAR COOKER WITH LATENT HEAT STORAGE

    OpenAIRE

    Benazeer Hassan K. Ibrahim *, Victor Jose

    2016-01-01

    Solar cooking is the simplest, safest, most convenient way to cook food without consuming fuels or heating up the kitchen. All the conventional solar cooker designs have the disadvantage of inability to cook during off-shine and night hours.This disadvantage can be eliminated if the solar cooker is designed with thermal storage arrangement. In this paper, a hybrid solar cooker with evacuated tube collector and latent thermal storage unit and alternate electric heatingsource is simulated. The...

  4. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  5. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  6. Temperatures and heating energy in New Zealand houses from a nationally representative study - HEEP

    Energy Technology Data Exchange (ETDEWEB)

    French, L.J.; Camilleri, M.J.; Isaacs, N.P.; Pollard, A.R. [BRANZ Ltd., Private Bag 50 908, Porirua City (New Zealand)

    2007-07-15

    The household energy end-use project (HEEP) has collected energy and temperature data from a randomly selected, nationally representative sample of about 400 houses throughout New Zealand. This database has been used to explore the drivers of indoor temperatures and heating energy. Initial analysis of the winter living room temperatures shows that heating type, climate and house age are the key drivers. On average, houses heated by solid fuel are the warmest, with houses heated by portable LPG and electric heaters the coldest. Over the three winter months, living rooms are below 20 {sup o}C for 83% of the time - and the living room is typically the warmest room. Central heating is in only 5% of houses. Solid fuel is the dominant heating fuel in houses. The lack of air conditioning means that summer temperatures are affected by passive influences (e.g. house design, construction). Summer temperatures are strongly influenced by the house age and the local climate - together these variables explain 69% of the variation in daytime (9 a.m. to 5 p.m.) living room temperatures. In both summer and winter newer (post-1978) houses are warmer - this is beneficial in winter, but the high temperatures in summer are potentially uncomfortable. (author)

  7. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  8. Can passive house be the solution to our energy problems, and particularly with solar energy?

    OpenAIRE

    Merciadri, Luca

    2007-01-01

    A description about the main characteristics of the passive house concept. The aim of this document is to answer to the question ``Can passive house be the solution to our energy problems, and particularly with solar energy ?'' in an objective way.

  9. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  10. Prototype solar heating and combined heating and cooling systems. Quarterly report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-06

    The General Electric Company is developing eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  11. Theoretical models of Kapton heating in solar array geometries

    Science.gov (United States)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  12. Solar water heating: The making of a simple, standard appliance

    International Nuclear Information System (INIS)

    Block, D.L.

    1993-01-01

    Within the solar community we have carried on never-ending discussions about the performance of solar water heaters. As a long-time solar advocate and researcher, I am continually asked, open-quotes When will solar usage become widespread?close quotes We who are in the solar business all face this question, and we must respond. Our answers usually take the form of some discussion on efficiency improvements, life-cycle costs, level playing field or environmental factors. But the only real way to answer this question is: Use of solar will be widewspread when a solar water heater is considered to be just another standard appliance. Increased installations is the key, and the solar technology with the greatest near-term potential for increased installation is solar water heating

  13. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (solar heat power generation); 1974 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report summarizes the fiscal 1974 research result on solar heat power generation. The following are promising as solar heat power plant sites in Japan: Large-scale sites such as the foot of volcanos, riverbed, railway site and road, medium-scale sites such as isolated island, saltpan site and industrial park, and small-scale sites such as factory site, factory roof floor, housing complex, warehouse and school. Based on the primary concept design of both curved reflector type and tower type 1,000kW class solar heat power plants, various requirements were clarified roughly. It was clarified that food, fiber and non-ferrous metal factories can cover 80-90% of their thermal energy requirements with high- temperature solar heat, while factories related to food and fiber can cover even nearly 100% of their electric power requirements with solar heat. Study was also made on specifications of a solar simulator as common use facility necessary for characteristic evaluation of equipment and materials for solar heat power generation systems. (NEDO)

  14. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production?

    Science.gov (United States)

    Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.

  15. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  16. Economic analyses of central solar heating systems with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D; Keinonen, R.S.

    1986-10-01

    Economic optimization of large active community solar heating systems with annual thermal storage is discussed. The economic evaluation is based on a thermal performance simulation model employing one hour time steps and on detailed up-date data. Different system configurations and sub-system sizes have been considered. For Northern European weather conditions (60/sup 0/N) and with at least 400-500 residential units, the life-cycle cost of delivered solar heat was 6.5-7.5 c/kWh for 50% fraction of non-purchased energy. For a solar fraction of 70%, the solar energy price would be 8 c/kWh.

  17. Application of solar energy in houses in Tilburg, Netherlands. Final report

    International Nuclear Information System (INIS)

    Janssen, J.M.

    1995-10-01

    The options to use solar energy for housing corporations, private renters, active associations of owners and owner-occupants in Tilburg, Netherlands, are outlined. Special attention is paid to the application of solar water heaters, because of their possibility to contribute to a sustainable energy supply

  18. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...

  19. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  20. BIM-Integration of solar thermal systems in early housing design

    OpenAIRE

    Bonilla Castro, Alejandro; García Alvarado, Rodrigo

    2017-01-01

    Abstract: This paper sets a methodology to integrate solar thermal systems in BIM-software for the early architectural design of single houses in Concepción, Chile, using parametric families, programming in Dynamo, energy calculation with LadyBug and piping design in MEP. The results obtained allowed to select products, insert and adapts automatically the parametric designs into the model, as well as to identify changes in the type and number of solar components when the solar orientation of ...

  1. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  2. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  3. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  4. Solar heating by radiant floor: Experimental results and emission reduction obtained with a micro photovoltaic–heat pump system

    International Nuclear Information System (INIS)

    Izquierdo, M.; Agustín-Camacho, P. de

    2015-01-01

    Highlights: • This work presents a PVT multicrystalline solar heating system for buildings. • The PV DC electricity generated was converted to AC to drive an air–water heat pump. • Experimental results obtained from December 1, 2012 to April 30, 2013 are detailed. • An environmental study is also presented. - Abstract: An experimental research with a solar photovoltaic thermal (PVT) micro grid feeding a reversible air–water, 6 kW heating capacity heat pump, has been carried out from December 2012 to April 2013. Its purpose is to heat a laboratory that is used as a house prototype for the study of heating/cooling systems. It was built in accordance with the 2013 Spanish CTE, and has an area of 35 m 2 divided into two internal rooms: one of them housing the storage system, the solar controller, the inverter and the control system; the other one is occupied by three people. Its main thermal characteristics are: UA = 125 W/°C and a maximum thermal load about 6.0 kW at the initial time. The PVT field consists of 12 modules, with a total area of 15.7 m 2 and useful area of 14 m 2 . Each module is composed of 48 polycrystalline silicon cells of 243.4 cm 2 , which with a nominal efficiency 14% can generate a power of 180 W, being the total nominal power installed 2.16 kW. The PV system stores electricity in 250 Ah batteries from where is converted from DC to AC through a 3.0 kW inverter that feeds the heat pump. This works supplying 840 l/h of hot water at 35–45 °C to the radiant floor. The data storing system is recording variables such as solar radiation; temperatures; input power to batteries; heat produced; heat transferred by the radiant floor; heat pump’s COP; isolated ratio; and solar fraction. The objective of this work is to present and discuss the experimental results and the emission reduction of CO 2 obtained during the period from 01/12/2012 to 30/04/2013, including the detailed results of two representative days of Madrid’s climate: 28

  5. High performance passive solar heating system with heat pipe energy transfer

    NARCIS (Netherlands)

    Wit, de M.H.; Hensen, J.L.M.; Dijk, van H.A.L.; Brink, van den G.J.; Galen, van E; Ouden, den C.

    1984-01-01

    The aim of the project is to develop a passive solar heating system with a higher efficiency (regarding accumulation and transfer of solar heat into dwellings) than convential concrete thermal storage walls and with restricted extra costs for manufacturing the system. This is to be achieved by the

  6. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003; Programme 'Solaire actif - Chaleur et Stockage de chaleur'. Activites et projets en 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hadorn, J.-C. [Base Consultants, Geneva (Switzerland); Renaud, P. [Planair SA, La Sagne (Switzerland)

    2003-07-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD

  7. Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system

    DEFF Research Database (Denmark)

    Englmair, Gerald; Moser, Christoph; Furbo, Simon

    2018-01-01

    acetate trihydrate composites to conserve the latent heat of fusion for long-term heat storage. A control strategy directed heat from a solar collector array to either the PCM storage or a water buffer storage. Several PCM units had to be charged in parallel when the solar collector output peaked at 16 k......A solar heating system with 22.4m2 of solar collectors, a heat storage prototype consisting of four 200 kg phase-change material (PCM) storage units, and a 735 L water tank was designed to improve solar heat supply in single-family houses. The PCM storage utilized stable supercooling of sodium......W. A single unit was charged with 27.4 kWh of heat within four hours on a sunny day, and the PCM temperature increased from 20 °C to 80 °C. The sensible heat from a single PCM unit was transferred to the water tank starting with about 32 kW of thermal power after it had fully melted at 80 °C. A mechanical...

  8. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  9. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  10. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  11. Compact solar heating systems - back on the way up

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2001-01-01

    This article discusses the upward trend being noted in the installation of compact solar heating systems in Switzerland. The contribution of these complete, easy-to-install systems to the increasing number of solar heating units on the market is discussed and the role played by the Solar Collector and Systems Testing Facility at the Institute of Solar Technology in Rapperswil, Switzerland, is emphasised. One of this institute's important publications is a list of certified compact solar heating systems. The high technical standards of the systems and the current price situation are discussed. The article is rounded off by an interview with a four-person family on their motivation to install such a hot-water system and their experience with its operation. Finally, future trends in the area are discussed

  12. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  13. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  14. Solar water-heating performance evaluation-San Diego, California

    Science.gov (United States)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  15. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  16. Design concepts for solar heating in a Mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berger, X; Bourdeau, L; Jaffrin, A; Sylvain, J D

    1977-01-01

    Solar heating is often designed in a similar way to classical central heating. The consequence is a very high cost which can only be reduced by using a calorific fluid at a lower temperature than is customary, improved architectural design and a further research into new passive heating methods. The collection area and storage volume necessary to obtain good solar efficiency were computed in a Mediterranean climate. Emphasis is put on large thermal inertia which is best achieved by using the latent heat of materials. The result of an experiment performed with salt hydrates is most promising but many problems of time instability have still to be solved.

  17. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  18. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  19. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  20. The Heating of the Solar Atmosphere: from the Bottom Up?

