WorldWideScience

Sample records for solar heat pump

  1. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  2. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...

  3. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  4. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  5. Combined system of solar heating and cooling using heat pump

    International Nuclear Information System (INIS)

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  6. Solar assisted heat pumps: A possible wave of the future

    Science.gov (United States)

    Smetana, F. O.

    1976-01-01

    With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.

  7. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  8. Natural working fluids for solar-boosted heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chaichana, C.; Lu Aye [University of Melbourne, Victoria (Australia). International Technologies Centre, Department of Civil and Environmental Engineering; Charters, W.W.S. [University of Melbourne, Victoria (Australia). Department of Mechanical and Manufacturing Engineering

    2003-09-01

    The option of using natural working fluids as a substitute of R-22 for solar-boosted heat pumps depends not only upon thermal performance and hazardous rating but also on potential impacts on the environment. This paper presents the comparative assessment of natural working fluids with R-22 in terms of their characteristics and thermophysical properties, and thermal performance. Some justification is given for using natural working fluids in a solar boosted heat pump water heater. The results show that R-744 is not suitable for solar-boosted heat pumps because of its low critical temperature and high operational pressures. On the other hand, R-717 seems to be a more appropriate substitute in terms of operational parameters and overall performance. However, major changes in the heat pumps are required. R-290 and R-1270 are identified as candidates for direct drop-in substitutes for R-22. (author)

  9. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  10. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  11. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  12. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  13. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  14. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  15. Solar Pump

    Science.gov (United States)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  16. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  17. Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997

    International Nuclear Information System (INIS)

    Faninger, G.

    1998-04-01

    Solar systems and heat pumps in operation in Carinthia: results 1994 - 1997. Test results from solar systems for swimming pool heating, hot water preparation and space heating as well as heat pumps for hot water preparation, space heating and heat recovery will be reported and assessed collectively. (author)

  18. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  19. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  20. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  1. Mushroom drying with solar assisted heat pump system

    International Nuclear Information System (INIS)

    Şevik, Seyfi; Aktaş, Mustafa; Doğan, Hikmet; Koçak, Saim

    2013-01-01

    Highlights: • Experimental investigation of a simple and cost effective solar assisted heat pump system. • Developing of a computer program for a drying system with different scenarios by using PLC. • Obtained less energy input with high coefficients of performance of system and more quality products. • Determination of mushroom drying properties such as moisture content, moisture ratio and drying ratio. - Abstract: In this study, a simple and cost effective solar assisted heat pump system (SAHP) with flat plate collectors and a water source heat pump has been proposed. Mushroom drying was examined experimentally in the drying system. Solar energy (SE) system and heat pump (HP) system can be used separately or together. A computer program has been developed for the system. Drying air temperature, relative humidity, weight of product values, etc. were monitored and controlled with different scenarios by using PLC. This system is cheap, good quality and sustainable and it is modeled for good quality product and increased efficiency. Thus, products could be dried with less energy input and more controlled conditions. Mushrooms were dried at 45 °C and 55 °C drying air temperature and 310 kg/h mass flow rate. Mushrooms were dried from initial moisture content 13.24 g water/g dry matter (dry basis) to final moisture content 0.07 g water/g dry matter (dry basis). Mushrooms were dried by using HP system, SE system and SAHP system respectively at 250–220 min, at 270–165 min and at 230–190 min. The coefficients of performance of system (COP) are calculated in a range from 2.1 to 3.1 with respect to the results of experiments. The energy utilization ratios (EURs) were found to vary between 0.42 and 0.66. Specific moisture extraction rate (SMER) values were found to vary between 0.26 and 0.92 kg/kW h

  2. Heating of the solar chromosphere by ionization pumping

    Science.gov (United States)

    Lindsey, C. A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the dissipative mechanism, here referred to as ionization pumping, is hysteresis caused by irreversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are 200s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less.

  3. Heating of the solar chromosphere by ionization pumping

    International Nuclear Information System (INIS)

    Lindsey, C.A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the disspative mechanism, here referred to as ''ionization pumping,'' is hysteresis caused by irresversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are approx.200 s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less

  4. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  5. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  6. MINERGIE modules: heat pump - heat pump/solar - wood - wood/solar; Minergie-Module Waermepumpe - Waermepumpe/Solar - Holz - Holz/Solar

    Energy Technology Data Exchange (ETDEWEB)

    Gallati, J. [Seecon GmbH, Lucerne (Switzerland); Portmann, M. [Buero Markus Portmann, Kriens (Switzerland); Zurfluh, B. [Zurfluh Lottenbach, Lucerne (Switzerland)

    2005-07-01

    This research report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the feasibility of setting up 'MINERGIE' low-energy-consumption module standards for the production of heat in small residential buildings. The aims of the standards and the basic idea behind the MINERGIE-modules are discussed. The concepts of the modules for heat pumps and wood-fired heating systems and their combination with solar installations are examined, as are their areas of application. The requirements placed on the modules are listed. System concepts, including simple schematics for typical installations, are presented for wood-log, wood-chippings and pellets-fired systems as well as for ground-loop and air-water heat pump systems as well as their solar-aided counterparts. The results of cost-benefit analyses are presented and questions regarding system guarantee and liability are examined.

  7. The market penetration of solar and heat pump systems in Austria 1991

    International Nuclear Information System (INIS)

    Faninger, G.

    1992-02-01

    The market penetration of solar and heat pump systems in Austria in 1991 shows a high interest for solar systems as well as for swimming-pool heating as for domestic hot-water preparation and also an increase in the field of heat pumps especially for space heating. (author)

  8. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  9. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer in the combi...

  10. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  11. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  12. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  13. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  14. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  15. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  16. Solar collectors and heat pump: Market review and preliminary simulation results

    International Nuclear Information System (INIS)

    Tepe, Rainer; Roennelid, Mats

    2002-01-01

    Heating systems that combine solar collectors and a heat pump available on the market in Sweden have been studied. A majority of the systems found combine the solar collectors with a ground source heat pump. The technology for combining the collectors and the heat pump does however vary considerably. In the most simple systems, the collectors heat the return water from the heat pump, i.e. the collectors are used for raising the temperature in the boreholes for the heat pump. In the advanced systems, the solar heat is used for tap water, space heating and for raising the temperature of the heat pump's evaporator. There exist only very few comparative evaluations of the contributions from solar collectors in heat pump systems, and there is a need for finding the potential for this technique. In the present study, results are reported from preliminary simulations of solar collectors and ground source heat pumps installed in one-family houses. Simulations are made for two heating loads: 8,650 and 16,500 kWh/year resp., and a hot water load of 3,000 kWh/year. The study shows that: the temperature of the borehole decreases when solar collectors are not used (about 1.2 deg C in three years): 8 m 2 glazed solar collectors used for hot water production can reduce the electricity consumption with up to 13%, with best results in the house with low heating load: 50 m 2 unglazed solar collectors coupled to the evaporator or the borehole can give reductions of up to 14%, largest reduction in the house with high heating load, where the heat extraction from the borehole is large: the unglazed collectors have the highest economic potential, and can be cost effective for houses with high heating load: the simulations do not include a thorough system optimization, better results can be expected from continued optimization work

  17. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  18. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  19. Solar heat and heat pump. What benefits?; Solarthermie und Waermepumpe. Was bringt's?

    Energy Technology Data Exchange (ETDEWEB)

    Droescher, Angela; Heinz, Andreas [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik; Gerardts, Bernhard [Solid GmbH, Graz (Austria)

    2013-11-08

    If solar heating and heat pumps work together, then usually in a single-family house. The fact that there is another way, shows a large solar heating system in Graz. Investigations show what potential there is in this type of system and where special attention is needed. [German] Wenn Solarwaerme und Waermepumpen zusammenarbeiten, dann meist im Einfamilienhaus. Dass es auch anders geht, zeigt eine Grossanlage bei Graz. Untersuchungen zeigen, welche Potenziale es bei Systemen dieser Art gibt und worauf besonders zu achten ist.

  20. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  1. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  2. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  3. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    International Nuclear Information System (INIS)

    Fadhel, M.I.; Sopian, K.; Daud, W.R.W.; Alghoul, M.A.

    2011-01-01

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  4. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  5. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  6. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  7. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    Science.gov (United States)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  8. Comparison of performance between a parallel and a series solar-heat pump system; Solar heat pump system ni okeru heiretsu setsuzoku no seino hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Zhao, J; Baba, H; Endo, N [Kitami Institute of Technology, Hokkaido (Japan)

    1997-11-25

    In a solar heat pump system, a single-tank system was fabricated, in which a heat pump is installed in series between a heat collecting tank and a heat storage tank. At the same time, a double-tank system was also fabricated, in which two tanks are assembled into one to which a solar system and a heat pump are connected in parallel. Performance of both systems was analyzed by using measured values and estimated values. Heat collecting efficiency in the double-tank system is higher by about 13 points than in the single-tank system. Nevertheless, the coefficient of performance for the single-tank system is 1.03 to 1.51 times greater than that of the double-tank system. Dependency of the single-tank system on natural energy is higher by 0.3 to 3 points than the double-tank system. Putting the above facts together, it may be said that the single-tank system connecting the solar system and the heat pump in parallel is superior in performance to the double-tank system of the series connection. 3 refs., 5 figs., 2 tabs.

  9. Inventory of existing heat pump projects and the use of solar energy for heat pumps in the Dutch house construction sector

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the title inventory is to learn from the experiences with heat pump projects in the Netherlands. Descriptions are given of practical experiences with heat pump applications in the last 15 years in the housing sector. Possible and feasible heat pump system concepts are analyzed and energy balances and energy consumption are calculated. Special attention is paid to the use of solar energy in combination with electric (compression) heat pumps. One of the most important bottlenecks is the method and availability of heat extraction: the choice for the different options is determined by investment costs, permission, regulations, and local conditions. 14 refs., 4 appendices

  10. Imitation experiment for water-treatment by heat of solar collector and hot pump

    International Nuclear Information System (INIS)

    Liao Yuanzong; Liu Shuqing; Pang Heding; Zhao Zhongxin; Zhang Biguang; Wang Xiping; Huo Guangqing

    1997-01-01

    The author presents an imitation experiment in which solar collector and hot pump are jointed for supplying heat to evaporate cleaned water and diffuse it into air. The effects of the temperature and the quantity of supplying air, and circumstance conditions on evaporation quantity are studied. The ratio of evaporating quantity to consuming energy, the efficiency of evaporation, average efficiency of solar collector and supplying heat coefficient of heat pump are measured. The experiment shows that this supplying heat model is practicable, economic and efficient for treating cleaned water

  11. Numerical simulation of a heat pump assisted regenerative solar still with PCM heat storage for cold climates of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Shakir Yessen

    2017-01-01

    Full Text Available A numerical model has been proposed in this work for predicting the energy performances of the heat pump assisted regenerative solar still with phase changing material heat storage under Kazakhstan climates. The numerical model is based on energy and mass balance. A new regenerative heat pump configuration with phase changing material heat storage is proposed to improve the performance. A comparison of results has been made between the conventional solar still and heat pump assisted regenerative solar still with phase changing material. The numerical simulation was performed for wide range of ambient temperatures between -30 and 30°C with wide range of solar intensities between 100 and 900 W/m2. The numerical simulation results showed that heat pump assisted regenerative solar still is more energy efficient and produce better yield when compared to the conventional simple solar still. The influences of solar intensity, ambient temperature, different phase changing materials, heat pump operating temperatures are discussed. The predicted values were found to be in good agreement with experimental results reported in literature.

  12. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  13. Combination of a gas heat pump with geothermal energy and solar heat utilisation; Kombination einer Gaswaermepumpe mit Geothermie und Solarwaermenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Andreas [Robur GmbH, Friedrichshafen (Germany)

    2009-01-15

    A home for handicapped persons in Berlin was modernised. This included the installation of a gas-fuelled absorption heat pump combined with geothermal heat supply and solar heating. CO2 emissions and primary energy consumption were reduced considerably by this concept. (orig.)

  14. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  15. Optimization of Serial Combined System of Ground-Coupled Heat Pump and Solar Collector

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun; CHEN Yan; LU Suzhen; CUI Junkui

    2009-01-01

    A mathematical optimization model was set up for a ground-solar combined system based on in-situ experimental results,in which the solar collector was combined serially with a ground-coupled heat pump(GCHP).The universal optimal equations were solved by the constrained variable metric method considering both the performance and economics.Then the model was applied to a specific case concerning an actual solar assisted GCHP system for space heating.The results indicated a system coefficient of performance(COP)of 3.9 for the optimal method under the seriaI heating mode,and 3.2 for the conventional one.In addition,the optimum solution also showed advantages in energy and cost saving.1eading to a 16.7%improvement in the heat pump performance at 17.2%less energy consumption and 11.8%lower annual cost,respectively.

  16. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  17. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  18. Results of heating mode performance tests of a solar-assisted heat pump

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  19. Energy and exergy analyses of an integrated solar heat pump system

    International Nuclear Information System (INIS)

    Suleman, F.; Dincer, I.; Agelin-Chaab, M.

    2014-01-01

    An integrated solar and heat pump based system for industrial heating is developed in this study. The system comprises heat pump cycle for process heating water and solar energy for another industrial heating process. Comprehensive energy and exergy analyses are performed on the system. These analyses generated some compelling results as expected because of the use of green and environmentally friendly energy sources. The results show that the energy efficiency of the process is 58% while the exergy efficiency is 75%. Energetic COP of the heat pump cycle is 3.54 whereas the exergy efficiency is 42.5%. Moreover, the energetic COP of the system is 2.97 and the exergy efficiency of the system is 35.7%. In the parametric study, a different variation such as changing the temperature and pressure of the condenser also shows positive results. - Highlights: • An integrated system is analysed using renewable energy source which can be used in textile industry. • Energy losses and exergy destructions are calculated at all major components. • Energy and exergy efficiencies of all subunits, subsystems and overall system are determined. • A parametric study shows the effect of environment and operating conditions on efficiencies. • Solar energy for heating in textile industry is efficient and environmentally friendly

  20. Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-04-01

    Full Text Available Recently, the use of hybrid systems using multiple heat sources in buildings to ensure a stable energy supply and improve the system performance has gained attention. Among them, a heat pump system using both solar and ground heat was developed and various system configurations have been introduced. However, establishing a suitable design method for the solar-assisted ground heat pump (SAGHP system including a thermal storage tank is complicated and there are few quantitative studies on the detailed system configurations. Therefore, this study developed three SAGHP system design methods considering the design factors focused on the thermal storage tank. Using dynamic energy simulation code (TRNSYS 17, individual performance analysis models were developed and long-term quantitative analysis was carried out to suggest optimum design and operation methods. As a result, it was found that SYSTEM 2 which is a hybrid system with heat storage tank for only a solar system showed the highest average heat source temperature of 14.81 °C, which is about 11 °C higher than minimum temperature in SYSTEM 3. Furthermore, the best coefficient of performance (COP values of heat pump and system were 5.23 and 4.32 in SYSYEM 2, using high and stable solar heat from a thermal storage tank. Moreover, this paper considered five different geographical and climatic locations and the SAGHP system worked efficiently in having high solar radiation and cool climate zones and the system COP was 4.51 in the case of Winnipeg (Canada where the highest heating demand is required.

  1. Optimization of solar assisted heat pump systems via a simple analytic approach

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W

    1980-01-01

    An analytic method for calculating the optimum operating temperature of the collector/storage subsystem in a solar assisted heat pump is presented. A tradeoff exists between rising heat pump coefficient of performance and falling collector efficiency as this temperature is increased, resulting in an optimum temperature whose value increases with increasing efficiency of the auxiliary energy source. Electric resistance is shown to be a poor backup to such systems. A number of options for thermally coupling the system to the ground are analyzed and compared.

  2. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zheng, Maoyu; Zhang, Wenyong; Zhang, Shu; Yang, Tao [School of Municipal and Environmental Engineering, Harbin Institute of Technology, NO 202 Haihe Road, Harbin, Hei Longjiang 150090 (China)

    2010-11-15

    This paper presents the experimental study of a solar-assisted ground-coupled heat pump system (SAGCHPS) with solar seasonal thermal storage installed in a detached house in Harbin. The solar seasonal thermal storage was conducted throughout the non-heating seasons. In summer, the soil was used as the heat sink to cool the building directly. In winter, the solar energy was used as a priority, and the building was heated by a ground-coupled heat pump (GCHP) and solar collectors alternately. The results show that the system can meet the heating-cooling energy needs of the building. In the heating mode, the heat directly supplied by solar collectors accounted for 49.7% of the total heating output, and the average coefficient of performance (COP) of the heat pump and the system were 4.29 and 6.55, respectively. In the cooling mode, the COP of the system reached 21.35, as the heat pump was not necessary to be started. After a year of operation, the heat extracted from the soil by the heat pump accounted for 75.5% of the heat stored by solar seasonal thermal storage. The excess heat raised the soil temperature to a higher level, which was favorable for increasing the COP of the heat pump. (author)

  3. Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system

    International Nuclear Information System (INIS)

    Ozgener, Onder; Hepbasli, Arif

    2005-01-01

    EXCEM analysis may prove useful to investigators in engineering and other disciplines due to the methodology are being based on the quantities exergy, cost, energy and mass. The main objective of the present study is to investigate between capital costs and thermodynamic losses for devices in solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 32 mm nominal diameter U-bend ground heat exchanger. This system was designed and installed at the Solar Energy Institute, Ege University, Izmir, Turkey. Thermodynamic loss rate-to-capital cost ratios are used to show that, for components and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful air conditioning are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and its devices. The results may, (i) provide useful insights into the relations between thermodynamics and economics, both in general and for SAGSHPGHS (ii) help demonstrate the merits of second-law analysis. It is observed from the results that the maximum exergy destructions in the system particularly occur due to the electrical, mechanical and isentropic efficiencies and emphasize the need for paying close attention to the selection of this type of equipment, since components of inferior performance can considerably reduce the overall performance of the system. In conjunction with this, the total exergy losses values are obtained to be from 0.010 kW to 0.480 kW for the system. As expected, the largest energy and exergy losses occur in the greenhouse and compressor. The ratio of thermodynamic loss rate to capital cost values are obtained for a range from 0.035 to 1.125

  4. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

    Science.gov (United States)

    Offenhartz, P. O.

    1981-03-01

    An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

  5. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  6. Performance evaluation of a state-of-the-art solar air-heating system with auxiliary heat pump

    Science.gov (United States)

    1980-01-01

    The system in Solar House 2 consists of 57.9 sq. m. of Solaron Series 300 Collectors, 10.3 cu. m. of pebble bed storage, domestic water preheating capability and a Carrier air-to-air heat pump as an auxiliary heater. Although the control subsystem was specially constructed to facilitate experimental changes and data reduction, the balance of the solar system was assembled with off-the-shelf components. Since all components of the system are commercially available the system is considered to be a state of the art solar air-heating system. The system design is one that is recommended for residential and small office buildings.

  7. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  8. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  9. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  10. Simulation of a solar assisted combined heat pump – Organic rankine cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Reverse operation of the scroll compressor in ORC mode. • Annual simulations for application in a single-family house at three locations. • By introducing the ORC the net electricity demand is reduced by 1–9%. • Over the lifetime of the system savings can cover additional investments. - Abstract: A novel solar thermal and ground source heat pump system that harnesses the excess heat of the collectors during summer by an Organic Rankine Cycle (ORC) is simulated. For the ORC the heat pump process is reversed. In this case the scroll compressor of the heat pump runs as a scroll expander and the working fluid is condensed in the ground heat exchanger. Compared to a conventional solar thermal system the only additional investments for the combined system are a pump, valves and upgraded controls. The goal of the study is to simulate and optimize such a system. A brief overview of the applied models and the evolutionary algorithm for the optimization is given. A system with 12 m 2 of flat plate collectors installed in a single family house is simulated for the locations Ankara, Denver and Bochum. The ORC benefits add up to 20–140 kW h/a, which reduces the net electricity demand of the system by 1–9%. Overall 180–520 € are saved over a period of 20 years, which can be enough to cover the additional investments

  11. Absorption heat pump for a potable water supply in a solar house

    Energy Technology Data Exchange (ETDEWEB)

    Elshamarka, S [Military Technical Coll., Cairo (EG)

    1991-01-01

    Solar houses usually have good potential in arid areas. These areas often suffer from not only a shortage of conventional energy sources, but also of potable water supplies. In this study, a solar air-conditioning system including an absorption heat pump, already in production since the early 1980s, is described for potable water production while performing its air-conditioning duty in a solar house. Compiled weather-conditions of the Hurgada area, on the Red Sea coast of Egypt, were employed for the prediction of the system's productivity, if it were installed in such a locality. An evaluation of the system's feasibility has been conducted. (author).

  12. Parametric sensitivity study for solar-assisted heat-pump systems

    Science.gov (United States)

    White, N. M.; Morehouse, J. H.

    1981-07-01

    The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.

  13. Solar Pumping : The Basics

    OpenAIRE

    World Bank Group

    2018-01-01

    Solar photovoltaic water pumping (SWP) uses energy from solar photovoltaic (PV) panels to power an electric water pump. The entire process, from sunlight to stored energy, is elegant and simple. Over last seven years, the technology and price of solar pumping have evolved dramatically and hence the opportunities it presents. Solar pumping is most competitive in regions with high solar inso...

  14. Investigation on chemical heat pump using calcium-chloride; Enka calcium no suiwa dassui hanno wo mochiita solar chemical heat pump ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Arai, T; Saito, Y [Meiji University, Tokyo (Japan)

    1997-11-25

    With an objective of developing a room heating system utilizing a solar chemical heat pump, an experimental system was fabricated to evaluate its performance. Steam was employed as a working gas, and for a reaction material, calcium-chloride was used, which has a reaction temperature zone permitting safe use and fitting the purpose among other hydrate systems and has high standard enthalpy in hydration. Water was used as a solar heat transferring medium. The system operates under the following principle: a container I is filled with hydrated salt and a container II with water, the two containers being linked with a pipe interposed with a valve; heat is inputted and outputted by performing charging and discharging alternately; and the role of a heat pump is played by deriving from environment the heat of water evaporation in the container II during discharging. The COP must take into account the electric power consumption of the water circulation pump to transfer solar heat. A COP of 0.256 was derived as a result of the experiment. 3 refs., 5 figs.

  15. Magnetic pumping as a source of particle heating in the solar wind

    Science.gov (United States)

    Lichko, E. R.; Egedal, J.; Daughton, W. S.; Kasper, J. C.

    2017-12-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. In this study a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. In most previous studies turbulent energy is only dissipated at microscopic kinetic scales. In contrast, magnetic pumping energizes the particles through the largest scale turbulent fluctuations, thus bypassing the energy cascade. Kinetic simulations are applied to verify these analytic predictions. Previous results for the one-dimensional model, as well as initial results for a two-dimensional model which includes the effects of trapped and passing particles are presented. Preliminary results of the presence of this mechanism in the bow shock region, using spacecraft data from the Magnetospheric Multiscale mission, are presented as well.

  16. Financial viability study using a heat pump as an alternative to support solar collector for water heating in Southeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Roberts Vinicius de Melo; Oliveira, Raphael Nunes; Machado, Luiz; Koury, Ricardo Nassau N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. of Mechanical Engineering], E-mails: robertsreis@ufmg.br, luizm@demec.ufmg.br, koury@ufmg.br

    2010-07-01

    Along with related greenhouse effect environmental issues, constant problems changes in oil prices,make the use of solar energy an important renewable energy source. Brazil is a country which is privilege, considering the high rates of solar irradiation present throughout most of the entire national territory. Nevertheless, during certain times of the year, a solar energy deficit, leads solar systems to require electrical resistance support. The use of electrical resistance represents 23.5% of electric energy consumption and it presents a low residential energy efficiency. The purpose of this work is conducting a study of Brazilian States in the Southeastern region regarding the financial viability of replacing a resistive system combined with the use of solar collector and a heat pump. One such heat pump has been designed, constructed and tested experimentally. The average performance coefficient is equal to 2.10, a low value due to the use of a hermetic reciprocating compressor. Despite this low-moderate price coefficient of acquisition and installation of a heat pump, a return on investment in from 2.1 to 2.7 years can be expected. Whereas the equipment has a useful life of about 20 years, this period of return on investment is interesting. (author)

  17. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  18. Evaluation of the performance in the solar assisted heat pump system; Taiyonetsu riyo heat pump system no seino hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y [Osaka Institute of Technology, Osaka (Japan)

    1996-10-27

    Performance of a solar heating system with a hydrothermal source heat pump was evaluated and compared with that of a direct solar heating system. The sun-dependency rates ({Sigma}D and {Sigma}H)of the direct system and heat pump (HP)-provided system were expressed as a function of the rate ({alpha}) of the auxiliary heat against the collected heat and as a function of the performance coefficient and {alpha}, respectively. When the sun-dependency rates are compared, it is found that the HP-provided system is the more advantageous when {Sigma}H/{Sigma}D>1. The relationship between the {alpha}`s of the two systems was clarified and computation was performed to compare the sun-dependency rates on condition that the two are equal in the heat collecting area. Although the sun-dependence rate cannot be elevated to 100% in the HP-provided system, it achieves a sun-dependency rate higher than that of the direct system even when the heat collecting area is small. In cases where the building is economically limited, for instance, with respect to the area for solar collector installation, it is advantageous to employ the HP-provided system. 5 figs., 1 tab.

  19. Solar heating by radiant floor: Experimental results and emission reduction obtained with a micro photovoltaic–heat pump system

    International Nuclear Information System (INIS)

    Izquierdo, M.; Agustín-Camacho, P. de

    2015-01-01

    Highlights: • This work presents a PVT multicrystalline solar heating system for buildings. • The PV DC electricity generated was converted to AC to drive an air–water heat pump. • Experimental results obtained from December 1, 2012 to April 30, 2013 are detailed. • An environmental study is also presented. - Abstract: An experimental research with a solar photovoltaic thermal (PVT) micro grid feeding a reversible air–water, 6 kW heating capacity heat pump, has been carried out from December 2012 to April 2013. Its purpose is to heat a laboratory that is used as a house prototype for the study of heating/cooling systems. It was built in accordance with the 2013 Spanish CTE, and has an area of 35 m 2 divided into two internal rooms: one of them housing the storage system, the solar controller, the inverter and the control system; the other one is occupied by three people. Its main thermal characteristics are: UA = 125 W/°C and a maximum thermal load about 6.0 kW at the initial time. The PVT field consists of 12 modules, with a total area of 15.7 m 2 and useful area of 14 m 2 . Each module is composed of 48 polycrystalline silicon cells of 243.4 cm 2 , which with a nominal efficiency 14% can generate a power of 180 W, being the total nominal power installed 2.16 kW. The PV system stores electricity in 250 Ah batteries from where is converted from DC to AC through a 3.0 kW inverter that feeds the heat pump. This works supplying 840 l/h of hot water at 35–45 °C to the radiant floor. The data storing system is recording variables such as solar radiation; temperatures; input power to batteries; heat produced; heat transferred by the radiant floor; heat pump’s COP; isolated ratio; and solar fraction. The objective of this work is to present and discuss the experimental results and the emission reduction of CO 2 obtained during the period from 01/12/2012 to 30/04/2013, including the detailed results of two representative days of Madrid’s climate: 28

  20. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  1. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G.

    2011-01-01

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  2. Direct expansion solar assisted heat pumps – A clean steady state approach for overall performance analysis

    International Nuclear Information System (INIS)

    Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico

    2014-01-01

    Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of

  3. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  4. Development of a direct expansion solar assisted heat pump for hot water supply

    International Nuclear Information System (INIS)

    Abdesselam Hamloui; Ong, K.S.; Than Cheok Fah; Masjuki Hassan

    2000-01-01

    Experimental investigations were conducted on the direct expansion solar assisted Heat Pump (DESAHP). Refrigerant R-22 was expanded in the solar collector which also acted as the evaporator in a conventional vapor compression refrigerating machine. The experiments were conducted under conditions of high and low solar radiation, with evaporator completely shaded from the sun, and at night. System thermal performance was determined by measuring refrigerant flow rate, temperature and pressure at numerous points in the system. The results showed that 227-l of water could be heated from 3O degree to 55 degree C in about 105 minutes. Higher water temperatures were obtained during hot sunny days. The coefficient of performance of heating, COP h , ranged from 11 to 4.7, depending upon operating conditions. The total saving of electric energy during hot sunny days was about 460 %. It means that for 1 kWh of electrical input to the system, we achieve 4.6 kWh. This percentage decreases as the evaporator temperature decreases and is a function of solar energy input. (Author)

  5. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  6. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T; Doi, T; Tanaka, T; Ando, Y [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  7. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  8. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  9. Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Piñeiro, Carolina; Alberto Dopazo, J.; Fernandes, F.; Sousa, Paulo X.B.

    2012-01-01

    Highlights: ► We analyze a direct expansion solar assisted heat pump under zero solar radiation. ► We determine the COP and equivalent seasonal performance factors (SPFe). ► We determine the main components’ performance under transient operating conditions. ► The Huang and Lee performance evaluation method provides a characteristic COP of 3.23. - Abstract: This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a R134a rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300 L water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

  10. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    Science.gov (United States)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  11. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  12. Investigations and model validation of a ground-coupled heat pump for the combination with solar collectors

    International Nuclear Information System (INIS)

    Pärisch, Peter; Mercker, Oliver; Warmuth, Jonas; Tepe, Rainer; Bertram, Erik; Rockendorf, Gunter

    2014-01-01

    The operation of ground-coupled heat pumps in combination with solar collectors requires comprising knowledge of the heat pump behavior under non-standard conditions. Especially higher temperatures and varying flow rates in comparison to non-solar systems have to be taken into account. Furthermore the dynamic behavior becomes more important. At ISFH, steady-state and dynamic tests of a typical brine/water heat pump have been carried out in order to analyze its behavior under varying operation conditions. It has been shown, that rising source temperatures do only significantly increase the coefficient of performance (COP), if the source temperature is below 10–20 °C, depending on the temperature lift between source and sink. The flow rate, which has been varied both on the source and the sink side, only showed a minor influence on the exergetic efficiency. Additionally a heat pump model for TRNSYS has been validated under non-standard conditions. The results are assessed by means of TRNSYS simulations. -- Highlights: • A brine/water heat pump was tested under steady-state and transient conditions. • Decline of exergetic efficiency at low temperature lifts, no influence of flow rate. • Expected improvement by reciprocating compressor and electronic expansion valve for solar assisted heat source. • A TRNSYS black box model (YUM) was validated and a flow rate correction was proven • The start-up behavior is a very important parameter for system simulations

  13. 太阳能辅助地源热泵供暖实验研究%Experimental study of a solar assisted ground source heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    赵忠超; 丰威仙; 巩学梅; 米浩君; 成华; 云龙

    2014-01-01

    An experimental study is performed to determine the performance of the solar assisted ground source heat pump(SAGSHP)by using a solar-ground source heat pump hybrid system in the city of Ningbo. The result shows that comparing with the ground source heat pump(GSHP),when the ratio of solar energy to the whole en-ergy is 41. 9% ,the coefficient of performance( COP)of the heat pump and system can improve 15. 1% and 7. 7% respectively. Therefore,the solar assisted ground source heat pump has a significant performance advan-tage according to the experimental result.%选取宁波某公用建筑的太阳能-地源热泵复合系统为实验系统,对太阳能辅助地源热泵( solar assisted ground source heat pump,SAGSHP)供暖进行了实验研究.研究结果表明:与单一的地源热泵(ground source heat pump,GSHP)相比,当太阳能承担41.9%负荷时,热泵机组和整个系统的能效比(coefficient of performance,COP)分别提高了15.1%和7.7%, SAGSHP 供暖运行模式具有明显的性能优势.

  14. A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization

    International Nuclear Information System (INIS)

    Calise, Francesco; Dentice d'Accadia, Massimo; Figaj, Rafal Damian; Vanoli, Laura

    2016-01-01

    This paper presents a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system based on a solar-assisted heat pump and an adsorption chiller, both driven by PVT (photovoltaic/thermal) collectors. The aim of this work is to design and dynamically simulate a novel ultra-high efficient solar heating and cooling system. The overall plant layout is designed to supply electricity, space heating and cooling and domestic hot water for a small residential building. The system combines solar cooling, solar-assisted heat pump and photovoltaic/thermal collector technologies in a novel solar polygeneration system. In fact, the polygeneration system is based on a PVT solar field, coupled with a water-to-water electric heat pump or to an adsorption chiller. PVT collectors simultaneously produce electricity and thermal energy. During the winter, hot water produced by PVT collectors primarily supplies the evaporator of the heat pump, whereas in summer, solar energy supplies an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess is converted into DHW (domestic hot water). The system model was developed in TRNSYS environment. 1-year dynamic simulations are performed for different case studies in various weather conditions. The results are analysed on different time bases presenting energetic, environmental and economic performance data. Finally, a sensitivity analysis and a thermoeconomic optimization were performed, in order to determine the set of system design/control parameters that minimize the simple pay-back period. The results showed a total energy efficiency of the PVT of 49%, a heat pump yearly coefficient of performance for heating mode above 4 and a coefficient of performance of the adsorption chiller of 0.55. Finally, it is also concluded that system performance is highly sensitive to the PVT field area. The system is profitable when a capital investment subsidy of 50% is considered

  15. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating

    International Nuclear Information System (INIS)

    Moreno-Rodriguez, A.; Garcia-Hernando, N.; González-Gil, A.; Izquierdo, M.

    2013-01-01

    This paper discusses the experimental validation of a theoretical model that determines the operating parameters of a DXSAHP (direct-expansion solar-assisted heat pump) applied to heating. For this application, the model took into account the variable condensing temperature, and it was developed from the following environmental variables: outdoor temperature, solar radiation and wind. The experimental data were obtained from a prototype installed at the University Carlos III, which is located south of Madrid. The prototype uses a solar collector with a total area of 5.6 m 2 , a compressor with a rated capacity of 1100 W, a thermostatic expansion valve and fan-coil units as indoor terminals. The monitoring results were analyzed for several typical days in the climatic zone where the machine was located to understand the equipment's seasonal behavior. The experimental coefficient of the performance varies between 1.9 and 2.7, and the equipment behavior in extreme outdoor conditions has also been known to determine the thermal demand that can be compensated for. - Highlights: • The study aims to present an experimental validation of a theoretical model. • The experimental COP can vary between 1.9 and 2.7 (max. condensation temperature 59 °C). • A “dragging term” relates condensation and evaporation temperature. • The operating parameters respond to the solar radiation. The COP may increase up to 25%

  16. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  17. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH

  18. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  19. Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m 2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 deg. C to 50.5 deg. C in 94 min with average ambient temperature 20.6 deg. C and average solar radiation intensity 955 W/m 2 . And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 deg. C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system

  20. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    Science.gov (United States)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  1. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  2. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  3. Experimental results of 2-propanol dehydrogenation with a falling-liquid film reactor for solar chemical heat pump; Solar chemical heat pump ni okeru ryuka ekimakushiki 2-propanol bunkai hanno jikken

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T; Tanaka, T; Ando, Y; Takashima, T [Electrotechnical Laboratory, Tsukuba (Japan); Koike, M; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1997-11-25

    A solar chemical heat pump is intended to attempt multi-purposed effective utilization of solar energy by raising low temperature solar heat of about 100 degC to 150 to 200 degC by utilizing chemical reactions. The chemical heat pump under the present study uses a 2-propanol (IPA)/acetone/hydrogen system which can utilize low-temperature solar heat and has large temperature rising degree. It was found from the result of experiments and analyses that IPA dehydrogenation reaction can improve more largely the heat utilization rate in using a falling-liquid film reactor than using a liquid phase suspended system. As an attempt to improve further the heat utilization rate, this paper reports the result of experimental discussions on inclination angles of a reaction vessel and feed liquid flow rate which would affect the fluid condition of the liquid film. As a result of the experiments, the initial deterioration in the catalyst has settled in about 15 hours, and its activity has decreased to about 60% of the initial activity. It was made clear that the influence of the inclination angle of the reaction vessel on the reaction is small. 5 refs., 7 figs.

  4. 太阳能热泵系统中板式换热器模型分析%Plate Heat Exchanger Model Analysis of Solar Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    芮胜军; 卢向华; 梁坤峰; 王志远

    2013-01-01

      The development of new energy and energy saving are two important ways of seeking energy way. The solar energy heat pump system has the vast development foreground with its characteristic of remarkable energy saving and environmental protection. Solar energy heat pump has the advantages of energy saving relative to air source heat pump. The evaporator and condenser of solar energy heat pump system were studied. The mathematical model of the application of solar heat pump system of the plate heat exchanger was discussed. And the calculation program was analyzed. The saving energy characteristic and existing problems of solar heat pump system were also discussed.%  开发新能源和节能是寻求能源出路的两大重要途径,太阳能热泵供热系统以其显著的节能性和环保性具有广阔的发展前景。太阳能热泵相对空气源热泵具有明显的节能优势。以太阳能热泵系统应用的蒸发器和冷凝器为分析研究对象,讨论了板式换热器在太阳能热泵系统中应用的数学模型,并分析了其计算程序。讨论了太阳能热泵系统的节能特点及存在的问题。

  5. Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Ji, Jie; Xu, Ning; Li, Guiqiang

    2016-01-01

    Highlights: • Frosting and heating performance of DX-SAHP under frosting conditions is investigated. • The conditions when DX-SAHP frosts are studied. • The frosting process is observed during 360 min of operating. • The effect of ambient temperature, relative humidity and solar irradiation is analyzed. - Abstract: Direct expansion solar-assisted heat pump system (DX-SAHP) is promising in energy saving applications, but the performance of DX-SAHP under frosting conditions is rarely reported in the published literatures. In this paper, a DX-SAHP system with bare solar collectors for space heating is designed and experimentally investigated in the enthalpy difference lab with a solar simulator. The system is tested under a range of frosting conditions, with the ambient temperatures from 7 °C to −3 °C, the relative humidities of 50%, 70% and 90% and the solar irradiances of 0 W/m"2, 100 W/m"2, 200 W/m"2 and 300 W/m"2. The conditions when the DX-SAHP system frosts are studied. Results show that solar irradiance as low as 100 W/m"2 can totally prevent frosting when the ambient temperature is above −3 °C and the relative humidity is 70%. Besides, the frosting process is observed to be slower than that of fin-and-tube heat exchangers. The evaporator is not seriously frosted and the system performance is not significantly influenced after 360 min of continuous operating. Moreover the effects of ambient parameters, including the ambient temperature and the relative humidity, especially solar irradiation, on the system performance are studied and analyzed. Solar irradiation can effectively prevent or retard frosting, and also improve the heating performance of the DX-SAHP system. The DX-SAHP system is proved to be applicable under frosting conditions.

  6. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  7. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  8. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  9. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    Directory of Open Access Journals (Sweden)

    Hidouri Khaoula

    2017-07-01

    Full Text Available In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD and a Simple Solar Distiller Hybrid with a Heat Pump (SSDHP stills. Experimental results and those calculated by Lewis number correlation show good agreements. Results obtained by Dunkle, Kumar and Tiwari correlations are not satisfactory with the experimental ones. Theoretical results, as well as statistical analysis, are presented. The model with heat pump ( for two configurations (111 and (001 give more output compared with the model without heat pump ((000 and (110. This results where agree for the use of the statistic results, the error it less with Lewis number as compared with the different correlation.

  10. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    Science.gov (United States)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  11. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  12. Thermoeconomic optimization of a solar-assisted heat pump based on transient simulations and computer Design of Experiments

    International Nuclear Information System (INIS)

    Calise, Francesco; Dentice d’Accadia, Massimo; Figaj, Rafal Damian; Vanoli, Laura

    2016-01-01

    Highlights: • A polygeneration system for a residential house is presented. • Hybrid photovoltaic/thermal collectors are used, coupled with a solar-assisted heat pump. • An optimization has been performed. • The system is profitable even in the absence of incentives. • A simple pay-back period of about 5 year is achieved. - Abstract: In the paper, a model for the simulation and the optimization of a novel solar trigeneration system is presented. The plant simulation model is designed to supply electricity, space heating or cooling and domestic hot water for a small residential building. The system is based on a solar field equipped with flat-plate photovoltaic/thermal collectors, coupled with a water-to-water electric heat pump/chiller. The electrical energy produced by the hybrid collectors is entirely supplied to the building. During the winter, the thermal energy available from the solar field is used as a heat source for the evaporator of the heat pump and/or to produce domestic hot water. During the summer, the heat pump operates in cooling mode, coupled with a closed circuit cooling tower, providing space cooling for the building, and the hot water produced by the collectors is only used to produce domestic hot water. For such a system, a dynamic simulation model was developed in TRNSYS environment, paying special attention to the dynamic simulation of the building, too. The system was analyzed from an energy and economic point of view, considering different time bases. In order to minimize the pay-back period, an optimum set of the main design/control parameters was obtained by means of a sensitivity analysis. Simultaneously, a computer-based Design of Experiment procedure was implemented, aiming at calculating the optimal set of design parameters, using both energy and economic objective functions. The results showed that thermal and electrical efficiencies are above 40% and 10%, respectively. The coefficient of performance of the reversible heat

  13. Experimental Study of a Novel Direct-Expansion Variable Frequency Finned Solar/Air-Assisted Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Jing Qin

    2018-01-01

    Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.

  14. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  15. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  16. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  17. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT integrating with a two-stage vapor compression heat pump (VCHP were carried out. The whole system was named as compression/absorption heat transformer (CAHT. The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connection. R-134a and R-123 were refrigerants in the VCHP cycle. From the simulation, the total cycle coefficient (COP of the solar-CAHT was 0.71 compared with 0.49 of the normal solar-AHT. From the experiment, the total cycle COPs of the solar-CAHT and the solar-AHT were 0.62 and 0.39, respectively. The experimental results were lower than those of the simulated models due to the oversize of the experimental compressor. The annual expense of the solar-CAHT was found to be 5113 USD which was lower than 5418 USD of the solar-AHT. So it could be concluded that the modified unit was beneficial than the normal unit in terms of energy efficiency and economic expense.

  18. 太阳能-热泵复合供能系统%Solar-heat pump combined energy system

    Institute of Scientific and Technical Information of China (English)

    王岗; 全贞花; 赵耀华; 靖赫然; 佟建南

    2017-01-01

    为最大限度利用可再生能源,将太阳能PV/T集热器与热泵相结合组成太阳能-热泵复合供能系统,通过不同阀门之间的相互切换,可实现多种运行模式以满足人们对生活热水、采暖或制冷的需求.实验主要针对单空气源热泵制热、PV/T与水源热泵联合制热及PV/T与双热源热泵联合制热3种运行工况进行研究,分别从室内温度、制热量、热泵COP、集热效率、发电效率等方面对系统进行实验研究与理论分析,实验结果表明,3种运行工况下热泵COP分别为2.26、3.4和2.61,平均室内温度分别为15.3、18.8和16.5℃,基本能满足冬季采暖负荷要求.系统可充分利用太阳能与热泵各自的优势,实现能源节约,为太阳能和热泵在建筑中联合运行模式提供部分参考价值.%To make the best use of renewable energy, a system of solar-heat pump composite energy was formed by combining solar PV/T collector with heat pump. Switching between the different valves can achieve many operating modes to meet people's need for hot water and heat and cooling. The experiment mainly studied three operating modes: single-air-source heat pump, solar PV/T collector with water-source heat pump, and solar PV/T collector with dual-heat-source heat pump. Indoor temperature, heat capacity, COP, thermal efficiency and electric efficiency were investigated experimentally and analyzed theoretically. Results showed that COP were 2.26, 3.4 and 2.61, respectively, along with average indoor temperature of 15.3, 18.8 and 16.5℃, which can basically meet the need for heating load in winter. The advantage of solar energy and heat pump were made full use and realized energy conservation, which provide some reference for solar and heat pump operation modes in buildings.

  19. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  20. Reduction of Energy Consumption and CO2 Emissions in Domestic Water Heating by Means of Direct Expansion Solar Assisted Heat Pump

    International Nuclear Information System (INIS)

    Baleta, J.; Curko, T.; Cutic, T.; Pasanec, J.; Soldo, V.

    2012-01-01

    Domestic water heating in households sector is usually performed by either fossil fuel fired or electric boilers. Both the combustion process of the former and large electricity consumption of the latter strongly influence overall greenhouse gas emissions. Moreover, very high specific heat of water requires large quantity of energy for water heating making a significant impact on the overall energy consumption in the households sector whose total consumption of 80,81 PJ equals to 19,6% of total primary energy supply in Croatia in 2010. Considering the mentioned impact on energy consumption and CO 2 emissions as well as goals set by European Commission (so called 20-20-20), new technologies based on renewable energy sources are more than welcome in the field of domestic water heating. Direct expansion solar assisted heat pump is presented in this paper. Its working principle is based on single-stage vapour-compression cycle. Representing a gradual step to commercial application with a water tank of 300 l, the developed mobile unit is designed as a test rig enabling all necessary measurements to evaluate potential of solar irradiation for domestic water heating on various locations. Besides the unit description, trial testing results are presented and analyzed as well as a basic comparison of CO 2 emissions between solar assisted heat pump and conventionally used water heating systems. Taking into account both the decentralized water heating and favourable climatic conditions (especially along the Croatian Adriatic coast) as well as rising fossil fuel prices, it is expected that solar assisted heat pumps will be commercialized in the near future.(author)

  1. Hybrid system: Heat pump-solar air dryer for grains; Sistema hibrido: bomba de calor - calentador solar de aire para el secado de productos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Soto Gomez, Willfredo [Instituto Tecnologico de Tijuana, Tijuana (Mexico); Ortega Herrera, Jose Angel [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2000-07-01

    Design, building, operation and evaluation energy wise of a hybrid experimental type, with heat pump, that uses no chloride, does not destroy the ozone layer. It is solar air dryer for grains. In this research we dry rice. It has tree systems: 1.- A mechanical compression heat pump, 2.- An air solar heater, and 3.- An agriculture products dryer. The drying capacity is 20 pounds of grain /day, with a median daily solar radiation. The costs is approximately U.S. $ 6 000.00. The heat pump used 22 refrigerant first, and now works with refrigerant SUVA 9000. This refrigerant will be available this year in the I.S., it is one of the ecological class that substitutes the chlorofluorocarbonates. [Spanish] Se disena, construye, opera, y evalua energeticamente, un sistema hibrido tipo experimental, con bomba de calor que utiliza refrigerante que no contiene cloro, y no destruye la capa de ozono y un calentador solar de aire, para secar granos. En este trabajo secamos arroz. Se compone de tres sistemas: 1.- Bomba de calor por compresion mecanica, 2.- Calentador solar de aire, 3.- Secador de productos agricolas. La capacidad de secado es de 10 Kilos de granos/dia promedio. Tiene un costo aproximado de $ 60 000. La bomba de calor utiliza refrigerante 22 en una primera generacion, y actualmente opera con un refrigerante SUVA 9000, en una segunda generacion, este refrigerante se comercializara en este ano, en la Union Americana, pertenece a la familia de los llamados refrigerantes ecologicos, sustitutos de los clorofluorocarbonados.

  2. An economic optimization of evaporator and air collector area in a solar assisted heat pump drying system

    International Nuclear Information System (INIS)

    Rahman, S.M.A.; Saidur, R.; Hawlader, M.N.A.

    2013-01-01

    Highlights: • The optimum combination will provide around 89% of the total load. • The system has a savings during the life cycle with least payback period of 4.37 year. • The optimal system is insensitive to the variation in fuel inflation and discount rate. - Abstract: This paper presents an economic optimization of evaporator and air collector area of a solar assisted heat pump drying system. Economic viability of solar heating systems is usually made by comparing the cost flows recurring throughout the lifetime of the solar and conventional alternative systems. Therefore, identification of optimum variables by using a simulation program and an economic analysis based on payback period of the system are presented in this paper. FORTRAN language is used to run the simulation. Effect of load and different economic variables on payback period is also investigated. Economic analysis reveals that system has sufficient amount of savings during the life cycle with a minimum payback period of about 4 years

  3. Study on a groundwater source heat pump cooling system in solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Lilong; Ma, Chengwei [China Agricultural Univ., Beijing (China). Coll. of Water Conservancy and Civil Engineering. Dept. of Agricultural Structure and Bio-environmental Engineering], E-mail: macwbs@cau.edu.cn

    2008-07-01

    This study aims at exploiting the potential of ground source heat pump (GSHP) technology in cooling agricultural greenhouse, and advocating the use of renewable and clean energy in agriculture. GSHP has the multi-function of heating, cooling and dehumidifying, which is one of the fastest growing technologies of renewable energy air conditioning in recent years. The authors carried out experiment on the ground source heat pump system in cooling greenhouse in Beijing region during the summertime of 2007, and conducted analysis on the energy efficiency of the system by using coefficient of performance (COP). According to the data collected during Aug.13-18th, 2007, the coefficient of performance of GSHP system (COP{sub sys}) has reached 3.15 on average during the test. (author)

  4. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  5. 太阳能热泵供热控制系统研究%Research on the Control Systems of Solar Energy Heat Pump Heating

    Institute of Scientific and Technical Information of China (English)

    刘春蕾; 王汝鑫; 孙勇

    2015-01-01

    研究了利用太阳能及热泵机组联合供热的控制系统,该系统采用地下水箱对太阳能进行蓄热,并利用热泵机组和电辅助加热弥补太阳能在阴天或夜间获取的不足,通过测试现场参数对系统中的水泵、调节阀、辅助电热器等设备的运行过程进行自动控制,以达到室内温度的要求。%In this paper,the control system of heating through solar energy and heat pump is studied. As a replacement for the insufficient of solar energy in the cloudy day or night,the underground cistern is used for solar heat storage and heat pump or electric boosting is used in the heating sys-tem.In order to achieve the requirement of indoor temperature,such equipments in the system as the water pump,regulating valve,auxiliary electric heater can be automatically controlled by tes-ting field parameters.