    Science.gov (United States)

    Winebarger, Amy

    2014-01-01

    The heating of the solar atmosphere remains a mystery. Over the past several decades, scientists have examined the observational properties of structures in the solar atmosphere, notably their temperature, density, lifetime, and geometry, to determine the location, frequency, and duration of heating. In this talk, I will review these observational results, focusing on the wealth of information stored in the light curve of structures in different spectral lines or channels available in the Solar Dynamic Observatory's Atmospheric Imaging Assembly, Hinode's X-ray Telescope and Extreme-ultraviolet Imaging Spectrometer, and the Interface Region Imaging Spectrograph. I will discuss some recent results from combined data sets that support the heating of the solar atmosphere may be dominated by low, near-constant heating events.

  1. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  2. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  3. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  4. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  5. Evaluation of performance for solar house with Trombe wall. Part 5; Trombe hekishiki solar house no hyoka kenkyu (nichisekisan Trombe heki kyuhonetsuryo yosoku senzu no teian)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, N [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Nakajima, Y [Kogakuin University, Tokyo (Japan); Watanabe, T [Tokyo Electric Power Service Co. Ltd., Tokyo (Japan); Abe, H [Ministry of Construction, Tokyo (Japan); Yamaga, K [Mitsubishi Estate Co. Ltd., Tokyo (Japan)

    1996-10-27

    A regression equation that can calculate the daily accumulated absorption heat of Trombe Wall was given, and the performance estimated chart of Trombe Wall in which the daily unit effect of Trombe Wall can be visually recognized was proposed. The absorption heat was multivariate-analyzed by two variables of solar radiation of that day and the previous day. The data obtained from simulation was used for analysis. The absorption heat was analyzed using the meteorological data at eight spots (Sapporo, Sendai, Niigata, Tokyo, Shizuoka, Kochi, Fukushima, and Kagoshima). In this case, the result of multivariate analysis almost coincided with the simulation result. A chart that predicts the absorption heat of Trombe Wall in eight cities from the daily accumulated global solar radiation of that day and the previous day was then created as the performance estimated chart of Trombe Wall. As a result, the solar radiation of that day little influences the absorption heat when the Trombe Wall increases in thickness. Conversely, the solar radiation of the previous day significantly influences the absorption heat. In future, an equivalent heat loss coefficient will be calculated from the performance estimated chart. 2 refs., 16 figs., 2 tabs.

  6. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  7. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  8. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  9. Electron heat flux instabilities in the solar wind

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.; Forslund, D.W.; Montgomery, M.D.

    1975-01-01

    There are at least three plasma instabilities associated with the electron heat flux in the solar wind. This letter reports the study of the unstable fast magnetosonic, Alfven and whistler modes via a computer code which solves the full electromagnetic, linear, Vlasov dispersion relation. Linear theory demonstrates that both the magnetosonic and Alfven instabilities are candidates for turbulent limitation of the heat flux in the solar wind at 1 A.U

  10. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  11. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  12. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  13. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  14. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  15. The market potential for solar heating plants in some European countries

    Energy Technology Data Exchange (ETDEWEB)

    Zinko, H; Bjaerklev, J.; Margen, P. [ZW Energiteknik AB, Nykoeping (Sweden)

    1996-03-01

    This study evaluates the market potential for solar collectors for residential heating in six European countries: Sweden, Denmark, Germany, Netherlands, Italy and Greece. The study is based on statistical information about the population, buildings, energy consumption and climatic conditions in the respective regions. The market potential was determined for systems supplying hot water and space heating in small houses and multi family houses, as well as for central block heating and district heating systems. Only systems with diurnal storage were taken into account. The technical potential was derived by analyzing the available roof areas, making allowance construction obstacles, unfavourable orientation, shadowing etc. Furthermore, commercial considerations, such as cost of competing energy sources, e.g. cogeneration and other low cost sources were considered. In accordance with our expectations, we assumed that the solar costs will decrease by 30 to 50% and that the market will increase by 30%/year during the next ten years, due to growing energy prices and by public financial support in an initial phase. It was found that there exists a commercial solar energy market in Greece for small systems and that the market could be nearly commercial in Italy. In the other countries the market must be stimulated by subsidies in order to take off. The total net potential for solar collectors in the six countries was found to about 100 Mm{sup 2} for small systems, and 60 Mm{sup 2} for large systems, corresponding to about 70 TWh/year. In a rough estimate we can say that the net solar collector market potential is about 1 m{sup 2}/inhabitant in north and central Europe, and 0.5m{sup 2} in south Europe. Although systems for seasonal storage were not included in our analysis, it is probable that these systems will increase the net market potential by a factor of 2-3. 9 refs

  16. The market potential for solar heating plants in some European countries

    International Nuclear Information System (INIS)

    Zinko, H.; Bjaerklev, J.; Margen, P.

    1996-03-01

    This study evaluates the market potential for solar collectors for residential heating in six European countries: Sweden, Denmark, Germany, Netherlands, Italy and Greece. The study is based on statistical information about the population, buildings, energy consumption and climatic conditions in the respective regions. The market potential was determined for systems supplying hot water and space heating in small houses and multi family houses, as well as for central block heating and district heating systems. Only systems with diurnal storage were taken into account. The technical potential was derived by analyzing the available roof areas, making allowance construction obstacles, unfavourable orientation, shadowing etc. Furthermore, commercial considerations, such as cost of competing energy sources, e.g. cogeneration and other low cost sources were considered. In accordance with our expectations, we assumed that the solar costs will decrease by 30 to 50% and that the market will increase by 30%/year during the next ten years, due to growing energy prices and by public financial support in an initial phase. It was found that there exists a commercial solar energy market in Greece for small systems and that the market could be nearly commercial in Italy. In the other countries the market must be stimulated by subsidies in order to take off. The total net potential for solar collectors in the six countries was found to about 100 Mm 2 for small systems, and 60 Mm 2 for large systems, corresponding to about 70 TWh/year. In a rough estimate we can say that the net solar collector market potential is about 1 m 2 /inhabitant in north and central Europe, and 0.5m 2 in south Europe. Although systems for seasonal storage were not included in our analysis, it is probable that these systems will increase the net market potential by a factor of 2-3. 9 refs

  17. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  18. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  19. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  20. Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Qingsong Ma

    2018-05-01

    Full Text Available Based on numerical simulations, the heating load reduction effect of an attached sunspace in winter was determined, and the effective heat utilization method and sunspace design were explored. In this paper, we studied the heating load reduction effect using heat from the sunspace and temperature fluctuation of each room at the time of heat use from the sunspace (sending air from the sunspace to the heating, ventilation, and air conditioning (HVAC machine room and taking the air to the adjacent rooms. In the case of the all-day HVAC system, it was confirmed that a larger capacity of sunspace and not sending air from the sunspace to the adjacent room demonstrated a better heating-load reduction effect. Compared with Model Iw (a house with a window on the exterior of the sunspace opened to external air, Model I (a house with an attached sunspace on the second floor could save approximately 41% of the total energy. Model II (a house with the attached sunspace both on the first and second floors could save approximately 84% of the total energy. Sending heat from the sunspace to the adjacent room led to temperature increases in the adjacent rooms. However, if the construction plan is to have the sunspace only on the second floor, the house should be carefully designed, for example, by placing a living room on the second floor.

  1. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  2. The possibilities of heat pumps utilisation for family houses and flats fumigation

    Directory of Open Access Journals (Sweden)

    Ján Pinka

    2006-10-01

    Full Text Available Heat pumps (HPs with the help of electricity use a renewable energy source to supply heat for homes or industrial buildings and to heat tap water. HP is a heating unit that will provide us with heat for our home for some 20 to 30 years to come and has a potential to replace traditional heating systems powered by gas, oil or coal. At this time, there is no other heating system that supplies clean heat with the help of up to 80 per cent of the renewable solar energy during all year.

  3. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  4. The correlation of urban heat island in tropical middle-class housing

    Science.gov (United States)

    Wazir, Zuber Angkasa

    2017-11-01

    A very limited number of green and sustainable construction studies have explored factors related to Urban Heat Island (UHI) in tropical middle-class housing. This paper aimed to investigate the correlation of Urban Heat Island in tropical middle-class housing in three urban housing for middle-class residents of Palembang, which were Taman Sari Kenten, TOP Jakabaring, and Talang Kelapa. Samples consisted of 125 Taman Sari Kenten housing, 27 Talang Kelapa housing, and 12 TOP Jakabaring housing. Independent variables were the resident density, socioeconomic status, house location, roof type, green area ratio, weather, time, air conditioner, pro-environment institution, and NEP scale. The Analytic method included correlation and regression. We identified that all housing had different UHI profiles where Taman Sari Kenten had the highest UHI (4.17 K), followed by Talang Kelapa (2.66 K) and TOP Jakabaring (0.66 K) against temperature in measuring station nearby, owned by BMKG (National Meteorological Station). UHI correlated with the resident density, roof type, green area ratio, weather, time, and air conditioner. The results should add to the design of ideal housing in the tropical climate for middle-class residents, focusing on its ability to mitigate Urban Heat Island.

  5. An Appalachian House: The Design and Analysis of a Passive Solar House

    OpenAIRE

    Rogers, Robin Elaine

    1999-01-01

    This project is a proposal for the design of a house situated on a plot of land within the town limits of Blacksburg. It incorporates ideas drawn from many sources, particularly from this region of Appalachia -- its geology, architectural heritage, building materials, history, Blacksburg's Comprehensive Plan, housing, agriculture and energy resources. An introduction discusses some ideas on architecture followed by chapters which provide the basis upon which the design was developed, then a d...

  6. Feasibility Study on Solar District Heating in China

    DEFF Research Database (Denmark)

    Huang, Junpeng; Fan, Jianhua; Furbo, Simon

    This paper analyzes the feasibility of developing solar district heating (SDH) in China from the perspective of incentive policy, selections of technical route, regional adaptability and economic feasibility for clean heating. Based on the analyzation, this proposes a road map for the development...

  7. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  8. Solar-Heated and Cooled Office Building--Columbus, Ohio

    Science.gov (United States)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  9. SIMS prototype system 1: Design data brochure. [solar heating system

    Science.gov (United States)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  10. Solar wind heat flux regulation by the whistler instability

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.

    1977-01-01

    This paper studies the role of the whistler instability in the regulation of the solar wind heat flux near 1 AU. A comparison of linear and second-order theory with experimental results provides strong evidence that the whistler may at times contribute to the limitation of this heat flux

  11. NUMERICAL ANALYSIS OF HEAT STORAGE OF SOLAR HEAT IN FLOOR CONSTRUCTION

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Holck, Ole; Svendsen, Svend

    2003-01-01

    with the highest energy con-sumption. The reduction depends on the solar collector area, distribution of the insulation thickness, heat-ing demand and control strategy, but not on pipe spacing and layer thickness and material. Finally, it is shown that the system can also be used for comfort heating of tiled...