  6. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  7. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  8. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  9. Study on solar chemical heat pump system. Basic experiment on dehydrogenation of 2-propanol using heteropoly-acid photo catalyst; Solar chemical heat pump no kenkyu. Heteropoly sankei hikari shokubai wo mochiita 2-propanol no dassuiso hanno

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T [Electrochemical Laboratory, Tsukuba (Japan); T-Raissi, A; Muradov, N [Florida Solar Energy Center, FL (United States)

    1996-10-27

    With the purpose of converting solar heat energy to an industrial heat energy, an examination was carried out empirically on the case of using a heteropoly-acid photo catalyst for the decomposition reaction process of 2-propanol. The experiment was performed in Florida Solar Energy Center, in the U.S.A.. The device for the experiment was constituted of a reaction part, distribution manifold for feeding from the lower part of the reaction part a 2-propanol solution for which a photo catalyst was suspended, storage tank served also as a gas-liquid separating container, and circulating pump. Silica-tangstic acid was used as the photo catalyst. In an outdoor experiment using solar radiation, the quantity of inclined global solar radiation was 530-950W/m{sup 2} in clear days and 100-600W/m{sup 2} in cloudy days, with temperatures between 17 and 26{degree}C throughout the experiment period. In addition, an indoor experiment was also conducted using an artificial light source (UV light). As a result of the experiment, the energy conversion efficiency was at most about 1% of incident UV light, a low figure compared to a heat utilization ratio of approximately 15% with a thermal catalyst. 6 refs., 8 figs.

  10. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  11. Development of nonmetallic solar collector and solar-powered pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  12. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  13. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  14. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  15. Solar pumped laser

    Science.gov (United States)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  16. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  17. Heating System of High Temperature Biogas Digester by Solar Energy and Methane Liquid Heat Recovery Heat Pump%太阳能-沼液余热式热泵高温厌氧发酵加温系统

    Institute of Scientific and Technical Information of China (English)

    裴晓梅; 石惠娴; 朱洪光; 龙惟定

    2012-01-01

    A heating system of biogas digester was developed to avoid area limitations of buried wells in the heating system of biogas digester by ground-source heat pump, in which the heat energy was supplied by hot water from waste heat recovery coupled with solar- assisted heat pump. The key parameters such as the heat load of digester, waste heat recovery rate of the methane liquid, medium and high heat pump, the solar energy collector area and so on werecalculated. The results show that this system can guarantee the temperature of 50+2℃ in the digester, the heat recovery rate of the methane liquid can reach upto 70%. The system is characterized by that the solar energy and waste heat recovery of the methane liquid serve as the low-graded heat sources of the heat pump. There a're three kinds of running modes including the sloar energy heating directly, the solar energy low level heat sources heat pump, and the combination of the solar energy and waste heat recovery low - graded heat resources heat pump and so on. The waste heat recovery technique can make full use of energy of the system and prevent thermal pollution.%针对地源热泵式沼气池加温系统需要打地埋井及铺设地埋管受地质水质局限等问题,系统构建了太阳能—沼液余热式热泵高温厌氧发酵加温系统.对系统发酵池热负荷、沼液余热回收率、中高温热泵机组、太阳能集热装置等关键参数进行了理论计算,得出系统能够保证发酵池温度50±2℃,沼液余热回收量可以达到系统总需要热量的70%.系统特点在于采用太阳能和沼液余热联合作为中高温热泵低位热源并确立其三种运行模式,包括太阳能直接加温模式,太阳能低位热源—热泵加热模式和太阳能—沼液余热回收联合式热泵加温模式.

  18. Design and Performance Evaluation of a Solar Assisted Heat Pump Dryer Integrated with Biomass Furnace for Red Chilli

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performance of a solar assisted heat pump dryer integrated with biomass furnace has been designed and evaluated for drying red chillies, and drying kinetics of red chillies were evaluated. The red chillies were dried from 22 kg with moisture content of 4.26 db to moisture content of 0.08 db which needed 11 hours, with the average drying chamber temperature, drying chamber relative humidity, and an air mass flow rate of 70.5°C, 10.1%, and 0.124 kg/s, respectively, while the open sun drying needed 62 hours. Compared to open sun drying, this dryer yielded 82% saving in drying time. The drying rate, the specific moisture extraction rate, and thermal efficiency of the dryer were estimated in average to be about 1.57 kg/h, 0.14 kg/kWh, and 9.03%, respectively. Three mathematical models, the Newton, Henderson-Pabis, and Page models, were fitted to the experimental data on red chillies dried by solar assisted heat pump dryer integrated with biomass furnace and open sun drying. The performance of these models was evaluated by comparing the coefficient of determination (R2, mean bias error (MBE, and root mean-square error (RMSE. The Page model gave the best results for representing drying kinetics of red chillies.

  19. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  20. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  1. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  2. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  3. Assessment of R290 as a possible alternative to R22 in direct expansion solar assisted heat pumps

    Directory of Open Access Journals (Sweden)

    Paradeshi Lokesh

    2017-01-01

    Full Text Available In this paper, the energy performance of a direct expansion solar assisted heat pump has been experimentally assessed with R290 as an alternative to R22 to meet the requirements of Kigali agreement. The experiments have been performed at Calicut climatic conditions (latitude of 11.15° N, longitude of 75.49° E during the winter climates of 2016. The performance parameters such as, compressor power consumption, condenser heating capacity, energy performance ratio, and solar energy input ratio were evaluated for energy performance comparison. The results showed that, R290 has 6.8% higher energy performance ratio when compared to R22, with 11% reduction in compressor power consumption. Moreover, R290 has negligible global warming impact and zero ozone depletion potential when compared to R22. The effect of wind speed, collector area, ambient temperature, and solar insolation on the system performance found to be with an average value of 0.85%, 12%, 2.5%, and 4.5% for the selected refrigerants, respectively.

  4. Study on solar chemical heat pump system. Basic experiment on falling film reaction for dehydrogenation of 2-propanol; Solar chemical heat pump no kenkyu. 2-propanol bunkai hanno ni okeru ryuka ekimakushiki hanno jikken

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T; Ando, Y; Tanaka, T; Takashima, T [Electrochemical Laboratory, Tsukuba (Japan); Nomura, T; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    An experiment and the examination were carried out in order to elucidate the optimum conditions in the falling liquid film reaction method, in the conversion of solar energy using the decomposition reaction of 2-propanol. The device for the experiment was constituted of a reaction container, tubular pump, cooling pipe, sampling container for effluent from the upper and lower part of the reaction container, and gas burette. Examined in the experiment were various factors such as a fibrous activated carbon (catalyst support), ratio for carrying catalyst, catalytic composition and heating temperature. In the experiment, with the temperature inside the reaction container fully stabilized under prescribed conditions, measurement was done for the hydrogen generation by the gas burette for 10 minutes as well as for the sampling of effluent. The experiment revealed that the heat utilization ratio reached the maximum of about 27% when the heating temperature was 90{degree}C using a catalyst with the ratio of RU and Pt 1 to 1 and the ratio for carrying catalyst 10wt%, so that a great improvement was obtained in the heat utilization ratio at a low temperature. Also obtained was a large inversion ratio of about 15%. 4 refs., 6 figs., 5 tabs.

  5. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  6. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  7. The performance of solar heat pump with non-freon refrigerant CF{sub 3}CH{sub 2}F(R-134a) for school classroom heating [II

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.H.; Jung, H.C. [Kyung Hee University, Seoul (Korea, Republic of); Kim, K.S. [Daebul University (Korea, Republic of)

    1997-03-01

    The goal of this paper is to measure and compare the performance of solar heat pump for school classroom heating. To accomplish the goal, solar heat pump with aluminum roll bond type evaporator and indoor heat exchanger(condenser) was built and fully instrumented with thermocouples and pressure transducers etc. The test results showed that the COP and capacity of R-134a(CF{sub 3}CH{sub 2}F) were higher than those of R-12(CF{sub 2}Cl{sub 2}). The solar heat pump system for room heating was designed to show the best efficiency that the room temperature make 18{approx}20{sup o} C and 23{approx}25{sup o} C in Seoul during November, December, and January. (author) 12 refs., 4 figs., 2 tabs.

  8. Direct solar-pumped lasers

    Science.gov (United States)

    Lee, J. H.; Shiu, Y. J.; Weaver, W. R.

    1980-01-01

    The feasibility of direct solar pumping of an iodine photodissociation laser at lambda = 1.315 microns was investigated. Threshold inversion density and effect of elevated temperature (up to 670 K) on the laser output were measured. These results and the concentration of solar radiation required for the solar pumped iodine laser are discussed.

  9. Comparative Studies of the Operation Method of Solar Energy Water Heating System with Auxiliary Heat Pump Heater%热泵辅助供热太阳能热水系统运行模式对比分析

    Institute of Scientific and Technical Information of China (English)

    林辩启; 罗会龙; 王浩; 田盼雨

    2015-01-01

    太阳能热水系统与热泵辅助供热合理结合可取长补短,有效降低建筑能耗。简要概述了空气源热泵、水源热泵、地源热泵辅助供热太阳能热水系统的结构形式及其运行模式。在此基础上,对比分析了热泵辅助供热太阳能热水系统各种典型运行模式的特点及其适用的应用环境。%The appropriate combination of solar water heating system and heat pump auxiliary heating is an effective way to reduce the building energy consumption. The structure and operation method of solar water heating system with different auxiliary heating, such as air-source heat pump, water-source heat pump, and soil-source heat pump, were introduced briefly. The characteristics of all kinds of solar water heating system with auxiliary heating were compared and analyzed. The suitable application environment of solar water heating system with auxiliary heating was also presented.

  10. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  11. Heat pumps are a dream

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The fact that heat pumps do not achieve what their manufacturers promise in costs efficiency has been realized by the market. In 1981 the sales of heat pumps decreased by 50% of the 1980 market. Public utilities give the reason as economic, since fuel oil is too cheap. The author refutes this argument and presents arguments against heat pumps.

  12. Progress in Studing Solar-earth Source Compound Heat Pump%太阳能-土壤源复合热泵的研究进展

    Institute of Scientific and Technical Information of China (English)

    张来栋; 郭风全

    2013-01-01

    介绍了太阳能-土壤源复合热泵的工作原理和技术特点,比较了不同太阳能-土壤源复合热泵的系统组成及其性能指标,提出了当前复合热泵所存在的问题与相关建议,并对其发展前景做了展望。%Working principle and performance characteristics of solar-earth source compound heat pump are described, and the system component and indicators are compared between different solar-earth source compound heat pumps. The problems existing in the compound heat pump and related suggestion are put forward, and the development prospect is expected.

  13. Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications

    International Nuclear Information System (INIS)

    Moreno-Rodríguez, A.; González-Gil, A.; Izquierdo, M.; Garcia-Hernando, N.

    2012-01-01

    This paper has shown the development of a theoretical model to determine the operating parameters and consumption of a domestic hot water (DHW) installation, which uses a direct-expansion solar assisted heat pump (DXSAHP) with refrigerant R-134a, a compressor with a rated capacity of 1.1 kW and collectors with a total area of 5.6 m 2 . The model results have been compared and validated the experimental results obtained with the equipment installed at the University Carlos III, South of Madrid. The analysis was conducted over the course of a year, and the results have been represented depending on the meteorological and process variables of several representative days. Taking into account the thermal losses of the installation and the dependency on the operating conditions, the acquired experimental coefficient of performance is between 1.7 and 2.9, while the DHW tank temperature over the course of the study is 51 °C. -- Highlights: ► The study aims to present a new theoretical model and an experimental validation. ► The experimental COP vary between 1.7 and 2.9 (max. condensation temperature 57 °C). ► The operating parameters respond to the solar radiation. The COP may increase up to 50%. ► The useful surface area varies between 50% and 85% of the total surface. ► The system stops if conditions exceed the maximum value of the absorbed heat.

  14. Heat pumps and solar water heaters in the City of the Sun. Financing and cost effectiveness; Warmtepompen en zonneboilers in de Stad van de Zon. Financiering en rentabiliteit

    Energy Technology Data Exchange (ETDEWEB)

    Scheepers, M.J.J.; De Raad, A. [ECN-Beleidsstudies, Petten (Netherlands)

    2000-07-01

    The results of a study on the financing and cost effectiveness of the use of heat pumps and solar boilers in low-energy dwellings are presented. The investigation was carried out under the condition that costs for the occupants are not higher than the cost for the use of a gas-fired condensing boiler.

  15. 主动蓄放热-热泵联合加温系统在日光温室的应用%Application of heating system with active heat storage-release and heat pump in solar greenhouse

    Institute of Scientific and Technical Information of China (English)

    孙维拓; 杨其长; 方慧; 张义; 管道平; 卢威

    2013-01-01

    The Chinese solar greenhouse has a unique greenhouse structure that regards solar energy as the main energy source, and has characteristics such as high efficiency, energy saving, and low cost. During a cold winter night, air temperature inside a solar greenhouse is low for crop growth, which would affect crop yield and quality, due to the heat-transfer characteristics and heat capacity limit of the north wall. In recent years, in trying to promote the heat storage capacity of the solar greenhouse, the thought of active heat storage-release came forward. Solar energy is a kind of clean renewable energy, but has intermittent and unstable performance when used for greenhouse heating. Meanwhile, the heat collecting efficiency of the solar thermal collector decreases with an increase in operating temperature. Thus, an active heat storage-release system (AHSRS) is difficult to use to ensure an appropriate temperature for a solar greenhouse in a frigid region or when it encounters weather conditions with weak solar radiation. As an efficient means of raising low-grade energy, the heat pump has been more and more applied to greenhouse heating which can reduce the operating temperature of the AHSRS when used in combination. In order to promote heating performance and stability of the AHSRS and improve air temperature inside a solar greenhouse at night, based on the concept of active heat storage-release, an active heat storage-release associated with heat pump heating system (AHSRHPS) applicable to solar greenhouse heating was designed in the present study. During the day, the solar energy reaching the north wall surface was absorbed by the circulating water and stored in reservoirs when the AHSRS was running. Running the heat pump unit was intended to promote low-grade heat energy and reduce the circulating water temperature which contributes to increasing the heat collecting efficiency of the AHSRS and maximum water temperature of the reservoir. When air temperature

  16. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  17. 太阳能热泵应用现状与性能分析%Application Situation and Performance Analysis of Solar-assisted Heat Pump(SAHP)

    Institute of Scientific and Technical Information of China (English)

    魏翠琴; 王丽萍; 贾少刚; 高志宏

    2017-01-01

    太阳能是清洁可再生能源,热泵是高效节能技术,两者有机结合应用既提高了太阳能集热器效率和热泵性能,又拓宽了应用范围,使其实用性大大增强.在介绍太阳能热泵系统的分类与工作原理基础上,概括了各类太阳能热泵的优缺点,总结了国内外该技术的应用和研究现状,着重分析了非直膨式太阳能热泵系统性能的影响因素——集热器安装朝向和角度、热泵的蒸发温度和冷凝温度是影响系统性能的主要因素.%Solar energy is clean and renewable, similarly heat pump has the features of high efficiency and excellent energy saving. The combination application of solar energy and heat pump could improve the efficiency of solar collectors and heat pump performance, meanwhile the application range and utility are greatly enhanced. The classification and working principle of Solar-assisted heat pump (SAHP) system is introduced in this paper, the advantages and disadvantages of SAHP were summarized, the domestic and overseas application of SAHP were summarized, the performance influence factors of indirect expansion SAHP were analyzed, the installed orientation and angle of tilt of Solar collector, heat pump evaporation temperature and condensation temperature are the main factors influencing the performance of the system.

  18. Applicability Analysis of Solar Water Source Heat Pump for Building%太阳能水源热泵的建筑适用性研究

    Institute of Scientific and Technical Information of China (English)

    朱继宏; 李德英

    2015-01-01

    太阳能水源热泵系统是一种新型高效节能环保的系统,太阳能与热泵联合供暖可以发挥各自的优势,弥补单一形式的不足,提高采暖的稳定性和系统运行性能。针对我国太阳能水源热泵建筑适应性问题,以哈尔滨、北京、上海的气象数据库作为基础条件,分析了典型建筑热负荷特征,建立系统数学模型,并用 TRNSYS 平台进行优化求解,为适用性研究提供了必要的数据基础。依据寿命周期评价理论,对各地区太阳能水源热泵建筑适用性进行分析,结果表明严寒地区及寒冷地区太阳能水源热泵适用性较好,环境效益明显。%The solar water source heat pump system is an environmental friendly and high-efficient system. When solar heating system couples with water source heat pump, the two systems can complement each other, and improve the stability and performance of the heating system. Aiming at applicability of solar water source heat pump for building in our country, with meteorological database of Harbin, Beijing, Shanghai as basic conditions, the paper analyzes heat load characteristics of typical building. Mathematical model is established. Using TRNSYS platform for optimal solution, the article provides the necessary data basis for study on applicability of solar water source heat pump. According to the theory of life cycle assessment, the paper analyzes applicability of solar water source heat pump for building of each region. The result shows that the applicability of solar water source heat pump in severely cold region and cold region is environmentally beneficial.

  19. Theoretcial studies of solar-pumped lasers

    Science.gov (United States)

    Harries, W. L.; Fong, Z. S.

    1984-01-01

    A method of pumping a COhZ laser by a hot cavity was demonstrated. The cavity, heated by solar radiation, should increase the efficiency of solar pumped lasers used for energy conversion. Kinetic modeling is used to examine the behavior of such a COhZ laser. The kinetic equations are solved numerically vs. time and, in addition, steady state solutions are obtained analytically. The effect of gas heating filling the lower laser level is included. The output power and laser efficiency are obtained as functions of black body temperature and gas ratios (COhZ-He-Ar) and pressures. The values are compared with experimental results.

  20. Determining of the optimal design of a closed loop solar dual source heat pump system coupled with a residential building application

    International Nuclear Information System (INIS)

    Chargui, Ridha; Awani, Sami

    2017-01-01

    Graphical abstract: Operation of the system in heating mode. - Highlights: • We examine the control function in the level of heat pump and collector. • We examine the temporal evolution of the temperature and energy in the all components of the system. • A better system with a significant energy saving was achieved. • The system gives good results in all operating states. - Abstract: This work highlights the results on the coupling of a flat plate collector coupled with a dual source heat pump system and a heat exchanger for building application. The novelty point of this work is to integrate a heat exchanger in the floor and in the interstitial space of the residential house roof in order to minimize the consumed electric power. This technology defining the operational state of the system has been developed and adapted in the present investigation by adopting the Tunisian climate. The dimensioning of this installation for different component makes it possible to operate the hot water heating systems ecologically. Hence, our objective is to ameliorate the performance of the system using the solar radiation converted to the thermal energy in the level of the flat plate collector and the heat pump. A several experimental data have been added for realizing a numerical model based on TRNSYS software. From this point of view, a numerical model was improved in building application using a 150 m 2 as surface area of the building which consists of two floor zones. The dual source heat pump was coupled with a ground heat exchanger (GHE) with 0.2 m of depth. The distance between two consecutive tubes is 0.3 m and the surface area of the solar collector is 8 m 2 . The simulation results have been obtained for 48 h operation in January and all inputs data of the system have been predicted during 48 h and 6 months of heating in Tunisia. It was demonstrated that the COP of the dual source heat pump was enhanced with the increase of the solar radiation during the typical

  1. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  2. Performance Analysis of Solar Assisted Fluidized Bed Dryer Integrated Biomass Furnace with and without Heat Pump for Drying of Paddy

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performances of a solar assisted fluidized bed dryer integrated biomass furnace (SA-FBDIBF and a solar assisted heat pump fluidized bed dryer integrated biomass furnace (SAHP-FBDIBF for drying of paddy have been evaluated, and also drying kinetics of paddy were determined. The SA-FBDIBF and the SAHP-FBDIBF were used to dry paddy from 11 kg with moisture content of 32.85% db to moisture content of 16.29% db (14% wb under an air mass flow rate of 0.1037 kg/s within 29.73 minutes and 22.95 minutes, with average temperatures and relative humidities of 80.3°C and 80.9°C and 12.28% and 8.14%, respectively. The average drying rate, specific energy consumption, and specific moisture extraction rate were 0.043 kg/minute and 0.050 kg/minute, 5.454 kWh/kg and 4.763 kWh/kg, and 0.204 kg/kWh and 0.241 kg/kWh for SA-FBDIBF and SAHP-FBDIBF, respectively. In SA-FBDIBF and SAHP-FBDIBF, the dryer thermal efficiencies were average values of 12.28% and 15.44%; in addition, the pickup efficiencies were 33.55% and 43.84% on average, whereas the average solar and biomass fractions were 10.9% and 10.6% and 36.6% and 30.4% for SA-FBDIBF and SAHP-FBDIBF, respectively. The drying of paddy occurred in the falling rate period. The experimental dimensionless moisture content data were fitted to three mathematical models. Page’s model was found best to describe the drying behaviour of paddy.

  3. 太阳能耦合地源热泵供暖系统的实验研究%Experimental Study on Heating System of Solar Coupled Ground Source Heat Pump

    Institute of Scientific and Technical Information of China (English)

    智超英; 赵宇含

    2017-01-01

    太阳能耦合地源热泵系统的设计以太阳能为辅助、地源热泵为主,最大化地利用太阳能资源,在满足地板采暖制备的情况下,富裕的热量可以补充到生活用水当中.通过实验验证了太阳能耦合地源热泵供暖系统可以有效恢复土壤温度,提高机组性能系数,实现热泵长期稳定的运行.%The design of solar coupled ground source heat pump system is based on solar energy and ground source heat pump.The system can maximize solar energy utilization in the preparation of floor heating.Rich heat can be added to the life water.This paper introduces the solar coupled ground source heat pump heating system.The experiment proves that the system can effectively restore the soil temperature, improve the performance coefficient of the crew, and realize the long-term stable operation of the heat pump.

  4. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  5. High temperature thermoacoustic heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  6. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  7. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  8. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  9. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  10. 地源热泵与太阳能联合供热系统集热器面积优化的研究%Collector Area Optimization of Ground Source Heat Pump and Solar Combined Heating System

    Institute of Scientific and Technical Information of China (English)

    智超英; 赵宇含

    2018-01-01

    This paper mainly analyzes various influence factors on heat collector area of the ground source heat pump and solar combined heating system, studies the relationship of the cost of solar heat collection system,ground source heat pump operating costs per square meter,the maximum net benefit and solar collector area. In one run cycle,considering the maximum income,solar heating guarantee rate and ground source heat pump operating costs per square meter, the collector area of the combined heating system is optimized finally.%分析影响地源热泵与太阳能联合供热系统集热器面积的各种因素,研究太阳能集热系统造价、地源热泵每平方米运行费用、最大净受益、太阳能集热器面积相互间的关系.在一个循环周期内参考最大净收益,利用太阳能采暖保证率和地源热泵每平方米的运行费用的统计数据,最终联合供热系统的集热器面积达到最优.

  11. Heat Pumps in Subarctic Areas

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Oddsson, Gudmundur Valur; Unnthorsson, Runar

    2017-01-01

    Geothermal heat pumps use the temperature difference between inside and outside areas to modify a refrigerant, either for heating or cooling. Doing so can lower the need for external heating energy for a household to some extent. The eventual impact depends on various factors, such as the external...... source for heating or cooling and the temperature difference. The use of geothermal heat pumps, and eventual benefits has not been studied in the context of frigid areas, such as in Iceland. In Iceland, only remote areas do not have access to district heating from geothermal energy where households may...... therefor benefit from using geothermal heat pumps. It is the intent of this study to explore the observed benefits of using geothermal heat pumps in Iceland, both financially and energetically. This study further elaborates on incentives provided by the Icelandic government. Real data was gathered from...

  12. Simulation and experimental study of a solar heat pump desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Hawlader, M.N.A.; Tjandra, Tobias Bestari [Dept. of Mechanical Engineering, National Univ. of Singapore, Singapore (Singapore)

    2008-07-01

    With the rising price of oil and gas, the energy cost of desalination process increases significantly. Also, the consumption of fuel to provide thermal and electrical energy in a desalination process will pollute the environment. Therefore, it is necessary to find a new source of energy which is clean and renewable. Solar energy fulfills this challenge to a great extent. An experimental rig was constructed in order to investigate the use of solar energy in desalination. A series of experiments were performed under the meteorological conditions of Singapore. A simulation study was then performed for the system, and comparisons of the predicted and experimental results showed good agreement. The experimental system is capable of producing 1 liter of water per hour. The system has a coefficient of performance that varies from 5 to 9, and a performance ratio of 0.6 to 1.38. (orig.)

  13. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  14. Magnetic heat pump flow director

    Science.gov (United States)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  15. 直膨式太阳能热泵系统仿真%Simulation of Direct Expansion Solar Assisted Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    汪坤海; 闫金州; 邢琳; 关欣

    2017-01-01

    随着太阳能热利用和热泵技术的成熟及商品化,直膨式太阳能热泵技术将太阳能资源的清洁性、可再生性等特点和热泵系统的节能、高效的优点相结合,极具研究价值.但是目前直膨式太阳能热泵不能产品化推广的主要限制因素是系统设计不合理、运行不稳定、整体性能不佳等问题.现以直膨式太阳能热泵系统的优化和设计匹配为研究目标,同时,建立压缩机、集热器/蒸发器、热力膨胀阀、冷凝器及储热水箱的数学模型.从理论上分析集热器中集热面积、太阳能辐照度、环境温度、压缩机容积及冷凝温度等因素对直膨式太阳能热泵系统热工性能的影响,通过系统仿真及实验研究系统的整体热力性能,并在此基础上给出改善系统性能的建议.%With the use of solar thermal energy and the development and commercialization of heat pump technology, the direct - expansion solar - assisted heat pump which combines both the clean, renewable and other properties of solar energy resources with energy-saving and high efficient advantages of heat pump system, has great research values. But now major limiting factors of the direct-expansion solar- assisted heat pump cannot be promoted include the unreasonable system design, the unstable operation, the overall poor performance and other issues. The optimization and design matching of the direct-expansion solar-assisted heat pump system are researched; at the same time, a mathematical model of the heat collector/evaporator, compressor, thermostatic expansion valve, condenser and heat storage water tank is established. The area of heat, solar irradiance, ambient temperature, volume of compressor and condensation temperature and other factors on the effect of direct expansion solar-assisted heat pump system of the thermal performance are analyzed from the theory analysis; the overall thermal performance of the system is simulated and studied with

  16. Heat pumps in western Switzerland

    International Nuclear Information System (INIS)

    Freymond, A.

    2003-01-01

    The past ten years have seen an extraordinary expansion of heat-pump market figures in the western (French speaking) part of Switzerland. Today, more than 14,000 units are in operation. This corresponds to about 18% of all the machines installed in the whole country, compared to only 10 to 12% ten years ago. This success illustrates the considerable know-how accumulated by the leading trade and industry during these years. It is also due to the promotional program 'Energy 2000' of the Swiss Federal Department of Energy that included the heat pump as a renewable energy source. Already in 1986, the Swiss Federal Institute of Technology in Lausanne was equipped with a huge heat pump system comprising two electrically driven heat pumps of 3.5 MW thermal power each. The heat source is water drawn from the lake of Geneva at a depth of 70 meters. An annual coefficient of performance of 4.5 has been obtained since the commissioning of the plant. However, most heat pump installations are located in single-family dwellings. The preferred heat source is geothermal heat, using borehole heat exchangers and an intermediate heat transfer fluid. The average coefficient of performance of these installations has been increased from 2.5 in 1995 to 3.1 in 2002

  17. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  18. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  19. Heat pumps at the maltings

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Heat pumps have halved the energy costs of producing finished malt at two of the country's maltsters. The fuel-fired kilning processes described are now performed by heat pumps with considerable energy and production benefits at the maltings of J.P. Simpson and Co. (Alnwick) Ltd, in Tivetshall St Margaret, Norfolk, and of Munton and Fison Plc of Stowmarket, Suffolk. The heat pump system installed at the Station Malting of J.P. Simpson was devised by the Electricity Council Research Centre at Capenhurst near Chester. Energy cost benefits of Pound 6,000 a month are being realised at Simpsons, but there is the added benefit that the system has been designed to provide conditioned air to the germination cycle to ensure that the correct temperature is maintained throughout the year. At the Cedars factory of Munton and Fison, heat pumps were used on a trial basis for plant micropropagation and for a fish farming unit.

  20. Technical research on sludge drying by solar energy and heat pump%太阳能热泵污泥干燥技术

    Institute of Scientific and Technical Information of China (English)

    饶宾期; 曹黎

    2012-01-01

    In order to solve the problems of sludge drying, the working principle and system structure of sludge drying-system by solar energy and heat pump were introduced firstly, and then the main equipment.of this system was calculated and designed, the system performance was analyzed comprehensively through experiment. Finally the energy efficiency and economy of solar energy heat pump drying-system were compared with that of the other drying system. The results showed that this system was energy-saving, eco-friendly and economy. Equipped with solar thermal collector, the system can save energy about 10% in average. The research can provide a reference for engineering application of sludge drying by solar energy and heat pump.%为解决当前污泥干燥存在的问题,该文研究利用太阳能热泵对污泥进行干燥,阐述了太阳能热泵污泥干燥系统的结构与工作原理,对系统的主要设备进行了计算设计并进行试验及性能分析,最后对太阳能热泵干燥与其他几种典型干燥方式的能耗及经济性做了比较.该系统具有节能、环保、经济等优点,配备太阳能系统平均可节省电量10%左右.该研究可为太阳能热泵干燥污泥的工程应用提供参考.

  1. Solar thermal energy / exhaust air heat pump / wood pellet furnace for a sustainable heat supply of low energy buildings in older buildings; Solarthermie / Abluft-Waermepumpe / Pelletofen. Kombisysteme zur nachhaltigen Waermeversorgung von Niedrigenergiehaeusern im Gebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, Nikolaus; Born, Rolf [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Staerz, Norbert [Ingenieurbuero inPlan, Pfungstadt (Germany)

    2009-11-13

    The research project under consideration reports on combination systems for a sustainable heat supply for low-energy buildings in older building. For this, a central and decentralized system configuration consisting of solar thermal energy, exhaust air heat pump and wood pellet furnace are presented. Solutions for an interaction of these three heat suppliers in one plant are designated regarding the control strategy. The fundamentals of the computerized simulations for the central and decentralized system are presented. A cost estimate with both variants of the combination system as well as a comparison with conventional energy-saving heat supply systems follow.

  2. 热泵与家用太阳热水器联合供热性能试验%Performance jointly test of heat pump water heater with household solar heating

    Institute of Scientific and Technical Information of China (English)

    谌学先; 高文峰; 兰青; 唐润生; 夏朝凤

    2011-01-01

    为解决家用太阳能热水器供热的间歇性和不稳定性,应用热泵辅助可达到全天候供热,该文通过对这种联合供热系统的供热性能和运行性能进行了测试,并对热水器的升温、保温和热泵的加热进行了试验和分析,结果表明:空气源热泵辅助型真空管家用太阳热水系统仅在累积太阳辐照量小于14 MJ/m2时,需要空气源热泵辅助加热,总制热性能系数可达6.18.%To solve the problems of heating intermittent and instability for household solar water heater, application of heat pump for evacuated tube solar water heater system can achieved auxiliary heat supply round-the-clock. Heating performance test and operation of the system were conducted and the temperature rise performance, heat preservation of the solar water heater system and the heating performance of heat pump were tested and analyzed in this paper. The result showed that when the solar radiation was less than 14 MJ/m2 , the system needed heating by air source heat pump,on this occasion, the system total coefficient of performance could reach 6.18.

  3. 加热原油的太阳能-污水源热泵系统的开发%Development on solar-assisted sewage source heat pump system for crude oil heating

    Institute of Scientific and Technical Information of China (English)

    钱剑峰; 王强

    2017-01-01

    In this paper, the situations of crude oil heating and oily water utilization were analyzed.The development situation of solar heat pump at home and abroad was introduced.It was put forward that the solar-assisted sewage source heat pump system could be used to reuse oily water for crude oil heating.The composition of the system and five kinds of operation mode were analyzed.The mathematical model was also established.It provided some references for the application of solar-assisted sewage source heat pump system.%分析了油田用热现状和含油污水利用现状,详述了太阳能热泵在国内外的发展现状.在此基础上,提出应用太阳能-污水源热泵系统回收含油污水余热来加热原油,进而分析了该系统的组成及五种运行模式,建立了系统的数学模型,为太阳能-污水源热泵系统的应用提供参考.

  4. MULTI-HEAT SOURCE SOLAR HEAT PUMP HEAT SUPPLY SYSTEM AND PERFORMANCE SIMULATION%复合热源太阳能热泵供热系统及其性能模拟

    Institute of Scientific and Technical Information of China (English)

    杨磊; 张小松

    2011-01-01

    提出了一种复合热源太阳能热泵供热系统,通过阀门切换,可根据不同的天气状况改变运行模式,以空气和太阳辐射作为热源制取供暖用水.针对所设计的lOkw供热系统,建立了系统的数学模型,对热泵串联集热器(SC+HP)及集热器串联热泵(HP+SC)两种运行模式下的循环性能进行了计算机模拟分析,并计算了系统的全年运行状况.从模拟结果可以看出,在模拟进水温度区间内,HP+SC模式下热泵COP较高,最高比SC+HP模式高2.58%;而SC+HP模式集热器热性能较好,总热效率更高,最高比HP+SC模式高2.62%.%A compound solar heat pump heat supply system was presented. The system can make heating water from air source and solar radiation by valve switching, based on different weather conditions. A numerical model for a l0kW heating utilizing was established. The circulation performances of solar collector with heat pump( SC + HP) and heat pump with solar collector( Hp + SC) operation modes were simulated. The all year round operation status was also caculated.The results have shown that the COP of HP + SC mode is at most 2.58 % higher than SC + HP mode in simulation water temperature range. But the latter has a better collector thermal performance and overall thermal efficiency is at most 2.62 % higher than the former.

  5. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  6. Key techniques for space-based solar pumped semiconductor lasers

    Science.gov (United States)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  7. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  8. A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Vanoli, Laura

    2017-01-01

    Highlights: • Space heating/cooling, domestic hot water and electrical energy are provided by the system. • Two different users are investigated: fitness center and office. • The influence of the battery system on system economic performance is scarce. • Net metering contract is more profitable compared to simplified purchase/resale arrangement one. - Abstract: In this paper a dynamic simulation model and a thermo-economic analysis of a novel polygeneration system are presented. The system includes photovoltaic/thermal collectors coupled with a solar-assisted heat pump, an adsorption chiller and an electrical energy storage. The modelled plant supplies electrical energy, space heating and cooling and domestic hot water. The produced solar thermal energy is used during the winter to supply the heat pump evaporator, providing the required space heating. In summer, solar thermal energy is used to drive an adsorption chiller providing the required space cooling. All year long, solar thermal energy in excess, with respect to the space heating and cooling demand, is used to produce domestic hot water. The produced electrical energy is self-consumed by both user and system auxiliary equipment and/or supplied to the grid. The system model includes a detailed electrical energy model for user storage and exchange with the grid along with a detailed building model. This study is a continuation of previous works recently presented by the authors. In particular, the present paper focuses on the real electrical demands of several types of users and on the analysis of the comfort of building users. Differently from the works previously published by the authors, the present work bases the calculations on measured electrical demands of real users (fitness center and offices). The system performance is analyzed with two different electricity supply contracts: net metering and simplified purchase/resale arrangement. Daily, weekly and yearly results are presented. Finally, a

  9. Multistage quantum absorption heat pumps.

    Science.gov (United States)

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  10. A regenerative elastocaloric heat pump

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Dallolio, Stefano

    2016-01-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years...... a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg−1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices...... based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications....

  11. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  12. A new concept for solar pumped lasers

    Science.gov (United States)

    Christiansen, W. H.

    1978-01-01

    A new approach is proposed in which an intermediate body heated by sunlight is used as the pumping source for IR systems, i.e., concentration solar radiation is absorbed and reradiated via an intermediate blackbody. This body is heated by focused sunlight to a high temperature and its heat losses are engineered to be small. The cooled laser tube (or tubes) is placed within the cavity and is pumped by it. The advantage is that the radiation spectrum is like a blackbody at the intermediate temperature and the laser medium selectively absorbs this light. Focusing requirements, heat losses, and absorption bandwidths of laser media are examined, along with energy balance and potential efficiency. The results indicate that for lasers pumped through an IR absorption spectrum, the use of an intermediate blackbody offers substantial and important advantages. The loss in radiative intensity for optical pumping by a lower-temperature body is partly compensated by the increased solid angle of exposure to the radiative environment.

  13. The efficiency analysis on solar energy auxiliary soil source heat pump heating in cold region%严寒地区太阳能辅助土壤源热泵供热经济性分析

    Institute of Scientific and Technical Information of China (English)

    王杨洋

    2016-01-01

    To solve the suction and discharge heat imbalance problems in soil source heat pump system long running in cold region,this paper put forward the solar assisted soil source heat pump system,and compared the efficiency of this plan with traditional central heating system,pointed out that the solar assisted soil source heat pump system in service life cycle had good energy conservation and environmental protection benefits.%为解决严寒地区土壤源热泵系统长期运行出现吸排热量失衡的问题,提出了太阳能辅助土壤源热泵系统方案,并将该方案与传统集中供热系统方案的经济性作了对比,指出太阳能辅助土壤源热泵系统在使用寿命周期内具有良好的节能环保效益。

  14. Thermodynamic solar water pump with multifunction and uses

    Energy Technology Data Exchange (ETDEWEB)

    Ben Slama, R. [Gabes Univ. (Tunisia). Dept. of Electromechanics

    2009-07-01

    This paper discussed a thermodynamic solar water pump design. Reflectors were used on the pump in order to ensure that water evaporation was conducted at the highest possible temperature. A vacuum was created by steam condensation in a closed container. The influence of heating and cooling temperatures on pump vacuum performance was studied experimentally. Water and ambient temperatures were measured along with pressure drop. Incidental solar radiation on the tilted plane of the collector was measured with a pyranometer. The pumping cycle was characterized by measuring the temperature reached during heating before spontaneous cooling occurred. Results of the study were used to obtain curves corresponding to the cooling temperatures. The curves showed that pressure drop is higher when heating temperatures reached 100 degrees C. A cooling device system was included in order to increase the number of potential pumping cycles per day. It was concluded that the pump can also be used to create hot water. 11 refs., 11 figs.

  15. Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Watanabe, Seizi; Rengarajan, Balaji

    2011-01-01

    A completely energy-independent microgrid (green microgrid) was examined in this work with the aims of abating greenhouse gas emissions by spreading the use of green energy, providing energy backup systems for disaster, and increasing the energy utilization efficiency with the use of exhaust heat. This paper analyzed the energy supply to six houses in a cold region. The green microgrid consisted of photovoltaics, water electrolyzers, proton-exchange membrane fuel cells (PEFCs), and heat pumps. To investigate the operation method and the capacity of each piece of equipment in the arrangement, a distributed system with two or more sets of equipment and a central system with one set of equipment were analyzed by a genetic algorithm. By introducing the prior energy need pattern of a cold region into the proposed system, the operation method and equipment capacity based on the power and heat balance were clarified. By introducing the partial load performance of a water electrolyzer and a PEFC into the analysis program, the operation method of each system was investigated. It was found that the area of a solar cell of a distributed system could be reduced by 12% as compared to a central system. -- Highlights: → A completely energy-independent microgrid (green microgrid) was planned. → The green microgrid consisted of photovoltaics, water electrolyzers, PEM-FCs, and heat pumps. → Operation of a concentrated system and a distributed system. → Investigate of the operation method and the capacity of each piece of equipment.

  16. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  17. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  18. Engineering Design and Economic Analysis of Air Source Heat Pump Assisted Solar Water Heating System%热泵+太阳能热水系统的工程设计与经济分析

    Institute of Scientific and Technical Information of China (English)

    李永华

    2013-01-01

    以空气源热泵为辅助热源的太阳能集中热水系统,不仅节能效率高,而且能保证全天候连续热水供应,是近年来太阳能利用的发展方向之一。淮海工学院学生浴室采用了空气源热泵辅助太阳能热水系统,设计用水人数17000人,日需热水量184 t。介绍了该热水系统的工作原理及设计计算,并对5种热水工程方案从初期投资和运行费用方面进行了详细的经济性分析,结果表明:以空气源热泵为辅助热源的热水方案较其他方案具有更好的经济、环保效益。%The high energy-efficient solar energy water heating system in conjunction with air source heat pump, supplying all-weather continuous hot water, is one of the developing direction of solar energy utilization in recent years. Students ’ Bathroom of Huaihai Institute of Technology use solar water heating system assisted with air source heat pump for 17000 students, requiring 184 tons of hot water every day. The working principle and design calculation of hot water system are expounded with detailed analysis of the initial investment and operating costs for five kinds of heating water engineering solutions. Results show that air source heat pump as auxiliary heat source has better economic and environmental benefits.

  19. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  20. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  1. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  2. A novel high efficiency solar photovoltalic pump

    NARCIS (Netherlands)

    Diepens, J.F.L.; Smulders, P.T.; Vries, de D.A.

    1993-01-01

    The daily average overall efficiency of a solar pump system is not only influenced by the maximum efficiency of the components of the system, but just as much by the correct matching of the components to the local irradiation pattern. Normally centrifugal pumps are used in solar pump systems. The

  3. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  4. Staged regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  5. A new photovoltaic solar-assisted loop heat pipe/heat-pump system%新型光伏-太阳能环形热管/热泵复合系统

    Institute of Scientific and Technical Information of China (English)

    张龙灿; 裴刚; 张涛; 季杰

    2014-01-01

    The photovoltaic solar assisted loop heat pipe system/heat-pump (PV-SALHP/HP) is the combination of solar assisted loop heat pipe system (SALHP) and solar assisted heat pipe (SAHP). A photovoltaic/thermal (PVT) evaporator and condenser could be shared by two circling modes, and so is the working medium. The loop heat pipe mode will be utilized when solar radiation is strong and the temperature of working medium in PVT evaporator is higher than that in condenser. Correspondingly, the heat pump mode will be started when solar radiation is weak or the temperature difference of working medium in PVT evaporator and condenser cannot satisfy the condition of loop heat pipe mode. The loop heat pipe mode is passive and the heat pump mode is active, which means that the loop heat pipe mode does not consume work and the heat pump mode does. Therefore, the transformable mode of system could heavily reduce power consumption, raise the utilization ratio of solar energy, and promote energy saving. A PV-SAHP/LHP test rig is built. The instantaneous and daily performance of the loop heat pipe mode and heat pump mode is studied.%光伏-太阳能环形热管/热泵复合系统将太阳能环形热管循环模式和太阳能热泵循环模式有机结合,两者采用相同的工质,共用一个PVT蒸发器和冷凝器。当太阳辐照强度较强,工质在PVT蒸发器中的温度高于冷凝器中的温度时,可以利用环形热管模式制热;当太阳辐照强度较弱或工质在PVT蒸发器中与冷凝器中的温差无法满足环形热管模式运行时,可以利用热泵模式制热。两种模式既能够独立运行,又可以互相切换,确保热能的稳定供应,同时能够明显降低系统耗电量。搭建了光伏-太阳能环形热管/热泵复合系统实验平台,对复合系统在环形热管模式和热泵模式独立运行时的瞬时性能和全天性能进行了实验研究。

  6. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  7. Advances in heat pump systems: A review

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.

    2010-01-01

    Heat pump systems offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. As the cost of energy continues to rise, it becomes imperative to save energy and improve overall energy efficiency. In this light, the heat pump becomes a key component in an energy recovery system with great potential for energy saving. Improving heat pump performance, reliability, and its environmental impact has been an ongoing concern. Recent progresses in heat pump systems have centred upon advanced cycle designs for both heat- and work-actuated systems, improved cycle components (including choice of working fluid), and exploiting utilisation in a wider range of applications. For the heat pump to be an economical proposition, continuous efforts need to be devoted to improving its performance and reliability while discovering novel applications. Some recent research efforts have markedly improved the energy efficiency of heat pump. For example, the incorporation of a heat-driven ejector to the heat pump has improved system efficiency by more than 20%. Additionally, the development of better compressor technology has the potential to reduce energy consumption of heat pump systems by as much as 80%. The evolution of new hybrid systems has also enabled the heat pump to perform efficiently with wider applications. For example, incorporating a desiccant to a heat pump cycle allowed better humidity and temperature controls with achievable COP as high as 6. This review paper provides an update on recent developments in heat pump systems, and is intended to be a 'one-stop' archive of known practical heat pump solutions. The paper, broadly divided into three main sections, begins with a review of the various methods of enhancing the performance of heat pumps. This is followed by a review of the major hybrid heat pump systems suitable for application with various heat sources. Lastly, the paper presents novel

  8. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  9. Minimum maintenance solar pump | Assefa | Zede Journal

    African Journals Online (AJOL)

    A minimum maintenance solar pump (MMSP), Fig 1, has been simulated for Addis Ababa, taking solar meteorological data of global radiation, diffuse radiation and ambient air temperature as input to a computer program that has been developed. To increase the performance of the solar pump, by trapping the long-wave ...

  10. Solar-pumped lasers for space power transmission

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  11. Solar Assisted Water Source Heat Pump System for Heating in Winter%关于太阳能辅助水源热泵系统联合冬季供暖的研究

    Institute of Scientific and Technical Information of China (English)

    石东森; 赵展

    2014-01-01

    Along with the increased awareness of energy shortage and environmental protection in China, solar energy and shallow geothermal energy as renewable energy are getting more and more atten-tion. But regardless of the solar system or single water source heat pump system has some limitations, few of joint operation for both applications. Based on the actual project as an example, the solar system can be combined with water source heat pump system, and the system will achieve the required indoor air temper-ature; and the technical analysis of operation cost for solar system with water source heat pump system shows the energy efficiency is completely obvious.%随着我国能源的紧缺和环保意识的加强,太阳能、浅层地热能作为可再生能源,越来越受到人们的重视。但无论是太阳能系统,还是水源热泵系统,单独运行时均有一定的局限性,两者联合运行的应用很少。通过实际工程分析,太阳能系统与水源热泵系统可以联合工作,并可达到预期的室内空调温度;对太阳能系统与水源热泵系统联合运行的运行费用做了技术分析,证实这种联合模式节能效果十分明显。

  12. Geothermal Heat Pump Benchmarking Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  13. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  14. A regenerative elastocaloric heat pump

    Science.gov (United States)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  15. A New Type of Complex System of Solar Energy Air Source Heat Pump Water Heater%一种新型的太阳能——空气源复合热泵热水器系统

    Institute of Scientific and Technical Information of China (English)

    王军军

    2011-01-01

    基于太阳能热利用技术、空气源热泵热水器理论,介绍了一种将太阳能与空气源相结合的双热源热泵热水器系统。该系统可充分利用太阳能加热生活用热水,辅以空气源热泵来满足太阳辐射照度不足时的用热水需求,同时用太阳能辅助加热来解决低温环境下空气源热泵运行工况恶劣的问题。系统充分利用了低品位的太阳能,保证稳定性,又可提高夏季阴雨天气、过渡季节及冬季太阳能热水器的热水温度,对于节约能源和环境保护具有重要意义。%Based on the technology of solar thermal and the theory of air-source heat pump water heater, a combined water heater system about solar and air source heat pump was introduced. The system Could make full use of solar energy to heat domestic hot water, combined with air-source heat pump to meet the shortage of solar irradiance when the hot water demand, and the auxiliary heating with solar energy to solve the problems of air source heat pump operating conditions in low temperature. The system took full use of the low-grade solar energy, and stability could be assured. And it could improve the temperature of the water in solar water heaters in rainy summers, transition seasons and winters. The system had significance for energy conservation and environmental protection.

  16. Discussion of the Integrate Designs between Solar Energy Water Heating System and Air-source Heat Pump%空气源热泵与太阳能热水系统集成设计探讨

    Institute of Scientific and Technical Information of China (English)

    王伟; 南晓红; 马俊; 李飞

    2011-01-01

    对不同地区应用的几种不同形式空气源热泵辅助型太阳能热水系统设计方案进行介绍探讨,并以其为基础提出一种新的空气源热泵与太阳能热水系统集成的多功能系统设计方案。总结了不同地区、不同形式空气源热泵辅助型太阳能热水系统的设计方案、特点及新集成系统运行模式等,为我国不同地区应用此类系统时选择具体设计方案提供参考。%In this paper,different designs of the solar energy water heating system aided by air-source heat pump(SEWH-ASHP) are introduced and discussed,then a new integrate design between solar energy water heating system and air-source heat pump is given.Characters of different designs of the solar energy water heating system aided by air-source heat pump in different area are summed and the operational modes of the integrate system are analysed,which would be a useful reference to chose for designing and using the system of SEWH-ASHP and integrate system in different areas in China.