  12. Development of an innovative low temperature heat supply concept for a new housing area

    OpenAIRE

    Schmidt, Dietrich; Kallert, Anna; Orozaliev, Janybek; Best, Isabelle; Vajen, Klaus; Reul, Oliver; Bennewitz, Jochen; Gerhold, Petra

    2017-01-01

    The domestic energy demand of buildings is responsible for one third of the world's final energy consumption. To increase the sustainability of new housing areas, the identification of innovative heat supply concepts based on renewable energy sources (RES) is required. For the new housing area “Zum Feldlager” (Kassel, Germany), various supply concepts are studied. Main objective is the development of an innovative and efficient supply concept based on RES and low temperature district heating ...

  13. Development of an innovative heat supply concept for a new housing area

    OpenAIRE

    Schmidt, Dietrich; Schurig, Marlen; Kallert, Anna; Orozaliev, Janybek; Best, Isabelle; Vajen, Klaus; Reul, Oliver; Bennewitz, Jochen; Gerhold, Petra

    2016-01-01

    The energy demand of buildings for heating and cooling is responsible for more than one third of the world's final energy consumption. Therefore the identification of innovative heat supply concepts based on renewable energies is required. The utilization of renewable energies in combination with efficient supply technologies increases the "sustainability" of new housing areas. For the new housing area "Zum Feldlager", located in Kassel (Germany), various supply concepts are investigated. Mai...

  14. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  15. Integration of solar heat storage in the ground floor; Bygningsintegreret varmelagring af solvarme i terraendaek

    Energy Technology Data Exchange (ETDEWEB)

    Weitzmann, P.; Holck, O.; Svendsen, S.

    2001-07-01

    In this report the thermal properties of heat storage of solar heating in floors is examined. The floor examined is built using two decks, where the lower can be used for heat storage. It is the purpose of the work that has been carried out, to be able to quantify the potential for a reduction of the heating demand in a house, through the use of heat storage of solar heating. The report starts out with an introduction to the problem that is to be examined, namely to perform detailed calculations of the temperature and heat flows in floors. A description of the theory for the implementation of the model for solar collector, solar tank, floor, foundation and control strategies, can be found. The model described here has been implemented into the programming language Matlab and Simulink. Especially the model of the floor is described in great detail. The section begins with a description of the floor construction. It is then described how the floor construction is implemented into a detailed finite element model, and converted into a less detailed RC-model, where the temperature is calculated only in a few points. Each of the points had a heat capacity, and between the points a thermal resistance is included. The reason for using a RC-model is, that it proved impossible to do yearly calculations using the finite element model because of unacceptably long calculation times. Instead the procedure for the conversion between the two models is shown. After the conversion results from the two methods are compared to estimate the error introduced by this conversion to a less detailed model. The two methods are found to differ only by around 5%. The coefficients to be used in the RC-model are shown for seven different layouts of the floor concerning pipe spacing, distribution of insulation, thickness of heat storage layer and type of heat storage layer (sand or concrete). A number of different control strategies for the distribution of flow in solar tank and heat storage

  16. Theoretical overview of heating power and necessary heating supply temperatures in typical Danish single-family houses from the 1900s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    in typical Danish single-family houses constructed in the 1900s. The study provides a simplified theoretical overview of typical building constructions and standards for the calculation of design heat loss and design heating power in Denmark in the 1900s. The heating power and heating demand in six typical...... Danish single-family houses constructed in the 1900s were estimated based on simple steady-state calculations. We found that the radiators in existing single-family houses should not necessarilrbe expected to be over-dimensioned compared to current design heat loss. However, there is considerable...... potential for using low-temperature space heating in existing single-family houses in typical operation conditions. Older houses were not always found to require higher heating system temperatures than newer houses. We found that when these houses have gone through reasonable energy renovations, most...

  17. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System.

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-08-12

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system's working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage.

  18. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-01-01

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system’s working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage. PMID:28805703

  19. Marketing energy-efficient solar houses: A method to locate and identify people who will buy energy-efficient solar houses, or related services

    International Nuclear Information System (INIS)

    D'Alessio, G.

    1999-01-01

    Houses built in New England within the last six years, equal to or exceeding energy-efficiency standards from Energy Crafted Homes (ECH) or from DOE's Energy Star Homes are termed energy-efficient for this study. An assumption is that people who purchase houses being newly constructed may request special features including more energy-efficient features. The average house being constructed today is not as energy-efficient as it could easily be; therefore, owners of recently constructed energy-efficient houses may be termed early-adopters of an innovation. It has been demonstrated that early adopters have different personal attitudes and perceptions of an innovation compared to later-adopters. Both types of adopters--owners of recently constructed energy-efficient or energy-inefficient houses, have been surveyed in New England to determine whether their differences are significant enough to be used in identifying future potential early-adopters. Solar houses also are usually energy-efficient, and should be termed an innovation

  20. The study of the heat-engineering characteristics of a solar heat collector based on aluminum heat pipes

    International Nuclear Information System (INIS)

    Khairnasov, S.M.; Zaripov, V.K.; Passamakin, B.M. et al.

    2013-01-01

    This paper presents the results of studies into the heat-engineering characteristics of a flat heat solar collector based on aluminum heat pipes that is designed to be used in building facades. The principle of work and the structure of the solar collector are considered; the results of its comparison with a traditional flat solar collector are presented. The studies were performed at a heat carrier temperature range of +10 - +30 degree C and at a solar heat flow density of 400 - 1000 W/m 2 . The obtained experimental heat-engineering characteristics of the collector based on heat pipes show that they are at a level of traditional flow solar collectors; for example, its efficiency is 0.65 - 0.73. Meanwhile, the hydraulic resistance of the structure with heat pipes is by a factor of 2 - 2.4 smaller and ensures a high level of scalability, reliability, and maintainability, which is important when using it as an element of facade constructions of solar heat systems. (author)

  1. Solar and seasonal dependence of ion frictional heating

    Directory of Open Access Journals (Sweden)

    J. A. Davies

    1999-05-01

    Full Text Available Ion frictional heating constitutes one of the principal mechanisms whereby energy, originating in the solar wind, is deposited into the Earth's ionosphere and ultimately the neutral atmosphere. Common programme observations by the EISCAT UHF radar system, spanning the years 1984 to 1995, provide the basis for a comprehensive statistical study of ion frictional heating, results of which are documented in this and a previous paper by the authors. In the present work, the authors demonstrate the solar and seasonal dependence of the universal time distribution of frictional heating, and explain these results with reference to corresponding dependences of the ion velocity. Although EISCAT observes a significant increase in the occurrence of enhanced ion velocities associated with increased solar activity, the latter characterised according to the prevailing 10.7 cm solar flux, this is not reflected to such an extent in the occurrence of frictional heating. It is suggested that this is a consequence of the decreased neutral atmosphere response times associated with active solar conditions, resulting from the higher ionospheric plasma densities present. Seasonal effects on the diurnal distribution of ion frictional heating are well explained by corresponding variations in ionospheric convection, the latter principally a result of geometrical factors. It is noted that, over the entire dataset, the variations in the unperturbed F-region ion temperature, required to implement the identification criterion for ion heating, are highly correlated with model values of thermospheric temperature.Keywords. Ionosphere (auroral ionosphere; ionosphere-atmosphere interactions; plasma temperature and density

  2. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  3. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  4. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  5. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  6. Solar water heating and its prospect for timber drying application

    Energy Technology Data Exchange (ETDEWEB)

    Yin, B T

    1982-01-01

    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  7. Natural working fluids for solar-boosted heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chaichana, C.; Lu Aye [University of Melbourne, Victoria (Australia). International Technologies Centre, Department of Civil and Environmental Engineering; Charters, W.W.S. [University of Melbourne, Victoria (Australia). Department of Mechanical and Manufacturing Engineering

    2003-09-01

    The option of using natural working fluids as a substitute of R-22 for solar-boosted heat pumps depends not only upon thermal performance and hazardous rating but also on potential impacts on the environment. This paper presents the comparative assessment of natural working fluids with R-22 in terms of their characteristics and thermophysical properties, and thermal performance. Some justification is given for using natural working fluids in a solar boosted heat pump water heater. The results show that R-744 is not suitable for solar-boosted heat pumps because of its low critical temperature and high operational pressures. On the other hand, R-717 seems to be a more appropriate substitute in terms of operational parameters and overall performance. However, major changes in the heat pumps are required. R-290 and R-1270 are identified as candidates for direct drop-in substitutes for R-22. (author)

  8. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  9. Assessment of the energy performance of the solar space system attached to the CE – INCERC Bucharest experimental house – experimental validation

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2010-01-01

    Full Text Available The INCERC Bucharest experimental house is equipped on the Southern façade with a ventilated solar space. The solar space ensures the ventilation of the entire building at a constant rate of 0.60 exchanges / h during the cold season, by inletting the pre-heated space in the greenhouse space. In the hot season the system ensures the building reversible ventilation by providing the fresh air rate by air suction in the building Northern zone, a consequence of the natural draught effect ensured by the solar space. This report presents the experiments performed in the season 2008-2009 and the experimental validation of the mathematical model used in assessing the solar space energy performance in the heating season.

  10. Simulation of a solar assisted combined heat pump – Organic rankine cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Reverse operation of the scroll compressor in ORC mode. • Annual simulations for application in a single-family house at three locations. • By introducing the ORC the net electricity demand is reduced by 1–9%. • Over the lifetime of the system savings can cover additional investments. - Abstract: A novel solar thermal and ground source heat pump system that harnesses the excess heat of the collectors during summer by an Organic Rankine Cycle (ORC) is simulated. For the ORC the heat pump process is reversed. In this case the scroll compressor of the heat pump runs as a scroll expander and the working fluid is condensed in the ground heat exchanger. Compared to a conventional solar thermal system the only additional investments for the combined system are a pump, valves and upgraded controls. The goal of the study is to simulate and optimize such a system. A brief overview of the applied models and the evolutionary algorithm for the optimization is given. A system with 12 m 2 of flat plate collectors installed in a single family house is simulated for the locations Ankara, Denver and Bochum. The ORC benefits add up to 20–140 kW h/a, which reduces the net electricity demand of the system by 1–9%. Overall 180–520 € are saved over a period of 20 years, which can be enough to cover the additional investments

  11. Solar Powered Heat Storage for Injera Baking

    OpenAIRE

    Tesfay, Asfafaw H; Kahsay, Mulu Bayray; Nydal, Ole Jørgen

    2014-01-01

    Ethiopia with a population of about 85 million meets 96% of its energy needs with bio-mass, charcoal, wood, animal dung and plant residues. More than 50% of this energy goes entirely on baking Injera. Injera the national food of the country demands 180-220 °C to be well cooked. In this article; Injera baking with solar energy on off-focus system, status of electric powered stove and the potential for solar powered stoves is discussed. The research and development of solar thermal for househol...