  17. Geothermal heat pumps - Trends and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1989-01-01

    Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 deg. F. Conventional geothermal heating (and cooling) systems are not economically efficient at these temperatures. Heat pumps, at these temperatures, can provide space heating and cooling, and with a desuperheater, domestic hot water. Two basic heat pump systems are available, air-source and water- or ground-source. Water- and ground-coupled heat pumps, referred to as geothermal heat pumps (GHP), have several advantages over air-source heat pumps. These are: (1) they consume about 33% less annual energy, (2) they tap the earth or groundwater, a more stable energy source than air, (3) they do not require supplemental heat during extreme high or low outside temperatures, (4) they use less refrigerant (freon), and (5) they have a simpler design and consequently less maintenance.

  18. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  19. 太阳能—地源热泵联合循环技术研究%Study on Technologies of Solar Energy and Ground Source Heat Pump Combined Circulation

    Institute of Scientific and Technical Information of China (English)

    孙洲阳; 陈武

    2011-01-01

    太阳能—地源热泵系统联合循环的研究目前还没有形成完备的理论体系,可供应用的基础数据不足,还不能为工程实际应用提供充足的理论依据.本文就太阳能与地源热泵系统联合运行的必要性和可行性进行探讨,提出了相应的技术方案;总结太阳能—地源热泵空调系统的特性,提出太阳能—地源热泵空调系统有待解决的问题,为太阳能—地源热泵联合循环技术在建筑上应用提供参考和借鉴.%Theory system of solar energy combined with ground-source heat pump has not been mature, thereby lack basic data and theory thereunder for engineering application. Necessarity and feasibility of solar energy combined with ground-source heat pump is discussed, bring forward corresponding technique scheme. Character of solar energy combined with ground-source heat pump system is summarized, and bring forward await settle problems, provide reference for architecture application of solar energy combined with ground-source heat pump.

  20. 太阳能/热泵技术在木材干燥领域的应用%Application of solar energy and heat pump technology in wood drying

    Institute of Scientific and Technical Information of China (English)

    周琪; 赵文欣

    2017-01-01

    提出在家具行业领域,采用太阳能/热泵技术替代传统能源.介绍太阳能及热泵技术的基本原理及应用范围.通过太阳能/热泵技术在江西家具行业的应用,分析该技术的主要特点及注意事项.太阳能/热泵综合能源技术应用在家具行业可实现节能环保,具有推广价值.%The paper puts forward the use of integrated energy technology with solar energy and heat pump to replace traditional en?ergyin the field of furniture industry. This paper introduces the basic principle and application of solar energy and heat pump technology. Through the application of solar energy and heat pump technology in Jiangxi, this paper analyzes the main features of the technology and the matters needing attention. Solar+heat pump technology in the furniture industry has the advantages of energy saving and environ?mental protection and has the promotion value.

  1. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...

  2. SOL-PAC: Integrated solar heating and heat pump systems for refurbished buildings - Performance analysis; SOL-PAC: analyse des performances du couplage d'une pompe a chaleur avec une installation solaire thermique pour la renovation - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Citherlet, C.; Bony, J.; Nguyen, B.

    2008-07-01

    The purpose of this study is to evaluate the energetic and economic performances of various types of brine/water heat pumps coupled with a fan coil fitted with solar collectors. Different indicators such as the annual coefficient of performance or the electricity consumption have been compared between the different analysed systems. The optimization of the energy control system and energy storage was investigated in order to reduce the operation time of the fan coil. This study has been performed using the TRNSYS computerized simulation package. The icing of the fan coil as well as its defrosting cycles could not been taken into account within the framework of this project, because of a lack of a numerical model. At current electricity prices, the most economical solution remains the heat pump without solar collectors. However, from an energy point of view, the annual overall coefficient of performance of the installation may be improved by 15 to 36%, depending on the climate, thanks to the coupling with solar collectors. (author)

  3. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  4. Pump efficiency in solar-energy systems

    Science.gov (United States)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  5. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    OpenAIRE

    Hidouri Khaoula; Benhmidene Ali; Chaouachi Bechir; Ravishankar Sathyamurthy

    2017-01-01

    In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD) and a Simple Solar Distiller H...

  6. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  7. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  8. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  9. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  10. Heat pump having improved defrost system

    Science.gov (United States)

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  11. ENERGY STAR Certified Geothermal Heat Pumps

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps

  12. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  13. ATES/heat pump simulations performed with ATESSS code

    Science.gov (United States)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  14. A review of magnetic heat pump technology

    International Nuclear Information System (INIS)

    Barclay, J.A.

    1990-01-01

    The area of technology classified as heat pumps generally refers to refrigerators, heat pumps and heat engines. This review is restricted to the literature on magnetic refrigerators and magnetic heat pumps which are referred to interchangeably. Significant progress has been made on the development of engineering prototypes of cryogenic, nonregenerative magnetic refrigerators utilizing conductive heat transfer in the 0.1 K to 20 K temperature range. Advances have also been made in analysis of regenerative magnetic refrigerators and heat pumps utilizing the active magnetic regeneration (AMR) concept. Units based on AMR are being modeled, designed and/or built to operate in various temperature ranges including 1.8-4.5 K, 4-15 K, 15-85 K, and 270-320 K. The near room temperature units have been scaled to 50 kW as both refrigerators and heat pumps. The progress of magnetic refrigeration over the last three years is summarized and discussed

  15. Heat pump heating with heat pumps driven by combustion engines or turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K

    1977-01-27

    The heat pump described is driven by a gas Otto cycle engine, or a gas- or light- or heavy-oil fired Diesel engine. The claim refers to the use of waste heat of the engines by feeding into the input circuit of the heat pump. In addition, a drive by an electrical motor-generator or power production can be selected at times of peak load in the electrical supply network.

  16. Energy Efficiency Analysis of Solar Photovoltaic Solar-Thermal Components lntegrating with Double Source Heat Pump System%太阳能光伏光热组件与双源热泵一体化系统节能性分析

    Institute of Scientific and Technical Information of China (English)

    李新锐; 陈剑波; 王成武

    2018-01-01

    The integration of distributed solar photovoltaic solar -thermal components and double source heat pump system is a system combined with a variety of energy - saving technology, so it is necessary to study its energy saving property. Based on the comparison with the solar heat pump and air-source heat pump, through opening the double source mode and separately opening the water source mode,or running air source mode,the water-heating time of heating water tank and the input power of the heat pump are compared,it is concluded that the double heat source heat pump unit has higher energy efficiency than the single air source heat pump and the conventional solar heat pump unit.%考虑到分布式太阳能光伏光热组件与双源热泵一体化系统是一种结合多种节能技术的系统,有必要对其节能性进行研究.在对该系统与常规太阳能热泵、空气源热泵比较的基础上,选取冬天开启双源模式和单独开启水源模式、空气源模式时的3种工况,通过比较供热水箱完成制热水的时间和热泵输入功率,分析得出双热源热泵机组比单一的空气源热泵、常规太阳能热泵机组具有较高的节能性.

  17. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  18. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  19. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  20. Passive solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Wiberg, K

    1981-11-10

    The present work treats the possibilities for heating according to the passive solar heating method. Problems of 'spatial organization in an energy-saving society' are distinguished from among other social problems. The final delimination of the actual problems under investigation consists of the use of passive solar heating and especially the 'consequences of such solar heating exploitation upon the form and structures' of planning and construction. In the concluding chapter an applied example shows how this method can be used in designing an urban area and what are its limitations. The results indicate the possibilities and difficulties in attempting to transfer this ideal and general method into models and directives for form and structure from which examples of the actual possibilities in practical planning can be given.

  1. 太阳能与热泵联合干燥木材的优化匹配%OPTIMIZATION OF COMBINED DRYING SYSTEM WITH SOLAR ENERGY AND HEAT-PUMP FOR WOOD DRYING

    Institute of Scientific and Technical Information of China (English)

    张璧光; 高建民; 伊松林; 许彩霞; 王天龙

    2009-01-01

    The best performance of the combined system was optimized by theoretical analysis and experiments. If solar energy meets the need of wood drying requirement, the heat is supplied by solar energy only; otherwise, the heat is supplied by solar energy and heat pump together; and the heat is supplied by heat-pump only during cloudy, rainy day and the night. If the temperature of air through solar energy system is higher than ambient temperature, the air from solar energy system should be sent to heat-pump, the heat-supply coefficient and voulume can be improved to heat-pump system. There is an economical temperature increasing of air through solar energy system with an ambient temperature. For example, if the ambient temperature is 24℃, the lowest theoretical and experimental temperature increasing through solar energy system were 4℃ and 6℃, respectively.%介绍了太阳能与热泵联合干燥系统的组成与工作原理.通过理论分析与实验研究探讨了太阳能与热泵联合运行的优化匹配,当太阳能供热量能满足木材干燥所需热量时,由太阳能系统供热;否则由太阳能与热采联合供热;阴雨天和夜间由热泵供热.当太阳能送风温度低,但高于环境温度时,低温太阳能向热泵送风,可以提高热泵的供热系数和供热量.对应于一定的环境温度,太阳能向热泵送风有一个相匹配的最低温差.例如当环境温度为24℃时,通过理论和实验求得太阳能向热泵送风与环境温度间的最低送风温差分别为4℃和6℃.

  2. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  3. Solar Pumped Lasers and Their Applications

    Science.gov (United States)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  4. Nonlinear Aspects of Heat Pump Utilization

    Directory of Open Access Journals (Sweden)

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  5. Standard monitoring system for domestic heat pumps

    NARCIS (Netherlands)

    Geelen, C.P.J.M.; Oostendorp, P.A.

    1999-01-01

    In the years to come many domestic heat pump systems are to be installed in the Netherlands. The Dutch agency for energy and environment, NOVEM, and the association of energy utility companies, EnergieNed, give high priority to the monitoring of heat pump systems. The results of the projects,

  6. Comparative Evaluation of Different Computational Models for Performance of Air Source Heat Pumps Based on Real World Data

    NARCIS (Netherlands)

    Tabatabaei, Seyed Amin; Treur, Jan; Waumans, Erik

    2015-01-01

    To reduce energy usage and CO2 emission due to heating, heat pumps have turned out a good option. For example, to obtain a net zero house, often a combination of solar panels and a heat pump is used. A computational model of the performance of a heat pump provides a useful tool for prediction and

  7. Threshold pump power of a solar-pumped dye laser

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  8. 北方地区应用太阳能辅助土壤源热泵效能分析%Efficiency Analysis of Utilizing Solar-assisted Ground Source Heat Pump in the Northern China

    Institute of Scientific and Technical Information of China (English)

    赵金秀

    2015-01-01

    针对北方寒冷地区气候特点,指出了太阳能辅助土壤源热泵系统相对于单独的土壤源热泵或单独的太阳能应用的技术特点。对北方寒冷地区某学校综合楼建筑进行了太阳能辅助土壤源热泵系统设计;并针对该建筑采用太阳能辅助土壤源热泵系统、采用单独的土壤源热泵系统或采用传统采暖空调系统,从三者经济效益、社会效益、环境效益等方面进行了比较,从而体现了太阳能辅助土壤源热泵系统相对于单独的土壤源热泵系统或传统采暖空调系统的高效、经济、节能、环保等优异性。%For the cold climate characteristics of the Northern China, the paper introduces the technical characteristics of solar-assisted ground source heat pump system relative to the separate ground source heat pump system or the separate solar energy application. For a complex building of a university in the cold northern area, the solar -assisted ground source heat pump system is designed, and economic benefits, social benefits, environmental benefits and other aspects about using the solar-assisted ground source heat pump system or using the ground source heat pump system alone or using the traditional air conditioning system are compared, thus reflects the excellent efficiency, cost-saving and energy -saving characteristics, and environmental protection about the solar assisted ground source heat pump system.

  9. D-Zero HVAC Heat Pump Controls

    International Nuclear Information System (INIS)

    Markley, Dan

    2004-01-01

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  10. MINIMUM MAINTENANCE SOLAR PUMP Abebayehu Assefa ...

    African Journals Online (AJOL)

    increase the performance of the solar pump, by trapping the long-wave light rays leaving the absorber - the water tank, two glass covers have been employed. .... Absorptivity of panel. 0.95. Transmissivity of glass. 0.90. Volume of tank. 0.202 m 3. (15). (14) mwev -. Vv. The pumping head of water is determined from Eq.

  11. Scavenged body heat powered infusion pump

    International Nuclear Information System (INIS)

    Bell, Alexander; Ehringer, William D; McNamara, Shamus

    2013-01-01

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min −1 range for the integrated pump and reservoir, and approximately 70 µL min −1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  12. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus

    2010-09-15

    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  13. The Design of Hot Water Supply System of Solar Energy and Air Source Heat Pump%太阳能+空气源热泵的热水供应系统设计

    Institute of Scientific and Technical Information of China (English)

    卢春萍

    2015-01-01

    太阳能集中热水系统受到天气的影响难以全天候运行,需要设置辅助加热装置。以广州市宾馆热水供应为例,对太阳能空气源热泵的热水系统进行设计,包括空气源热泵热水机组选型计算、太阳能集热管面积计算、储热水箱的确定、集热循环水泵的确定。%Influenced by weather condition,it is difficult to run for hot water supply system of solar en-ergy all the time,and the auxiliary heating device need setting.Taking hot water supply in a hotel of Guangzhou city as an example in this paper,the heat pump system of solar energy and air source was designed,including the calculation of equipment selection of the air source heat pump, the calculation of the collector area,the determination of the heat storage tank,and the determina-tion of the circulating pump of the heat collection.

  14. Solar-assisted ground-source heat pump system design and case study%太阳能辅助地埋管地源热泵系统设计及实例分析

    Institute of Scientific and Technical Information of China (English)

    季永明; 端木琳; 李祥立

    2017-01-01

    Presents an improved method to determine the solar collector area of the solar-assisted ground-source heat pump system based on the heat balance method.For a commercial building in Dalian,proposes the design scheme of a solar-assisted ground-source heat pump system.Simulates the operating parameters of the system by TRNSYS,and the results show that,on the basis of ensuring the heating capacity of the building,the system guarantees the average temperature of the thermal storage soil which contains the ground heat exchanger periodic and consistent change,and the COP of the heat pump is improved significantly compared with that of the system without solar collectors in winter.%基于热平衡法提出了确定太阳能辅助地埋管地源热泵系统中太阳能集热器面积的方法.针对大连地区一公共建筑,提出了太阳能辅助地埋管地源热泵系统设计方案.采用TRNSYS软件对该系统运行参数进行了仿真模拟,结果显示,在保证建筑供热量的基础上,系统能长期保证热泵源侧换热器所在蓄热土壤平均温度呈周期性一致变化,且冬季热泵机组COP较无集热器工况显著提高.

  15. 工程型太阳能热泵热水系统节能效益分析%Energy-saving Benefit Analysis of Engineering Type Solar Energy Hot Water System in Conjunction with Heat Pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    According to the engineering case region meteorological data and solar resource characteristics,the solar energy centralized heating system in Conjunction with heat pump used in the hotel is analyzed based on saving benefits. By means of comprehensive analyzing of annual amount of energy saving,cost saving,payback period for the increase of the initial investment,as well as environmental benefits of the solar energy heat pump hot water system,it is indicated that solar energy heat pump hot water system project not only has the very high heat efficiency and environmental adaptability but also has high economy efficiency. It is a kind of heating water systems of ideal high quality.%  根据工程案例地区气象参数及太阳能资源特点,对已投入宾馆使用的太阳能热泵集中供热水系统进行节能效益分析。通过对太阳能热泵热水系统的年节能量,节省费用,系统增加的初投资的回收年限,以及太阳能热泵热水系统的环保效益进行综合分析。表明工程型太阳能热泵热水系统不仅具有很高的热效率和环境适应性同时具有较高的经济性,是一种理想的高品质供热水系统。

  16. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  17. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  18. Thermodynamic analysis of a minimum maintenance solar pump

    Energy Technology Data Exchange (ETDEWEB)

    Brew-Hammond, A.; Roullier, J.; Appeagyei-Kissi, D. (University of Science and Technology, Kumasi (Ghana))

    1993-10-01

    The Minimum Maintenance Solar Pump (MMSP) is a solar-thermal pumping system which operates on a diurnal cycle with solar heating and nocturnal cooling/suction. Several prototypes of the MMSP have been constructed in Ghana, Canada and France with varying degrees of success. A thermodynamic analysis of the MMSP has yielded an expression which is used with the aid of a micro-computer to predict the performance characteristics of the MMSP. The predictions compare favourably with available experimental results and indicate that it is imperative for temperatures well above 80[sup o]C to be obtained in the MMSP if pumping is to be achieved at heads of practical significance. (author)

  19. 太阳能-地源热泵复合系统在医疗建筑中的应用分析%Application analysis of solar ground-source heat pump composite system to medical building

    Institute of Scientific and Technical Information of China (English)

    高世康; 卢志鹏

    2017-01-01

    太阳能-地源热泵复合系统具有良好的节能效果和运行特性,本文利用TRNSYS分析其应用于山东某医院综合楼的可行性,并分析其与常规系统(城市热网配套+冷水机组)的全寿命周期成本.分析结果表明,太阳能-地源热泵复合系统的全寿命周期成本比常规系统节省26.4%,在2.16年之后,太阳能-地源热泵复合系统经济性优势明显.%The solar ground-source heat pump composite system has good energy-saving effect and operation characteristic.The feasibility of its application to one medical building in Shandong is analyzed using TRNSYS, and the life cycle cost of solar ground-source heat pump composite system and the conventional system of urban network supporting & chiller is analyzed.The analysis results show that the former life cycle cost can be saved by 26.4% compared with the latter, and 2.16 years later, the solar ground-source heat pump composite system will have evident economy trend.

  20. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  1. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  2. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...... and 3 K. Changing the number of MHPs, we optimized input parameters to achieve maximum heating powers. We have found that both maximum heating power and COP decrease together with number of heat pumps, but the TGs and the temperature span can be largely increased. References [1] M. Tahavori et al., “A...... be necessary, which is hardly achievable with a single MHP and such techniques as cascading are required. Series and parallel cascading increase the AMR span and heating power, respectively, but do not change TG. Therefore, the intermediate type of cascading was proposed with individual MHPs separately...

  3. Test and Analysis of Solar Energy-ground Source Heat Pump Complex Systems%太阳能-地源热泵复合系统的实验研究

    Institute of Scientific and Technical Information of China (English)

    侯静; 荆有印; 王静; 杨鹏

    2012-01-01

    The ground-source heat pump, a trend in the future, is a high efficiency system that uses the renewable geothermal. But in northern China, the heat load is the major way. In this, the heat that underground pipe absorbs in winter is more than the heat discharged by underground pipe in summer. After long-time running, the heat pump system will destroy the soil temperature field. This article describes a complex heat pump system of solar-ground source. And this article, through experiment, will prove that the solar assisted system can effectively restore soil temperature increase the coefficient of performance and achieve long-term stable operation of heat pump system.%地源热泵是利用可再生能源地热能的一种高效热泵系统,是未来发展的趋势。但在我国北方地区,大部分以热负荷为主,冬季地下埋管的取热量高于夏季的释热量,长期运行会破坏土壤温度场。介绍了太阳能一地源热泵复合系统,通过实验验证了太阳能辅助系统能够有效恢复土壤温度,提高系统性能系数,可以实现热泵长期稳定的运行。

  4. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine; Ton, Wei-Zhe; Wu, Chen-Chun; Ko, Hua-Wei; Chang, Hsien-Shun; Yen, Rue-Her

    2017-01-01

    was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  5. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  6. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  7. New and future heat pump technologies

    Science.gov (United States)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  8. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  9. Electricity Market Optimization of Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    We consider a portfolio of domestic heat pumps controlled by an aggregator. The aggregator is able to adjust the consumption of the heat pumps without affecting the comfort in the houses and uses this ability to shift the main consumption to hours with low electricity prices. Further......, the aggregator is able to place upward and downward regulating bids in the regulating power market based on the consumption flexibility. A simulation is carried out based on data from a Danish domestic heat pump project, historical spot prices, regulating power prices, and spot price predictions. The simulations...

  10. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  11. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  12. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  13. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  14. 太阳能一空气双热源复合热泵系统性能研究%Studying of the System Performance of the Solar - air Dual - source Heat Pump

    Institute of Scientific and Technical Information of China (English)

    张超; 赵晓丹; 周光辉

    2011-01-01

    太阳能—空气双热源复合热泵技术能有效解决空气源热泵室外温度低时蒸发器易结霜、系统性能降低的缺点.本文在课题组前期研究的基础上,针对一种新型的太阳能—空气双热源复合热泵系统,采用分布参数法建立了系统的数学模型.利用数学模拟的方法对单一空气源热泵系统和太阳能—空气双热源复合热泵系统在三种不同工况下的制热量和COP进行了模拟,并对模拟结果进行了对比分析.%The problems such as the easily frosting of the evaporator and the poor system performance in low outdoor temperature can be effectively solved with the solar-air dual-source heat pump technology. In this paper, based on the previous working of the research group, the steady distributed parameter method has been adopted to establish the mathematical model of a new solar-air dual-source heat pump system. The system performance of the single air source heat pump system and the solar-air dual-source heat pump system in three operation conditions have been studied with the mathematical simulation method, and the simulated results have been analyzed.

  15. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  16. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  17. Developing a Magnetocaloric Domestic Heat Pump

    DEFF Research Database (Denmark)

    Bahl, Christian R.H.

    2014-01-01

    beverage coolers, A/Cs for cars and electronics cooling. Devices for heating have not been extensively demonstrated. Here we consider a promising application of magnetocaloric heat pumps for domestic heating. The task of designing and building such a device is a multidisciplinary one encompassing materials...

  18. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  19. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  20. The Application Research of the Solar Energy Combines with Air Source Heat Pump System%太阳能结合空气源热泵系统应用研究

    Institute of Scientific and Technical Information of China (English)

    王文周

    2014-01-01

    太阳能结合空气源热泵系统作为生活热水、低温采暖热源、空调冷源,通过系统智能化优化控制及精准控温运行模式,完全采集太阳能、空气能免费能源,实现了工程上的节能、经济运行。%Solar energy combines with air source heat pump system as domestic hot water, low temperature heat sources for heating, and air conditioning cold source, which achieve the project on energy saving and economic operation through the intel igent optimization control system and precise temperature control operation mode with the completely col ection of solar energy and free air source energy.

  1. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  2. Thermoeconomic comparison of industrial heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Christen Malte; Reinholdt, L.

    2011-01-01

    Four natural working fluids in various heat pump cycles are expected to cover the heating range between 50oC and 150°C. The different thermodynamic cycles are the Condensing Vapour, Transcritical and Compression/Absorption. As the considered technologies have significant differences in application......, limitations and design, a generic comparison is used. To establish the optimal individual temperature range of operation, a thermoeconomic evaluation is performed, with heat price as the decision parameter. Each individual heat pump is favourable in specific temperature intervals, which will vary according...... to the temperature lift between sink and source. At temperature lifts below 30°C the entire temperature range is covered. Exceeding this temperature lift, the range of sink temperatures is not completely covered above 125°C. Three of the heat pumps prove very cost competitive when compared to heating with natural...

  3. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  4. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  5. Electric heat-pumps in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Since the end of 1979 every other day an electrically operated heat-pump has started operation in Berlin (West). Pros and cons of heat-pumps are a much discussed subject. But what is the opinion of the user. As it is not known the BEWAG carried out a written customer inquiry in the summer 1982. The aim of the inquiry was to improve the advisory service by means of the answers obtained, to obtain information about the reliability or liability to defects of the heat pump, the mechanism they operate on and to know how big the oil substitution potential is. Customer satisfaction with the heat pumps was a further point of interest.

  6. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  7. Research on solar pumped liquid lasers

    Science.gov (United States)

    Cox, J. D.; Kurzweg, U. H.; Weinstein, N. H.; Schneider, R. T.

    1985-01-01

    A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrC14 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination. The development of a manufacturing procedure and performance testing of the laser, liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.

  8. Research on solar pumped liquid lasers

    Science.gov (United States)

    Schneider, R. T.; Kurzweg, U. H.; Cox, J. D.; Weinstein, N. H.

    1983-01-01

    A solar pumped liquid laser that can be scaled up to high power (10Mw CW) for space applications was developed. Liquid lasers have the inherent advantage over gases in that they provide much higher lasant densities and thus high power densities. Liquids also have inherent advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13:Nd(3+):ZrC14 liquid was chosen for its high intrinsic efficiency as well as its relatively good stability against decomposition due to protic contamination. The development and testing of the laser liquid and the development of a large solar concentrator to pump the laser was emphasized. The procedure to manufacture the laser liquid must include diagnostic tests of the solvent purity (from protic contamination) at various stages in the production process.

  9. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  10. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  11. Trends in Solar energy Driven Vertical Ground Source Heat Pump Systems in Sweden - An Analysis Based on the Swedish Well Database

    Science.gov (United States)

    Juhlin, K.; Gehlin, S.

    2016-12-01

    Sweden is a world leader in developing and using vertical ground source heat pump (GSHP) technology. GSHP systems extract passively stored solar energy in the ground and the Earth's natural geothermal energy. Geothermal energy is an admitted renewable energy source in Sweden since 2007 and is the third largest renewable energy source in the country today. The Geological Survey of Sweden (SGU) is the authority in Sweden that provides open access geological data of rock, soil and groundwater for the public. All wells drilled must be registered in the SGU Well Database and it is the well driller's duty to submit registration of drilled wells.Both active and passive geothermal energy systems are in use. Large GSHP systems, with at least 20 boreholes, are active geothermal energy systems. Energy is stored in the ground which allows both comfort heating and cooling to be extracted. Active systems are therefore relevant for larger properties and industrial buildings. Since 1978 more than 600 000 wells (water wells, GSHP boreholes etc) have been registered in the Well Database, with around 20 000 new registrations per year. Of these wells an estimated 320 000 wells are registered as GSHP boreholes. The vast majority of these boreholes are single boreholes for single-family houses. The number of properties with registered vertical borehole GSHP installations amounts to approximately 243 000. Of these sites between 300-350 are large GSHP systems with at least 20 boreholes. While the increase in number of new registrations for smaller homes and households has slowed down after the rapid development in the 80's and 90's, the larger installations for commercial and industrial buildings have increased in numbers over the last ten years. This poster uses data from the SGU Well Database to quantify and analyze the trends in vertical GSHP systems reported between 1978-2015 in Sweden, with special focus on large systems. From the new aggregated data, conclusions can be drawn about

  12. Theoretical analysis and experimental study to solar assisted ground-source heat pump system%太阳能辅助系统的理论分析和实验研究

    Institute of Scientific and Technical Information of China (English)

    杨鹏; 刘自强; 侯静

    2011-01-01

    As a clean, renewable energy, the geothermal energy and solar energy are trend of develo- ping and using new energies in the future. This paper introduces solar assisted Ground Source Heat Pump system, combined with the advantage of t the geothermal energy and solar energy. Through theoretical analysis and experiment, the solar assisted Ground Source Heat Pump system is proved to be feasible and scientific.%地热能和太阳能作为清洁、可再生的能源,是未来开发和利用新能源的趋势,本文介绍了太阳能辅助地源热泵系统,是将二者结合,取长补短的一种热泵形式。通过理论分析和实验验证。证明了太阳能辅助地源热泵系统的可行性和科学性。

  13. Two simple models of classical heat pumps.

    Science.gov (United States)

    Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek

    2007-03-01

    Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.

  14. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  15. Central solar heating plants with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, D; Hadorn, J C; Van Gilst, J; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    On May 9, 1979, the Federal Department for Buildings released instructions concerning the use of alternative energies. The federal energy policy is to be as much as possible independent on oil imports. The canton Fribourg decided to equip the new maintenance and service center for the national high-road N12, with alternative energy, resources, and to apply new concepts with respect to passive and active solar energy. The project uses active solar energy with an earth-storage and heat pump. A conventional oil-heating system provides energy for peak-loads and can be operated in stand-by. A delay in the construction of the earth storage sub system was requested because it was intended to optimize the system with respect to the solar sub system, and heat pump sub system. The design work was done by SORANE which also is the coordinator for Switzerland in the I.E.A. Task VII. However, the preplanning of the project started in 1978 before the I.E.A. Task VII started. As a consequence, many design parameters were determined before 1980. The optimization of the solar collector, heat-pump etc. sub system was performed by a simulation approach developed by SORANE. The Vaulruz service center has been commissioned during the winter 1981/82.

  16. Fuzzy multivariable control of domestic heat pumps

    International Nuclear Information System (INIS)

    Underwood, C.P.

    2015-01-01

    Poor control has been identified as one of the reasons why recent field trials of domestic heat pumps in the UK have produced disappointing results. Most of the technology in use today uses a thermostatically-controlled fixed speed compressor with a mechanical expansion device. This article investigates improved control of these heat pumps through the design and evaluation of a new multivariable fuzzy logic control system utilising a variable speed compressor drive with capacity control linked through to evaporator superheat control. A new dynamic thermal model of a domestic heat pump validated using experimental data forms the basis of the work. The proposed control system is evaluated using median and extreme daily heating demand profiles for a typical UK house compared with a basic thermostatically-controlled alternative. Results show good tracking of the heating temperature and superheat control variables, reduced cycling and an improvement in performance averaging 20%. - Highlights: • A new dynamic model of a domestic heat pump is developed and validated. • A new multivariable fuzzy logic heat pump control system is developed/reported. • The fuzzy controller regulates both plant capacity and evaporator superheat degree. • Thermal buffer storage is also considered as well as compressor cycling. • The new controller shows good variable tracking and a reduction in energy of 20%.

  17. Solar heating systems

    International Nuclear Information System (INIS)

    1993-01-01

    This report is based on a previous, related, one which was quantitative in character and relied on 500 telephone interviews with house-owners. The aim of this, following, report was to carry out a more deep-going, qualitative analysis focussed on persons who already own a solar heating system (purchased during 1992) or were/are considering having one installed. Aspects studied were the attitudes, behaviour and plans of these two groups with regard to solar heating systems. Some of the key questions asked concerned general attitudes to energy supply, advantages and disadvantages of using solar heating systems, related decision-making factors, installation problems, positive and negative expectations, evaluation of the information situation, suggestions related to information systems regarding themes etc., dissemination of information, sources of advice and information, economical considerations, satisfaction with the currently-owned system which would lead to the installation of another one in connection with the purchase of a new house. The results of this investigation directed at Danish house-owners are presented and discussed, and proposals for following activities within the marketing situation are given. It is concluded that the basic attitude in both groups strongly supports environmental protection, renewable energy sources and is influenced by considerations of prestige and independence. Constraint factors are confusion about environmental factors, insecurity in relation to the effect of established supplementary energy supply and suspicion with regard to the integrity of information received. (AB)

  18. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  19. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

    DEFF Research Database (Denmark)

    Jradi, M.; Veje, C.; Jørgensen, B. N.

    2017-01-01

    and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis......, Denmark, in addition to charging the soil storage medium in summer months when excess electric power is generated. The stored heat is discharged in December and January to provide the space heating and domestic hot water demands of the residential project without the utilization of an external heating...... losses and the surrounding soil temperature variation throughout the year. It was found that the overall system heating coefficient of performance is around 4.76, where the reported energetic efficiency is 5.88% for the standalone PV system, 19.1% for the combined PV-ASHP system, and 22...

  20. CISBAT 2007 - Solar collectors (heat and electricity)

    International Nuclear Information System (INIS)

    2007-01-01

    This is the third part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of Building and urban integration of renewables the following oral contributions are summarised: 'Facade integration of solar thermal collectors: present and future', 'Long term experiences with a versatile PV in roof system', 'Development of a design and performance prediction tool for the ground source heat pump and underground thermal storage system', 'Hygrothermal performance of earth-to-air heat exchanger: long-term data evaluation and short-term simulation' as well as 'The real cost of heating your home: a comparative assessment of home energy systems with external costs'. Poster-sessions on the subject include 'Central solar heating plants with seasonal heat storage', 'Analysis of forced convection for evaporative air flow and heat transfer in PV cooling channels', 'Renewable energy technology in Mali: constraints and options for a sustainable development', 'Effect of duct width in ducted photovoltaic facades', 'Design and actual measurement of a ground source heat pump system using steel foundation piles as ground heat exchangers', 'Development of an integrated water-water heat pump unit for low energy house and its application', 'PV effect in multilayer cells and blending of fullerene/poly (3-hexylthiophene) and phthalocyanine having NIR charge transfer absorption band', 'CdTe photovoltaic systems - an alternative energetic', 'Integration of renewable energy sources in a town, examples in Grenoble', 'A prospective analysis method for the conception of solar integration solutions in buildings' and 'Energy and aesthetic improvements for building integration of cost effective solar energy systems'. Further groups of presentations at the conference are reported on in separate database records. An index of authors completes the proceedings

  1. Solar photovoltaic water pumping for remote locations

    International Nuclear Information System (INIS)

    Meah, Kala; Fletcher, Steven; Ula, Sadrul

    2008-01-01

    Many parts of the world as well as the western US are rural in nature and consequently do not have electrical distribution lines in many parts of villages, farms, and ranches. Distribution line extension costs can run from USD 10,000 to USD 16,000/km, thereby making availability of electricity to small water pumping projects economically unattractive. But, ground water and sunlight are available, which make solar photovoltaic (SPV) powered water pumping more cost effective in these areas' small scale applications. Many western states including Wyoming are passing through the sixth year of drought with the consequent shortages of water for many applications. The Wyoming State Climatologist is predicting a possible 5-10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance, and have no fuel cost. In this paper the design, installation, site selection, and performance monitoring of the solar system for small-scale remote water pumping will be presented. This paper also presents technical, environmental, and economic benefits of the SPV water pumping system compared to stand alone generator and electric utility. (author)

  2. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  3. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  4. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  5. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  6. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  7. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  8. Operation strategy of solar-ground source heat pump systems%太阳能-地源热泵联合供能系统运行策略研究

    Institute of Scientific and Technical Information of China (English)

    王恩宇; 贺芳; 齐承英

    2012-01-01

    根据天津地区的气候条件,建立了太阳能-地源热泵多热源供热系统模型.利用TRNSYS软件对该系统进行了模拟研究,分析了系统用能情况及运行过程中地温的变化,着重对运行策略进行了研究.基于系统的性能系数选定的控制策略为:集热器出口与水箱出口温差大于15℃时启动集热,当温差小于2℃时停止集热;水箱出口温度高于50℃时启动储热,土壤进出口水温差不足5℃时停止储热.%Establishes a solar-ground source heat pump system model according to the climatic conditions in Tianjin. Carries out a simulation study of the system based on TRNSYS program, analyses the energy consumption of the system and the ground temperature change, and studies the operation strategy with emphasis. Selects an appropriate operation strategy based on the coefficient of performance (COP) of system, i. e. to turn on the solar collection pump as the temperature difference between collector outlet and tank outlet is higher than 15 ℃, and to turn off the pump until it is less than 2 ℃ , and to turn on the solar storage pump when tank outlet temperature is higher than 50 ℃ , and to turn off it until the temperature difference between inlet and outlet of the borehole heat exchanger is less than 5 ℃.

  9. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  10. A review on adsorption heat pump: Problems and solutions

    OpenAIRE

    Demir, Hasan; Mobedi, Moghtada; Ülkü, Semra

    2008-01-01

    Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of adsorbent beds. The adsorbent-adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorptio...

  11. Effect Of Geothermal Heat Pump On Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Ahmed F. Atwan

    2015-08-01

    Full Text Available In this research the calculations of carbon dioxide emissions CO2 in summer May to September 150 day and winter seasons December to February 90 day were performed by using the coefficient of performance for each air and ground source heat pump. The place of study case take relative to solar path in to account and the study case was three halls men women and surgery halls in Al-Musayyib hospital in Babylon.

  12. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  13. Indoor unit for electric heat pump

    Science.gov (United States)

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  14. Seminar on heat pump research and applications: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.V. Jr. (ed.)

    1984-11-01

    This volume is a compilation of papers prepared by speakers at a seminar on heat pumps. The seminar was organized by the Electric Power Research Institute (EPRI) in cooperation with Louisiana Power and Light Company and New Orleans Public Service, Inc. The seminar's purpose was to inform utility managers and engineers of the most recent developments in residential heat pump technology and applications. Statements by invited panelists on the outlook for heat pump technology are also included. The speakers, who represented key organizations in the heat pump area, including utilities, industry associations, manufacturers, independent research institutes, government, and EPRI, addressed the following topics: status of heat pump research and development, heat pump testing and rating; field monitoring of heat pumps; heat pump water heaters; heat pump reliability; and marketing programs for pumps. All papers, total of sixteen have been processed for inclusion in the Energy Data Base.

  15. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  16. Solar-pumped gas laser development

    Science.gov (United States)

    Wilson, J. W.

    1981-01-01

    The direct conversion of solar radiation into an inverted population for extraction in an optical cavity holds promise as a relatively simple system design. Broad-band photoabsorption in the visible or near-UV range is required to excite large volumes of gas and to ensure good solar absorption efficiency. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than approximately 10 A. The system should show chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. A search of electronic-vibrational transitions in diatomic molecules satisfying these conditions is now in progress. A photodissociation-pumped atomic iodine laser is now being tested under solar pumping conditions. Photodissociation studies for thallium spin-flip metastable formation will begin in the near future.

  17. 太阳能与地源热泵联合温室大棚系统的设计%System design of solar greenhouses combined with ground source heat pump

    Institute of Scientific and Technical Information of China (English)

    苏伟; 穆青; 董继先; 王彬权

    2015-01-01

    Greenhouse is an irreplaceable technology in modern agriculture, but it was easily affected by weather. The combination of solar energy-ground source heat pump system can make full use of the complementary advantages of both of them.It confirmed the stable operation of greenhouses all year round.Therefore, a solar greenhouse com-bined with ground source heat pump system and the PLC control circuit of the system were designed, and the brief a-nalysis on the feasibility was carried out.It also provides certain reference and suggestion about subsequent applica-tion of the greenhouses combined with solar energy and ground source heat pump system.%温室大棚是现代农业中不可替代的技术,但其受天气影响比较大,采用太阳能—地源热泵联合系统作业的方式,可充分利用二者的优势,使得温室大棚一年四季稳定运行。为此,设计了太阳能与地源热泵联合温室大棚系统及该系统的PLC控制回路,并对其可行性进行了简要分析,可为后续太阳能—地源热泵联合系统在温室大棚中的应用提供参考。

  18. Measurements on a PV solar pump equipped with a piston pump with a matching valve

    NARCIS (Netherlands)

    Smulders, P.T.; Ten Thije O.G. Boonkkamp, J.; Borg, van der N.J.C.M.; Beek, van M.

    1997-01-01

    The work on a simple high efficient solar pump equipped with a piston pump with a matching valve, reported at the Solar World Congress in Budapest, has been continued. Quasi-static and dynamic models of the solar pump have been derived with which the operation of the system is simulated. A test rig

  19. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  20. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  1. Report on an investigation into heat pumps in China in fiscal 1995; 1995 nendo Chugoku ni okeru heat pump system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper surveyed the present status, the status of spread, and the technical development of the technology of heat pumps for residential and industrial uses in China. Main examples of installation of heat pumps are cited below: steam drive absorption type refrigerators in Beijing; sea water heat source turbo heat pumps in Qingdao; hot water drive absorption type refrigerators in Beijing; oil-fueled absorption type water cooling and heating appliances in Beijing; ice latent heat storage airconditioning systems using electrically-driven screw chiller in Beijing; temperature rising systems using electrically-driven heat pump of the solar energy utilization warm water swimming pool in Guangdong Province; cooling water supply using waste heat utilization absorption type refrigerator of the alcohol plant in Shandong Province; timber drying systems using electrically-driven heat pump, and marine product cultivation systems in Quangdong Province; distillation systems using steam turbine heat pump in Jiangxi Province. The demand for heat pumps is expected to be 20 million units under the 9th 5-year plan, and the development of equipment is thought to go toward promotion of energy conservation, low noise, multi-type or multi-functional air conditioning equipment, and computer use. 137 figs., 40 tabs.

  2. Study on Energy-saving Solar Air-source Heat Pump Multifunctional Machine%节能型太阳能空气源热泵多功能机研究

    Institute of Scientific and Technical Information of China (English)

    王天舒

    2018-01-01

    随着科技的进步和经济的发展,节能和环保问题使得人们越来越重视清洁能源的利用,太阳能有其独特的优越性但是受限于太阳因素.而热泵技术作为节能型制冷供热热水技术与太阳能结合具有良好的性能.本文主要介绍了节能型太阳能空气源热泵多功能机的工作原理、应用领域.%With the progress of science and technology and development of economy, people pay more and more attention to the utilization of clean energy due to the problems of energy saving and environmental protection. Heat pump technology, as an energy saving refrigeration and heating hot water technology combined with solar energy, has good performance. This paper introduces the working principle and application field of energy-saving solar air-source heat pump multifunctional machine.

  3. 太阳能-土壤源热泵复合系统优化与性能分析%System Optimization and Performance Analysis of Solar Energy and Ground-source Heat Pump Hybrid System

    Institute of Scientific and Technical Information of China (English)

    丁力勤

    2016-01-01

    本文利用瞬时系统模拟软件(Trnsys)搭建了常规土壤源热泵系统及太阳能-土壤源热泵并联复合式系统的模型,并根据不同集热器单位面积流量和水箱体积等参数进行了模拟计算。结果表明,土壤源热泵系统性能系数达3.6~3.8,具有明显的节能优势。%The models of ground-source heat pump system and the solar energy and ground-source heat pump shunt-wound hybrid system have been built by transient system (Trnsys) simulation software, and the simulation calculation has been processed according to the flow rate per unit area and water tank volume for different collectors. According to the simulation results, the coefficient of performance of the ground-source heat pump system is 3.6~3.8, and the system has advantages on energy saving.

  4. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  5. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

    2014-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering...... the constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set...... of heat sink and source temperatures the optimal solution is determined. At low sink temperature glide R717 heat pumps show best performance, while at higher sink glide transcritical R744 may become important. In a second paper, the results of the VCHP are compared to a similar study considering...

  6. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  7. Aggregated Control of Domestic Heat Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work an aggregated control system using heat pumps in single family houses to help balancing the grid is investigated....... The control system is able to adjust the consumptions of the heat pump without affecting the comfort in the houses and uses this ability to shift the total consumption to hours with high wind energy production....

  8. Study on tariffs for heat pumps

    International Nuclear Information System (INIS)

    Dieleman, M.; Hellemans, J.G.; Bouvy, E.J.; Van de Molen, B.A.

    1996-07-01

    An overview is given of the impact of electricity prices on the economic feasibility of electrical heat pumps for the residential sector, utility buildings, horticulture, and the industry in the Netherlands. The financial feasibility is calculated for three scenarios: low (present situation in the Netherlands), medium (short-term situation, 1998-2000, and more favtoable compared to the low scenario) and high (even more favorable conditions for the expected future situation after the year 2000 in case of a large-scale application of heat pumps). 25 figs., 25 tabs., 10 appendices, 46 refs

  9. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  10. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  11. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  12. Practical and efficient magnetic heat pump

    Science.gov (United States)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  13. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  14. 蓄能型太阳能热泵热水器性能系数的分析%Coefficient of performance of solar heat pump water heater with energy storage

    Institute of Scientific and Technical Information of China (English)

    吴薇; 卫梁彦; 程清; 王玲珑

    2011-01-01

    To solve the problem that solar heat pump water heater was prone to be affected by weather, a novel water heater integrated with collection, storage and evaporation was proposed. The principle, characteristics, operating modes and structure of the collector-storage-evaporator system were investigated. Using phase change material of decanoic acid to store solar radiation in sunny days as low-temperature source, hot water was produced at night or in continuous rainy days. Thermal efficiency of heat pump system was increased significantly, and the operating unstableness of the heat pump system caused by interval solar energy was also solved. Experiments under different conditions and operating modes in spring were conducted, and the coefficient of performance ( COP) of the system was analyzed. The results indicate that COP of this novel solar heat pump water heater with energy storage is higher than that of ordinary solar heat pump water heater at the same weather condition. The average COP of this system is 7. 56 with maximum of 8. 9 for average solar radiation of 592 W·m-2. COP can also reach 6.4 even at night, which means that weather has slight influence on COP.%针对太阳能热泵热水器受天气变化影响的问题,提出了一种新型的集热-蓄能-蒸发一体化太阳能热泵热水器,给出了系统的原理、特点、运行模式和集热-蓄能-蒸发器的结构形式,以癸酸为相变材料储存晴天的太阳辐射能,作为热泵在夜间和连续阴雨天时的低温热源制得热水,提高了热泵的制热效率,解决了太阳能间歇性所造成的系统运行不稳定的问题.进行了春季不同工况、不同工作模式的试验,分析了系统的性能系数COP,得出该系统的平均COP为7.56.太阳辐射强度均值为592 W·m-2的天气条件下,COP可达8.9;即使在夜间,COP仍能达到6.4,均高于相同天气条件下普通太阳能热泵热水器的COP,该系统的COP受天气变化影响较小.

  15. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  16. Dimensioning of Boreholes for Geothermal Heat Pumps

    Directory of Open Access Journals (Sweden)

    Ryška Jiøí

    2004-09-01

    Full Text Available The paper deals with determination of borehole depths for geothermal heat pumps. Basic formulae are stated for heat convection in rocks. Software EED 2.0 was used for calculation of borehole depth depending on different entering parameters. The crucial parameter is thermal conductivity of rocks. The thermal conductivity could be very variable for the same kind of rock. Therefore its in-situ determination by means of formation thermal conductivity testing is briefly described.

  17. Manually operated elastomer heat pump

    Science.gov (United States)

    Hutchinson, W. D.

    1970-01-01

    Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.

  18. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  19. Necessity for usage of geothermal heat pump

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin; Armenski, Slave; Gacevski, Marijan

    2004-01-01

    Every day we are witnesses of constantly rapid increase of consumption of Electric energy in R. of Macedonia as so as in the other countries in all the world. This rapid increase of consumption of Electric energy independent of a lot of electrical units, which are applying in human life like: homes, administration and publication objects, as well as in industry. All of this conditions make us to thinking how is possible more rational consumption of electric energy in all areas in human life. One of the possible manners to reduce the consumption of electrical energy for heating and cooling is to use geothermal heat pumps. In this paper will be proposed geothermal heat pump, which is going to use the heat of earth by vertical and horizontal cupper pipe heat exchanger with data from-GHP (Geothermal Heat Pump) NORDIC, factory in Canada. Also, it will be examined all parameters and done comparison with already existing ones. It is analyzed comparison of GHP with other energy units and what it means for rational consumption of electric energy, economic saving and ecology saving. (Author)

  20. Dual-stroke heat pump field performance

    Science.gov (United States)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  1. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  2. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  3. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  4. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  5. 太阳能与地源热泵复合系统的优化配置与运行方式%Optimizing configuring and running-mode of solar energy and ground-source heat pump hybrid systems

    Institute of Scientific and Technical Information of China (English)

    冯晓梅; 张昕宇; 邹瑜; 郑瑞澄

    2011-01-01

    以某实际工程为例,对太阳能系统与地源热泵系统联合运行时的优化配置与运行方式进行了模拟分析.得到结论:要优先利用太阳能系统;对太阳能资源要梯级利用;尽可能增大太阳能集热器面积,提高太阳能直接利用的可能性;单位面积太阳能集热器成本为250元/m2左右比较合适.%With a project, simulates and analyses optimizing configuring and running-mode of the hybrid system. Concludes that the solar energy system should be prior to the ground-source heat pump system in operation, the utilization of solar energy resource should be the way according to the energy grade, a possibly larger solar collector area is good for direct utilization of solar energy, and the solar collector cost of 250 RMB per square meter is appropriate.

  6. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  7. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  8. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2015-01-01

    This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method...... is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...