  12. SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  13. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    Science.gov (United States)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  14. Combined heat and power and solar energy; BHKW und solare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, M.; Schmidt, A.

    2006-07-01

    This illustrated article takes a look at a new apartment complex in Buelach, Switzerland, that meets the 'Minergie' low energy-consumption standard and also features solar-thermal heat generation. This solar installation provides heat for the provision of domestic hot water and, also, heat for the space-heating system of the building complex. The solar collectors cover an area of 153 m{sup 2}; their power is rated at 96 kW. Further elements of the building's technical services include a combined heat and power plant, a heat-pump and a gas-fired boiler. The article discusses ecological and social aspects of the design and construction of the building complex and briefly describes the installations, which also include a 'Minergie' fan-assisted balanced ventilation system.

  15. MINERGIE modules: heat pump - heat pump/solar - wood - wood/solar; Minergie-Module Waermepumpe - Waermepumpe/Solar - Holz - Holz/Solar

    Energy Technology Data Exchange (ETDEWEB)

    Gallati, J. [Seecon GmbH, Lucerne (Switzerland); Portmann, M. [Buero Markus Portmann, Kriens (Switzerland); Zurfluh, B. [Zurfluh Lottenbach, Lucerne (Switzerland)

    2005-07-01

    This research report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the feasibility of setting up 'MINERGIE' low-energy-consumption module standards for the production of heat in small residential buildings. The aims of the standards and the basic idea behind the MINERGIE-modules are discussed. The concepts of the modules for heat pumps and wood-fired heating systems and their combination with solar installations are examined, as are their areas of application. The requirements placed on the modules are listed. System concepts, including simple schematics for typical installations, are presented for wood-log, wood-chippings and pellets-fired systems as well as for ground-loop and air-water heat pump systems as well as their solar-aided counterparts. The results of cost-benefit analyses are presented and questions regarding system guarantee and liability are examined.

  16. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  17. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and emittance......Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...

  18. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  19. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  20. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  1. Bacterial growth in solar heating prepared and traditional tanks

    International Nuclear Information System (INIS)

    Bagh, L.K.

    2000-01-01

    In Denmark it has been put forward that the introduction of solar heating prepared tanks into the building regulation can cause increased nuisance with respect to bacterial growth in hot water for domestic use. The reason is that solar heating prepared tanks have a larger volume and another form of operation than traditional tanks. In this investigation the difference between bacterial growth in solar heating prepared and traditional tanks was measured by heterotrophic plate counts as a general parameter for microbiological growth. There was no significant difference between the bacterial number in the solar heating prepared tanks and in the traditional tanks, either for bacteria determined at 37 deg. C, 44 deg. C, 55 deg. C or at 65 deg. C. The hot water for domestic use from the solar heating prepared tanks and the traditional tanks had in most cases a bacterial number below 1.000 CFU/ml, and all tests had a bacterial number below 10.000 CFU/ml. The number of bacteria must be considered low seen in relation to the other measurements of bacteria in hot water for domestic use, particularly in larger block of flats. (au)

  2. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  3. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  4. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  5. evaluation of a modified passive solar housing system for poultry

    African Journals Online (AJOL)

    User

    The hourly efficiency of the solar brick passive system was estimated at about 78.42% in a day of May and ... to high cost and unavailability of kerosene in most developing .... sulted in intermittent rainfall, cloud cover and sunshine. From the ...

  6. Solar heating at the P. E. I. Ark

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, K.T.

    1979-01-01

    Both active and passive solar heating systems are employed at the P.E.I. Ark. An active drain-down system, which stores heat in water located in 70,000 litre concrete tanks, supplies heat to the living area. Domestic hot water is heated by a thermosiphon drain-down solar system coupled to a wood cookstove. Environmental design of the Ark allows for maximum use of passive solar energy. The passive system supplies the majority of the heating load on sunny days, while wood stoves supply the back-up heat. The performance of the active system has required high maintenance because of problems in the mechanical and electrical systems. This, coupled with the high initial cost, has not made the system cost effective. The 178m/sup 2/ commercial greenhouse uses a hybrid system with both active and passive systems. The active system employs a fan to draw air through rock storage. The passive system employs the high thermal mass of the deep soil beds, a concrete slab, and most importantly, 53,200 litres of water in translucent tanks. These tanks are then used for fish rearing and are the basis for a solar hatchery. The greenhouse has performed very well, producing crops year round since 1976.

  7. Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997

    International Nuclear Information System (INIS)

    Faninger, G.

    1998-04-01

    Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997. Test results from solar systems for swimming pool heating, hot water preparation and space heating as well as heat pumps for hot water preparation, space heating and heat recovery will be reported and assessed collectively. (author)

  8. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  9. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  10. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  11. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  12. Solar Powered Heat Control System for Cars

    OpenAIRE

    Abin John; Jithin Thomas

    2014-01-01

    It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by mean...

  13. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    Energy Technology Data Exchange (ETDEWEB)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  14. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  15. Available online Efficiency potential of indirectly heated solar reforming with different types of solar air receivers

    International Nuclear Information System (INIS)

    Storch, Henrik von; Roeb, Martin; Stadler, Hannes; Sattler, Christian; Hoffschmidt, Bernhard

    2016-01-01

    Highlights: • A process for indirectly heated solar reforming of natural gas with air as heat transfer fluid is proposed. • Different solar receivers are modeled and implemented into the reforming process. • The overall efficiency of the process with different solar receivers is determined. • Optimum solar receiver characteristics for application in a solar reforming process are determined. - Abstract: In solar reforming, the heating value of natural gas is increased by utilization of concentrated solar radiation. Hence, it is a process for storing solar energy in a stable and transportable form that also permits further conversion into liquid fuels like methanol. This process has the potential to significantly decrease the natural gas consumption and the associated CO_2-emissions of methanol production with only few open questions to be addressed prior to commercialization. In the medium and long term, it has the potential to generate methanol as an environmentally friendly fuel for both transport as well as flexible electricity production in combined cycle gas turbines, when biogas is used as reactant. In a previous study the high potential of indirectly heated solar reforming with solar air receivers was shown; however, the efficiency is limited when using state of the art open volumetric receivers. Therefore, different types of air receivers are implemented into an indirectly heated solar reforming process and the overall efficiency potential is assessed in the present study. The implemented receivers are an open volumetric cavity receiver, a closed volumetric cavity receiver and a tubular cavity receiver. The open volumetric cavity receiver and tubular cavity receiver achieve the best results due to their capability of operating efficiently at temperatures well above 700 °C. For these receivers peak efficiencies up to 29% and 27% respectively are predicted. As the utilization of an open volumetric cavity receiver constitutes an open heat transfer

  16. Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods

    Directory of Open Access Journals (Sweden)

    Kyoung-Ho Lee

    2015-08-01

    Full Text Available There is growing interest in zero-energy and low-energy buildings, which have a net energy consumption (on an annual basis of almost zero. Because they can generate both electricity and thermal energy through the use of solar photovoltaic (PV and solar thermal collectors, and with the help of reduced building thermal demand, low-energy buildings can not only make a significant contribution to energy conservation on an annual basis, but also reduce energy consumption and peak demand. This study focused on electricity consumption during the on-peak period in a low-energy residential solar building and considers the use of a building’s thermal mass and thermal storage to reduce electricity consumption in summer and winter by modulation of temperature setpoints for heat pump and indoor thermostats in summer and additional use of a solar heating loop in winter. Experiments were performed at a low-energy solar demonstration house that has solar collectors, hot water storage, a ground-coupled heat pump, and a thermal storage tank. It was assumed that the on-peak periods were from 2 pm to 5 pm on hot summer days and from 5 pm to 8 pm on cold winter days. To evaluate the potential for utilizing the building’s thermal storage capacity in space cooling and heating, the use of simple control strategies on three test days in summer and two test days in the early spring were compared in terms of net electricity consumption and peak demand, which also considered the electricity generation from solar PV modules on the roof of the house.

  17. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  18. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  19. Solar heating and cooling system design and development

    Science.gov (United States)

    1978-01-01

    Application surveys and performance studies were conducted to determine a solar heating and hot water configuration that could be used in a variety of applications, and to identify subsystem modules that could be utilized in a building block fashion to adapt hardware items to single and multi-family residential and commercial systems. Topics discussed include: subsystem development for the solar collectors, controls, other components, energy management module, and the heating system configuration test. Operational tests conducted at an Illinois farmhouse, and a YWCA in Spokane, Washington are discussed.

  20. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  1. Active solar heating and cooling information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  2. Solar chemical heat pipe in a closed loop

    International Nuclear Information System (INIS)

    Levy, M.

    1990-06-01

    The work on the solar CO 2 reforming of methane was completed. A computer program was developed for simulation of the whole process. The calculations agree reasonably well with the experimental results. The work was written up and submitted for publication in Solar Energy. A methanator was built and tested first with a CO/H 2 mixture from cylinders, and then with the products of the solar reformer. The loop was then closed by recirculating the products from the methanator into the solar reformer. Nine closed loop cycles were performed, so far, with the same original gas mixture. This is the first time that a closed loop solar chemical heat pipe was operated anywhere in the world. (author). 13 refs., 12 figs., 3 tabs

  3. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  4. A procedure for analysing energy savings in multiple small solar water heaters installed in low-income housing in Brazil

    International Nuclear Information System (INIS)

    Giglio, Thalita; Lamberts, Roberto; Barbosa, Miriam; Urbano, Mariana

    2014-01-01

    Due to government subsidies, Brazil has witnessed an increase in the installation and use of small solar water heating systems in low-income housing projects. Although the initiative has reduced the load curve during peak times due to the reduced use of electric showerheads, measurement and verification (M and V) are needed to validate the savings. M and V procedures should take into account the social and economic variability of low-income housing developments. To improve M and V in low-income housing projects, this paper presents a methodology for identifying homogeneous subgroups based on their energy-saving potential. This research strategy involved a cluster analysis designed to improve the understanding of what energy savers and other influencing factors exist. A case study in Londrina Brazil was undertaken with 200 low-income families. Five clusters, created based on savings potential, were defined. The results showed that only two clusters demonstrated good electricity savings, representing 47% of families. However, two clusters, or 37%, did not provide satisfactory savings, and the other 16% did not provide any consumption history due to previous use of illegal city electricity connection practices. Therefore, studies confirm the need for a detailed measurement of the representative subgroups to assess the influence of human behaviour on potential SWHS-induced savings. - Highlights: • M and V is necessary to improve solar collector-area-based subsidy programmes. • M and V in large-scale sample should contemplate the social and economic variability. • Samples with homogeneous subgroups contribute to a consistent energy-saving M and V. • Solar Water Heaters in some cases may not offer energy saving in a low-income context. • SWH performance decreases with low educational level and difficulty of operation

  5. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  6. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  7. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    Science.gov (United States)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  8. House owners' perceptions and factors influencing their choice of specific heating systems in Germany

    International Nuclear Information System (INIS)

    Decker, Thomas; Menrad, Klaus

    2015-01-01

    Against the background of global climate changes and several legal obligations, the target of this paper is to analyze the buying behavior of house owners in Germany with respect to heating systems and the main factors influencing choice when purchasing a specific heating system (e.g., oil heating or wood pellet heating). To investigate these issues, a Germany-wide written survey was conducted and the completed questionnaires of 775 respondents analyzed using multinomial logistic regression. Of 29 different variables influencing the purchase of a heating system, 12 statistically significant variables have been identified which characterize the owners of oil heating, a heat pump, gas heating and wood pellet heating. The membership of different ecological clusters primarily segregates the owners of a specific heating system, but the assessment of the different combustibles also plays a major role in this context. Suppliers of heating systems can use the results of this study to fine-tune their marketing strategies. With respect to policy issues only limited room for additional economic incentives can be identified to promote replacement of fossil-fuel based heating systems in favor of renewable ones. -- Highlights: •Current regulations support renewable heating systems insufficiently in Germany. •We developed a model to characterize the purchasers of different heating systems. •Ecological attitudes differentiate the purchasers of the different heating systems. •Economic reasons are mainly important for owners of gas and oil heating systems

  9. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  10. Two-story residence with solar heating--Newman, Georgia

    Science.gov (United States)

    1981-01-01

    Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

  11. Solar-heated swimming school--Wilmington, Delaware

    Science.gov (United States)

    1981-01-01

    Report describes operation, installation, and performance of solar-energy system which provides alternative to natural gas pool heating. System is comprised of 2,500 square feet of liquid flat-plate collectors connected to 3,600 galloon; gallongalloon storage tank, with microcomputer-based controls. Extension of building incorporates vertical-wall, passive collection system which provides quarter of heated fresh air for office.

  12. Large scale solar district heating. Evaluation, modelling and designing

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application

  13. Efficiency analysis of solar facilities for building heating and household water heating under conditions in the Czech Republic

    OpenAIRE

    Pivko, Michal; Jursová, Simona; Turjak, Juraj

    2012-01-01

    The paper studies the efficiency of solar facilities applied for the heating of buildings and household water heating in the Czech Republic. The Czech Republic is situated in the temperate zone characterized by changeable weather. It is respected in the assessment of a solar facility installation. The efficiency of solar facilities is evaluated according to energy and economic balances. It is analyzed for solar facilities heating both household water and buildings. The main problems relating ...

  14. Performance of cylindrical plastic solar collectors for air heating

    International Nuclear Information System (INIS)

    Abdullah, A.S.; Bassiouny, M.K.

    2014-01-01

    Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors

  15. Investigating the real situation of Greek solar water heating market

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kavadias, K.A.; Spyropoulos, G.

    2005-01-01

    Solar thermal applications have been acknowledged among the leading alternative solutions endeavouring to face the uncontrollable oil price variations, the gradual depletion of fossil fuel reserves and the chain environmental consequences caused by its excessive usage. Almost 30 years after the initial emergence of the commercial domestic solar water heating system (DSWHS) in the European market, the corresponding technology is qualified as quite mature. On top of this, the European Commission expects that 100,000,000 m 2 of solar collectors are to be installed in Europe by the year 2010 to facilitate durable and environment-friendly heat. In this context, the Greek DSWHSs market is highly developed worldwide, having a great experience in this major energy market segment. The present study is devoted to an extensive evaluation of the local DSWHSs market, including a discerning analysis of its time variation, taking seriously into account the corresponding annual replacement rate. Accordingly, the crucial techno-economic reasons, limiting the DSWHSs penetration in the local heat production market, are summarized and elaborated. Subsequently, the national policy measures - aiming to support the DSWHSs in the course of time - are cited, in comparison with those applied in other European countries. Next, the financial attractiveness of a DSWHS for Greek citizens is examined in the local socio-economic environment. The present work is integrated by reciting the prospects and mustering certain proposals that, if applied, could stimulate the local market. As a general comment, the outlook for penetration of new DSWHSs in the local market is rather grim, as the current techno-economic situation of solar heat cannot compete with oil and natural gas heat production, unless the remarkable social and environmental benefits of solar energy are seriously considered. Hence, the Greek State lacks stimulus to further DSWHSs installations, being strongly in support of the imported

  16. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  17. The heat recovery with heat transfer methods from solar photovoltaic systems

    International Nuclear Information System (INIS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-01-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc. (paper)

  18. Different heating systems for single family house: Energy and economic analysis

    Directory of Open Access Journals (Sweden)

    Turanjanin Valentina M.

    2016-01-01

    Full Text Available The existing building stock energy consumption accounts for about 38% of final energy consumption in Republic of Serbia. 70% of that energy is consumed by residential sector, mostly for space heating. This research is addressed to the single family house building placed in the Belgrade city. The house has ground and first floor with total heating area of 130 m2 and pellet as space heating source. The aim of this paper is to evaluate energy and economic analysis for different heating systems. Several homeheating were compared: Option 1 (biomass combustion boiler using pellet as a fuel, Option 2 (gas combustion boiler and Option 3 (heat pump. The building performance was evaluated by TRNSYS 17 simulation code. Results show estimated savings using renewable energy sources. [Projekat Ministarstva nauke Republike Srbije, br. III42008

  19. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  20. Cyprus solar water heating cluster: A missed opportunity?

    International Nuclear Information System (INIS)

    Maxoulis, Christos N.; Charalampous, Harris P.; Kalogirou, Soteris A.

    2007-01-01

    Cyprus is often called the 'sun island' because of the amount of sunshine received all year round. The abundance of solar radiation together with a good technological base has created favourable conditions for the exploitation of solar energy on the island. This led to the development of a pioneering solar collector industry in Cyprus, which in the mid-1980s was flourishing. The result was an outstanding figure of installed solar collector area per inhabitant. Nowadays, Cyprus is cited as the country with the highest solar collector area installed per inhabitant, worldwide. This means that the local market for solar thermal collectors (for domestic applications) is now rather saturated. It was only rational to assume that Cypriot firms equipped with their gained expertise and leading edge would have safeguarded a sustainable growth and have an international orientation, focusing on exports in an emerging European and eastern Mediterranean thermal solar market. Unfortunately, this is not the case today. This paper reviews the economic performance and the competitiveness of Cyprus and the evolution of the solar water heating (SWH) industry using the cluster theory of Michael Porter. Its aim is to give insight and explanations for the success of the sector domestically, its failure with regards to exporting activity, pinpoint the industry in the European map and finally give recommendations for the cross the boarders commercial success of the industry

  1. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  2. Nanoflares and Heating of the Solar Corona

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal heating by nanoflares is presented by using observational, analytical, numerical simulation and statistical results. Numerical simulations show the formation of numerous current sheets if the magnetic field is sheared and bipoles have unequal pole strengths. This fact supports the generation of ...

  3. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2012-06-01

    Full Text Available Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790 and with a dynamic tool (TRNSYS. After the analysis of the greenhouse alone, the behavior of an entire house was simulated; a flat equipped with a sunspace, recently built thanks to public contributions provided by the Umbria Region in Italy to widespread bio-climatic architecture, was used as case-study. Simulations were carried out for the examined flat, both with a steady-state tool and with a dynamic one; the contribution of the sunspace was estimated thanks to the various methods previously mentioned. Finally, the simulated data were satisfactorily compared with the real energy consumptions (natural gas for heating of the flat; the sunspace allows a reduction of winter energy demand of the flat of about 20%.

  4. Adaptive heating, ventilation and solar shading for dwellings

    NARCIS (Netherlands)

    Alders, E.E.

    2017-01-01

    Calculation of various strategies for the heating of, and the prevention of overheating in, a Dutch standard dwelling that includes (automated) adaptive ventilation systems and solar shading to maintain indoor temperatures at acceptably comfortable temperatures informs this analysis of the costs,

  5. Solar heating for a restaurant--North Little Rock, Arkansas

    Science.gov (United States)

    1981-01-01

    Hot water consumption of large building affects solar-energy system design. Continual demand for hot water at restaurant makes storage less important than at other sites. Storage capacity of system installed in December 1979 equals estimated daily hot-water requirement. Report describes equipment specifications and modifications to existing building heating and hot water systems.

  6. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her; Wang, Jiunn-Cherng

    2012-01-01

    was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI

  7. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  8. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  9. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  10. Solar Space and Water Heating for School -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  11. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  12. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  13. Investigation of the Indoor Environment in a Passive House Apartment Building Heated by Ventilation Air

    DEFF Research Database (Denmark)

    Lysholt Hansen, MathiasYoung Bok; Koulani, Chrysanthi Sofia; Peuhkuri, Ruut Hannele

    2014-01-01

    comfort and the performance of the air heating system and solar shading. Thermal comfort category B according to ISO 7730 was obtained in the building during field measurements, indicating that the air heating system was able to maintain comfort conditions in winter, when the outdoor temperature had been...... building project finished medio 2012. The design challenge was met with a concept of air heating that is individually controlled in every room. It also applies external solar shading. This study used indoor climate measurements and dynamic simulations in one of these apartment buildings to evaluate thermal...... unusual low for a longer period. The dynamic simulations also indicated that air heating during winter can provide a comfortable thermal environment. Dynamic simulations also demonstrated that during summer, apartments with automatic external solar screens had no serious overheating, whereas in apartments...

  14. STUDY AND NUMERICAL SIMULATION OF SOLAR SYSTEM FOR AIR HEATING

    Directory of Open Access Journals (Sweden)

    M. Ghodbane

    2016-01-01

    Full Text Available The use of solar energy in sunny countries, is an effective outil for compensate the lack in the energy, their benefits are not related only to its economic benefits but especially for the environmental protection, so we must find solutions to the problems of pollution. This work is a theoretical study of a solar flat plate collector ; air is used as the heat transfer fluid. In this study, we established in first step the calculation of solar radiation in various sites in Algeria (Adrar, El Oued, Bechar, Biskra and Tamanrasset. The second step is the parameters influence study of the sites and climate on the performance of our collector. The results obtained are encouraging for the use of this type in the heating in the winter, also it can be used in different kinds of drying.

  15. The effects of air leaks on solar air heating systems

    Science.gov (United States)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  16. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  17. Heat-rejection design for large concentrating solar arrays

    Science.gov (United States)

    French, E. P.

    1980-01-01

    This paper considers the effect of heat rejection devices (radiators) on the performance and cost of large concentrating solar arrays for space application. Overall array characteristics are derived from the weight, cost, and performance of four major components; namely primary structure, optics/secondary structure, radiator, and solar panel. An ideal concentrator analysis is used to establish general cost and performance trends independent of specific array design. Both passive and heat-pipe radiation are evaluated, with an incremental cost-of-power approach used in the evaluation. Passive radiators are found to be more cost effective with silicon than with gallium arsenide (GaAs) arrays. Representative concentrating arrays have been evaluated for both near-term and advanced solar cell technology. Minimum cost of power is achieved at geometric concentration ratios in the range 2 to 6.

  18. Beam heating in solar flares - Electrons or protons?

    International Nuclear Information System (INIS)

    Brown, J.C.; Karlicky, M.; Mackinnon, A.L.; Van Den Oord, G.H.J.

    1990-01-01

    The current status of electron and proton beam models as candidates for the impulsive phase heating of solar flares is discussed in relation to observational constants and theoretical difficulties. It is concluded that, while the electron beam model for flare heating still faces theoretical and observational problems, the problems faced by low and high energy proton beam models are no less serious, and there are facets of proton models which have not yet been studied. At the present, the electron beam model remains the most viable and best developed of heating model candidates. 58 refs

  19. Heat transfer analysis of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2011-01-01

    Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.

  20. The impact of the year-on-year variation in the intensity of solar radiation on the energy intensity of low-energy and passive houses

    Directory of Open Access Journals (Sweden)

    Šubrt Roman

    2017-01-01

    Full Text Available Solar radiation is a significant segment of heat gains in the operation of buildings. The importance of this segment is highlighted by lowering the energy performance of buildings. The current condition of assessment considers the standard values of solar radiation but these are often very different from the fair values. In the contribution it draws attention to not only to on-year variation in solar fluctuations in the intensity of solar radiation and its significant long-term deviation from the standard values but also to the impact to energy building in reliance to its energy intensity. The attention will be focused also to different values in standards valid in the Czech Republic. This specification of energy assessment of buildings is not only necessary to approximate calculations of real state, but mainly because we can expect more disputes about if a building has declared calculating the parameters of a building with nearly zero-energy or passive house.

  1. Techno-economic analysis of energy renovation measures for a district heated multi-family house

    International Nuclear Information System (INIS)

    Gustafsson, Marcus; Gustafsson, Moa Swing; Myhren, Jonn Are; Bales, Chris; Holmberg, Sture

    2016-01-01

    Highlights: • Energy saving measures can be cost-effective as part of a planned renovation. • Primary energy consumption, non-renewable energy consumption and CO_2 emissions are assessed for different electricity mixes. • EAHP can be a cost-effective and environmentally beneficial complement to district heating. • EAHP has lower LCC and significantly shorter payback time than ventilation with heat recovery. • Low-temperature ventilation radiators improve the COP of the heat pump. - Abstract: Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO_2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump. Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO_2 emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the

  2. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    Energy Technology Data Exchange (ETDEWEB)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  3. Optimization of flat-plate solar energy heat pipe collector parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Garakovich, L P; Khrustalev, D K

    1984-01-01

    Performance characteristics of flat solar energy collectors with heat pipes have been analysed with regard to various parameters. Their advantages are discussed. The use of heat pipes in solar energy collectors is proved to be efficient.

  4. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  5. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  6. FFT analysis of sensible-heat solar-dynamic receivers

    Science.gov (United States)

    Lund, Kurt O.

    The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.

  7. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  8. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  9. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    OpenAIRE

    M. Z. H. Khan; M. R. Al-Mamun; S. Sikdar; P. K. Halder; M. R. Hasan

    2016-01-01

    This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experi...

  10. Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Sanda Budea

    2014-06-01

    Full Text Available Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour coefficient was calculated and compared.

  11. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  12. Energy conservation and conversion of electrical heating systems in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund, (Sweden)

    2007-06-15

    In this study, a Swedish house built in 1974, heated with resistance heaters was analysed. Different options for changing the heating system and electricity production were compared for this type of detached house, assuming coal-based electricity production as a reference. Changes in the fuel used, the electricity production technology, the end-use heating technology and the heat demand were analysed. The aim was to show how these different parts of the energy system interact and to evaluate the cost-effectiveness of reducing CO{sub 2} emission and primary energy use by different combinations of changes. The results showed that the CO{sub 2} emission and primary energy use could be reduced by 95 and 70%, respectively, without increased heating costs in a national economic perspective. The choice of end-use heating system had a greater influence than the energy conservation measures on the parameters studied. The energy conservation measures were less cost-effective in combination with the more energy-efficient heating systems, although the fact that they reduced the heat demand, and thus also the investment cost of the new heating system, was taken into account. (Author)

  13. Space heating with ultra-low-temperature district heating - a case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2017-01-01

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low temperature district heating with a supply temperature as low as 45 degrees C for the main part...... of the year. The houses were heated by the existing hydraulic radiator systems, while domestic hot water was prepared by use of district heating and electric boosting. This paper evaluated the heating system temperatures that were necessary in order to maintain thermal comfort in four of the houses. First...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...

  14. Solar-heated municipal swimming pools, a case study: Dade County, Florida

    Science.gov (United States)

    Levin, M.

    1981-09-01

    The installation of a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described. The mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The systems performance and economics as well as future plants are discussed.

  15. Performance analysis of a solar-assisted swimming pool heating system

    Energy Technology Data Exchange (ETDEWEB)

    Alkhamis, A I; Sherif, S A [Miami Univ., Coral Gables, FL (United States). Dept. of Mechanical Engineering

    1991-12-31

    This paper discusses feasibility studies for a solar-assisted heating system using a computer simulation program. The solar heating is accomplished by employing hot water generated by heat exchange with the solar collector working fluid. The performance of the system is analysed from both thermodynamic and economic standpoints and general conclusions are reached. 17 refs., 7 figs.

  16. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  17. Greenhouse heating with a fresh water floating collector solar pond

    International Nuclear Information System (INIS)

    Arbel, A.; Sokolov, M.

    1991-01-01

    The fresh water floating collector solar pond was investigated both experimentally and theoretically in a previous work, and it is now matched, by simulation, with the heat load requirements of a greenhouse. Results of the simulation indicate that such a pond is a potential energy source for greenhouse heating. This is especially true when the material properties are such that solar absorption and storage are enhanced. This paper reports that to demonstrate this point, three sets of collectors constructed with materials of different physical (radiation) properties were tested. One set is constructed of common materials which are readily available and are normally used as covers for greenhouses. The second set made of improved materials which are also available but have a smaller long-wave transmittance. The last set made of ideal material which additionally possesses selective radiation absorption properties. Collectors made of ideal materials make a superior solar pond; thus, manufacturing films with improved properties should become a worthwhile challenge for the agricultural polyethylene-films industry. Preliminary economic studies indicate that even with the low oil (<$20/Bbl) prices which exist between 1986-1989, the fresh water floating collectors solar pond provides an economically attractive alternative to the conventional oil-burning heating system. This is especially true in mild climate areas and when the large initial investment is justified by long-term greenhouse utilization planning

  18. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  19. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  20. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  1. Comparison and Validation of Operational Cost in Smart Houses with the Introduction of a Heat Pump or a Gas Engine

    Science.gov (United States)

    Shimoji, Tsubasa; Tahara, Hayato; Matayoshi, Hidehito; Yona, Atsushi; Senjyu, Tomonobu

    2015-02-01

    Due to the concerns of global warming and the depletion of energy resources, renewable energies such as wind generation (WG) and photovoltaic generation (PV) are gaining attention in distribution systems. Efficient electric equipment such as heat pumps (HP) not only contribute low levels of carbon to society, but are also beneficial for consumers. In addition, gas instruments such as the gas engine (GE) and fuel cells (FC) are expected to reduce electricity cost by exhaust heat. Thus, it is important to clarify which systems (HP or GE) are more beneficial for consumers throughout the year. This paper compares the operational cost for the smart house between using the HP and the GE. Current electricity and gas prices are used to calculate the cost of the smart house. The system considered in this research comprises a PV, battery, solar collector (SC), uncontrolled load and either an HP or a GE. In order to verify the effectiveness of the proposed system, MATLAB is used for simulations.

  2. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  3. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  4. Quasi-adaptive fuzzy heating control of solar buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, M.M. [Faculty of Industrial Education, Cairo (Egypt); Danaher, S. [University of Northumbria, Newcastle upon Tyne, (United Kingdom). School of Engineering; Underwood, C.P. [University of Northumbria, Newcastle upon Tyne (United Kingdom). School of Built Environment and Sustainable Cities Research Institute

    2006-12-15

    Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need to develop control solutions that permit simple and transparent set-up and commissioning procedures. This paper addresses the development and testing of a quasi-adaptive fuzzy logic control method that addresses these issues. The controller is developed in two steps. A feed-forward neural network is used to predict the internal air temperature, in which a singular value decomposition (SVD) algorithm is used to remove the highly correlated data from the inputs of the neural network to reduce the network structure. The fuzzy controller is then designed to have two inputs: the first input being the error between the set-point temperature and the internal air temperature and the second the predicted future internal air temperature. The controller was implemented in real-time using a test cell with controlled ventilation and a modulating electric heating system. Results, compared with validated simulations of conventionally controlled heating, confirm that the proposed controller achieves superior tracking and reduced overheating when compared with the conventional method of control. (author)

  5. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  6. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  7. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  8. Central Control of Heat Pump for Smart Grid Purposes Tested on Single Family Houses

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work a central control system using heat pumps in single family houses to help balancing the grid is investigated. The central...

  9. Two-Axis Solar Heat Collection Tracker System for Solar Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung-Chieh Cheng

    2013-01-01

    Full Text Available An experimental study was performed to investigate the effect of using a continuous operation two-axes tracking on the solar heat energy collected. This heat-collection sun tracking which LDR (light dependent resistor sensors installed on the Fersnel lens was used to control the tracking path of the sun with programming method of control with a closed loop system. The control hardware was connected to a computer through Zigbee wireless module and it also can monitor the whole tracking process information on a computer screen. An experimental study was performed to investigate the effect of using two-axes tracking on the solar heat energy collected. The results indicate that sun tracking systems are being increasingly employed to enhance the efficiency of heat collection by polar-axis tracking of the sun. Besides, the heating power was also measured by designed power measurement module at the different focal length of Fresnel lens, and the design of shadow mask of LDR sensors is an important factor for solar photothermal applications. Moreover, the results also indicated that the best time to obtain the largest solar irradiation power is during 11:00 –13:00  in Taiwan.

  10. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  11. Solar Panels reduce both global warming and Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Valéry eMasson

    2014-06-01

    Full Text Available The production of solar energy in cities is clearly a way to diminish our dependency to fossil fuels, and is a good way to mitigate global warming by lowering the emission of greenhouse gases. However, what are the impacts of solar panels locally ? To evaluate their influence on urban weather, it is necessary to parameterize their effects within the surface schemes that are coupled to atmospheric models. The present paper presents a way to implement solar panels in the Town Energy Balance scheme, taking account of the energy production (for thermal and photovoltaic panels, the impact on the building below and feedback towards the urban micro-climate through radiative and convective fluxes. A scenario of large but realistic deployment of solar panels on the Paris metropolitan area is then simulated. It is shown that solar panels, by shading the roofs, slightly increases the need for domestic heating (3%. In summer however, the solar panels reduce the energy needed for air-conditioning (by 12% and also the Urban Heat Island (UHI: 0.2K by day and up to 0.3K at night. These impacts are larger than those found in previous works, because of the use of thermal panels (that are more efficient than photovoltaic panels and the geographical position of Paris, which is relatively far from the sea. This means that it is not influenced by sea breezes, and hence that its UHI is stronger than for a coastal city of the same size. But this also means that local adaptation strategies aiming to decrease the UHI will have more potent effects. In summary, the deployment of solar panels is good both globally, to produce renewable energy (and hence to limit the warming of the climate and locally, to decrease the UHI, especially in summer, when it can constitute a health threat.

  12. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  13. Heat receivers for solar dynamic space power systems

    Science.gov (United States)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  14. Market development directory for solar industrial process heat systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  15. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  16. Method and equipment to utilize solar heat. [paraffin used as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Poellein, H

    1976-09-16

    In this process, solar radiation is converted into heat by means of absorbers. The heat transferred to a liquid is led in forced circulation, first into a heat storage device and then into a water heater. The cooled-down liquid is rercirculated. The storage material used here is paraffin. A measuring and control device is provided to switch from periods with solar radiation to periods where only stored energy is consumed. This device consists of a photocell measuring the incoming sunlight and a temperarure sensor. The control system is put into operation by a combination of the two measured values. The heat accumulator consists of several elements connected in parallel. A control device makes sure that only one accumulator element at a time is part of the circuit. The absorbers, as usual, consists of the absorber plate proper and a cover plate.

  17. Arrangement, manufacturing process and use of solar heat collectors

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, H W

    1978-03-30

    Solar collectors generally have a timber or metal frame where the transparent front cover, usually of glass, is replaceable. In order to prevent great deformation, such a frame must be relatively stable and of heavy construction, which may lead to difficulties in mounting the collector on the roofs or front walls of houses. The present invention proposes a light but nevertheless rigid collector frame, which consists of plastic material and is constructed so that the installation and replacement of collectors can be realized. Further, collectors are proposed which guarantee a minimum of reflection and are so designed that an optimum architectural effect is produced.

  18. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Grossman, G.

    1993-01-01

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  19. Space heating with ultra-low-temperature district heating - A case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low-temperature district heating with a supply temperature as low as 45 °C for the main part...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...... heating return temperatures in the houses were analysed for different times of the year. The study found that existing Danish single-family houses from the 1980s can be heated with supply temperatures as low as 45 °C for the main part of the year. Both simulation models and test measurements showed...

  20. Hearing of the Swiss Solar Energy Society (SSES). The ombudsman for solar heating systems as a quality assurance element

    International Nuclear Information System (INIS)

    Brugger-Mariani, G.

    1999-01-01

    Following an invitation issued by the Swiss Solar Energy Society (SSES),14 solar energy specialists hold a hearing on quality assurance for solar heating systems. Anticipating the introduction of taxes in favour of renewable energy sources and the expected rapid solar market development, the delegates discussed about the creation of a neutral ombudsman office for unsatisfied clients of the solar industry. Clearly, the solar heating system market can only expand if system quality is in accordance with the clients' expectations. The needed know-how may be found since several years in well presented reference books. However, at the moment, not all industry people follow these instructions yet [de

  1. Solar air heating system: design and dynamic simulation

    Science.gov (United States)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  2. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-17

    Solar water heating systems are not new, but they have not become prevalent in most of the U.S. Most of the country is cold enough that indirect solar thermal systems are required for freeze protection, and average installed cost of these systems is $9,000 to $10,000 for typical systems on single-family homes. These costs can vary significantly in different markets and with different contractors, and federal and regional incentives can reduce these up-front costs by 50% or more. In western Massachusetts, an affordable housing developer built a community of 20 homes with a goal of approaching zero net energy consumption. In addition to excellent thermal envelopes and PV systems, the developer installed a solar domestic water heating system (SDHW) on each home. The Consortium for Advanced Residential Buildings (CARB), a research consortium funded by the U.S. Department of Energy Building America program, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.

  3. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  4. The market penetration of solar and heat pump systems in Austria 1991

    International Nuclear Information System (INIS)

    Faninger, G.

    1992-02-01

    The market penetration of solar and heat pump systems in Austria in 1991 shows a high interest for solar systems as well as for swimming-pool heating as for domestic hot-water preparation and also an increase in the field of heat pumps especially for space heating. (author)

  5. Techno-economic study of a distributed hybrid renewable energy system supplying electrical power and heat for a rural house in China

    Science.gov (United States)

    Yuan, Jindou; Xu, Jinliang; Wang, Yaodong

    2018-03-01

    Energy saving and emission reduction have become targets for modern society due to the potential energy crisis and the threat of climate change. A distributed hybrid renewable energy system (HRES) consists of photovoltaic (PV) arrays, a wood-syngas combined heat and power generator (CHP) and back-up batteries is designed to power a typical semi-detached rural house in China which aims to meet the energy demand of a house and to reduce greenhouse gas emissions from the use of fossil fuels. Based on the annual load information of the house and the local meteorological data including solar radiation, air temperature, etc., a system model is set up using HOMER software and is used to simulate all practical configurations to carry out technical and economic evaluations. The performance of the whole HRES system and each component under different configurations are evaluated. The optimized configuration of the system is found

  6. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  7. Solar heating system for recreation building at Scattergood School

    Energy Technology Data Exchange (ETDEWEB)

    Heins, C.F.

    1978-01-03

    This project was initiated in May 1976 and was completed in June 1977. A six-month acceptance-testing period followed during which time a number of minor modifications and corrections were made to improve system performance and versatility. This Final Report describes in considerable detail the solar heating facility and the project involved in its construction. As such, it has both detailed drawings of the completed system and a section that discusses the bottlenecks that were encountered along the way.

  8. Active solar heating system performance and data review

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Bertarelli, L.; Schmidt, G.

    1999-07-01

    This report summarises the results of a study investigating the performance and costs of solar heating systems in Europe, and their relevance to systems in the UK. Details are given of the identification and review of the available data, the collection of information on UK and overseas systems, and the assessment and analysis of the data. Appendices give a lists of the monitored parameters, European contacts, data sources, the questionnaire for gathering information, and a printout of the data files. (uk)

  9. Characterization of HEM silicon for solar cells. [Heat Exchanger Method

    Science.gov (United States)

    Dumas, K. A.; Khattak, C. P.; Schmid, F.

    1981-01-01

    The Heat Exchanger Method (HEM) is a promising low-cost ingot casting process for material used for solar cells. This is the only method that is capable of casting single crystal ingots with a square cross section using a directional solidification technique. This paper describes the chemical, mechanical and electrical properties of the HEM silicon material as a function of position within the ingot.

  10. Design and experiment of a new solar air heating collector

    International Nuclear Information System (INIS)

    Shams, S.M.N.; Mc Keever, M.; Mc Cormack, S.; Norton, B.

    2016-01-01

    This paper presents the design and experiment of a CTAH (Concentrating Transpired Air Heating) system. A newly designed solar air heating collector comprised of an inverted perforated absorber and an asymmetric compound parabolic concentrator was applied to increase the intensity of solar radiation incident on the perforated absorber. An extensive literature review was carried out to find the vital factors to improve optical and thermal efficiency of solar air heating systems. A stationary optical concentrator has been designed and experimented. Experimental thermal efficiency remained high at higher air flow rates. The average thermal efficiency was found to be approximately 55%–65% with average radiation above 400 W/m"2 for flow rates in the range of 0.03 kg/s/m"2 to 0.09 kg/s/m"2. Experimental results at air flow rates of 0.03 kg/s/m"2 and 0.09 kg/s/m"2 showed temperature rise of 38 °C and 19.6 °C respectively at a solar radiation intensity of 1000 W/m"2. A comparative performance study shows the thermal performance of CTAH. As the absorber of the CTAH facing downward, it avoids radiation loss and the perforated absorber with tertiary concentrator reduces thermal losses from the system. - Highlights: • Literature review was carried out to improve SAH system performance. • Optimisation factors were optical efficiency; heat loss, weight and cost. • Concentrator was designed to concentrate radiation for 6–7 h. • The highest efficiency of CTAH can be 73%. • It can work as efficient as 60% for a temperature rise of 70 °C.

  11. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  12. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  13. FEMAN: Fuzzy-Based Energy Management System for Green Houses Using Hybrid Grid Solar Power

    Directory of Open Access Journals (Sweden)

    Abdellah Chehri

    2013-01-01

    Full Text Available The United Nations has designated the year 2012 as the international year of sustainable energy. Today, we are seeing a rise in global awareness of energy consumption and environmental problems. Many nations have launched different programs to reduce the energy consumption in residential and commercial buildings to seek lower-carbon energy solutions. We are talking about the future green and smart houses. The subject of smart/green houses is not one of “why,” but rather “how,” specifically: “how making the future house more energy efficient.” The use of the renewable energy, the technology and the services could help us to answer this question. Intelligent home energy management is an approach to build centralized systems that deliver application functionality as services to end-consumer applications. The objective of this work is to develop a smart and robust controller for house energy consumption with maximizing the use of solar energy and reducing the impact on the power grid while satisfying the energy demand of house appliances. We proposed a fuzzy-based energy management controller in order to reduce the consumed energy of the building while respecting a fixed comfort.

  14. Catastrophic cooling and cessation of heating in the solar corona

    Science.gov (United States)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  15. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  16. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  17. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  18. Annex to Solar heat storages in district heating networks. Comprehensive list of Danish literature and R and D projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This annex relates to the report 'Solar heat storages in district heating networks', which has been elaborated to inform about the Danish experiences and findings on the use of central solar heating plants in district heating networks, especially with the focus on the development of the storage part of the systems. The report has been funded as part of the IEE PREHEAT cooperation and by Energinet.dk, project no. 2006-2-6750. (au)

  19. Practical use of solar heating-dehumidification dry kiln

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yoshinori

    1988-06-01

    In order to decrease the energy cost for drying, a solar-dehumidification dry kiln which used the dehumidification dry process together with the solar thermal drier was developed and tested. In the daytime the drying temperature rose up to 60/sup 0/C in summer and 40/sup 0/C in winter, and it was kept higher by 15 to 20/sup 0/C than the outside temperature at night. Owing to the adoption of the combination of direct solar heating and exhausting highly humid air, it was not necessary to operate the dry kiln in the day time. Average electrical energy consumption which was consumed to 15% moisture content from the raw lumber was about 73kWh/m/sup 3/ in summer which was lowest, about 87kWh/m/sup 3/ in winter. Energy cost required for the solar dehumidification dry kiln is 1/2 to 2/3 of that of the conventional dehumidification dry kiln. The solar-dehumidification dry kiln has a merit of cheaper operating cost in the low energy cost and reduced drying time. (7 figs, 1 tab, 6 refs)

  20. Methods of heat transformation for solar facilities in buildings; Verfahren der Waermetransformation fuer die solare Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Henning, H.M. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Gruppe Aktive Thermische Systeme; Treffinger, P. [Deutsche Zentrum fuer Luft- und Raumfahrt (DLR), Lampoldshausen (Germany). Inst. fuer Technische Thermodynamik

    1998-02-01

    Processes in which a heat pump cycle is driven by thermal energy may be defined as heat transformation processes. The technical realization of this type of processes in general is based on sorption techniques. Depending on the temperature level of the utilized heat these technologies may be used for either cooling or heating of buildings. The paper presents state-of-the-art technologies and new developments. It comprises solar cooling of buildings, utilization of environmental energy sources (earth, air) by thermal driven heat pumps and seasonal storage of solar thermal energy by means of sorption processes. (orig.) [Deutsch] Unter Waermetransformationsverfahren werden im allgemeinen Verfahren verstanden, in denen ein Waermepumpenprozess mit thermischer Energie angetrieben wird. Die technische Realisierung dieser Verfahren erfolgt ueberwiegend mit Hilfe von Sorptionsvorgaengen. Abhaengig vom Temperaturniveau des Nutzwaermestroms koennen solche Verfahren im Gebaeudebereich fuer die Kuehlung oder Heizung eingesetzt werden. Im Beitrag werden der Stand der Technik sowie neue Entwicklungen vorgestellt. Im einzelnen umfasst der Beitrag die solare Kuehlung von Gebaeuden, die Nutzung von Umweltenergie (Erdreich, Luft) mittels thermisch angetriebener Waermepumpen sowie die saisonale Speicherung von Solarenergie ueber Sorptionsprozesse. (orig.)

  1. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Hazami, Majdi; Naili, Nabiha; Attar, Issam; Farhat, Abdelhamid

    2013-01-01

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO 2 . - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m 3 and 410 m 3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800

  2. Solar-hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat : hydrogen production, storage, and utilisation

    National Research Council Canada - National Science Library

    Ōta, Tokio

    1979-01-01

    ... An Authoritative Review of Watersplitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilisation edited by TOKIO OHTA Professor of Materials Science and Energy System Yoko...

  3. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  4. Phase Change Energy Storage Material Suitable for Solar Heating System

    Science.gov (United States)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  5. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  6. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  7. Thermoeconomic optimization of Solar Heating and Cooling systems

    International Nuclear Information System (INIS)

    Calise, F.; D'Accadia, M. Dentice; Vanoli, L.

    2011-01-01

    In the paper, the optimal thermoeconomic configuration of Solar Heating and Cooling systems (SHC) is investigated. In particular, a case study is presented, referred to an office building located in Naples (south Italy); for such building, three different SHC configurations were analyzed: the first one is based on the coupling of evacuated solar collectors with a single-stage LiBr-H 2 O absorption chiller equipped with a water-to-water electrical heat pump, to be used in case of insufficient solar radiation; in the second case, a similar layout is considered, but the capacities of the absorption chiller and the solar field are smaller, since they are requested to balance just a fraction of the total cooling load of the building selected for the case study; finally, in the third case, the electric heat pump is replaced by an auxiliary gas-fired heater. A zero-dimensional transient simulation model, developed in TRNSYS, was used to analyze each layout from both thermodynamic and economic points of view. In particular, a cost model was developed in order to assess the owning and operating costs for each plant layout. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented in order to determine the set of the synthesis/design variables able to maximize the overall thermo-economic performance of the systems under analysis. For this purpose, two different objective functions were selected: the Pay-Back Period and the overall annual cost. Possible public funding, in terms of Capital Cost Contributions and/or feed-in tariff, were also considered. The results are presented on monthly and weekly basis, paying special attention to the energy and monetary flows in the optimal configurations. In particular, the thermoeconomic analysis and optimization showed that a good funding policy for the promotion of such technologies should combine a feed-in tariff with a slight Capital Cost Contribution, allowing to achieve satisfactory Pay-Back Periods.

  8. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  9. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  10. Passive houses: houses without heatings. Experience with the first demonstration building at Darmstadt, and prospects for low-cost passive houses; Passivhaeuser: Gebaeude ohne Heizung. Erfahrungen mit dem ersten Demonstrationsgebaeude in Darmstadt und Perspektiven fuer kostenguenstige Passivhaeuser

    Energy Technology Data Exchange (ETDEWEB)

    Feist, W. [Inst. Wohnen und Umwelt, Darmstadt (Germany)

    1998-12-31

    `Passive` houses, i.e. houses without active heating, are extremely energy-optimized houses: thanks to their efficient thermal protection, their heat demand falls below the threshold requiring a separate space heat distribution system (15 kWh/(m{sup 2}a)). Passive houses will account for an increasing proportion of new buildings already during the next years. Houses with zero thermal energy demand involve notably higher construction effort but do not contribute essentially more to the mitigation of environmental pollution. (orig.) [Deutsch] Das Passivhaus ist ein extremes Niedrigenergiehaus, bei welchem durch guten Waermeschutz gerade die Schwelle unterschritten wird, bei der kein separates Heizwaermeverteilsystem mehr benoetigt wird (15 kWh/(m{sup 2}a)). Passivhaeuser werden schon in den naechsten Jahren einen zunehmenden Anteil an den Neubauten haben. Nullheizenergiehaeuser fuehren gegenueber dem Passivhaus zu spuerbar hoeherem baulichen Aufwand, ohne die Umwelt bedeutend mehr zu entlasten. (orig.)

  11. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  12. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  13. Mushroom drying with solar assisted heat pump system

    International Nuclear Information System (INIS)

    Şevik, Seyfi; Aktaş, Mustafa; Doğan, Hikmet; Koçak, Saim

    2013-01-01

    Highlights: • Experimental investigation of a simple and cost effective solar assisted heat pump system. • Developing of a computer program for a drying system with different scenarios by using PLC. • Obtained less energy input with high coefficients of performance of system and more quality products. • Determination of mushroom drying properties such as moisture content, moisture ratio and drying ratio. - Abstract: In this study, a simple and cost effective solar assisted heat pump system (SAHP) with flat plate collectors and a water source heat pump has been proposed. Mushroom drying was examined experimentally in the drying system. Solar energy (SE) system and heat pump (HP) system can be used separately or together. A computer program has been developed for the system. Drying air temperature, relative humidity, weight of product values, etc. were monitored and controlled with different scenarios by using PLC. This system is cheap, good quality and sustainable and it is modeled for good quality product and increased efficiency. Thus, products could be dried with less energy input and more controlled conditions. Mushrooms were dried at 45 °C and 55 °C drying air temperature and 310 kg/h mass flow rate. Mushrooms were dried from initial moisture content 13.24 g water/g dry matter (dry basis) to final moisture content 0.07 g water/g dry matter (dry basis). Mushrooms were dried by using HP system, SE system and SAHP system respectively at 250–220 min, at 270–165 min and at 230–190 min. The coefficients of performance of system (COP) are calculated in a range from 2.1 to 3.1 with respect to the results of experiments. The energy utilization ratios (EURs) were found to vary between 0.42 and 0.66. Specific moisture extraction rate (SMER) values were found to vary between 0.26 and 0.92 kg/kW h

  14. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    Science.gov (United States)

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Practical results of heat conservation in a housing estate scale-actions implemented by the Pradnik-Bialy-Zachod housing cooperative in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, L. [Pradnik-Bialy-Zachod Housing Cooperative, Cracow (Poland)

    1995-12-31

    There are 11,600,000 apartments occupied in Poland. More than 7,700,000 of these apartments are located in towns. Energy consumption for heating, ventilation and district hot water in residential housing reaches 40% of the national power balance. A portion of district heat distribution and relatively low energy efficiency is characteristic for Polish residential housing. Seventy five percent of apartments in towns are provided with central heating installations and 55% of the entire heat demand in Polish buildings is covered by district heating systems. The total installed heat power of these systems reaches 46,000 MW. The situation with regard to conservation in Polish residential housing is directly related to the legacy of central planning of the national economy and to the current phase of its re-organization to the market-oriented system. The standard value of the overall heat-transfer coefficient for external walls in Poland until 1980 was 1.16 W/m{sup 2}K; at present it is reduced to 0.55 W/m{sup 2}K. There are numerous reasons for the low energy efficiency in residential housing. These reasons are discussed.

  16. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  17. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  18. Performance analysis on natural energy autonomous house, HARBEMAN house; Shizen energy jiritsu house (HARBEMAN house) no simulation ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, T; Saito, T [Tohoku University, Sendai (Japan)

    1997-11-25

    Outlined herein are a procedure developed to simulate performance of an energy-autonomous (independent) solar house referred to as HARBEMAN HOUSE (HH) built in 1996 in City of Sendai, comparison between the simulated and observed results, and characteristics of the solar house. The house is equipped with a solar collector and sky radiator, both installed on the roof, the former facing south to collect solar energy and generate hot water whereas the latter facing north to radiate heat and generate cool water. Both are connected to an underground heat-insulated tank having a capacity of 31m{sup 3}, which stores hot or cool water to keep their conditions for extended periods. The solar system operates in heat- or cool-storage mode. In the heat-storage mode, quantity of heat stored increases, although at a slow rate, as tank capacity increases. In the cool-storage mode, on the other hand, quantity of cool stored increases in proportion to tank capacity. This is because solar energy is collected throughout the year whereas cooling by radiation is concentrated in early spring. Loss rate of heat stored increases as tank capacity increases, and the opposite trend is observed with cool stored. 12 refs., 7 figs., 2 tabs.

  19. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  20. Heating of Solar Wind Ions via Cyclotron Resonance

    Science.gov (United States)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.