  9. Proceedings: Meeting customer needs with heat pumps, 1991

    International Nuclear Information System (INIS)

    1992-12-01

    Electric heat pumps provide a growing number of residential and commercial customers with space heating and cooling as well as humidity control and water heating. Industrial customers use heat pump technology for energy-efficient, economical process heating and cooling. Heat pumps help utilities meet environmental protection needs and satisfy their load-shape objectives. The 1991 conference was held in Dallas on October 15--18, featuring 60 speakers representing electric utilities, consulting organizations, sponsoring organizations, and heat pump manufacturers. The speakers presented the latest information about heat pump markets, technologies, applications, trade ally programs, and relevant issues. Participants engaged in detailed discussions in ''breakout'' and parallel sessions and viewed more than 30 exhibits of heat pumps, software, and other products and services supporting heat pump installations and service. Electric utilities have the greatest vested interest in the sale of electric heat pumps and thus have responsibility to ensure quality installations through well-trained technicians, authoritative and accurate technical information, and wellinformed design professionals. The electric heat pump is an excellent tool for the electric utility industry's response to environmental and efficiency challenges as well as to competition from other fuel sources. Manufacturers are continually introducing new products and making research results available to meet these challenges. Industrial process heat pumps offer customers the ability to supply heat to process at a lower cost than heat supplied by primary-fuel-fired boilers. From the utility perspective these heat pumps offer an opportunity for a new electric year-round application

  10. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  11. 北京某农村住宅空气源热泵辅助太阳能供暖系统的运行性能%Operation performance of air-source heat pump assisted solar heating system in Beijing rural residence

    Institute of Scientific and Technical Information of China (English)

    李楠; 田昕; 王皆腾; 徐俊芳

    2017-01-01

    A rural residence adopts air-source heat pump assisted solar heating system.Tests the heating capacity,energy consumption and other performance parameters of the system in the heating season of 2014 to 2015.The results show that the indoor mean daily temperature is 19.6 ℃,the average COP of air-source heat pump is 4.29,mean daily comprehensive energy efficaiency ratio of heating system is about 3.52,and the mean daily solar energy contribution rate is 4.87%.The heat pump unit of the heating system has good operating performance in winter,but the solar energy contribution rate is low,the whole heating system still needs further optimization.%某农村住宅安装了空气源热泵辅助太阳能供暖系统.针对2014-2015年度供暖季系统的制热量、耗电量等性能参数进行了测试.结果表明,室内日平均温度为19.6℃,热泵机组日平均COP为4.29,供暖系统日均综合能效比为3.52,日均太阳能贡献率为4.87%.该供暖系统的热泵机组具有较好的运行性能,但太阳能贡献率偏低,整个供暖系统仍有进一步优化的空间.

  12. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  13. 太阳能——地源热泵耦合系统在某办公楼中的应用%Application of solar energy ground source heat pump coupling system in an office building

    Institute of Scientific and Technical Information of China (English)

    陈杰; 贾瑞远

    2017-01-01

    the winter heating by using solar energy,ground source heat pump coupling system,both energy conservation and environmental protection and can further improve the utilization rate of energy and no pollution to the environment.The office building in 50000m2 as an example to analyze the energy saving of the system,environmental protection and economy.%利用太阳能一一地源热泵耦合系统进行冬季供暖,既节能环保又能进一步提高能源的利用率且对环境无污染.本文以50000m2的办公建筑为例分析了该系统的节能、环保及经济性.

  14. Factor 4 working group: preparing future is urgent. Energy saving certificates. The tax credit boosts the solar water heater and heat pump sales. Climatic change and energy: the Californian example

    International Nuclear Information System (INIS)

    Laverne, R.; Rabany, B.; Leclercq, M.; Lorec, Ph.; Schweitzer, J.Ph.

    2007-01-01

    This issue of 'Energies et Matieres Premieres' newsletter comprises 4 articles dealing with: the concluding report of the 'Factor 4' working group which expresses 28 recommendations in the form of energy policy proposals necessary to be implemented as soon as possible in order for France to start a society and economy transition and to reach the 2050 goal of dividing the present day greenhouse gas emissions by a factor 4; the energy saving certificates implemented with the July 13, 2005 law of energy policy choices, which targets the diffuse energy saving sources in the residential and tertiary sectors; the success of the tax credit for the use of solar thermal water heaters, wood-fuel space heating appliances and air/water and geothermal heat pumps, in particular in the residential sector; the problem of the links between climatic change and energy and the lessons learnt from the example of the 'new sustainable economy' of California (USA). (J.S.)

  15. The impacts of groundwater heat pumps on urban shallow ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-07-25

    Jul 25, 2011 ... In order to assess the impacts of groundwater heat pumps on urban shallow groundwater ... thermal transfer systems that use the ground water as a ... Abbreviations: GWHPs, Groundwater heat pumps; GHGs, ... Areas (Mm2).

  16. Heat pump dryers theory, design and industrial applications

    CERN Document Server

    Alves-Filho, Odilio

    2015-01-01

    Explore the Social, Technological, and Economic Impact of Heat Pump Drying Heat pump drying is a green technology that aligns with current energy, quality, and environmental concerns, and when compared to conventional drying, delivers similar quality at a lower cost. Heat Pump Dryers: Theory, Design and Industrial Applications details the progression of heat pump drying-from pioneering research and demonstration work to an applied technology-and establishes principles and theories that can aid in the successful design and application of heat pump dryers. Based on the author's personal experience, this book compares heat pump dryers and conventional dryers in terms of performance, quality, removal rate, energy utilization, and the environmental effect of both drying processes. It includes detailed descriptions and layouts of heat pump dryers, outlines the principles of operation, and explains the equations, diagrams, and procedures used to form the basis for heat pump dryer dimensioning and design. The author ...

  17. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  18. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  19. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  20. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  1. Performance comparison of solar heat pump system with different phase change materials%不同蓄能材料的太阳能热泵系统性能对比

    Institute of Scientific and Technical Information of China (English)

    吴薇; 王玲珑; 苏鹏飞; 张甜湉; 张凡

    2014-01-01

    太阳能热泵系统与太阳能集热蓄能技术结合起来,能够很好地克服系统对太阳辐射的依赖性,该文设计了一种蓄能型太阳能热泵热水器系统。对蓄能材料分别为石蜡和癸酸时系统瞬时集热效率和2种材料的体积膨胀率进行了试验研究;在南京地区春季典型工况下,对分别采用癸酸和石蜡为蓄能材料的蓄能型太阳能热泵热水器系统性能系数进行了对比研究。研究结果表明:虽然石蜡体积膨胀率较大,系统的真空管有涨裂的危险,但在不同工况下,采用石蜡为蓄能材料的系统性能系数和瞬时性能系数均高于采用癸酸的系统,且系统稳定性好。%The solar-assisted heat pump system combining with solar energy collection and storage can overcome the reliability on solar energy. A novel solar heat pump water heater integrated with collector, storage and evaporation is presented. The system consists of compressor, water-cooled condenser, solar storage/evaporation/collector, thermal expansion valve and hot water tank. The collection/storage/evaporator integrates the solar collectors, storage tank and evaporator together. The evaporator of the heat pump system is arranged in the solar vacuum tube in the form of a U-shaped evaporator, phase change materials filled in each vacuum evaporation tube. The system separately chooses the paraffin and decanoate as phase change material under the consideration of their capacity, phase change temperature and latent heat of phase change. The experiments were conducted on instantaneous collection efficiency, coefficient of performance, instaneous coefficient of performance and specific volumetric dilatation of decanoate and paraffin. The comparative studies were made on instantaneous collection efficiency, coefficient of performance, instaneous coefficient of performance and time of heating cycling water of the system with decanoate and paraffin under the typical weather

  2. Development of an electro-osmotic heat pump

    NARCIS (Netherlands)

    Stoel, J.P. van der; Oostendorp, P.A.

    1999-01-01

    The majority of heat pumps and refrigerators is driven by a mechanical compressor. Although they usually function very well, the search for new and in some cases better heat pumping concepts continues. One of the topics in this field is the development of an electro-osmotic heat pump. As each

  3. Gas Fride Heat Pumps : The Present and Future

    Science.gov (United States)

    Kurosawa, Shigekichi; Ogura, Masao

    In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices. In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.

  4. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  5. Current status of ground source heat pumps and underground thermal energy storage in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Justus Liebig University, Giessen (Germany). Institute of Applied Geosciences; Karytsas, C.; Mendrinos, D. [Center for Renewable Energy Sources, Pikermi (Greece); Rybach, L. [Geowatt AG, Zurich (Switzerland)

    2003-12-01

    Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R and D focusing on BUE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50{sup o}C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues

  6. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  7. From a magnet to a heat pump

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Neves Bez, Henrique; Engelbrecht, Kurt

    2016-01-01

    The magnetocaloric effect (MCE) is the thermal response of a magnetic material to an applied magnetic field. Magnetic cooling is a promising alternative to conventional vapor compression technology in near room temperature applications and has experienced significant developments over the last five...... years. Although further improvements are necessary before the technology can be commercialized. Researchers were mainly focused on the development of materials and optimization of a flow system in order to increase the efficiency of magnetic heat pumps. The project, presented in this paper, is devoted...... to the improvement of heat pump and cooling technologies through simple tests of prospective regenerator designs. A brief literature review and expected results are presented in the paper. It is mainly focused on MCE technologies and provides a brief introduction to the magnetic cooling as an alternative...

  8. Affordable Hybrid Heat Pump Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    TeGrotenhuis, Ward E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butterfield, Andrew [Jabil, St. Petersburg, FL (United States); Caldwell, Dustin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crook, Alexander [Jabil, St. Petersburg, FL (United States)

    2016-06-30

    This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency over heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.

  9. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  10. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  11. Advanced heat pumps and their economic aspects. The case for super heat pump

    International Nuclear Information System (INIS)

    Yabe, Akira; Akiya, Takaji

    1996-01-01

    The results of the economic evaluation of the Super Heat Pump Energy Accumulation System project in Japan are reviewed. It is reported that although the initial costs of super heat pumps are higher than those of conventional systems, the calculated operating costs of a unit thermal energy produced by a super heat pump is reduced considerably. All the various system concepts with thermal/chemical storage were evaluated economically with the exception of the high temperature thermal storage systems using salt ammonia complexes and solvation. These latter systems were not further developed as pilot plants. It is advocated to accelerate the introduction of super heat pumps by facilitating their market introduction. Actual clathrate chemical storage systems have shown that the annual costs are comparable to those of an ice storage system. Clathrate systems will find their way in the market. It is concluded that most of the super heat pump systems and clathrate storage systems will be economic in the future. A big challenge however still exists in further improving the cost effectiveness of heat storage in tanks by reducing their size dramatically (to 1/10th)

  12. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  13. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  14. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  15. The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; Adkins, Deborah; Yang, Tong; Tang, Llewellyn; Zhao, Xudong; He, Wei; Xu, Peng; Liu, Chenchen; Luo, Huizhong

    2015-01-01

    Highlights: • LHP-STF was evaluated from both technical and economic aspects for three EU climates. • The impact of LHP-STF on the overall building socio-energy performance was explored. • A dedicated business model was developed to study the economic feasibility of LHP-STF. • Three fundamental methods for financial measurement of LHP-STF were analysed. • Four investment options were considered in this business model. - Abstract: Most of the building renovation plans are usually decided in the early design stage. This delicate phase contains the greatest opportunity to achieve the high energy performance buildings after refurbishment. It is therefore important to provide the pertinent energy performance information for the designers or decision-makers from multidisciplinary and comparative points of view. This paper investigates the renovation concept of a novel loop-heat-pipe based solar thermal facade (LHP-STF) installed on a reference residential building by technical evaluation and economic analysis in three typical European climates, including North Europe (represented by Stockholm), West Europe (represented by London) and South Europe (represented by Madrid). The aim of this paper is firstly to explore the LHP-STF’s sensitivity with regards to the overall building socio-energy performance and secondly to study the LHP-STF’s economic feasibility by developing a dedicated business model. The reference building model was derived from the U.S. Department of Energy (DOE) commercial buildings research, in which the energy data for the building models were from the ASHRAE codes and other standard practices. The financial data were collected from the European statistic institute and the cost of system was based on the manufactured prototype. Several critical financial indexes were applied to evaluate the investment feasibility of the LHP-STF system in building renovation, such as Payback Period (PP), Net Present Value (NPV), and the modified internal

  16. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  17. 相变储能光伏太阳能热泵干燥系统的研究%Research on Phase Change Energy Storage Photovoltaic Solar Heat Pump Drying System

    Institute of Scientific and Technical Information of China (English)

    胡静; 蒋绿林; 侯亚祥; 王昌领; 张亮

    2017-01-01

    The experimental platform of phase change energy storage photovoltaic solar heat pump drying system is estab-lished in this paper ,it is introduced the way of the system and the matching of photovoltaic solar heating evaporator and dc compressor is calculated and finally the experiment data is analyzed in detail .It is concluded that when the solar radiation amount is 800 W/m2 and photovoltaic solar heating evaporator area is 12 m2 ,heat capacity is 10 kW and solar photovoltaic power generation is 6 .2 kW·h ,in which the photovoltaic power consumption is greater than the compressor ,meeting the op-eration requirements without additional power .The COP of system is 3 .25 .The phase change energy storage can solve run-ning problem of the system ,which is caused by the amount of solar irradiance fluctuation ,and so it has significant energy saving and environmental protection .%建立了相变储能光伏太阳能热泵干燥系统实验平台,介绍了系统的运行方式以及太阳能光伏集热蒸发器与直流压缩机的匹配计算,最后对实验数据进行了分析。结果表明,太阳能辐照量为800 W/m2、光伏集热蒸发器面积为12m2的条件下,系统制热功率为10kW,太阳能光伏集热蒸发器发电量为6.2kW·h,大于直流压缩机的耗电量,满足供电要求;实验所得系统COP为3.25。相变储能可以解决太阳辐照波动导致的系统运行不稳定问题,具有显著的节能性和环保性。

  18. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  19. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  20. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the exent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost

  1. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    OpenAIRE

    M. Z. H. Khan; M. R. Al-Mamun; S. Sikdar; P. K. Halder; M. R. Hasan

    2016-01-01

    This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experi...

  2. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  3. Experimental study on a hybrid photovoltaic/heat pump system

    International Nuclear Information System (INIS)

    Chen Hongbing; Riffat, Saffa B.; Fu Yu

    2011-01-01

    Several studies have found that the decrease of photovoltaic (PV) cell temperature would increase the solar-to-electricity conversion efficiency. Different working fluids such as air and water have been used for the cooling of PV modules, but the improvement in energy performance has been found to be small. In this paper, R134a refrigerant was employed to cool the PV modules. With its low evaporating temperature, it was expected to achieve better cooling effect and electrical performance of the PV modules than using air and water working fluids. An experimental rig of a hybrid micro PV panel-based heat pump system was constructed for the performance testing in a laboratory at University of Nottingham. A small PV panel was made of 6 glass vacuum tube - PV module - aluminium sheet - cooper tube (GPAC) sandwiches connected in series, acting as the evaporator. This was coupled with a small heat pump system. The glass vacuum tubes reduced the heat loss from the PV panel to the ambient, resulting in the improvement of thermal performance. Three testing modes were proposed to investigate the effect of solar radiation, condenser water flow rate and condenser water supply temperature on energy performance. The testing results showed that an averaged COP reached 3.8, 4.3 and 4.0 under the three testing modes with variable radiation, condenser water supply water temperature and water flow rate, respectively, but this could be much higher for a large capacity heat pump system using large PV panels on building roofs. The COP increased with the increasing solar radiation, but decreased with the increasing condenser water supply temperature and water flow rate. The electrical efficiency of PV panel was improved by up to 1.9% based on a reference PV efficiency of 3.9%, compared with that without cooling. The condenser water supply temperature and water flow rate had little effect on the electrical performance. - Highlights: → R134a refrigerant was used for cooling of PV modules

  4. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  5. Design and operation of gas-heated thermal pumping units

    Energy Technology Data Exchange (ETDEWEB)

    Rostek, H A [Ruhrgas A.G., Essen (Germany, F.R.)

    1979-03-01

    The first gas heat pump systems have been operated since spring 1977. These are applied in living houses, school, swimming pools, and sport places and administration buildings. The heating performance of these systems is 150-3800 kW. Two of these systems, one in a swimming pool and one in a house for several families are operating, each of them for one heating period. The operational experiences with these gas heat pumps are reported on, basing on measurement results. The experience gathered from the operation of gas heat pumps systems is applied to the planning of other plants. The development of a standardized gas heat pump-series is emphasized.

  6. Numerical simulation of magnetic heat pumps

    International Nuclear Information System (INIS)

    Smaili, A.; Masson, C.

    2002-01-01

    This article presents a numerical method for performance predictions of magnetic heat pump (MHP) devices. Such devices consist primarily of a magnetic regenerator (solid refrigerant media) and circulating fluid. Unlike conventional gas-cycles, MHP devices function according to thermomagnetic cycles which do not require neither compressor nor expander. In this paper, the flow field throughout the regenerator is described by continuity and unsteady incompressible Navier-Stokes equations. The heat transfer between fluid and solid is introduced by considering the corresponding energy equations. The proposed mathematical model has been solved using a control volume finite element method. The fully implicit scheme is used for time discretization. Simulation results including heating capacity and coefficient of performance are presented for a given MHP cycle. Mainly, the effects of cycle frequency, mass flow rate and the magnetic regenerator mass are investigated. (author)

  7. Gas heat pump installation at Paderborn

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A gas heat pump installation at the swimming pool and sport center in Paderborn, developed by Ruhrgas A.G. has a heat capacity of 4650 kW, the largest up to this time and recovers heat from ground water under the sport center, shower, and swimming pool effluent, and air exhausted from the swimming pool to provide 182% of the energy obtained from the natural gas alone. This compares with an 80% efficiency for a conventional boiler fired with natural gas. Natural gas consumption by the sport center has been reduced from 1.2 million m/sup 3/ y to 520,000 m/sup 3//y, a 56% savings. Three identical units each have an eight-cylinder, four-cycle, 253 kW-gas engine.

  8. 太阳能双能源吸收式热泵耦合地埋管地源热泵供热——基于工程实例的分析与总结%Heating by dual energy solar absorption heat pump coupling ground-source heat pump——Analysis and summary based on an engineering example

    Institute of Scientific and Technical Information of China (English)

    宋晨; 王东博

    2017-01-01

    Based on an engineering example,analyses the design of the dual energy solar absorption heat pump system and the ground-source heat pump system,determines the system form and equipment parameter configuration.Optimizes and analyses the coupling heating design of the two systems and the operation modes under different targets,determines the system coupling mode and the operation modes for different targets.%以工程实例为基础,对太阳能双能源吸收式热泵及地埋管地源热泵供热系统的设计进行了分析,确定了系统形式及设备参数配置.对2种系统形式的耦合供热设计及基于不同目标下的运行方式进行了优化分析,确定了系统耦合方式及针对不同目标的运行方式.

  9. The possibilities of heat pumps utilisation for family houses and flats fumigation

    Directory of Open Access Journals (Sweden)

    Ján Pinka

    2006-10-01

    Full Text Available Heat pumps (HPs with the help of electricity use a renewable energy source to supply heat for homes or industrial buildings and to heat tap water. HP is a heating unit that will provide us with heat for our home for some 20 to 30 years to come and has a potential to replace traditional heating systems powered by gas, oil or coal. At this time, there is no other heating system that supplies clean heat with the help of up to 80 per cent of the renewable solar energy during all year.

  10. Experimental Research on Multi-source Solar Energy and Air Source Heat Pump System with Serpentine Tube Energy Storage Exchangers%蓄能型蛇形管太阳能——空气源复合热泵系统实验研究

    Institute of Scientific and Technical Information of China (English)

    陈杨华; 彭辉; 郭文帅; 李钰; 陈非凡

    2013-01-01

    蛇形管蓄能型太阳能——空气源复合热泵系统结合了空气源热泵技术、太阳能利用技术和蓄能技术三者的优点,是一种高效新型的热泵系统.在搭建好实验台后,通过实验分析了该系统在常规空气源热泵供热模式、蓄冷模式、取冷模式、蓄能热泵供热模式、边蓄热边供热模式下的性能特性.实验结果证明蓄能型蛇形管太阳能——空气源复合热泵系统运行高效、安全、稳定可靠.%Multi-source solar energy and air source heat pump system with serpentine tube energy storage exchanges combine the advantages of air source heat pump, solar energy utilization technology and energy storage technology. It is a new high-efficiency heat pump system. After setting up experimental station, the performance characteristics of the system is analysed when conventional air source heat pump heating mode, cold storage mode, cold release mode, heating mode using heat storage, heat storage and heat release using solar heat pump mode is operated. Experimental results show that the system is efficient, safe, stable and reliable.

  11. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  12. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  13. Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus

    OpenAIRE

    Øi, Lars Erik; Tirados, Irene Yuste

    2015-01-01

    Heat pump technology provides an efficient and sustainable solution for both heating and cooling. A traditional heat pump can be defined as a mechanical-compression cycle refrigeration system powered by electricity. Traditional refrigerants used in heat pumps are ammonia or chlorinated and fluorinated hydrocarbons. Because many of these chlorofluorohydrocarbons (CFC??) are ozone-depleting components, evaluation of more environmentally friendly refrigerants like pure hydrocarbons is important....

  14. Optimization of heat pump using fuzzy logic and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-12-15

    Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)

  15. Theoretical studies of solar pumped lasers

    Science.gov (United States)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  16. Study on the optium operation of the solar assisted air-source heat pump system. Part 5. ; Fundamental performance of a SOL-AIR PANEL effected by environmental condition that can be controlled artifically. SOL-AIR heat pump system no saiteki untenho ni kansuru kenkyu. 5. ; Jinko kankyo joken hendo ni uoru shuhonetsu panel no kiso tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Ohashi, K; Kasuya, A [Kogauin Univ., Tokyo (Japan); Shiraishi, K; Hino, T [Kajima Institute of Construction Technology, Tokyo (Japan)

    1990-12-06

    This paper follows the privious paper which reports about the experimental system of the solar air panel and the experimental conditions in the artificial environmental room. In this paper the basic performance of heat exchange of a solar panel related to the difference of the artificial enviromental conditions such as the wind speed, the wind direction, the radiation, and the dry or wet surface of the solar air panel, and the results of its analysis are presented. As a result of the experiment, the following were determined: wind direction affects the heat exchange characteristics of the solar air panel; the slits lead to improved heat conduction on both sides of the panel; and when the flat surface of the panel is wet the amount of all the heat exchange increases, due to increased air circulation and evaporation. It is possible to estimate the total quantity of heat exchange, and to determine the fundamental performance of a solar air panel. 7 refs., 10 figs.

  17. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  18. Magnetic pumping as a source of particle heating

    Science.gov (United States)

    Lichko, Emily; Egedal, Jan; Daughton, William; Kasper, Justin

    2017-10-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. In this study a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. In most previous studies turbulent energy is only dissipated at microscopic kinetic scales. In contrast, magnetic pumping energizes the particles through the largest scale turbulent fluctuations, thus bypassing the energy cascade. Kinetic simulations are applied to verify these analytic predictions. Previous results for the one-dimensional model, as well as initial results for a two-dimensional model which includes the effects of trapped and passing particles are presented. Preliminary results of the presence of this mechanism in the bow shock region, using spacecraft data from the Magnetospheric Multiscale mission, are presented as well. This research was conducted with support from National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168, as well as from NSF Award 1404166 and NASA award NNX15AJ73G.

  19. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  20. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  1. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  2. Development of a two-phase, two-component jet pump refrigerator for utilization of low-temperature solar heat. Final report; Entwicklung einer Zweiphasen-/Zweikomponenten-Strahlpumpenkaelteanlage zur Nutzung solarer Niedertemperaturwaerme. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mostofizadeh, C.; Bohne, D.

    2001-08-01

    A solar refrigerator for air conditioning and cooling was developed. The key component is a two-phase, two-component jet pump with ammonia and water as working fluid. Both the pump flow and the suction flow can be two-phase flows. This way, the advantages of both the absorption and the compression principle will be utilized, and a compact size will be achieved. Upon termination of the calculations, the function of the pump will be investigated in a 0 W pilot plant. For this, various geometries were calculated and tested for their potential efficiencies. A prototype will be constructed on the basis of the results. [German] Das Ziel des Vorhabens besteht in der Entwicklung einer solarbetriebenen Kaelteanlage fuer Klimatisierungs- und Kuehlungszwecke. Die Hauptkomponente der Kaelteanlage ist eine Zweiphasen-/Zweikomponenten-Strahlpumpe, die mit dem Arbeitsgemisch Ammoniak/Wasser betrieben wird. Sowohl der Treib- als auch der Saugstrom koennen zweiphasig sein. Dadurch sollen einerseits die Vorteile des Absorptions- und des Kompressionsprinzips miteinander verknuepft und andererseits ein kompakter Aufbau erreicht werden. Nach Abschluss der thermodynamischen und kinetischen Berechnungen soll die Funktion der Zweiphasen-/Zweikomponenten-Strahlpumpe mit Hilfe einer Pilotanlage mit ca. 20 kW Kaelteleistung untersucht werden. Dazu werden nach Vorausberechnungen verschiedene Geometrien in Bezug auf erzielbare Wirkungsgrade getestet. Die Ergebnisse bilden die Basis fuer den Bau eines Prototyps. (orig.)

  3. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  4. Scaling studies of solar pumped lasers

    Science.gov (United States)

    Christiansen, W. H.; Chang, J.

    1985-01-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  5. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  6. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  7. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...

  8. Adaptive heat pump and battery storage demand side energy management

    Science.gov (United States)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  9. Current and future employment of the heat pumps

    International Nuclear Information System (INIS)

    Cassitto, L.

    2001-01-01

    Heat pumps, mainly the compression type, grant high energy savings together with environment protection because of the free low temperature energy from environment or wasted heat they use. Their large employment depends on the appreciation of the above properties that are will be done. To grant economic savings on using heat pumps, electric energy and natural gas should have fixed and predictable prices [it

  10. Modelling of Split Condenser Heat Pump: Optimization and Exergy Analysis

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a numerical study of a split condenser heat pump (SCHP). The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated in parallel to different temperature levels, whereas only one...

  11. Heat pumps in field test; Waermepumpen im Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Miara, M.; Russ, C.

    2007-09-15

    The Fraunhofer ISE has launched two field tests of newly installed heat pumps in 2006. Both deal with the measurement of a high number of heat pump units under real conditions in small houses. Values of volume flows, temperatures, heat quantity and electricity consumption are collected and daily saved and analysed at the Fraunhofer ISE. (orig.)

  12. Heat pump applications in Dutch flower bulb farms

    NARCIS (Netherlands)

    Wit, J.B. de

    1999-01-01

    Increasing numbers of flower bulb fanns in the Netherlands are using heat pumps for conditioning bulbs. The main advantage of the (electric) heat pump is that it combines all conditioning steps (drying, cooling and heating) in one device. Another advantage is that it makes process control simple and

  13. Fundamentals of Solar Heating. Correspondence Course.

    Science.gov (United States)

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  14. Hydride heat pump. Volume I. Users manual for HYCSOS system design program. [HYCSOS code

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, R.; Moritz, P.

    1978-05-01

    A method for the design and costing of a metal hydride heat pump for residential use and a computer program, HYCSOS, which automates that method are described. The system analyzed is one in which a metal hydride heat pump can provide space heating and space cooling powered by energy from solar collectors and electric power generated from solar energy. The principles and basic design of the system are presented, and the computer program is described giving detailed design and performance equations used in the program. The operation of the program is explained, and a sample run is presented. This computer program is part of an effort to design, cost, and evaluate a hydride heat pump for residential use. The computer program is written in standard Fortran IV and was run on a CDC Cyber 74 and Cyber 174 computer. A listing of the program is included as an appendix. This report is Volume 1 of a two-volume document.

  15. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  16. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  17. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  18. Geothermal heat pumps - gaining ground in the UK and worldwide

    International Nuclear Information System (INIS)

    Curtis, Robin

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the geothermal heat pump sector, and discusses the technology involved, installations of geothermal heat pumps, the activity in the UK market with increased interest in UK geothermal heat pump products from abroad, and developments in the building sector. The UK government's increased support for the industry including its sponsorship of the Affordable Warmth programme, and the future potential of ground source systems are discussed

  19. Human Health Science Building Geothermal Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leidel, James [Oakland Univ., Rochester, MI (United States)

    2014-12-22

    The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 vertical borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.

  20. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...

  1. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  2. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  3. Development and application of soil coupled heat pump

    Science.gov (United States)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  4. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP......Aalborg Municipality, Denmark is investigating ways of switching to 100% renewable energy supply over the next 40 years. Analyses so far have demonstrated a potential for such a transition through energy savings, district heating (DH) and the use of locally available biomass, wind power and low......) and compression heat pumps (HP) for the supply of DH impact the integration of wind power. Hourly scenario-analyses made using the EnergyPLAN model reveal a boiler production and electricity excess which is higher with AHPs than with HPs whereas condensing mode power generation is increased by the application...

  5. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  6. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  7. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  8. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  9. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  10. Multi-Temperature Heat Pump with Cascade Compressor Connection

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2017-08-01

    Full Text Available The object of the study is a multifunctional heat pump with several evaporators and condensers designed for simultaneous provision of technological processes with heat and cold. The aim of the work is the development and study of the scheme for this type of heat pumps, which ensures minimum irreversibility in the "compressor-gas coolers" chain, without the use of adjustable ejectors installed after evaporators and used as flow mixers. The obtained technical solution ensures the stabilization of the heat pump coefficient of performance (COP and prescribed thermal regimes of heat exchangers at a variable flow rate of the refrigerant. The novelty of the elaboration is inclusion a compressor of the first stage with a serially connected intermediate heat exchanger and a control valve that are located before the compressor inlet of the second stage of the heat pump, which allows to establish a rational pressure after the first stage of the compressors. A scheme is proposed for regulating the temperature at the inlet of the first stage compressors by regulating the flow through the primary circuits of the recuperative heat exchangers. The first stage compressor control system allows providing the required modes of operation of the heat pump. It is established, because of the exergetic analysis of the sections of the hydraulic circuit of heat pump located between the evaporators and gas coolers that the reduction of irreversible losses in the heat pump is ensured due to the optimal choice of the superheat value of the gas after the evaporators.

  11. Ground-source heat pump barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In Europe the ground-source heat pump market contracted for the second year running by 2.9% between 2009 and 2010. Around 103.000 units were sold in 2010, taking the number of installed units over one million. The 3 European countries with the most sales are Sweden (31953 units, +16%), Germany (25516 units, -13%) and France (12250 units, -21%). The drop in sales is generally due to market contraction on the current recession but some specificities exist: for instance the insufficient training of the installers has led to under-performance and to a bad image of this energy in France. The Swedish and German manufacturers are in a very strong position and are increasing their market share in the main European markets. (A.C.)

  12. Heat pump assisted drying of agricultural produce-an overview.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  13. Computer simulation of heat pump application in distillation towers

    International Nuclear Information System (INIS)

    Pedram, B.; Kharrat, R.

    2000-01-01

    Distillation columns rank among the largest industrial energy users today. Almost 30-60% of the total energy demand in the chemical and petrochemical industry is needed to heat distillation columns. Hence, researchers decided to optimize energy consumption to make its application more efficient. One of the recommended way is to use heat pumps. Several works have been reported in the literature in which comparisons of energy consumption between conventional and heat pump distillation for two or three component systems have been investigated. However, the concluded results are not sufficient. In this work, a case study was considered in which different heat pump configurations were applied and the optimum configuration was selected. The cost of each configuration was found to be depending on the cold temperature approach of the heat pump. Therefore, an optimum value was found for each configuration. In addition, the cost of the heat pump was found to be sensitive to the compression and condensation of the process fluid

  14. Heat pumps combined with cold storage; Warmtepompen gecombineerd met koudeopslag

    Energy Technology Data Exchange (ETDEWEB)

    Van Ingen, M.A. [Techniplan Adviseurs, Rotterdam (Netherlands)

    1999-09-01

    The architects of the new Nike head office building in Hilversum, Netherlands, opted for a heat pump combined with a cold storage system. The most efficient design was found to be a single central location for the production of heat and cold, with distribution lines to each of the five buildings. The cold storage system provides direct cooling and indirect heating: the heat pump raises the low-temperature heat from the cold storage to a usable temperature (augmented by district heating when necessary). In addition, the heat pump generates cold as a by-product in winter, which can be stored in the sources system and utilised during the following summer. The heat pump can also be used for cooling, for peak load supply and for any short-term storage requirement in emergencies

  15. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  16. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  17. Herbs drying using a heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Metwally, M.N.; Helali, A.B.; Shedid, M.H. [Department of Mechanical Power Engineering, Faculty of Engineering at El Mattaria, Helwan University, P.O. Box 11718, Masaken El-Helmia, Cairo (Egypt)

    2006-09-15

    In the present work, a heat pump assisted dryer is designed and constructed to investigate the drying characteristics of various herbs experimentally. R134a is used as a working fluid in the heat pump circuit during the experimental work. Experiments have been conducted on Jew's mallow, spearmint and parsley. The effects of herb size, stem presence, surface load, drying air temperature and air velocity on the drying characteristics of Jew's mallow have been predicted. Experimental results show that a high surface load of 28kg/m{sup 2} yields the smallest drying rate, while the drying air with temperature of 55{sup o}C and velocity of 2.7m/s achieves the largest drying rate. A maximum dryer productivity of about 5.4kg/m{sup 2}h is obtained at the air temperature of 55{sup o}C, air velocity of 2.7m/s and dryer surface load of 28kg/m{sup 2}. It was found that small size herbs without stem need low specific energy consumption and low drying time. Comparison of the drying characteristics of different herbs revealed that parsley requires the lowest specific energy consumption (3684kJ/kg{sub H{sub 2}O}) followed by spearmint (3982kJ/kg{sub H{sub 2}O}) and Jew's mallow (4029kJ/kg{sub H{sub 2}O}). Finally, dryer productivity has been correlated in terms of surface load, drying air velocity and drying air temperature. (author)

  18. Closed loop solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-01-01

    The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs

  19. Dynamic Performance of the Standalone Wind Power Driven Heat Pump

    OpenAIRE

    H. Li; P.E. Campana; S. Berretta; Y. Tan; J. Yan

    2016-01-01

    Reducing energy consumption and increasing use of renewable energyin the building sector arecrucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat for detached houses, especially those that even don’t have access to the grid. This work is to investigate the dynamic performance of a heat pump system directly driven by a wind turbine. The heat demand of a detached single family house was simulated in details. Accord...

  20. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  1. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  2. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  3. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  4. Passive Solar Heating Residences.

    Science.gov (United States)

    1979-07-01

    sunshine is the percentage of time during the average year that the sun is bright enough to cast a shadow Pcross a surface, divided by the number of hours...The Markle House in Vermont has 1,100 square feet of living area with a heat loss cf 17,500 BTU/hr. Particular attention was paid to reducing the...Determ.ine enierg;y savings of fossil fuel and electrical poweCr. 2. Determi.:ne the ftriction of the building’s hot)’ waiter , heting and/ur cooling load

  5. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  6. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  7. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  8. Design and installation package for a solar powered pump

    Science.gov (United States)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  9. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  10. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  11. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  12. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  13. Heat pumps in Denmark - From ugly duckling to white swan

    DEFF Research Database (Denmark)

    Nyborg, Sophie; Røpke, Inge

    2015-01-01

    Over the last 10 years, the smart grid and heat pumps have increasingly gained attention in Denmark as an integral part of the low carbon transition of the energy system. The main reason being that the smart grid enables the integration of large amounts of intermittent wind energy...... into the electricity system via, among other things, intelligent interoperation with domestic heat pumps, which consume the 'green' electricity. Unfortunately, recent years' sales of heat pumps have been disappointing. Several studies have investigated the 'dissemination potential' of heat pumps in Denmark, primarily...... through conventional market research approaches. However, there is clearly a lack of studies that take a more socio-technical approach to understanding how technologies such as the heat pump develop and how they come to have a place in society as a result of contingent, emergent and complex historical...

  14. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  15. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an act......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  16. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  17. Flow tube used to cool solar-pumped laser

    Science.gov (United States)

    1968-01-01

    A flow tube has been designed and constructed to provide two major functions in the application of a laser beam for transmission of both sound and video. It maintains the YAG laser at the proper operating temperature of 300 degrees K under solar pumping conditions, and it serves as a pump cavity for the laser crystal.

  18. Amplified spontaneous emission in solar-pumped iodine laser

    Science.gov (United States)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  19. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  20. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  1. Study on the simulation of heat pump heating and cooling systems to hospital building

    International Nuclear Information System (INIS)

    Choi, Young Don; Han, Seong Ho; Cho, Sung Hwan; Kim, Du Sung; Um, Chul Jun

    2008-01-01

    In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller and heater

  2. Electrical and engine driven heat pumps for effective utilisation of renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Aye, Lu; Charters, W.W.S

    2003-07-01

    Much of the energy used for domestic, commercial and industrial purposes is to provide efficient and effective heating of conditioned spaces and for specialist niche applications in process heat systems. Vapour compression heat pumps driven by electric motors or engines provide the real capability of upgrading low temperature sources of ambient and waste heat to match the desired load temperatures in such heating applications. Major source of ambient heat stem from the storage of solar energy in the ground, in lakes and rivers, and in atmospheric air. Heat pumps can therefore be used to effectively harness indirectly the daily solar radiation input. In addition many industries have major sources of waste low grade heat in the form of air or water discharged from the industrial process heat stream. Heat pumps are generally formally classified therefore as air source, ground source or water source units although there has also been considerable interest recently in hybrid units combining the attributes of two or more of these specific types mentioned above.

  3. Electrical and engine driven heat pumps for effective utilisation of renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Lu Aye [Melbourne Univ., Dept. of Civil and Environmental Engineering, Parkville, VIC (Australia); Charters, W.W.S. [Melbourne Univ., Dept. of Mechanical and Manufacturing Engineering, Parkville, VIC (Australia)

    2003-07-01

    Much of the energy used for domestic, commercial and industrial purposes is to provide efficient and effective heating of conditioned spaces and for specialist niche applications in process heat systems. Vapour compression heat pumps driven by electric motors or engines provide the real capability of upgrading low temperature sources of ambient and waste heat to match the desired load temperatures in such heating applications. Major source of ambient heat stem from the storage of solar energy in the ground, in lakes and rivers, and in atmospheric air. Heat pumps can therefore be used to effectively harness indirectly the daily solar radiation input. In addition many industries have major sources of waste low grade heat in the form of air or water discharged from the industrial process heat stream. Heat pumps are generally formally classified therefore as air source, ground source or water source units although there has also been considerable interest recently in hybrid units combining the attributes of two or more of these specific types mentioned above. (Author)

  4. History of heat pumps - Swiss contributions and international milestones

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, M

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  5. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  6. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank is a......, the control strategy of intelligent solar heating systems is investigated and the yearly auxiliary energy use of the systems and the electricity price for supplying the consumers with domestic hot water and space heating are calculated....... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys......Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...

  7. Study of an innovative ejector heat pump-boosted district heating system

    International Nuclear Information System (INIS)

    Zhang, Bo; Wang, Yuanchao; Kang, Lisha; Lv, Jinsheng

    2013-01-01

    An Ejector heat pump-boosted District Heating (EDH) system is proposed to improve the heating capacity of existing district heating systems with Combined Heat and Power (CHP). In the EDH, two ejector heat pumps are installed: a primary heat pump (HP 1 ) at the heating station and a secondary heat pump (HP 2 ) at the heating substation. With the EDH, the low-grade waste heat from circulating cooling water in the CHP is recycled and the temperature difference between the water supply and the return of the primary heating network is increased. A thermodynamic model was provided. An experimental study was carried out for both HP 1 and HP 2 to verify the predicting performance. The results show that the COP of HP 1 can reach 1.5–1.9, and the return water temperature of the primary heating network could be decreased to 35 °C with HP 2 . A typical case study for the EDH was analyzed. -- Highlights: • An ejector heat pump-boosted district heating (EDH) is proposed. • The 1st ejector heat pump in EDH recycles heat from cooling water of the CHP. • The 2nd ejector heat pump in EDH boosts the thermal energy utilization of the primary heating network. • Modeling and experimental studies are presented

  8. Combined heat and power and solar energy; BHKW und solare Energie

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, M.; Schmidt, A.

    2006-07-01

    This illustrated article takes a look at a new apartment complex in Buelach, Switzerland, that meets the 'Minergie' low energy-consumption standard and also features solar-thermal heat generation. This solar installation provides heat for the provision of domestic hot water and, also, heat for the space-heating system of the building complex. The solar collectors cover an area of 153 m{sup 2}; their power is rated at 96 kW. Further elements of the building's technical services include a combined heat and power plant, a heat-pump and a gas-fired boiler. The article discusses ecological and social aspects of the design and construction of the building complex and briefly describes the installations, which also include a 'Minergie' fan-assisted balanced ventilation system.

  9. Upscaling a district heating system based on biogas cogeneration and heat pumps

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

    2015-01-01

    The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

  10. Controlling the heating mode of heat pumps with the TRIANA three step methodology

    NARCIS (Netherlands)

    Toersche, Hermen; Bakker, Vincent; Molderink, Albert; Nykamp, Stefan; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Heat pump based heating systems are increasingly becoming an economic and efficient alternative for domestic gas heating systems. Concentrations of heat pump installations do consume large amounts of electricity, causing significant grid distribution and stability issues when the diversity factor is

  11. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  12. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  13. Optimal installation of two heat pumps in a hotel

    Energy Technology Data Exchange (ETDEWEB)

    Groos, J

    1980-03-01

    In December 1979 a heat pump was brought into service in the hotel and restaurant 'Haus Baehner' in Niederfischbach. With the help of two heat pumps heat recovering measures are being achieved. Here it is a matter of water-to-water heat pumps, which work with, as the case may be, two compressors. These heat pumps are available in seven power categories between 8.2 and 63 kW rated power. The refrigerating circuit works with the safety-refrigerant R12 so that the removal of heat from a -15/sup 0/C medium is still possible. On the warm side, maximum temperatures up to 70/sup 0/C are possible.

  14. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  15. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  16. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  17. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  18. Upgrading primary heat transport pump seals

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Rhodes, D.; McInnes, D.

    1995-01-01

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  19. 7. heat pump forum. Lectures; 7. Forum Waermepumpe. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 7th heat pump forum of the German Federal Association for heat pumps e.V. (Berlin, Federal Republic of Germany) between 22nd and 23rd March, 2009, at the Ellington Hotel in Berlin, the following lectures were held: (1) Potentials of the near-surface geothermics in Germany (H. Gassner); (2) Significance of renewable energy sources after the Bundestag election (D. Schuetz); (3) European draft laws in survey: EE regulation, EPBD, EuP (M. Ferber); (4) My personal experiences with heat pumps (G. Nuesslein); (5) European energy policy with relevance to the German heating market (A. Luecke); (6) Do we economize sustainable? - Reactions of companies on the challenge of a sustainable development (C. Berg); (7) Utilize the crisis now - the economic chances of a sustainable energy supply (C. Kemfert); (8) EE regulation: Status quo. Report of the National Renewable Eneregy Action Plan (NREAP) (K. Freier); (9) A legal evaluation of the EE regulation for the energy market (T. Mueller); (10) MAP funding guidelines (U. Sattler); (11) Utilization of renewable energies for heat generation - Experiences of the housing industry (I. Vogler); (12) Combination o the central near-heat supply and decentral drinking water heating in multi-storey new buildings (M.-J. Mucke); (13) Eddicient contracting for heat pumps (A. Kaemmerer); (14) Eco-Design - EU-guidelines and their effects on the heat pump (M. Roffe-Vidal); (15) The quality seal for heat pumps in the Swiss promotion policy (R. Phillips); (16) Enhancement of the significance of the EHPA quality seal in Europe (K. Ochsner); (17) Chances and benefit of export initiatives for the heat pump industry (C. Wittig); (18) The heat pump market in Ireland (P. Murphy); (19) Quantum heat pumps in double capacitors (M. Enzensperger); (20) First CO{sub 2}-free football stadium worldwide thanks to heat pumps (A. Poehlmann); (21) The heat pump in turnkey solid-construction house (C. Schmidt); (22) Instruments of quality requirement and

  20. Development of an Ionic-Liquid Absorption Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  1. Direct solar pumping of semiconductor lasers: A feasibility study

    Science.gov (United States)

    Anderson, Neal G.

    1992-01-01

    This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is

  2. A solar simulator-pumped atomic iodine laser

    Science.gov (United States)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  3. Simulation of a passive house coupled with a heat pump/organic Rankine cycle reversible unit

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Randaxhe, François

    2014-01-01

    This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible ...... presents a higher global COP because the heat produced on the roof can heat the storage directly.......This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible...... modes that need to be chosen optimally depending on the weather conditions, the heat demand and the temperature level of the storage. The ORC mode is activated, as long as the heat demand of the house is covered by the storage to produce electricity based upon the heat generated by the solar roof...

  4. Observations of magnetic pumping in the solar wind using MMS data

    Science.gov (United States)

    Lichko, Emily; Egedal, Jan; Daughton, William; Kasper, Justin

    2017-10-01

    The turbulent cascade is believed to play an important role in the energization of the solar wind plasma. However, there are characteristics of the solar wind that are not readily explained by the cascade, such as the power-law distribution of the solar wind speed. Starting from the drift kinetic equation, we have derived a magnetic pumping model, similar to the magnetic pumping well-known in fusion research, that provides an explanation for these features. In this model, particles are heated by the largest scale turbulent fluctuations, providing a complementary heating mechanism to the turbulent cascade. We will present observations of this mechanism in the bow shock region using data from the Magnetospheric MultiScale mission. This research was conducted with support from National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168, as well as from NSF Award 1404166 and NASA award NNX15AJ73G.

  5. Heat pump used in milk pasteurization: an energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ozyurt, O.; Comakli, O.; Yilmaz, M. [Ataturk Univ., Erzurum (Turkey). Dept. of Mechanical Engineering; Karsli, S. [Ataturk Univ., Erzurum (Turkey). Vocational School of Higher Education

    2004-07-01

    This study investigates the applicability of heat pumps to milk pasteurization for cheese production and to compare the results with classical pasteurization systems. The experiments are conducted in a liquid-to-liquid vapour compression heat pump system and a milk-to-milk plate heat exchanger is used as an economizer. The experiments are also conducted in a double jacket boiler system and a plate pasteurization system, which are classical milk pasteurization systems. The results for the three systems are compared and the advantages/disadvantages of using heat pump for milk pasteurization instead of classical systems are determined. It is found that the heat pump consumes less energy than the other two classical systems. (Author)

  6. US heat pump research and development projects, 1976-1986

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, K.H.

    1987-04-01

    This document, which is an updated version of US Heat Pump Research and Development Projects, published in August 1982 by the US Department of Energy, is a compilation of one-page summaries and publication and patent information for 233 individual research and development projects on heat pumps covering the years 1976 through 1986. The majority of the projects refer to heat pumps in space-conditioning applications. The document is intended to include information on all projects in the United States for which results are publicly available. Ten different indexes are included to aid the reader in locating specific projects.

  7. Assessment of Japanese variable speed heat pump technology

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji

    1988-01-01

    An analysis of critical component technologies and design methodologies for Japanese variable speed heat pumps are presented. The market for variable speed heat pumps in Japan is predominantly residential split-type, between the fractional to 2.5 ton capacity range. Approximately 1.1 million residential inverter-driven heat pumps were sold in 1987. Based on the market trends, component technology and several advanced features are described. Similarities and differences between Japanese and US system design methodologies are discussed. Finally, the outlook for future technology trends is briefly described. 8 refs., 6 figs., 1 tab.

  8. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  9. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  10. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  11. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  12. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  13. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  14. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  15. Geothermal Heat Pump Profitability in Energy Services

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-11-01

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  16. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  17. Model predictive control to Maintain ATES balance using heat pump

    NARCIS (Netherlands)

    Hoving, J.; Boxem, G.; Zeiler, W.

    2017-01-01

    A rapidly growing amount of sustainable office buildings in the Netherlands is using an Aquifer Thermal Energy Storage (ATES) system. An ATES system uses a well pump to extract cold groundwater for cooling with the use of a heat pump if necessary. An essential condition for optimal ATES operation is

  18. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  19. Flue gas condensing with heat pump; Roekgaskondensering med vaermepump

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Pettersson, Camilla [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-11-01

    Flue gas condensing is often both a technically and economically efficient method to increase the thermal efficiency in a plant using fuels with high moisture and/or high hydrogen content. The temperature of the return water in district heating systems in Sweden is normally 50 deg C, which gives quite high efficiency for a flue gas condenser. The flue gas after the flue gas condenser still contains energy that to some extent can be recovered by a combustion air humidifier or a heat pump. The object of this project is to technically and economically analyse flue gas condensing with heat pump. The aim is that plant owners get basic data to evaluate if a coupling between a flue gas condenser and a heat pump could be of interest for their plant. With a heat pump the district heating water can be 'sub cooled' to increase the heat recover in the flue gas condenser and thereby increase the total efficiency. The project is set up as a case study of three different plants that represent different types of technologies and sizes; Aabyverket in Oerebro, Amagerforbraending in Copenhagen and Staffanstorp district heating central. In this report a system with a partial flow through the condenser of the heat pump is studied. For each plant one case with the smallest heat pump and a total optimization regarding total efficiency and cost for investment has been calculated. In addition to the optimizations sensitivity analyzes has been done of the following parameters: Moisture in fuel; Type of heat pump; Temperature of the return water in the district heating system; and, Size of plant. The calculations shows that the total efficiency increases with about 6 % by the installation of the heat pump at a temperature of the return water in the district heating system of 50 deg C at Aabyverket. The cost for production of heat is just below 210 kr/MWh and the straight time for pay-off is 5,4 years at 250 kr/MWh in heat credit and at 300 kr/MWh in basic price for electricity. The

  20. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps