WorldWideScience

Sample records for solar fission fusion

  1. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  2. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  3. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  4. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  5. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  6. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  7. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  8. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  9. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  10. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  11. Fusion barrier distributions and fission anisotropies

    International Nuclear Information System (INIS)

    Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.

    1995-01-01

    Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))

  12. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  13. Neutronics of Laser Fission-Fusion Systems

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  14. Neutronics of Laser Fission-Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1976-07-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-{infinity}). (Author) 14 refs.

  15. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  16. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  17. Storage and Containment of Nuclear Targets for Pulsed Fission-Fusion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The combined fission-fusion fuel target is the heart of an engine concept that can open the solar system to fast and efficient human exploration. This is a unique...

  18. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Chapin, D.L.; Mills, R.G.

    1976-01-01

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238 U-- 239 Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239 Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  19. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  20. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1974-01-01

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  1. Pulsed fission/fusion hybrid engines

    International Nuclear Information System (INIS)

    Hudson, G.C.

    1979-01-01

    Research into high-thrust, high-specific impulse rocket engines using energy from nuclear reactions which has been conducted at this organization will be discussed. The engines are all conceptual in nature, yet are within the realization of conventional or near-term technology. The engine concepts under study at Foundation, Inc. are designed to obviate or minimize these negative effects of the ORION scheme. By using non-chemical triggers to initiate a non-breakeven fusion reaction at the core of a target composed of both fission and fusion fuel, it should be possible to employ the fusion neutrons thus produced to begin a fission reaction in U-235 or Pu-239. Since the density of the target can be increased by as much as a factor of 250 through compression of the pellet, the amount of fission material necessary to produce a critical mass can be greatly reduced. (This also means that the amount of fission products produced for a giventhrust level is also reduced from the ORION levels.) Coupling this eeffect to the large number of 14 MeV fusion neutrons produced early in the compression process and subsequently to the heating of some additional fusion fuel surrounding the critical mass leads to the very efficient burnup of the target. This insures both high yield from the target as well as low cost per MJ energy released. Finally, the use of such small pellets allows the scale of the energy released to be tailored to a level usable in rocket engines of a few tens of tons thrust level. (orig.) [de

  2. Fission, fusion and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, S E [Aston Univ., Birmingham (UK)

    1980-01-01

    The subject is covered in chapters, entitled: living on capital (energy reserves and consumption forecasts); the atom and its nucleus, mass and energy; fission and the bomb; the natural uranium reactor; enriched reactors; control and safety; long-term economics (the breeder reactions and nuclear fuel reserves); short-term economics (cost per kilowatt hour); national nuclear power programmes; nuclear power and the environment (including reprocessing, radioactive waste management, public relations); renewable energy sources; the fusion programme; summary and comment.

  3. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  4. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  5. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  6. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.; Masson, M.; Briec, M.

    1986-09-01

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 10 13 Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 10 10 Bq (0.5 Ci) per day per ton of fuel

  7. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  8. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  9. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  10. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  11. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  12. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  13. Fission: An object lesson for fusion

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1988-01-01

    The development of a new, and possibly hazardous, long-range energy source is beset with two political problems (as well as the many technical ones): survival and public acceptance. By survival I mean continuing support, year after year, of a very expensive enterprise whose promise always seems greater than its achievement: can this support continue long enough to allow the promised goal to be achieved. By survival I mean continuing support, year after year, of a very expensive enterprise whose promise always seems greater than its achievement: can this support continue long enough to allow the promised goal to be achieved. By public acceptance, I mean the reaction the reaction of the public to the new energy source, assuming that it achieves its technological goals. Both of these problems have been faced by fission power : I propose to describe the experiences of fission in confronting these issues in the hope that they might be dealt with more deftly by fusion. My account will be anecdotal and personal

  14. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  15. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  16. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  17. Fusion--fission hybrid reactors: a capsule introduction

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1977-01-01

    A short introduction to fusion-fission hybrid systems is provided touching on (a) basic technological characteristics; (b) potential applications; (c) relevance of environmental considerations in the development rationale for hybrids. References to the more technical literature are supplied

  18. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  19. Dynamic treatment of fission and fusion in two dimensions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.

    1977-01-01

    The barrier penetrability in two dimensions for nuclear fusion and fission phenomena is studied. The equations of fission static trajectories (minimum potential) in Hofmann formalism are derived and the influence of inertia parameters on the penetrability is verified. For fusion case, a realistic potential for exactly penetrability calculation is proposed. The transverse momentum to the fusion and the unidimensional calculation in classical approximation by choose the trajectory which turn into maximum the penetrability are considered. The exact penetrability is compared with calculation in the classical approximation which takes in account the possibility of appearing discontinuity in the barrier along of fusion pathway. (M.C.K.) [pt

  20. Critical masses of miniexplosion in fission-fusion hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kaliski, S [Polska Akademia Nauk, Warsaw. Inst. Podstawowych Problemow Techniki

    1976-01-01

    The critical mass of the fissionable material subjected to the explosive compression and the action of the neutron stream originating from the process of D-T fusion in the spherical cavity was estimated. High energy recovery from the fissionable material was obtained and the energy of the laser pulse was minimized.

  1. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  2. Advanced fission and fossil plant economics-implications for fusion

    International Nuclear Information System (INIS)

    Delene, J.G.

    1994-01-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion's potential competitiveness

  3. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  4. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  5. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  6. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  7. Fusion-fission of heavy systems

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-01-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted. (orig.)

  8. Fusion-fission hybrid studies in the United States

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-01-01

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or 233 U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of 238 U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical

  9. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Mazur, C.; Ribrag, M.

    Pronounced structures in the time of flight distribution of fission fragments, having a given energy, were recently reported. This experiment has been reproduced with a better time resolution and structures are not observed [fr

  10. Dynamics in heavy ion fusion and fission

    International Nuclear Information System (INIS)

    Bjoernholm, S.

    1972-01-01

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236 U or 252 Cf. (S.B.)

  11. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  12. Hemi-fused structure mediates and controls fusion and fission in live cells.

    Science.gov (United States)

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission.

  13. Neutron rich clusters and the dynamics of fission and fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1988-07-01

    In this lecture I want to discuss experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangement processes, as fusion and fission. Clusters in the sense as used in my lecture are the strongly bound doubly magic nuclei as 20 Ca 28 48 , 28 Ni 50 78 , 132 50 Sn 82 , and 208 82 Pb 126 and the superheavy nucleus 298 114 184 . Two of these nuclei, 78 Ni and 298 114 have not yet been identified. I discuss first the experimental findings from heavy element production. Then I cover the stability of cluster aspects to intrinsic excitation energy in fusion and fission. (orig./HSI)

  14. The role of the dinuclear system in the processes of nuclear fusion, quasi-fission, fission and cluster formation

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1999-01-01

    The nuclear fusion, quasi-fission, fission and cluster formation in an excited nucleus are considered as the processes of the formation and evolution of the dinuclear system. This approach allows one to reveal new aspects of nuclear fusion, to show that quasi-fission plays an important role in nuclear reactions used to synthesise superheavy elements. A qualitative picture is given of the fission process of an excited nucleus and an important role of cluster formation in this process is shown

  15. On fusion and fission breeder reactors

    International Nuclear Information System (INIS)

    Brandt, B.; Schuurman, W.; Klippel, H.Th.

    1981-02-01

    Fast breeder reactors and fusion reactors are suitable candidates for centralized, long-term energy production, their fuel reserves being practically unlimited. The technology of a durable and economical fusion reactor is still to be developed. Such a development parallel with the fast breeder is valuable by reasons of safety, proliferation, new fuel reserves, and by the very broad potential of the development of the fusion reactor. In order to facilitate a discussion of these aspects, the fusion reactor and the fast breeder reactor were compared in the IIASA-report. Aspects of both reactor systems are compared

  16. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  17. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  18. Fusion-fission dynamics and perspectives of future experiments

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  19. The existence and characterization of self-sustaining multiplicative fusion and fission reaction chains

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1980-01-01

    The mathematical-physical similarities and differences between fusion and fission multiplication processes are investigated. It is shown that advanced fusion cycles can sustain excursion tendencies which are essentially analogous to conventional fission cycles. The result that fission excursions are unbounded and that fusion excursions eventually attain an asymptote represents a significant distinction between these fundamental self-sustaining nuclear multiplicative chains. (Auth.)

  20. Tunneling process in heavy-ion fusion and fission

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kondratyev, V.; Bonasera, A.

    1998-10-01

    We present a model towards the many-body description of sub-barrier fusion and spontaneous fission based on the semiclassical Vlasov equation and the Feynman path integral method. We define suitable collective variables from the Vlasov solution and use the imaginary time technique for the dynamics below the Coulomb barrier. (author)

  1. Heavy cluster in cold nuclear rearrangements in fusion and fission

    International Nuclear Information System (INIS)

    Armbruster, P.

    1997-01-01

    The experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangements processes, as fusion and fission, is presented. Clusters in the sense as used in the following are strongly bound, doubly magic neutron rich nuclei as 48 Ca 28 , 78 Ni 50 , 132 Sn 82 , and 208 Pb 126 , the spherical nuclei Z=114 - 126 and N=184, and nuclei with closed shells N=28, 50, 82, and 126, and Z=28, 50, and 82. As with increasing nucleon numbers, the absolute shell corrections to the binding energies increase, the strongest effects are to be observed for the higher shells. The 132 cluster manifests itself in low energy fission (Faissner, H. and Wildermuth, K. Nucl. Phys., 58 (1964) 177). The 208 Pb cluster gave the new radioactivity (Rose, M.J. and Jones G.A., Nature, 307 (1984) 245) and the first superheavy elements (SHE) (Armbruster P., Ann. Rev. Nucl. Part. Sci., 35 (1985) 135-94; Munzenberg, G. Rep. Progr. Phys., 51 (1988) 57). The paper discuss experiments concerning the stability of clusters to intrinsic excitation energy in fusion and fission (Armbruster, P. Lect. Notes Phys., 158 (1982) 1). and the manifestation of clusters in the fusion entrance channel (Armbruster, P., J. Phys. Soc. Jpn., 58 (1989) 232). The importance of compactness of the clustering system seems to be equally decisive in fission and fusion. Finally, it s covered the importance of clusters for the production of SHEs)

  2. Utility market penetration assessment of fusion-fission hybrids

    International Nuclear Information System (INIS)

    Jensen, B.K.; Nour, N.E.; Piascik, T.M.

    1981-01-01

    The objective of this paper is to describe the utility generation expansion evaluation procedure and to present the results of a fusion-fission hybrid market penetration assessment in a model of a typical utility system. The analysis addresses the key factors and tradeoffs affecting the utility's evaluation of generation alternatives

  3. Brief review of the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1977-01-01

    Much of the conceptual framework of present day fusion-fission hybrid reactors is found in the original work of the early 1950's. Present day motivations for development are quite different. The role of the hybrid reactor is discussed as well as the current activities in the development program

  4. Economic regimes for fission--fusion energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1974-01-01

    The objectives of this hybrid fusion-fission economic regimes study are to: (1) define the target costs to be met, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. (U.S.)

  5. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  6. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Berlanger, M.; Deleplanque, M.A.; Gerschel, C.; Hanappe, F.; Leblanc, M.; Mayault, J.F.; Ngo, C.; Paya, D.; Perrin, N.; Peter, J.; Tamain, B.; Valentin, L.

    The γ-ray multiplicity has been measured for the quasi-fission events in the Cu + Au reaction at 443MeV. Using the usual assumption on the γ-ray multipolarity and estimating the angular momentum carried away by the evaporated particles, a value of 57h is obtained for the angular momentum transferred to the fragments, in agreement with the sticking hypothesis [fr

  7. Evaluations of fusion-fission (hybrid) concepts: market penetration analysis for fusion-fission hybrids. Part A

    International Nuclear Information System (INIS)

    Engel, R.L.; Deonigi, D.E.

    1976-01-01

    This report summarizes findings of the fusion-fission studies conducted for the Electric Power Research Institute by Battelle, Pacific Northwest Laboratories. This particular study focused on the evaluation of fissile material producing hybrids. Technical results of the evaluation of actinide burning are presented in a companion volume, Part B

  8. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  9. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-05-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approximately 4). Two hybrid blankets, a thorium and a uranium-thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breder-converter reactor scenario

  10. Optimization of the fission--fusion hybrid concept

    International Nuclear Information System (INIS)

    Saltmarsh, M.J.; Grimes, W.R.; Santoro, R.T.

    1979-04-01

    One of the potentially attractive applications of controlled thermonuclear fusion is the fission--fusion hybrid concept. In this report we examine the possible role of the hybrid as a fissile fuel producer. We parameterize the advantages of the concept in terms of the performance of the fusion device and the breeding blanket and discuss some of the more troublesome features of existing design studies. The analysis suggests that hybrids based on deuterium--tritium (D--T) fusion devices are unlikely to be economically attractive and that they present formidable blanket technology problems. We suggest an alternative approach based on a semicatalyzed deuterium--deuterium (D--D) fusion reactor and a molten salt blanket. This concept is shown to emphasize the desirable features of the hybrid, to have considerably greater economic potential, and to mitigate many of the disadvantages of D--T-based systems

  11. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-01-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breeder-converter reactor scenario

  12. Fusion-fission in Ar-heavy nuclei collisions

    International Nuclear Information System (INIS)

    Zaric, Alexandre

    1984-01-01

    Fusion-fission products have been studied for three reactions: Ar + Au, Ar + Bi and Ar + U (5.25-7.5 MeV/u). By measuring symmetric fragmentation components (fission-like events), cross sections for fusion were deduced and compared with the prediction of static and dynamic models. With increasing projectile energy, the width of the mass distributions strongly increases for the two lighter systems. By contrast, for Ar + U it remains essentially constant at a very large value. These results clearly demonstrate that the large increase of the width of the mass distribution cannot be attributed simply to large values of the angular momentum. However, they can be explained by the occurrence of a different dissipative process, fast fission, which can be expected if there is no barrier to fission. For the reaction Ar + Au, the total kinetic-energy distributions were also studied in detail. In this case fast fission occurs only at high incident energy. The average total kinetic energy (TKE) was found to be constant with increasing energy. (author) [fr

  13. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Agarwal, S.; Babinet, R.; Cauvin, B.; Galin, J.; Gatty, B.; Girard, J.; Guerreau, D.; Lefort, M.; Nifenecker, H.; Tarrago, X.

    Combined ΔE-E and time of flight techniques have been used at the ALICE facility to measure the mass and the charge of all light fragments emitted in heavy ion collisions. The following studies have been undertaken: binary character of the deep inelastic collisions in the 40 Ar (280MeV) + 58 Ni reaction, transition from deep inelastic to quasi-elastic processes in the same reaction, relaxation of the mass asymmetry mode in the 52 Cr (265 MeV) + 56 Fe reaction and equilibration of the charge to mass degree of freedom in the fast quasi-fission process, 40 Ar (220MeV) + Au [fr

  14. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  15. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  16. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  17. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  18. Energy for the long run: fission or fusion

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Kessler, G.; Holdren, J.; Haefele, W.

    1979-01-01

    The alternatives of the most likely and controversial long-range energy sources, fusion and fast-breeder fission, are compared in several areas: potential biological and social hazards, costs of research and development, capital costs, technical complexity, and time factors. It is concluded that from biological and social hazards standpoint, fusion is preferable to fast-breeder fission reactors; however, the LMFBR has already passed on the threshold of scientific and engineering feasibility. It is pointed out that LMFBR should not be compared with short-term energy sources, e.g. coal or oil, but should be compared only with other long-term energy sources, e.g. other types of breeder reactors

  19. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  20. Updated comparison of economics of fusion reactors with advanced fission reactors

    International Nuclear Information System (INIS)

    Delene, J.G.

    1990-01-01

    The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative

  1. On fusion/fission chain reactions in the Fleischmann-Pons cold fusion experiment

    International Nuclear Information System (INIS)

    Anghaie, S.; Froelich, P.; Monkhorst, H.J.

    1990-01-01

    In this paper the possibility of fusion/fission chain reactions following d-d source reactions in electrochemical cold fusion experiments have been investigated. The recycling factors for the charged particles in fusion reactions with consumable nuclei deuteron, 6 Li nd 7 Li, are estimated. It is concluded that, based on the established nuclear fusion cross sections and electronic stopping power, the recycling factor is four to five orders of magnitude less than required for close to critical conditions. It is argued that the cross generation of charged particles by neutrons does not play a significant role in this process, even if increased densities at the surface of electrodes do occur

  2. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  3. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  4. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  5. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  6. Fusion-fission dynamics and synthesis of the superheavy elements

    International Nuclear Information System (INIS)

    Abe, Yasuhisa

    2003-01-01

    Experiments of fusion-fission reactions clarify that the life time of nuclear fission is much longer than that expected from Bohr-Wheeler formula from the measurements of multiplicities of neutrons, gamma rays etc. emitted prior scission, and thereby appear to require a dynamical treatment of the process. Following the pioneering work by Kramers with the dissipation- fluctuation dynamics, the fissioning degree of freedom is described with the viewpoint of Brownian motion under incessant interactions with the heat bath particles, i.e., with nucleons in thermal equilibrium, in the present case. In the dynamical description the fission width is no more constant in time, but has a transient feature, as well as the reduction factor, the so-called Kramers factor. Both result in a longer life time, consistent with anomalous multiplicities measured. In the fusion process, Coulomb barriers play a crucial role in lighter heavy ion systems, but in very heavy systems it is known that there exists a hindrance in fusion. That is, the Coulomb barrier is not enough for determination of fusion probability, but an extra-energy above the barrier height is required for the system to fuse. This is understood by the properties of the Liquid Drop Model. After overcoming the Coulomb barrier, the ions touch with each other. But the united system, i.e., the pear-shaped configuration is located outside of the conditional saddle point or of the ridgeline. Therefore, in order to form the spherical compound nucleus, the system has to overcome one more barrier. Naturally, in such a situation, the kinetic energy carried in by the incident projectile has been more or less dissipated, i.e., the composite system is heated up. Thus, the shape evolution toward the spherical shape or toward the re-separation can be considered as a Brownian motion with the heat bath inside. The present author et al. have proposed the two-step model for fusion of massive heavy-ion systems where the fusion probability is

  7. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  8. Influence of fusion dynamics on fission observables: A multidimensional analysis

    Science.gov (United States)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  9. Maintenance of fission and fusion reactors. 10. workshop on fusion reactor engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report contains copies of OHP presented at the title meeting. The presented topics are as follows, maintenance of nuclear power plants and ITER, exchange of shroud in BWR type reactors, deterioration of fission and fusion reactor materials, standards of pressure vessels, malfunction diagnosis method with neural network. (J.P.N.)

  10. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  11. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  12. Cluster fusion-fission dynamics in the Singapore stock exchange

    Science.gov (United States)

    Teh, Boon Kin; Cheong, Siew Ann

    2015-10-01

    In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.

  13. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  14. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  15. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  16. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  17. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  18. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  19. What can we learn about heavy ion fusion by studying fission angular distributions

    International Nuclear Information System (INIS)

    Back, B.B.

    1984-01-01

    Determinations of complete fusion reactions leading to fissionable systems are associated with problems of separating fragments from quasi-fission reactions from those arising from fission of the completely fused system. Inferring complete fusion cross sections from the minute cross sections for the evaporation residue channel is hampered by the insufficient knowledge of the branching ratio for neutron emission and fission in the decay sequence of the completely fused system. From a quantitative analysis of the fragment angular distributions it is, however, possible under certain assumptions to deduce the relative contribution of complete fusion and quasi-fission. It is found that the complete fusion process is hindered for heavy projectiles. The excess radial energy over the interaction barrier needed to induce fusion with heavy projectiles is determined in several cases and systematic trends are presented

  20. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  1. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  2. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  3. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  4. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  5. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  6. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  7. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  8. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  9. Feasibility study of a fission-suppressed tokamak fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Neef, W.S.

    1984-12-01

    The preliminary conceptual design of a tokamak fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m 2 and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 +- 30% per fusion reaction. This results in the production of 4900 kg of 233 U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW/sub e/ LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U 3 O 8 depending on government financing or utility financing assumptions. Additional topics discussed in the report include the tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management

  10. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Kevin James [Univ. of California, Berkeley, CA (United States)

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  11. Analytic description of the fusion and fission processes through compact quasi-molecular shapes

    International Nuclear Information System (INIS)

    Royer, G.; Normand, C.; Druet, E.

    1997-01-01

    Recent studies have shown that the characteristics of the entrance and exit channels through compact quasi-molecular shapes are compatible with the experimental data on fusion, fission and cluster radioactivity when the deformation energy is determined within a generalized liquid drop model. Analytic expressions allowing to calculate rapidly the main characteristics of this deformation path through necked shapes with quasi-spherical ends are presented now; namely formulas for the fusion and fission barrier heights, the fusion barrier radius, the symmetric fission barriers and the proximity energy. (author)

  12. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  13. Characterization of the fusion-fission process in light nuclear systems

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1992-01-01

    Fusion cross sections measurements of highly damped processes and elastic scattering were performed for the 16, 17, 18 O + 10, 11 B and 19 F + 9 Be, in the incident energy interval 22 ≤ E LAB ≤ 64 MeV. Evidences are presented that highly damped binary processes observed in these systems are originated from a fusion-fission process rather than a dinuclear ''orbiting'' mechanism. The relative importance of the fusion-fission process in these very light systems is demonstrated both by the experimental results, which indicate a statistically balanced compound nucleus fission process occurrence, and theoretical calculations. (L.C.J.A.)

  14. Neutrinos do come from solar-fusion

    CERN Multimedia

    1990-01-01

    Results from Kamiokande 11 have given the first convincing evidence that neutrinos are emitted by nuclear fusion in the sun. However, the measured neutrino flux is less than half that predicted by the standard solar model (4 paragraphs).

  15. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  16. Proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications

    International Nuclear Information System (INIS)

    Wagner, M.; Vonach, H.

    1990-01-01

    These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences

  17. Study of α-particle multiplicity in 16O+196Pt fusion-fission reaction

    International Nuclear Information System (INIS)

    Kapoor, K.; Kumar, A.; Bansal, N.

    2016-01-01

    Study of dynamics of fusion-fission reaction is one of the interesting parts of heavy-ion-induced nuclear reaction. Extraction of fission time scales using different probes is of central importance for understanding the dynamics of fusion-fission process. In the past, extensive theoretical and experimental efforts have been made to understand the various aspects of the heavy ion induced fusion-fission reactions. Compelling evidences have been obtained from the earlier studies that the fission decay of hot nuclei is protracted process i.e. slowed down relative to the expectations of the standard statistical model, and large dynamical delays are required due to this hindrance. Nuclear dissipation is assumed to be responsible for this delay and more light particles are expected to be emitted during the fission process. One of neutron multiplicity measurements have been performed for the 16,18 O+ 194,198 Pt populating the CN 210,212,214,216 Rn and observed fission delay due to nuclear viscosity. In order to have complete understanding for the dynamics of 212 Rn nucleus, we measured the charged particle multiplicity for 16 O+ 196 Pt system. Study of charged particles will give us more information about the emitter in comparison to neutrons as charged particles faces Coulomb barrier and are more sensitive probe for understanding the dynamics of fusion-fission reactions. In the present work, we are reporting some of the preliminary results of charged particle multiplicity

  18. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  19. Determination of extra-push energies for fusion from differential fission cross-section measurements

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Kapoor, S.S.

    1993-01-01

    Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies

  20. Confidence building in and through fission and fusion activities

    International Nuclear Information System (INIS)

    Toyojiro Fuketa

    1989-01-01

    The peaceful uses of atomic energy are most suitable for achieving worldwide confidence building for the following reasons. (1) In spite of the need for peaceful uses of nuclear energy, the world is facing difficulties in the public perception and acceptance of nuclear works and facilities. (2) The above difficulties are due to many factors, such as the two sides of nuclear energy peaceful and military, the possibility of a large-scale reactor accident, the lack of understanding about radiation and radioactivity, and finally, emotion and egoism. Some of these factors are unique to nuclear-energy, but in other cases of public reactions, there are many facets similar to the above factors. (3) The public concern about safety is at its highest, broadest and severest point ever, coincident with the highest life expectancy in history. Over-precaution and over-protection about certain things may sometimes spoil one's health. Nuclear energy is most definitely suffering from such a trend. As a result, a severe nuclear accident in any country results in severe damage worldwide no manner in what form the real physical effects reach other countries. (4) The huge science and technology efforts required for fission and fusion activities cannot be fully achieved by one country. Explanations of some of the above factors are given. 2 refs

  1. A comparison of fusion breeder/fission client and fission breeder/fission client systems for electrical energy production

    International Nuclear Information System (INIS)

    Land, R.J.; Parish, T.A.

    1983-01-01

    A parametric study that evaluated the economic performance of breeder/client systems is described. The linkage of the breeders to the clients was modelled using the stockpile approach to determine the system doubling time. Since the actual capital costs of the breeders are uncertain, a precise prediction of the cost of a breeder was not attempted. Instead, the breakeven capital cost of a breeder relative to the capital cost of a client reactor was established by equating the cost of electricity from the breeder/client system to the cost of a system consisting of clients alone. Specific results are presented for two breeder/client systems. The first consisted of an LMFBR with LWR clients. The second consisted of a DT fusion reactor (with a 238 U fission suppressed blanket) with LWR clients. The economics of each system was studied as a function of the cost of fissile fuel from a conventional source. Generally, the LMFBR/LWR system achieved relatively small breakeven capital cost ratios; the maximum ratio computed was 2.2 (achieved at approximately triple current conventional fissile material cost). The DTFR/LWR system attained a maximum breakeven capital cost ratio of 4.5 (achieved at the highest plasma quality (ignited device) and triple conventional fissile cost)

  2. Static aspects of the fission and fusion of liquid 3He drops

    International Nuclear Information System (INIS)

    Guilleumas, M.; Barranco, M.; Pi, M.

    1992-01-01

    Using an effective 3 He- 3 He interaction, the fission and fusion of 3 He drops have been investigated from a static point of view. The calculations show that a fission barrier develops for these neutral systems, and that their saddle configurations are rather elongate. The transition from oblate to prolate shapes as a function of the angular momentum L, as well as critical values for fission and fusion are discussed for some selected cases. A kind of proximity potential can be extracted from the drop-drop interaction potentials. (author) 33 refs.; 9 figs

  3. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  4. Review of Battelle-Northwest technical studies on fusion--fission (hybrid) energy systems

    International Nuclear Information System (INIS)

    Liikala, R.C.; Leonard, B.R. Jr.; Wolkenhauer, W.C.; Aase, D.T.

    1974-01-01

    A variety of studies conducted over the past few years and the principal results of these studies are summarized. Studies of power producing hybrids, the use of fusion neutrons for transmutation of radioactive wastes, and the evaluation of the most likely combinations of fusion and fission technologies are discussed. (U.S.)

  5. Genetically controlled fusion, exocytosis and fission of artificial vesicles-a roadmap

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; de Lucrezia, Davide

    2011-01-01

    were shown to fuse if a special class of viral proteins, termed fusogenic peptides, were added to the external medium (Nomura et al. 2004). In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we...... enclosed synthesized peptides in vesicles to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different...

  6. A comparison of microstructures in copper irradiated with fission, fusion, and spallation neutrons

    International Nuclear Information System (INIS)

    Muroga, T.; Heinisch, H.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructure and mechanical properties of metals. The microstructures of pure copper irradiated to low doses at 36-90 C with spallation neutrons, fusion neutrons and fission neutrons are compared. The defect cluster densities for the spallation and fusion neutrons are very similar when compared on the basis of displacements per atom (dpa). In both cases, the density increases in proportion to the square root of the dpa. The difference in defect density between fusion neutrons and fission neutrons corresponds with differences observed in data on yield stress changes

  7. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  8. An economic parametric analysis of the synthetic fuel produced by a fusion-fission complex

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1980-01-01

    A simple analytic model is used to examine economic constraints of a fusion-fission complex in which a portion of a thermal energy is used for producing synthetic fuel (synfuel). Since the values of many quantities are not well-known, a parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technological quantities (investment costs of hybrid and synfuel plants, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission-fusion-synfuel complex brings about a higher economic benefit than does the fusion-fission hybrid entirely devoted to fissile-fuel and electricity generation. This paper describes the energy flow diagram of fusion-fission synfuel concept, express the revenue-to-cost formulation and the breakeven synfuel selling price. The synfuel production cost given by the model is evaluated within a range of values of crucial parameters. Assuming an electric cost of 2.7 cents/kWh, an annual investment cost per energy unit of 4.2 to 6 $/FJ for the fusion-fission complex and 1.5 to 3 $/GJ for the synfuel plant, the synfuel production cost lies between 6.5 and 8.5 $/GJ. These production costs can compete with those evaluated for other processes. The study points out a potential use of the fusion-fission hybrid reactor for other than fissile-fuel and electricity generation. (orig.) [de

  9. Determination of procedures for transmutation of fission product wastes by fusion neutrons. Volume 2. Final report

    International Nuclear Information System (INIS)

    Lang, G.P.

    1980-12-01

    This study is concerned with the engineering aspects of the transmutation of fission products utilizing neutrons generated in fusion reactors. It is assumed that fusion reactors, although not yet developed, will be available around the turn of the century. Therefore, early studies of this type are appropriate as a guide to the large amount of further investigations that will be needed to fully evaluate this concept. Not all of the radioactive products from light water reactors can be economically transmuted, but it appears that the most hazardous can. This requires that fission-product wastes must first be separated into a number of fractions, and in some instances this must be accomplished with extremely high separation factors. A review of current commercial separation processes and of promising methods that are now in the laboratory stage indicate that the necessary processes can most likely be developed but will require an active and sustained development program. Current fusion reactor concepts were examined as to their suitability for transmuting the separated fission wastes. It was concluded that the long-lived fission products were most amenable to transmutation. The medium-lived fission products, Cs-137 and Sr-90, require higher neutron fluxes than are available in the most developed fusion reactor concepts. Concepts which are less developed may eventually be adaptable as transmuters of these fission products

  10. Role of fission-reactor-testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-01-01

    Testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for testing when fusion reactors become available. Fission testing is capable of filling many gaps in fusion reactor design information, and thus should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, we investigated radiation damage to magnet insulators. This work is now continuing with the use of an improved test capsule. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, we explored a conceptual design for a fission-based Integrated Test Facility (ITF), which can accommodate entire First Wall/Blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  11. Some applications of fission-based testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-10-01

    The testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for fusion testing when they do become available. Fission testing is capable of filling many gaps in fusion reactor design information, and should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, work was performed on the irradiation of magnet insulators. This work is continuing with an improved test environment. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, a conceptual design is presented for a fission-based Integrated Test Facility (ITF), which can accommodate entire wall/blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  12. First wall material damage induced by fusion-fission neutron environment

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@nrcki.ru

    2016-11-01

    Highlights: • The highest damage and gas production rates are experienced within the first wall materials of a hybrid fusion-fission system. • About ∼2 times higher dpa and 4–5 higher He appm are expected compared to the values distinctive for a pure fusion system at the same DT-neutron wall loading. • The specific nuclear heating may be increased by a factor of ∼8–9 due to fusion and fission neutrons radiation capture in metal components of the first wall. - Abstract: Neutronic performance and inventory analyses were conducted to quantify the damage and gas production rates in candidate materials when used in a fusion-fission hybrid system first wall (FW). The structural materials considered are austenitic SS, Cu-alloy and V- alloys. Plasma facing materials included Be, and CFC composite and W. It is shown that the highest damage rates and gas particles production in materials are experienced within the FW region of a hybrid similar to a pure fusion system. They are greatly influenced by a combined neutron energy spectrum formed by the two-component fusion-fission neutron source in front of the FW and in a subcritical fission blanket behind. These characteristics are non-linear functions of the fission neutron source intensity. Atomic displacement damage production rate in the FW materials of a subcritical system (at the safe subcriticality limit of ∼0.95 and the neutron multiplication factor of ∼20) is almost ∼2 times higher compared to the values distinctive for a pure fusion system at the same 14 MeV neutron FW loading. Both hydrogen (H) and helium (He) gas production rates are practically on the same level except of about ∼4–5 times higher He-production in austenitic and reduced activation ferritic martensitic steels. A proper simulation of the damage environment in hybrid systems is required to evaluate the expected material performance and the structural component residence times.

  13. Nuclear irradiation parameters of beryllium under fusion, fission and IFMIF irradiation conditions

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Leichtle, D.; Simakov, S.; Moeslang, A.; Vladimirov, P.

    2004-01-01

    A computational analysis is presented of the nuclear irradiation parameters for Beryllium under irradiation in typical neutron environments of fission and fusion reactors, and of the presently designed intense fusion neutron source IFMIF. The analysis shows that dpa and Tritium production rates at fusion relevant levels can be achieved with existing high flux fission reactors while the achievable Helium production is too low. The resulting He-Tritium and He/dpa ratios do not meet typical fusion irradiation conditions. Irradiation simulations in the medium flux test modules of the IFMIF neutron source facility were shown to be more suitable to match fusion typical irradiation conditions. To achieve sufficiently high production rates it is suggested to remove the creep-fatigue testing machine together with the W spectra shifter plate and move the tritium release module upstream towards the high flux test module. (author)

  14. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  15. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  16. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  17. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  18. Singlet fission efficiency in tetracene-based organic solar cells

    International Nuclear Information System (INIS)

    Wu, Tony C.; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A.

    2014-01-01

    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells

  19. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  20. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  1. Multispecies exclusion process with fusion and fission of rods: A model inspired by intraflagellar transport

    Science.gov (United States)

    Patra, Swayamshree; Chowdhury, Debashish

    2018-01-01

    We introduce a multispecies exclusion model where length-conserving probabilistic fusion and fission of the hard rods are allowed. Although all rods enter the system with the same initial length ℓ =1 , their length can keep changing, because of fusion and fission, as they move in a step-by-step manner towards the exit. Two neighboring hard rods of lengths ℓ1 and ℓ2 can fuse into a single rod of longer length ℓ =ℓ1+ℓ2 provided ℓ ≤N . Similarly, length-conserving fission of a rod of length ℓ'≤N results in two shorter daughter rods. Based on the extremum current hypothesis, we plot the phase diagram of the model under open boundary conditions utilizing the results derived for the same model under periodic boundary condition using mean-field approximation. The density profile and the flux profile of rods are in excellent agreement with computer simulations. Although the fusion and fission of the rods are motivated by similar phenomena observed in intraflagellar transport (IFT) in eukaryotic flagella, this exclusion model is too simple to account for the quantitative experimental data for any specific organism. Nevertheless, the concepts of "flux profile" and "transition zone" that emerge from the interplay of fusion and fission in this model are likely to have important implications for IFT and for other similar transport phenomena in long cell protrusions.

  2. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  3. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  4. Molecular dynamics simulations of cluster fission and fusion processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Results of molecular dynamics simulations of fission reactions Na_10^2+ --> Na_7^+ +Na_3^+ and Na_18^2+ --> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic...... separation of the daughter fragments begins and/or forming a "neck" between the separating fragments. A novel algorithm for modeling the cluster growth process is described. This approach is based on dynamic search for the most stable cluster isomers and allows one to find the optimized cluster geometries...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  5. Backtracing neutron analysis in the fusion-fission dynamics study

    International Nuclear Information System (INIS)

    Brennand, E. de Goes; Hanappe, F.; Stuttge, L.

    2001-01-01

    A new method for the analysis of multi parametric experimental data is used in the study of the dynamics of the fission process for the compound system 126 Ba. We apply this method to obtain the correlation between thermal energy related to the neutron total multiplicity and the correlation between pre-scission neutron and pos-scission neutron multiplicities. The results obtained are interpreted into the framework of a dynamical model. From this interpretation we have access to the following information: the friction intensity which drives the dynamical evolution of the system; the initial deformation of the compound system; the barrier evolution with temperature and angular momentum, and fission times. (author)

  6. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  7. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  8. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  9. Fusability and fissionability in 86Kr induced reactions near and below the fusion barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.; Hessberger, F.P.; Hildenbrand, K.D.; Hofmann, S.; Muenzenberg, G.; Schmidt, K.H.; Schneider, W.F.W.; Suemmerer, K.; Wirth, G.; Kratz, J.V.; Schlitt, K.; Sahm, C.C.

    1985-04-01

    Evaporation-residue excitation functions for the reactions 86 Kr + sup(70,76)Ge, sup(92,100)Mo, sup(99,102,104)Ru have been measured using activation methods and the velocity filter SHIP. The data span the region from well below the fusion barrier up to and beyond the energy where limitation by fission competition takes place. The data are shown to be compatible with the concept of complete fusion followed by the statistical decay of the equilibrated compound nucleus. Information on both the fusion probability at and below the fusion threshold and the fissionability of the compound nuclei formed is extracted. The model dependence of the extracted fission barriers is discussed in detail. In analogy to studies involving lighter projectiles, strong correlations between the low-energy nuclear-structure properties of the nuclei and the subbarrier fusion probability are found. A relative shift of the fusion barrier to higher energies, that increases with the number of valence neutrons in the target nuclei, is observed. (orig.)

  10. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  11. Fission anisotropy of Tl produced in fusion reactions in the ...

    Indian Academy of Sciences (India)

    - ... framework of the modified statistical model and the results were compared ... Later, it has been found that the fission times calculated using this model .... where P(K) = (T /hωeq) exp(−Veq/T) is the probability that the system is in a given K,.

  12. Workshop summaries for the third US/USSR symposium on fusion-fission reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-07-01

    Workshop summaries on topics related to the near-term development requirements for fusion-fission (hybrid) reactors are presented. The summary topics are as follows: (1) external factors, (2) plasma engineering, (3) ICF hybrid reactors, (4) blanket design, (5) materials and tritium, and (6) blanket engineering development requirements

  13. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    NARCIS (Netherlands)

    Cheong, S.A.; Tan, T.L.; Chen, C.-C.; Chang, W.-L.; Liu, Z.; Chew, L.Y.; Sloot, P.M.A.; Johnson, N.F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting

  14. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  15. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    International Nuclear Information System (INIS)

    Vladimirov, P.; Moeslang, A.

    2004-01-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions

  16. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  17. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  18. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  19. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  20. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    International Nuclear Information System (INIS)

    Huang Jinhua; Feng Kaiming; Deng Baiquan; Deng, P.Zh.; Zhang Guoshu; Hu Gang; He Kaihui; Wu Yican; Qiu Lijian; Huang Qunying; Xiao Bingjia; Liu Xiaoping; Chen Yixue; Kong, M.H.

    2002-01-01

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented

  1. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  2. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  3. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  4. Economic implications of fusion-fission energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Schulte, S.C.

    1979-04-01

    The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity

  5. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  6. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  7. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  8. Simulation of fusion first-wall environment in a fission reactor

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Kulcinski, G.L.; Longhurst, G.R.

    1982-01-01

    A novel concept to produce a realistic simulation of a fusion first-wall test environment has been proposed recently. This concept takes advantage of the (/eta/, α) reaction in 59 Ni to produce a high internal helium content in the metal while using the 3 He (/eta/, /rho/)T reaction in the gas surrounding the specimen to produce an external heat and particle flux. Models to calculate heat flux, erosion rate, implantation, and damage rate to the walls of the test module are presented. Preliminary results show that a number of important fusion technology issues could be tested experimentally in a fission reactor such as the Engineering Test Reactor

  9. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  10. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Kalkhoran, Siavash Beikoghli; Cabrera-Fuentes, Hector A.; Hausenloy, Derek?J.

    2015-01-01

    The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movement impact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangeme...

  11. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  12. Fusion or Fission: The Destiny of Mitochondria In Traumatic Brain Injury of Different Severities.

    Science.gov (United States)

    Di Pietro, Valentina; Lazzarino, Giacomo; Amorini, Angela Maria; Signoretti, Stefano; Hill, Lisa J; Porto, Edoardo; Tavazzi, Barbara; Lazzarino, Giuseppe; Belli, Antonio

    2017-08-23

    Mitochondrial dynamics are regulated by a complex system of proteins representing the mitochondrial quality control (MQC). MQC balances antagonistic forces of fusion and fission determining mitochondrial and cell fates. In several neurological disorders, dysfunctional mitochondria show significant changes in gene and protein expression of the MQC and contribute to the pathophysiological mechanisms of cell damage. In this study, we evaluated the main gene and protein expression involved in the MQC in rats receiving traumatic brain injury (TBI) of different severities. At 6, 24, 48 and 120 hours after mild TBI (mTBI) or severe TBI (sTBI), gene and protein expressions of fusion and fission were measured in brain tissue homogenates. Compared to intact brain controls, results showed that genes and proteins inducing fusion or fission were upregulated and downregulated, respectively, in mTBI, but downregulated and upregulated, respectively, in sTBI. In particular, OPA1, regulating inner membrane dynamics, cristae remodelling, oxidative phosphorylation, was post-translationally cleaved generating differential amounts of long and short OPA1 in mTBI and sTBI. Corroborated by data referring to citrate synthase, these results confirm the transitory (mTBI) or permanent (sTBI) mitochondrial dysfunction, enhancing MQC importance to maintain cell functions and indicating in OPA1 an attractive potential therapeutic target for TBI.

  13. Tensile property changes of metals and irradiated to low doses with fission, fusion and spallation neutrons

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructures and mechanical properties of metals. Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36-55 C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90 C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa

  14. Physics of Fission and Fusion for the Diagnostics and Monitoring of the Deadliest Illness of Mankind

    Science.gov (United States)

    Saxena, Arjun

    2015-03-01

    The physics of fission and fusion has been well known for the past several decades. It has been used primarily for destructive purposes (e. g., nuclear armaments) with both processes. However for peaceful purposes, e. g., generation of energy, only fission has been used, but not yet fusion. It is also well known that the deadliest illness of mankind is the group of illnesses called mental illnesses. A large segment of the world population is afflicted by them causing more loss of human lives, destruction of families, businesses and overall economy than all the other illnesses combined. Despite outstanding advancements in medical research and huge investments, unfortunately no diagnostic techniques have yet been found which can characterize the patient's mental illness. Consequently, no quantitative monitoring techniques are available to evaluate the efficacy of the various medicines used to treat the patients, and to develop them in the pharmaceutical labs. The purpose of this paper is to apply the constructive aspects of fission and fusion to identify the missing links in the diagnosis and treatment of mental illnesses. Each patient is a unique human being, not a disease or a group of symptoms. This makes it even more difficult to treat the patients suffering from mental illnes

  15. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  16. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal)

    2015-07-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  17. The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies

    International Nuclear Information System (INIS)

    Schmidt, Luisa; Horta, Ana; Pereira, Sergio; Delicado, Ana

    2015-01-01

    This paper presents results of a comparison of media coverage of fusion and fission energy technologies in three countries (Germany, Spain and Portugal) and in the English language international print media addressing transnational elite, from 2008 to 2012. The analysis showed that the accident in Fukushima in March 2010 did not have significant impact on media framing of nuclear fusion in the major part of print media under investigation. In fact, fusion is clearly dissociated from traditional nuclear (fission) energy and from nuclear accidents. It tends to be portrayed as a safe, clean and unlimited source of energy, although less credited when confronted with research costs, technological feasibility and the possibility to be achieved in a reasonable period of time. On the contrary, fission is portrayed as a hazardous source of energy, expensive when compared to research costs of renewables, hardly a long-term energy option, susceptible to contribute to the proliferation of nuclear weapons or rogue military use. Fukushima accident was consistently discussed in the context of safety problems of nuclear power plants and in many cases appeared not as an isolated event but rather as a reminder of previous nuclear disasters such as Three Miles Island and Chernobyl. (authors)

  18. Nuclear fusion and fission, and related technologies department: 2007 progress report

    International Nuclear Information System (INIS)

    2007-12-01

    ENEA continues to contribute to broadening plasma physics knowledge as well as to developing the relevant technologies in the framework of the EURATOM-ENEA Association for fusion. This report describes the 2007 research activities carried out by the ENEA Fusion Research Group of the Nuclear Fusion and Fission, and Related Technologies Department (FPN). Other ENEA research groups also contributed to the activities. The following fields were addressed: magnetically confined nuclear fusion (physics and technology), superconductivity and inertial fusion. Planning of the 2007 fusion activities took into account the different scenarios determined by the new organisation of the European programme based on the start of ITER construction. The establishment of the ITER International Organisation and the European Domestic Agency (Fusion for Energy) required a new organisational scheme. This has implied not only the implementation of a more project oriented structure but also the need to launch the constitution of a consortium agreement between the Associations in order to cope with the needs for the design and construction of the components of ITER that require specific know-how, e.g., diagnostics and test blanket module

  19. Fusion-Fission Transmutation Scheme-Efficient destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Valanju, P.M.; Mahajan, S.M.; Schneider, E.A.

    2009-01-01

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal nonfissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The center piece of this fuel cycle, the high power density compact fusion neutron source (100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is an order of magnitude below the corresponding number of critical fast-spectrum reactors (FRs) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades

  20. Block-free optical quantum Banyan network based on quantum state fusion and fission

    International Nuclear Information System (INIS)

    Zhu Chang-Hua; Meng Yan-Hong; Quan Dong-Xiao; Zhao Nan; Pei Chang-Xing

    2014-01-01

    Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper. (general)

  1. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    and fusion-fission reactions. We have extracted the ratio of yield of transfer induced fission events to the singles yield of transfer products observed at grazing angle for different Z of ejectiles (PLF). It is seen that transfer induced fission yield increases with increasing Z transfer up to DZ = 4 and then becomes flat and starts to decrease for higher Z-transfers. This may indicate the onset of other processes which inhibit the fission; projectile break-up may be responsible for lowering the transfer of excitation energy and angular momentum to the fissioning system or the evaporation of charged particles may promptly reduce the excitation energy of the compound system which survive fission. This has been investigated looking at PLF in coincidence with protons, a particles, fission and target-like fragments. We have also analyzed the neutron energy spectra for the fusion-fission reaction obtained after correcting for the neutron detector efficiency. Fourteen laboratory neutron energy spectra for various fission-neutron correlation angles were simultaneously fitted with three moving sources. The results show a post- and pre-scission temperature of about 1.0 MeV and 2.24 MeV respectively, comparable to that observed in others low energy measurements and consistent with the compound nuclear excitation energy of 218 MeV, assuming a level density parameter a =A/8 MeV-1. (Author)

  2. Disentangling association patterns in fission-fusion societies using African buffalo as an example

    Science.gov (United States)

    Cross, P.C.; Lloyd-Smith, James O.; Getz, W.M.

    2005-01-01

    A description of the social network of a population aids us in understanding dispersal, the spread of disease, and genetic structure in that population. Many animal populations can be classified as fission–fusion societies, whereby groups form and separate over time. Examples discussed in the literature include ungulates, primates and cetaceans (Lott and Minta, 1983, Whitehead et al., 1991, Henzi et al., 1997, Christal et al., 1998 and Chilvers and Corkeron, 2002). In this study, we use a heuristic simulation model to illustrate potential problems in applying traditional techniques of association analysis to fission–fusion societies and propose a new index of association: the fission decision index (FDI). We compare the conclusions resulting from traditional methods with those of the FDI using data from African buffalo, Syncerus caffer, in the Kruger National Park. The traditional approach suggested that the buffalo population was spatially and temporally structured into four different ‘herds’ with adult males only peripherally associated with mixed herds. Our FDI method indicated that association decisions of adult males appeared random, but those of other sex and age categories were nonrandom, particularly when we included the fission events associated with adult males. Furthermore, the amount of time that individuals spent together was only weakly correlated with their propensity to remain together during fission events. We conclude with a discussion of the applicability of the FDI to other studies.

  3. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  4. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  5. Dynamical fission life-times deduced from gamma-ray emission observed in the fusion-fission reaction : Ne-20 on Bi-209.

    NARCIS (Netherlands)

    vanderPloeg, H; Bacelar, JCS; Buda, A; Dioszegi, [No Value; vantHof, G; vanderWoude, A

    1996-01-01

    The gamma-ray emission spectra between 4 and 20 MeV have been measured for the fusion-fission reactions Ne-20 on Bi-209 --> Np-229* at beam energies 150, 186 and 220 MeV. In addition for the latter experiment the angular dependence of the gamma-ray emission with respect to the spin axis has been

  6. Cluster expression in fission and fusion in high-dimensional macroscopic-microscopic calculations

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Ichikawa, Takatoshi; Moller, Peter; Sierk, Arnold J.

    2004-01-01

    We discuss the relation between the fission-fusion potential-energy surfaces of very heavy nuclei and the formation process of these nuclei in cold-fusion reactions. In the potential-energy surfaces, we find a pronounced valley structure, with one valley corresponding to the cold-fusion reaction, the other to fission. As the touching point is approached in the cold-fusion entrance channel, an instability towards dynamical deformation of the projectile occurs, which enhances the fusion cross section. These two 'cluster effects' enhance the production of superheavy nuclei in cold-fusion reactions, in addition to the effect of the low compound-system excitation energy in these reactions. Heavy-ion fusion reactions have been used extensively to synthesize heavy elements beyond actinide nuclei. In order to proceed further in this direction, we need to understand the formation process more precisely, not just the decay process. The dynamics of the formation process are considerably more complex than the dynamics necessary to interpret the spontaneous-fission decay of heavy elements. However, before implementing a full dynamical description it is useful to understand the basic properties of the potential-energy landscape encountered in the initial stages of the collision. The collision process and entrance-channel landscape can conveniently be separated into two parts, namely the early-stage separated system before touching and the late-stage composite system after touching. The transition between these two stages is particularly important, but not very well understood until now. To understand better the transition between the two stages we analyze here in detail the potential energy landscape or 'collision surface' of the system both outside and inside the touching configuration of the target and projectile. In Sec. 2, we discuss calculated five-dimensional potential-energy landscapes inside touching and identify major features. In Sec. 3, we present calculated

  7. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  8. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  9. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  10. Present status of the EPFL (Swiss) fusion-fission experiment 'LOTUS'

    International Nuclear Information System (INIS)

    Haldy, P.A.; Frueh, R.; Ligou, J.; Schneeberger, J.P.; Kumar, A.

    1984-01-01

    The present status of the LOTUS project - a fusion-fission hybrid research facility under construction at the Ecole Polytechnique Federale de Lausanne (EPFL) Switzerland - is presented. Emphasis is places on the description of the facility and on the design studies of an initial blanket of the ''fission-suppressed'' type. The LOTUS facility consists of a parallelepiped-shaped blanket, occupying roughly a volume of 1 m 3 , driven by a sealed 14 MeV (D,T) neutron generator with a rated source strength of 5x10 12 n/s. The experiment is housed in a massive concrete shielding of 220 cm thick walls, which leaves an experimental test chamber of 360 cm by 240 cm lateral dimensions and a height of 300 cm. (orig.) [de

  11. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  12. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    International Nuclear Information System (INIS)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A.; Goldberg, David; Menon, Vinod M.

    2013-01-01

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency

  13. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  14. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  15. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  16. Fusion-fission hybrid as an alternative to the fast breeder reactor

    International Nuclear Information System (INIS)

    Barrett, R.J.; Hardie, R.W.

    1980-09-01

    This report compares the fusion-fission hybrid on the plutonium cycle with the classical fast breeder reactor (FBR) cycle as a long-term nuclear energy source. For the purpose of comparison, the current light-water reactor once-through (LWR-OT) cycle was also analyzed. The methods and models used in this study were developed for use in a comparative analysis of conventional nuclear fuel cycles. Assessment areas considered in this study include economics, energy balance, proliferation resistance, technological status, public safety, and commercial viability. In every case the characteristics of all fuel cycle facilities were accounted for, rather than just those of the reactor

  17. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  18. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  19. Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei

    International Nuclear Information System (INIS)

    Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz

    2016-01-01

    Fusionfission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.

  20. Influence of transmutation and high neutron exposure on materials used in fission-fusion correlation experiments

    International Nuclear Information System (INIS)

    Garner, F.A.

    1990-07-01

    This paper explores the response of three different materials to high fluence irradiation as observed in recent fusion-related experiments. While helium at fusion-relevant levels influences the details of the microstructure of Fe--Cr--Ni alloys somewhat, the resultant changes in swelling and tensile behavior are relatively small. Under conditions where substantially greater-than-fusion levels of helium are generated, however, an extensive refinement of microstructure can occur, leading to depression of swelling at lower temperatures and increased strengthening at all temperatures studied. The behavior of these alloys is dominated by their tendency to converge to saturation microstructures which encourage swelling. Irradiations of nickel are dominated by its tendency to develop a different type of saturation microstructure that discourages further void growth. Swelling approaches saturation levels that are remarkably insensitive to starting microstructure and irradiation temperature. The rate of approach to saturation is very sensitive to variables such as helium, impurities, dislocation density and displacement rate, however. Copper exhibits a rather divergent response depending on the property measured. Transmutation of copper to nickel and zinc plays a large role in determining electrical conductivity but almost no role in void swelling. Each of these three materials offers different challenges in the interpretation of fission-fusion correlation experiments

  1. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  2. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Science.gov (United States)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  3. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    Science.gov (United States)

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-04

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.

  4. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  5. JEFF 3.1.2 - Joint evaluated nuclear data library for fission and fusion applications - February 2012 (DVD)

    International Nuclear Information System (INIS)

    2012-02-01

    The Joint Evaluated Fission and Fusion File (JEFF) project is a collaboration between NEA Data Bank member countries. The JEFF library combines the efforts of the JEFF and EFF/EAF Working Groups to produce a common sets of evaluated nuclear data, mainly for fission and fusion applications. The JEFF-3.1.2 version, released in February 2012, contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yields, and thermal scattering law data. Currently, JEFF-3.1.2 data are available in ENDF-6 format (neutron library) from the Web. This new release is an update from JEFF-3.1.1 which concerns 115 material files from the general purpose incident neutron library which have been modified since JEFF-3.1.1. Modifications include: Hf isotopes: 6 new Hf evaluations have replaced previous ones; Gamma production data from neutron capture (MF=6 MT=102) has been added to 89 fission products (FP) evaluations; 47 of these FP have been replaced by ENDF-B/VII.0 evaluations, with gamma data added in this release. Corrections from JEFF-Beta feedback have been incorporated for 15 materials. Corrections that solve NJOY covariance processing problems and JANIS warnings have been made to 6 files. This DVD contains: - General purpose incident neutron data in ENDF-6 and ACE formats; - Activation data; - Thermal scattering data; - Incident proton data; - Radioactive decay data; - Neutron-induced fission yields data; - Spontaneous fission yields data

  6. Influence of differences in the proton and neutron distributions on nuclear fusion and fission; Infuence de la difference entre les distributions de protons et de neutrons dans le noyau sur les processus de fusion et de fission

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolski, A

    2006-04-15

    This thesis work is centred on some essential ingredients of a theoretical description of the reaction dynamics of the nuclear fusion and fission process, such as the interaction potential between projectile and target nuclei for fusion and the deformation energy landscape in a multidimensional space for the fission process. We have in particular evaluated the importance of the difference between the neutron and proton density distributions on these 2 processes. The fusion potential between the two interacting nuclei is obtained through the nucleon densities, determined in a self-consistent way through semiclassical density variational calculations for a given effective nucleon-nucleon effective interaction of the Skyrme type. These fusion barriers can then be used in a Langevin formalism to evaluation fusion cross sections. For the fission process it turns out to be essential to allow for the large variety of shapes which appear between the nuclear ground state and the the scission configuration. We show that a shape parametrisation taking into account elongation, as well as possible neck formation, left-right asymmetry and non-axiality allows a precise description of this phenomena in the framework of the macroscopic-microscopic approach. We are thus able to enrich the expression of the liquid-drop type energy through a term which describes the variation of the nuclear energy due to a deformation difference between the proton and neutron distribution. The resulting reduction of the fission barriers is only of the order of one MeV but this can easily cause a change in the fission cross-section by an order of magnitude and thus plays a capital role for the stability of super-heavy of exotic nuclei. (author)

  7. Survey on the fusion/fission-hybrid-reactors, a literature review

    International Nuclear Information System (INIS)

    A survey, based on existing literature, of the work being pursued worldwide on fusion - fission (hybrid) reactor systems is presented. Six areas are reviewed: Plasma physics parameters; Blankets concepts; Fuel cycles; Reactor conceptual designs; Safety and environmental problems; System studies and economic perspectives. Attention has been restricted to systems using magnetically confined plasmas, mainly to mirror and Tokamak - type concepts. The aim is to provide sufficient information, even if not exhaustive, on hybrid reactor concepts in order to help understand what may be expected from their possible development and the ways in which hybrids could affect the future energy scenario. Some concluding remarks are made which represent the personal view of the authors only

  8. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    Science.gov (United States)

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  9. Generalized liquid drop model and fission, fusion, alpha and cluster radioactivity and superheavy nuclei

    International Nuclear Information System (INIS)

    Royer, G.

    2012-01-01

    A particular version of the liquid drop model taking into account both the mass and charge asymmetries, the proximity energy, the rotational energy, the shell and pairing energies and the temperature has been developed to describe smoothly the transition between one and two-body shapes in entrance and exit channels of nuclear reactions. In the quasi-molecular shape valley where the proximity energy is optimized, the calculated l-dependent fusion and fission barriers, alpha and cluster radioactivity half-lives as well as actinide half-lives are in good agreement with the available experimental data. In this particular deformation path, double-humped potential barriers begin to appear even macroscopically for heavy nuclear systems due to the influence of the proximity forces and, consequently, quasi-molecular isomeric states can survive in the second minimum of the potential barriers in a large angular momentum range

  10. Metabolic Syndrome and Antipsychotics: The Role of Mitochondrial Fission/Fusion Imbalance

    Directory of Open Access Journals (Sweden)

    Andrea del Campo

    2018-04-01

    Full Text Available Second-generation antipsychotics (SGAs are known to increase cardiovascular risk through several physiological mechanisms, including insulin resistance, hepatic steatosis, hyperphagia, and accelerated weight gain. There are limited prophylactic interventions to prevent these side effects of SGAs, in part because the molecular mechanisms underlying SGAs toxicity are not yet completely elucidated. In this perspective article, we introduce an innovative approach to study the metabolic side effects of antipsychotics through the alterations of the mitochondrial dynamics, which leads to an imbalance in mitochondrial fusion/fission ratio and to an inefficient mitochondrial phenotype of muscle cells. We believe that this approach may offer a valuable path to explain SGAs-induced alterations in metabolic homeostasis.

  11. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  12. Integral tests of coupled multigroup neutron and gamma cross sections with fission and fusion sources

    International Nuclear Information System (INIS)

    Schriewer, J.; Hehn, G.; Mattes, M.; Pfister, G.; Keinert, J.

    1978-01-01

    Calculations were made for different benchmark experiments in order to test the coupled multigroup neutron and gamma library EURLIB-3 with 100 neutron groups and 20 gamma groups. In cooperation with EURATOM, Ispra, we produced this shielding library recently from ENDF/B-IV data for application in fission and fusion technology. Integral checks were performed for natural lithium, carbon, oxygen, and iron. Since iron is the most important structural material in nuclear technology, we started with calculations of iron benchmark experiments. Most of them are integral experiments of INR, Karlsruhe, but comparisons were also done with benchmark experiments from USA and Japan. For the experiments with fission sources we got satisfying results. All details of the resonances cannot be checked with flux measurements and multigroup cross sections used. But some averaged resonance behaviour of the measured and calculated fluxes can be compared and checked within the error limits given. We get greater differences in the calculations of benchmark experiments with 14 MeV neutron sources. For iron the group cross sections of EURLIB-3 produce an underestimation of the neutron flux in a broad energy region below the source energy. The conclusion is that the energy degradation by inelastic scattering is too strong. For fusion application the anisotropy of the inelastic scatter process must be taken into account, which isn't done by the processing codes at present. If this effect isn't enough, additional corrections have to be applied to the inelastic cross sections of iron in ENDF/B-IV. (author)

  13. Number-Theory in Nuclear-Physics in Number-Theory: Non-Primality Factorization As Fission VS. Primality As Fusion; Composites' Islands of INstability: Feshbach-Resonances?

    Science.gov (United States)

    Siegel, Edward

    2011-10-01

    Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!

  14. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  15. Near-barrier Fusion Evaporation and Fission of 28Si+174Yb and 32S+170Er

    Science.gov (United States)

    Wang, Dongxi; Lin, Chengjian; Jia, Huiming; Ma, Nanru; Sun, Lijie; Xu, Xinxing; Yang, Lei; Yang, Feng; Zhang, Huanqiao; Bao, Pengfei

    2017-11-01

    Fusion evaporation residues and fission fragments have been measured, respectively, at energies around the Coulomb barrier for the 28Si+174Yb and 32S+170Er systems forming the same compound nucleus 202Po. The excitation function of fusion evaporation, fission as well as capture reactions were deduced. Coupled-channels analyses reveal that couplings to the deformations of targets and the two-phonon states of projectiles contribute much to the enhancement of capture cross sections at sub-barrier energies. The mass and total kinetic energy of fission fragments were deduced by the time-difference method assuming full momentum transfer in a two-body kinematics. The mass-energy and mass-angle distributions were obtained and no obvious quasi-fission components were observed in this bombarding energy range. Further, mass distributions of fission fragments were fitted to extract their widths. Results show that the mass widths decrease monotonically with decreasing energy, but might start to increase when Ec.m./VB < 0.95 for both systems.

  16. The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants.

    Science.gov (United States)

    Archie, Elizabeth A; Moss, Cynthia J; Alberts, Susan C

    2006-03-07

    Many social animals live in stable groups. In contrast, African savannah elephants (Loxodonta africana) live in unusually fluid, fission-fusion societies. That is, 'core' social groups are composed of predictable sets of individuals; however, over the course of hours or days, these groups may temporarily divide and reunite, or they may fuse with other social groups to form much larger social units. Here, we test the hypothesis that genetic relatedness predicts patterns of group fission and fusion among wild, female African elephants. Our study of a single Kenyan population spans 236 individuals in 45 core social groups, genotyped at 11 microsatellite and one mitochondrial DNA (mtDNA) locus. We found that genetic relatedness predicted group fission; adult females remained with their first order maternal relatives when core groups fissioned temporarily. Relatedness also predicted temporary fusion between social groups; core groups were more likely to fuse with each other when the oldest females in each group were genetic relatives. Groups that shared mtDNA haplotypes were also significantly more likely to fuse than groups that did not share mtDNA. Our results suggest that associations between core social groups persist for decades after the original maternal kin have died. We discuss these results in the context of kin selection and its possible role in the evolution of elephant sociality.

  17. AUS, Neutron Transport and Gamma Transport System for Fission Reactors and Fusion Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of program or function: AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations. 2 - Method of solution: AUS98 is a modular system in which the modules are complete programs linked by a path given in the input stream. A simple path is simply a sequence of modules, but the path is actually pre-processed and compiled using the Fortran 77 compiler. This provides for complex module linking if required. Some of the modules included in AUS98 are: MIRANDA Cross-section generation in a multi-region resonance subgroup calculation and preliminary group condensation. ANAUSN One-dimensional discrete ordinates calculation. ICPP Isotropic collision probability calculation in one dimension and for rod clusters. POW3D Multi-dimensional neutron diffusion calculation including feedback-free kinetics. AUSIDD One-dimensional diffusion calculation. EDITAR Reaction-rate editing and group collapsing following a transport calculation. CHAR Lattice and global burnup calculation. MICBURN Control of global burnup

  18. XEUS: Exploratory Energy Utilization Systemic s for Fission Fusion Hybrid Application

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Jeong, Wi S.; Son, Hyung M.

    2008-01-01

    World energy outlook requires environmental friendliness, sustain ability and improved economic feasibility. The Exploratory Energy Utilization Systemic s (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery Omnibus Reactor Integral System (BORIS) is a liquid-metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explorer (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion-fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Rankine cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell-and-tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. The supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. Thermo hydrodynamic characteristics of each component in MOBIS are demonstrated utilizing computational fluid dynamics software CFX R . Another key contributor to the reduction of capital costs per unit energy has to do with manufacturing and assembly processes that streamline plant construction by minimizing construction work and time. In a three

  19. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    International Nuclear Information System (INIS)

    Moir, R.W.; Shaw, H.F.; Caro, A.; Kaufman, L.; Latkowski, J.F.; Powers, J.; Turchi, P.A.

    2008-01-01

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of 238 U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF 4 , whose melting point is 490 C. The use of 232 Th as a fuel is also being studied. ( 232 Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be ∼550 C at the inlet (60 C above the solidus temperature) and ∼650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount (∼1 mol%) of UF 3 . The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu 3+ in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus 233 U production rate is ∼0.6 atoms per 14.1 MeV neutron

  20. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  1. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  2. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman

    2017-01-01

    Full Text Available The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop fission barrier heights (FBHs for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  3. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  4. Fission-fusion and lineal effect: aspects of the population structure of the Semai Senoi of Malaysia.

    Science.gov (United States)

    Fix, A G

    1975-09-01

    Analysis of histories and genealogies from seven relatively unacculturated, swidden-farming Semai settlements shows that the composition of local groups fluctuates through time. This instability is similar to a pattern which Neel and his colleagues have suggested is typical of primitive society, the fission-fusion model. In addition, the individuals comprising Semai fission groups are kinsmen which implies that the number of independent genomes represented is markedly less than the number of individual migrants (the lineal effect). Fission groups may form new villages or fuse with an established settlement. In either case, the genetic effects of such migration are more pronounced than would be expected on the basis of founder effect or random migration. Despite several conspicuous differences in social organization between the Semai and the South American Indians (e.g., bilateral vs. unilineal descent) whose population structure provided the empirical basis for the fission-fusion, lineal effect model, the basic similarities are striking. The Semai case thus lends support to the proposition that this pattern may be of some generality in technologically primitive populations.

  5. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs

  6. Positron annihilation lifetime measurements of vanadium alloy and F82H irradiated with fission and fusion neutrons

    International Nuclear Information System (INIS)

    Sato, K.; Inoue, K.; Yoshiie, T.; Xu, Q.; Wakai, E.; Kutsukake, C.; Ochiai, K.

    2009-01-01

    V-4Cr-4Ti, F82H, Ni and Cu were irradiated with fission and fusion neutrons at room temperature and 473 K. Defect structures were analyzed and compared using positron annihilation lifetime measurement, and microstructural evolution was discussed. The mean lifetime of positrons (the total amount of residual defects) increased with the irradiation dose. The effect of cascade impact was detected in Ni at room temperature. The size and the number of vacancy clusters were not affected by the displacement rate in the fission neutron irradiation at 473 K for the metals studied. The vacancy clusters were not formed in V-4Cr-4Ti irradiated at 473 K in the range of 10 -6 -10 -3 dpa. In F82H irradiated at 473 K, the defect evolution was prevented by pre-existing defects. The mean lifetime of positrons in fission neutron irradiation was longer than that in fusion neutron irradiation in V-4Cr-4Ti at 473 K. It was interpreted that more closely situated subcascades were formed in the fusion neutron irradiation and subcascades interacted with each other, and consequently the vacancy clusters did not grow larger.

  7. Fusion-fission hybrid design with analysis of direct enrichment and non-proliferation features (the SOLASE-H study)

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.; Kulcinski, G.L.; Larsen, E.; Maynard, C.W.; Magheb, M.M.H.; Sviatolslavsky, I.N.; Vogelsang, W.F.; Wolfer, W.G.

    1981-01-01

    The role of a fusion-fission hybrid in the context of a nuclear economy with and without reprocessing is examined. An inertial confinement fusion driver is assumed and a consistent set of reactor parameters are developed. The form of the driver is not critical, however, to the general concepts. The use of the hybrid as a fuel factory within a secured fuel production and reprocessing center is considered. Either the hybrid or a low power fission reactor can be used to mildly irradiate fuel prior to shipment to offsite reactors thereby rendering the fuel resistant to diversion. A simplified economic analysis indicates a hybrid providing fuel to 10 fission reactors of equal thermal power is insensitive to the recirculating power fraction provided reprocessing is permitted. If reprocessing is not allowed, the hybrid can be used to directly enrich light water reactor fuel bundles fabricated initially from fertile fuel (either ThO 2 or 238 UO 2 ). A detailed neutronic analysis indicates such direct enrichments is feasible but the support ratio for 233 U or 239 Pu production is only 2, making such an approach highly sensitive to the hybrid cost. The hybrid would have to produce considerable net power for economic feasibility in this case. Inertial confinement fusion performance requirements for hybrid application are also examined and an integrated design, SOLASE-H, is described based upon the direct enrichment concept. (orig.)

  8. To follow or not? How animals in fusion-fission societies handle conflicting information during group decision-making.

    Science.gov (United States)

    Merkle, Jerod A; Sigaud, Marie; Fortin, Daniel

    2015-08-01

    When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break-ups, and are therefore a fundamental driver of fusion-fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion-fission dynamics. Using movement data from GPS-collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group - a tactic that led to energy-rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion-fission dynamics and play an essential role in animal distribution. © 2015 John Wiley & Sons Ltd/CNRS.

  9. The Asian Correction Can Be Quantitatively Forecasted Using a Statistical Model of Fusion-Fission Processes.

    Science.gov (United States)

    Teh, Boon Kin; Cheong, Siew Ann

    2016-01-01

    The Global Financial Crisis of 2007-2008 wiped out US$37 trillions across global financial markets, this value is equivalent to the combined GDPs of the United States and the European Union in 2014. The defining moment of this crisis was the failure of Lehman Brothers, which precipitated the October 2008 crash and the Asian Correction (March 2009). Had the Federal Reserve seen these crashes coming, they might have bailed out Lehman Brothers, and prevented the crashes altogether. In this paper, we show that some of these market crashes (like the Asian Correction) can be predicted, if we assume that a large number of adaptive traders employing competing trading strategies. As the number of adherents for some strategies grow, others decline in the constantly changing strategy space. When a strategy group grows into a giant component, trader actions become increasingly correlated and this is reflected in the stock price. The fragmentation of this giant component will leads to a market crash. In this paper, we also derived the mean-field market crash forecast equation based on a model of fusions and fissions in the trading strategy space. By fitting the continuous returns of 20 stocks traded in Singapore Exchange to the market crash forecast equation, we obtain crash predictions ranging from end October 2008 to mid-February 2009, with early warning four to six months prior to the crashes.

  10. Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates.

    Science.gov (United States)

    Amici, Federica; Aureli, Filippo; Call, Josep

    2008-09-23

    The Machiavellian Intelligence or Social Brain Hypothesis explains the evolution of increased brain size as mainly driven by living in complex organized social systems in which individuals represent "moving targets" who can adopt multiple strategies to respond to one another. Frequently splitting and merging in subgroups of variable composition (fission-fusion or FF dynamics) has been proposed as one aspect of social complexity ( compare with) that may be associated with an enhancement of cognitive skills like inhibition, which allows the suppression of prepotent but ineffective responses in a changing social environment. We compared the performance of primates experiencing high levels of FF dynamics (chimpanzees, bonobos, orangutans, and spider monkeys) to that of species living in more cohesive groups (gorillas, capuchin monkeys, and long-tailed macaques) on five inhibition tasks. Testing species differing in diet, phylogenetic relatedness, and levels of FF dynamics allowed us to contrast ecological, phylogenetic, and socioecological explanations for interspecific differences. Spider monkeys performed at levels comparable to chimpanzees, bonobos, and orangutans, and better than gorillas. A two-cluster analysis grouped all species with higher levels of FF dynamics together. These findings confirmed that enhanced inhibitory skills are positively associated with FF dynamics, more than to phylogenetic relations or feeding ecology.

  11. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  12. The neutronics studies of a fusion fission hybrid reactor using pressure tube blankets

    International Nuclear Information System (INIS)

    Zheng Youqi; Zu Tiejun; Wu Hongchun; Cao Liangzhi; Yang Chao

    2012-01-01

    In this paper, a fusion fission hybrid reactor used for energy producing is proposed based on the situation of nuclear power in China. The pressurized light water is applied as the coolant. The fuel assemblies are loaded in the pressure tubes with a modular type structure. The neutronics analysis is performed to get the suitable design and prove the feasibility. The energy multiplication and tritium self-sustaining are evaluated. The neutron load is also cared. From different candidates, the PWR spent fuel is selected as the feed fuel. The results show that the hybrid reactor can meet the expected reactor core lifetime of 5 years with 1000 MWe power output. Two ways are discussed including burning the discharged PWR spent fuel and burning the reprocessed plutonium. The energy multiplication is big enough and the tritium can be self-sustaining for both of the two ways. The neutron wall load in the operating time is kept smaller than the one of ITER. The way to use the reprocessed plutonium brings low neutron wall load, but also brings additional difficulties in operating the hybrid reactor. The way to use the discharged spent fuel is proposed to be a better choice currently.

  13. The Asian Correction Can Be Quantitatively Forecasted Using a Statistical Model of Fusion-Fission Processes.

    Directory of Open Access Journals (Sweden)

    Boon Kin Teh

    Full Text Available The Global Financial Crisis of 2007-2008 wiped out US$37 trillions across global financial markets, this value is equivalent to the combined GDPs of the United States and the European Union in 2014. The defining moment of this crisis was the failure of Lehman Brothers, which precipitated the October 2008 crash and the Asian Correction (March 2009. Had the Federal Reserve seen these crashes coming, they might have bailed out Lehman Brothers, and prevented the crashes altogether. In this paper, we show that some of these market crashes (like the Asian Correction can be predicted, if we assume that a large number of adaptive traders employing competing trading strategies. As the number of adherents for some strategies grow, others decline in the constantly changing strategy space. When a strategy group grows into a giant component, trader actions become increasingly correlated and this is reflected in the stock price. The fragmentation of this giant component will leads to a market crash. In this paper, we also derived the mean-field market crash forecast equation based on a model of fusions and fissions in the trading strategy space. By fitting the continuous returns of 20 stocks traded in Singapore Exchange to the market crash forecast equation, we obtain crash predictions ranging from end October 2008 to mid-February 2009, with early warning four to six months prior to the crashes.

  14. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    International Nuclear Information System (INIS)

    Josephs, J.M.

    1980-01-01

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison is made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10 9 over a 30 year period assuming a 200 gigawatt supply of electrical power

  15. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph Collin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry Materials and Life Sciences Directorate

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrade structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H+ and T+) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion

  16. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The Workshop on Sub-critical Neutron Production held at the University of Maryland and the Eisenhower Institute on 11-13 October 2004 brought together members of fusion, fission and accelerator technical communities to discuss issues of spent fuel, nonproliferation, reactor safety and the use of neutrons for sub-critical operation of nuclear reactors. The Workshop strongly recommended that the fusion community work closely with other technical communities to ensure that a wider range of technical solutions is available to solve the spent fuel problem and to utilize the current actinide inventories. Participants of the Workshop recommended that a follow-on Workshop, possibly under the aegis of the IAEA, should be held in the first half of the year 2005. The Consultancy Meeting is the response to this recommendation. The objectives of the Consultancy meeting were to hold discussions on the role of fusion/fission systems in sub-critical operations of nuclear reactors. The participants agreed that development of innovative (fourth generation) fission reactors, advanced fuel cycle options, and disposition of existing spent nuclear fuel inventories in various Member Sates can significantly benefit from including sub-critical systems, which are driven by external neutron sources. Spallation neutrons produced by accelerators have been accepted in the past as the means of driving sub-critical reactors. The accelerator community deserves credit in pioneering this novel approach to reactor design. Progress in the design and operation of fusion devices now offers additional innovative means, broadening the range of sub-critical operations of fission reactors. Participants felt that fusion should participate with accelerators in providing a range of technical options in reactor design. Participants discussed concrete steps to set up a small fusion/fission system to demonstrate actinide burning in the laboratory and what advice should be given to the Agency on its role in

  17. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  18. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Derkx, X.; Schmidt, K. H.; Andouin, L.; Bacri, C. O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.

    2010-01-01

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238 U beam and a 12 C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  19. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  20. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  1. Fission-fusion correlations for swelling and microstructure in stainless steels: effect of the helium-to-displacement-per-atom ratio

    International Nuclear Information System (INIS)

    Odette, G.R.; Maziaz, P.J.; Spitznagel, J.A.

    1981-01-01

    The initial irradiated structural materials data base for fusion applications will be developed in fission reactors. Hence, this data may need to be adjusted using physically-based procedures to represent behavior in fusion environments, viz. - fission-fusion correlations. Such correlation should reflect a sound mechanistic understanding, and be verified in facilities which most closely simulate fusion conditions. In this paper we review the effects of only one of a number of potentially significant damage variables, the helium to displacement per atom ratio, on microstructural evolution in austenitic stainless steels. Dual-ion and helium preinjection data are analyzed to provide mechanistic guidance; these results appear to be qualitatively consistent with a more detailed comparison made between fast (EBR-II) and mixed (HFIR) spectrum neutron data for a single heat of 20% cold-worked 316 stainless steel. These two fission environments bound fusion (He/dpa ratios. A model calibrated to the fission reactor data is used to extrapolate to fusion conditions. Both the theory and broad empirical observation suggest that helium to dpa ratios have both a qualitative and quantitative influence on microstructural evolution; and that the very high and low ratios found in HFIR and EBR-II may not result in behavior which brackets intermediate fusion conditions

  2. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  3. Fusion-fission hybrids: environmental aspects and their role in hybrid rationale

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1981-01-01

    The rationale for developing hybrids depends on real or perceived liabilities of relying on pure fission to do the same job. Quite possibly the main constraint on expanded use of fission will be neither lack of fuel nor high costs, but perceived environmental liabilities - radioactive wastes, reactor safety, and links to nuclear weaponry. The environmental characteristics of hybrid systems and pure-fisson systems are compared here in detail. The findings are that significant environmental advantages for hybrids cannot now be demonstrated and may not exist. Therefore, if environmental drawbacks constrain the application of pure fission, hybrids probably also will be thus constrained

  4. Fusion-fission of heavy systems: influence of the entrance channel mass assymmetry

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-02-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted

  5. Tritium control and capture in salt-cooled fission and fusion reactors: Status, challenges, and path forward

    International Nuclear Information System (INIS)

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; Whyte, Dennis G.; Scarlat, Raluca

    2017-01-01

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The Fluoride-salt-cooled High-temperature Reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the base-line salts contain lithium where isotopically separated "7Li is proposed to minimize tritium production from neutron interactions with the salt. The Chinese Academy of Science plans to start operation of a 2-MWt molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in "6Li is proposed to maximize tritium generation the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700 °C liquid salt systems. We describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data is the primary constraint for designing efficient cost-effective methods of tritium control.

  6. Fission and fusion interaction phenomena of mixed lump kink solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Liu, Yaqing; Wen, Xiaoyong

    2018-05-01

    In this paper, a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.

  7. Investigation of tritium and 233U breeding in a fission-fusion hybrid reactor fuelling with ThO2

    International Nuclear Information System (INIS)

    Yildiz, K.; Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Altinok, T.; Bayrak, M.; Alkan, M.; Durukan, O.

    2007-01-01

    In the world, thorium reserves are three times more than natural Uranium reserves. It is planned in the near future that nuclear reactors will use thorium as a fuel. Thorium is not a fissile isotope because it doesn't make fission with thermal neutrons so it could be converted to 2 33U isotope which has very high quality fission cross-section with thermal neutrons. 2 33U isotope can be used in present LWRs as an enrichment fuel. In the fusion reactors, tritium is the most important fossil fuel. Because tritium is not natural isotope, it has to be produced in the reactor. The purpose of this work is to investigate the tritium and 2 33U breeding in a fission-fusion hybrid reactor fuelling with ThO 2 for Δt=10 days during a reactor operation period in five years. The neutronic analysis is performed on an experimental hybrid blanket geometry. In the center of the hybrid blanket, there is a line neutron source in a cylindrical cavity, which simulates the fusion plasma chamber where high energy neutrons (14.1 MeV) are produced. The conventional fusion reaction delivers the external neutron source for blankets following, 2 D + 3 T →? 4 He (3.5 MeV) + n (14.1 MeV). (1) The fuel zone made up of natural-ThO 2 fuel and it is cooled with different coolants. In this work, five different moderator materials, which are Li 2 BeF 4 , LiF-NaF-BeF 2 , Li 2 0Sn 8 0, natural Lithium and Li 1 7Pb 8 3, are used as coolants. The radial reflector, called tritium breeding zones, is made of different Lithium compounds and graphite in sandwich structure. In the work, eight different Lithium compounds were used as tritium breeders in the tritium breeding zones, which are Li 3 N, Li 2 O, Li 2 O 2 , Li 2 TiO 3 , Li 4 SiO 3 , Li 2 ZrO 3 , LiBr and LiH. Neutron transport calculations are conducted in spherical geometry with the help of SCALE4.4A SYSTEM by solving the Boltzmann transport equation with code CSAS and XSDRNPM, under consideration of unresolved and resolved resonances, in S 8 -P 3

  8. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage...... of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it possible...

  9. Fusion-Fission like studies from medium heavy to light compound systems

    International Nuclear Information System (INIS)

    Heusch, B.

    1991-01-01

    It has been shown that for systems as light as A CN = 47 up to systems just above the Businaro Gallone point in the mass region of 100 to 110 the probability for a system to deexcite by the fission channel, is not negligible. As predicted, the asymmetrical separation becomes dominant when the A CN mass is decreasing but the symmetrical mode remains measurable. The ambiguities in the measured outgoing fragment distributions arise from the competition with IMF emissions as well as dynamical fission processes which depend strongly on the studied system. Fully relaxed DIC has also be used to interpret the results. I tried to show that precise checks on the behavior of two neighbouring systems as well as search for entrance channel effect and/or energy dependence bring evidence enough that the deexcitation of the compound nucleus can account for the symmetric and asymmetric fission channels as well as IMF emissions. This is strongly supported by different recent calculations all done in this frame. These all conclusions indicate also that the RLDM fails in the data interpretation. The strength of the fission channel depends strongly on the possibilities a system has to deexcite. For very light systems especially the number of open channels available determines directly the flux repartition between direct or compound processes and therefore very large differences in the general behaviour of two neighbouring systems can be observed. 15 figs

  10. Measurement and analysis of 14 MeV neutron-induced double-differential neutron emission cross sections needed for fission and fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai.

    1990-10-01

    The main objectives of this IAEA Co-ordinated Research Programme are to improve the data on 14 MeV neutron-induced double-differential neutron emission cross sections for materials needed for fission and fusion reactor technology. This report summarizes the conclusions and recommendations which were agreed by all participants during the Second Research Co-ordination Meeting

  11. Fission-like decay of 20Ne: eccentric behavior in the B+B fusion processes

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Coimbra, M.M.; Added, N.; Anjos, R.M.; Carlin Filho, N.; Fante Junior, L.; Figueira, M.C.S.; Guimaraes, V.; Szanto, E.M.

    1988-08-01

    Cross sections for the fusion of 10,11 B+ 10,11 B have been measured in the energy range from 1.5 MeV/A to 5 MeV/A. The 10 B+ 10 B system unexpectedly presents a hindered fusion cross section when compared to the 10 B+ 11 B and 11 B+ 11 B reactions and to standard model predictions. The missing fusion cross section was diverted the 10 B exit channel with a total kinetic energy characteristic of strongly damped collisions. Q-values and kinematical analysis together with angular distributions suggest a binary symmetric decay of the composite 20 Ne system. (author) [pt

  12. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  13. Development and testing of multigroup library with correction of self-shielding effects in fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Zou Jun; He Zhaozhong; Zeng Qin; Qiu Yuefeng; Wang Minghuang

    2010-01-01

    A multigroup library HENDL2.1/SS (Hybrid Evaluated Nuclear Data Library/Self-Shielding) based on ENDF/B-VII.0 evaluate data has been generated using Bondarenko and flux calculator method for the correction of self-shielding effect of neutronics analyses. To validate the reliability of the multigroup library HENDL2.1/SS, transport calculations for fusion-fission hybrid system FDS-I were performed in this paper. It was verified that the calculations with the HENDL2.1/SS gave almost the same results with MCNP calculations and were better than calculations with the HENDL2.0/MG which is another multigroup library without self-shielding correction. The test results also showed that neglecting resonance self-shielding caused underestimation of the K eff , neutron fluxes and waste transmutation ratios in the multigroup calculations of FDS-I.

  14. Future developments of power supply from nuclear fission and fusion until the middle of the 21st century

    International Nuclear Information System (INIS)

    1987-03-01

    The purpose of this study made by General Technology Systems (Netherlands) is to provide information about nuclear fission and fusion as methods for power generation, with which, in the framework of a study into the possibilities of durable energy sources, choices may be made from the various possibilities for future energy supply. The physical processes upon which the power generation relies are treated briefly. The technologies employed are discussed together with their changes and improvements, now and in the future, and the economic factors by which they are accompanied. How much of this energy will be used in the Netherlands, is discussed. In order to know the opinion of others about these subjects the dealers of the current nuclear power stations were asked to give their opinions which are collected in a supplement. 166 refs.; 18 figs.; 19 tabs

  15. Relevance of environmental concerns in contemplating development of fission fusion hybrids: a personal view

    International Nuclear Information System (INIS)

    Holdren, J.

    1974-01-01

    A brief comparison of hybrids to pure fusion systems with respect to timing and economics is given. The relevance of environmental concerns is discussed along with environmental criteria for hybrid designs. (U.S.)

  16. Uranium resources and their implications for fission breeder and fusion hybrid development

    International Nuclear Information System (INIS)

    Max, C.E.

    1984-01-01

    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity

  17. Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants

    International Nuclear Information System (INIS)

    White, Scott W.; Kulcinski, Gerald L.

    2000-01-01

    The amount of electrical energy produced over the lifetime of coal, LWR fission, UP fusion, and wind power plants is compared to the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The energy payback ratio varies from a low of 11 for coal plants to a high of 27 for DT-fusion plants. The magnitude of the energy investment and the source of the various energy inputs determine the CO 2 emission factor. This number varies from a low of 9 to a high of 974 tonnes of CO 2 per GW e h for DT-fusion and coal plants, respectively

  18. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    Science.gov (United States)

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  19. Doubling and half-life times for a combined fission-fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Pantis, G

    1982-01-01

    The long term fuel dynamics for a fission symbiotic system is examined under the assumption of discontinuous loading and offloading conditions. It is found that the breeding capacities of the core and the blankets identify several distinct fuel cycles. By numerical test and a specific comparison it is shown that doubling times and half-lives can differ by as much as 10% from those predicted by conventional methods.

  20. Nuclear energy: fusion and fission - From the atomic nucleus to energy

    International Nuclear Information System (INIS)

    2002-09-01

    Matter is made up of atoms. In 1912, the English physicist Ernest Rutherford (who had shown that the atom had a nucleus), and the Danish physicist Niels Bohr developed a model in which the atom was made up of a positively charged nucleus surrounded by a cloud of electrons. In 1913, Rutherford discovered the proton, and in 1932, the English physicist Chadwick discovered the neutron. In 1938, Hahn and Strassmann discovered spontaneous fission and the French physicist Frederic Joliot-Curie, assisted by Lew Kowarski and Hans Von Halban, showed in 1939 that splitting uranium nuclei caused an intense release of heat. The discovery of the chain reaction would enable the exploitation of nuclear energy. 'It was the Second World War leaders who, by encouraging research for military purposes, contributed to the development of nuclear energy'. During the Second World War, from 1939 to 1945, studies of fission continued in the United States, with the participation of emigre physicists. The Manhattan project was launched, the aim of which was to provide the country with a nuclear weapon (used at Hiroshima and Nagasaki in 1945). After the war ended, research into energy production by the nuclear fission reaction continued for civil purposes. CEA (the French Atomic Energy Commission) was set up in France in 1945 under the impetus of General de Gaulle. This public research body is responsible for giving France mastery of the atom in the research, health, energy, industrial, safety and defense sectors. (authors)

  1. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  2. A comparison of the radiological impact of energy production by fission and fusion reactions

    International Nuclear Information System (INIS)

    Rancillac, F.; Despres, A.

    1990-04-01

    The impacts of respectively a light water reactor and a planned fusion reactor, for which tritium-deuterium fusion reactions will act as energy source have been compared. The comparison is made on the basis of a generated capacity of 1 GWe.year, using the following criteria: fuel inventories, radioactive releases, collective effective dose equivalent commitments to the public and the volume of wastes. The accidental risk is not introduced. Fusion reactor parameters are still subject to uncertainties, which prevent accurate quantification of radionuclide releases (tritium apart) from the nuclear plant. Only orders of magnitude extrapolated from values for the NET tokamak are given. Despite these uncertainties, it would seem more interesting, from the dosimetric point of view, to use fusion reactors to produce electricity, although problems of radioactive releases, handling and long-term storage of radioactive waste would remain. Fusion reactors also generate generate high-level wastes with long-term exposure rates that are lower than those of light water reactors [fr

  3. Competition between fusion and quasi-fission in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab

  4. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  5. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Inoue, N.; Tazima, T.

    1994-04-01

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D 3 He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  6. Spectral effects in low-dose fission and fusion neutron irradiated metals and alloys

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Atkin, S.D.; Martinez, C.

    1986-04-01

    Flat miniature tensile specimens were irradiated to neutron fluences up to 9 x 10 22 n/m 2 in the RTNS-II and in the Omega West Reactor. Specimen temperatures were the same in both environments, with runs being made at both 90 0 C and 290 0 C. The results of tensile tests on AISI 316 stainless steel, A302B pressure vessel steel and pure copper are reported here. The radiation-induced changes in yield strength as a function of neutron dose in each spectrum are compared. The data for 316 stainless steel correlate well on the basis of displacements per atom (dpa), while those for copper and A302B do not. In copper the ratio of fission dpa to 14 MeV neutron dpa for a given yield stress change is about three to one. In A302B pressure vessel steel this ratio is more than three at lower fluences, but the yield stress data for fission and 14 MeV neutron-irradiated A302B steel appears to coalesce or intersect at the higher fluences

  7. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  8. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  9. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  10. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  11. Radiationless decay, fission and fusion of excitons in irradiated molecular crystals

    International Nuclear Information System (INIS)

    Klein, Gerard.

    1977-01-01

    The creation and evolution of excited states in ionizing particle tracks were investigated. The passage of high energy ionizing particles in molecular crystals results in the formation of highly excited states which energy is generally above the molecular ionization potential. The theory of non radiative transitions, which describes the transitions from the highly excited states to the lowest singlet and triplet excitons S 1 and T 1 is developed. Among these non radiative transitions, the fission of singlet excitons into two singlet or triplet excitons of lower energies is studied experimentally. These results and a kinematics study of the S 1 and T 1 excitons in ionizing particle tracks were used to get a complete description of the scintillation. These results are in good agreement with the experimental measurements on the scintillation [fr

  12. Microstructural origins of yield-strength changes in AISI 316 during fission or fusion irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Panayotou, N.F.; Johnson, G.D.

    1981-08-01

    The changes in yield strength of AISI 316 irradiated in breeder reactors have been successfully modeled in terms of concurrent changes in microstructural components. Two new insights involving the strength contributions of voids and Frank loops have been incorporated into the hardening models. Both the radiation-induced microstructure and the yield strength exhibit transients which are then followed by saturation at a level dependent on the irradiation temperature. Extrapolation to anticipated fusion behavior based on microstructural comparisons leads to the conclusion that the primary influence of transmutational differences is only to alter the transient behavior and not the saturation level of yield strength

  13. Role and use of nuclear theories and models in practical evaluation of neutron nuclear data needed for fission and fusion reactor design and other nuclear applications

    International Nuclear Information System (INIS)

    Prince, A.

    1975-01-01

    A review of the various nuclear models used in the evaluation of neutron nuclear data for fission and fusion reactors is presented. Computer codes embodying the principles of the relevant nuclear models are compared with each other and with experimental data. The regions of validity and limitations of the conceptual formalisms are also included, along with the effects of the numerical procedures used in the codes themselves. Conclusions and recommendations for future demands are outlined.15 tables, 15 figures, 90 references

  14. The role and use of nuclear theories and models in practical evaluation of neutron nuclear data needed for fission and fusion reactor design and other nuclear applications

    International Nuclear Information System (INIS)

    Prince, A.

    1976-01-01

    A review of the various nuclear models used in the evaluation of neutron nuclear data for fission and fusion reactors is presented. Computer codes embodying the principles of the relevant nuclear models are compared with each other and with experimental data. The regions of validity and limitations of the conceptual formalisms are also included, along with the effects of the numerical procedures used in the codes themselves. Conclusions and recommendations for future demands are outlined. (author)

  15. Inner-membrane proteins PMI/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways.

    Science.gov (United States)

    Rival, Thomas; Macchi, Marc; Arnauné-Pelloquin, Laetitia; Poidevin, Mickael; Maillet, Frédéric; Richard, Fabrice; Fatmi, Ahmed; Belenguer, Pascale; Royet, Julien

    2011-03-01

    Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.

  16. Network metrics reveal differences in social organization between two fission-fusion species, Grevy's zebra and onager.

    Science.gov (United States)

    Sundaresan, Siva R; Fischhoff, Ilya R; Dushoff, Jonathan; Rubenstein, Daniel I

    2007-02-01

    For species in which group membership frequently changes, it has been a challenge to characterize variation in individual interactions and social structure. Quantifying this variation is necessary to test hypotheses about ecological determinants of social patterns and to make predictions about how group dynamics affect the development of cooperative relationships and transmission processes. Network models have recently become popular for analyzing individual contacts within a population context. We use network metrics to compare populations of Grevy's zebra (Equus grevyi) and onagers (Equus hemionus khur). These closely related equids, previously described as having the same social system, inhabit environments differing in the distribution of food, water, and predators. Grevy's zebra and onagers are one example of many sets of coarsely similar fission-fusion species and populations, observed elsewhere in other ungulates, primates, and cetaceans. Our analysis of the population association networks reveals contrasts consistent with their distinctive environments. Grevy's zebra individuals are more selective in their association choices. Grevy's zebra form stable cliques, while onager associations are more fluid. We find evidence that females associate assortatively by reproductive state in Grevy's zebra but not in onagers. The current approach demonstrates the utility of network metrics for identifying fine-grained variation among individuals and populations in association patterns. From our analysis, we can make testable predictions about behavioral mechanisms underlying social structure and its effects on transmission processes.

  17. Fission, fusion and annihilation in the interaction of localized structures for the (2 + 1)-dimensional generalized Broer-Kaup system

    International Nuclear Information System (INIS)

    Yomba, Emmanuel; Peng, Yan-ze

    2006-01-01

    Based on the WTC truncation method and the general variable separation approach (GVSA), we have first found a general solution including three arbitrary functions for the (2 + 1)-dimensional simplified generalized Broer-Kaup (GBK) system (B = 0). A class of double periodic wave solutions is obtained by selecting these arbitrary functions appropriately. The interaction properties of the periodic waves are numerically studied and found to be non-elastic. Limit cases are considered and some new localized coherent structures are obtained, the interaction properties of these solutions reveal that some of them are completely elastic and some are non-completely elastic. After that, starting from the (2 + 1)-dimensional GBK system (B ≠ 0) and using the variable separation approach (VSA) including two arbitrary functions in the general solution, we have constructed by selecting the two arbitrary functions appropriately a rich variety of new coherent structures. The interaction properties of these structures reveal new physical properties like fusion, fission, or both and present mutual annihilation of these solutions as time increasing. The annihilation in this model has found to be rule by the parameter K 1 , when this parameter is taken to be zero, the annihilation disappears in this model and the above mentioned structures recover the solitonic structure properties

  18. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  19. Comparison between two gas-cooled TRU burner subcritical reactors: fusion-fission and ADS

    International Nuclear Information System (INIS)

    Carluccio, T.; Rossi, P.C.R.; Angelo, G.; Maiorino, J.R.

    2011-01-01

    This work shows a preliminary comparative study between two gas cooled subcritical fast reactor as dedicated transuranics (TRU) transmuters: using a spallation neutron source or a D-T fusion neutron source based on ITER. The two concepts are compared in terms of a minor actinides burning performance. Further investigations are required to choose the best partition and transmutation strategy. Mainly due to geometric factors, the ADS shows better neutron multiplication. Other designs, like SABR and lead cooled ADS may show better performances than a Gas Coolead Subcritical Fast Reactors and should be investigated. We noticed that both designs can be utilized to transmutation. Besides the diverse source neutron spectra, we may notice that the geometric design and cycle parameters play a more important role. (author)

  20. A spallation-based irradiation test facility for fusion and future fission materials

    International Nuclear Information System (INIS)

    Samec, K.; Fusco, Y.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU's FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the proposed DEMO fusion reactor, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550 deg. C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum over a volume occupying one litre. The entire 'TMIF' facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility. (authors)

  1. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  2. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  3. Qualification of SiC materials for fusion and fission reactors

    International Nuclear Information System (INIS)

    Ryazanov, Alexander

    2009-01-01

    Ceramic materials such as silicon carbide (SiC) and SiC/SiC composites are both considered, due to their high-temperature strength, pseudo-ductile fracture behavior and low-induced radioactivity, as candidate materials for fusion reactor (test blanket module for ITER) and high temperature gas-cooled reactors (HTGR). The radiation swelling and creep of SiC are very important physical phenomena that determine the radiation resistance of them in these reactors. Other important problem which exists especially in fusion reactor is an effect of accumulation of high concentrations of helium atoms in SiC (up to 15000-20000 at.ppm) due to (n,α) nuclear reaction on physical mechanical properties. An understanding of the physical mechanism of this phenomenon is very important for the investigations of helium atom effect on radiation swelling in SiC. In this report a compilation of non-irradiated and irradiated properties of SiC are provided and analyzed in terms of their application to fusion and high temperature gas cooled reactors. Special topic of this report is oriented on the micro structural changes in chemically vapor-deposited (CVD) high-purity beta-SiC during neutron and ion irradiations at elevated temperatures. The evolutions of various radiation induced defects including dislocation loops, network dislocations and cavities are presented here as a function of irradiation temperature and fluencies. These observations are discussed in relation with such irradiation phenomena in SiC as low temperature swelling and cavity swelling. One of the main difficulties in the radiation damage studies of SiC materials lies in the absence of theoretical models and interpretation of many physical mechanisms of radiation phenomena including the radiation swelling and creep. The point defects in ceramic materials are characterized by the charge states and they can have an effective charge. The internal effective electrical field is formed due to the accumulation of charged point

  4. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  5. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  6. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  7. Solar PV Power Forecasting Using Extreme Learning Machine and Information Fusion

    OpenAIRE

    Le Cadre , Hélène; Aravena , Ignacio; Papavasiliou , Anthony

    2015-01-01

    International audience; We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the ag-gregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d'Azur, to evaluate ...

  8. Solar PV power forecasting using extreme machine learning and experts advice fusion

    OpenAIRE

    Le Cadre, Hélène; Aravena Solís, Ignacio Andrés; Papavasiliou, Anthony; European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

    2015-01-01

    We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the aggregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d’Azur, to evaluate the algorithm performance...

  9. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  10. Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell

    Czech Academy of Sciences Publication Activity Database

    Schrauben, J. N.; Zhao, Y.; Mercado, C.; Dron, P. I.; Ryerson, J. L.; Michl, Josef; Zhu, K.; Johnson, J. C.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 2286-2293 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : photovoltaics * singlet fission * triplet * spectroscopy * charge transfer * photocurrent Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.145, year: 2015

  11. Home brew technetium : clinical scale desktop plasma fusion neutron source to produce Tc99m as an alternative to industrial scale fission reactor sources

    International Nuclear Information System (INIS)

    Bosi, S.G.; Khachan, J.; Oborn, B.M.

    2011-01-01

    Full text: Tc-99m (decay product of Mo-99) accounts for ∼ 90% of world's production of radiopharmaceuticals. Recent unexpected shutdowns of two fission reactors and routine maintenance closures .e created a global shortage of Tc-99m, hence the large global effort to find alternative sources. This project aims to design and produce a novel prototype Mo-99/Tc-99m source. An operational desktop neutron source is available at the University of Sydney, employing a deuterium fusion-plasma to create 2.45 MeV neutrons. These neutrons will be used to activate Mo-98 thin an activation vessel. In one embodiment, the activation vessel contains an aqueous slurry or gel containing Mo-98 which converts to 0-99 upon activation. The decay product Tc-99m could then be milked, similar to existing Tc-99m generators. Monte Carlo will be :ed to assess yield versus size and geometry for various vessel designs. The neutron source filled with deuterium operating at 250 W, produces 3 x 106 neutrons continuously. The neutron flux can be increased ∼ 100-fold if the fill gas is 50% tritium and by another ∼ 100-1000-fold by increasing the power. This is being designed for local use, perhaps on the scale f one or a few hospitals, so the yield would not need to be industrial ;ale as with fission reactor sources. This device is low cost <$300 K) compared with cyclotrons and fission reactors.

  12. Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Ohta, Masayuki; Miyamaru, Hiroyuki; Murata, Isao

    2009-01-01

    The fusion-fission (FF) hybrid reactor is a promising energy source that is thought to act as a bridge between the existing fission reactor and the genuine fusion reactor in the future. The burnup calculation system that aims at precise burnup calculations of a subcritical system was developed for the detailed design of the FF hybrid reactor, and the system consists of MCNP, ORIGEN, and postprocess codes. In the present study, the calculation system was substantially modified to improve the calculation accuracy and at the same time the calculation speed as well. The reaction rate estimation can be carried out accurately with the present system that uses track-length (TL) data in the continuous-energy treatment. As for the speed-up of the reaction rate calculation, a new TL data bunching scheme was developed so that only necessary TL data are used as long as the accuracy of the point-wise nuclear data is conserved. With the present system, an example analysis result for our proposed FF hybrid reactor is described, showing that the computation time could really be saved with the same accuracy as before. (author)

  13. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Takashima, H.

    2001-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  14. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Takashima, Hiroaki

    1999-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  15. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  16. Influence of pairing correlations on the probability and dynamics of tunneling through the barrier in fission and fusion of complex nuclei

    International Nuclear Information System (INIS)

    Lazarev, Yu.A.

    1986-01-01

    An analytically solvable model is used to study the potential barrier penetrability in the case when the gap parameter Δ is treated as a dynamical variable governed by the least action principle. It is found that, as compared to the standard (BCS) approach, the dynamical treatment of pairing results in a considerably weakened dependence of the fission barrier penetrability on the intensity of pairing correlations in the initial state (Δ 0 ), on the barrier height, and on the energy of the initial state. On this basis, a more adequate explanation is proposed for typical order-of-magnitude values of the empirical hidrance factors for groun-state spontaneous fission of odd nuclei. It is also shown that a large enhancement of superfluidity in tunneling - the inherent effect of the dynamical treatment of pairing - strongly facilitates deeply subbarier fusion of complex nuclei. Finally, an analysis is given for the probability of spontaneous fission from K-isomeric quasiparticle (q-p) states in even-even heavy nuclei. The relative change of the partial spontaneous fission half-life in going from the ground-state to a high-spin q-p isomeric state, T* sf /T sf , is found to be strongly dependent on whether or not there takes place the dynamically induced enhancement of superfluidity in tunneling. Measurements of T* sf /T sf provide thus a unique possibility of verifying theoretical predictions about the strong, inverse-square Δ dependence of the effective inertia associated with large-scale subbarrier rearrangements of nuclei

  17. Fusion, space and solar plasmas as complex systems

    International Nuclear Information System (INIS)

    Dendy, R O; Chapman, S C; Paczuski, M

    2007-01-01

    Complex systems science seeks to identify simple universal models that capture the key physics of extended macroscopic systems, whose behaviour is governed by multiple nonlinear coupled processes that operate across a wide range of spatiotemporal scales. In such systems, it is often the case that energy release occurs intermittently, in bursty events, and the phenomenology can exhibit scaling, that is a significant degree of self-similarity. Within plasma physics, such systems include Earth's magnetosphere, the solar corona and toroidal magnetic confinement experiments. Guided by broad understanding of the dominant plasma processes-for example, turbulent transport in tokamaks or reconnection in some space and solar contexts-one may construct minimalist complex systems models that yield relevant global behaviour. Examples considered here include the sandpile approach to tokamaks and the magnetosphere and a multiple loops model for the solar coronal magnetic carpet. Such models can address questions that are inaccessible to analytical treatment and are too demanding for contemporary computational resources; thus they potentially yield new insights, but risk being simplistic. Central to the utility of these models is their capacity to replicate distinctive aspects of observed global phenomenology, often strongly nonlinear, or of event statistics, for which no explanation can be obtained from first principles considerations such as the underlying equations. For example, a sandpile model, which embodies critical-gradient-triggered avalanching transport associated with nearest-neighbour mode coupling and simple boundary conditions (and little else), can be used to generate some of the distinctive observed elements of tokamak confinement phenomenology such as ELMing and edge pedestals. The same sandpile model can also generate distributions of energy-release events whose distinctive statistics resemble those observed in the auroral zone. Similarly, a multiple loops model

  18. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions

  19. Solar fusion cross sections II: the pp chain and CNO cycles

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E G; Bemmerer, D; Bertulani, C A; Chen, J -W; Costantini, H; Couder, M; Cyburt, R; Davids, B; Freedman, S J; Gai, M; Garcia, A; Gazit, D; Gialanella, L; Greife, U; Hass, M; Heeger, K; Haxton, W C; Imbriani, G; Itahashi, T; Junghans, A; Kubodera, K; Langanke, K; Leitner, D; Leitner, M; Marcucci, L E; Motobayashi, T; Mukhamedzhanov, A; Nollett, Kenneth M; Nunes, F M; Park, T -S; Parker, P D; Prati, P; Ramsey-Musolf, M J; Hamish Robertson, R G; Schiavilla, R; Simpson, E C; Snover, K A; Spitaleri, C; Strieder, F; Suemmerer, K; Trautvetter, R E; Tribble, R E; Typel, S; Uberseder, E; Vetter, P; Wiescher, M

    2011-04-01

    The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.

  20. Preliminary assessment of a symbiotic fusion--fission power system using the TH/U refresh fuel cycle

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Moir, R.W.

    1977-10-01

    Studies of the mirror hybrid reactor by LLL/GA have concluded that the most promising role for this reactor concept is that of a producer of fissile fuel for fission reactors. Studies to date have examined primarily the U/Pu fuel cycle with light-water reactors serving as the consumers of the hybrid-bred fissile fuel; the specific scenarios examined required reprocessing and refabrication of the bred fuel before introduction into the fission reactor. This combination of technologies was chosen to illustrate the manner in which the hybrid reactor concept could serve the needs of, and use the technology of, the fission reactor industry as it now exists (and as it was thought it would evolve). However, the current U.S. Administration has expressed strong concerns about proliferation of nuclear weapons capability and terrorist diversion of weapons-grade nuclear materials. These concerns are based on the projected technology for the light-water reactor/fast breeder reactor using the U/Pu fuel cycle and extensive reprocessing/refabrication. A symbiotic nuclear power generation concept (hybrid fissile producer plus fission burner reactors) is described which eliminates those aspects of the present nuclear fuel cycle that (may) represent significant proliferation/diversion risks. Specifically, the proposed concept incorporates the following features: (1)Th/U 233 fuel cycle, (2) no reprocessing or fabrication of fissile material, and (3) no fissile material in a weapons-grade state

  1. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. Addendum 1. Alternate concepts. 12-month progress report addendum, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Dee, J.B.; Backus, G.A.; Culver, D.W.

    1976-01-01

    During the course of the Mirror Hybrid Fusion-Fission Reactor study several alternate concepts were considered for various reactor components. Several of the alternate concepts do appear to exhibit features with potential advantage for use in the mirror hybrid reactor. These are described and should possibly be investigated further in the future

  2. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. Simulations of fusion chamber dynamics and first wall response in a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, J.M., E-mail: qjm06@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Wang, Z., E-mail: wangz_es@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Chu, Y.Y., E-mail: chuyanyun@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Li, Z.H., E-mail: lee_march@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China)

    2016-03-15

    Highlights: • Z-FFR utilizes DT neutrons to drive a sub-critical fission blanket to produce energy. • A metal shell and Ar gas are employed in the fusion chamber for shock mitigation. • Massive materials can effectively mitigate the thermal heats on the chamber wall. • The W-coated Zr-alloy first wall exhibits good viability as a long-lived component. - Abstract: In a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR), the fusion target will produce enormous energy of ∼1.5 GJ per pulse at a frequency of 0.1 Hz. Almost 20% of the fusion energy yield, approximately 300 MJ, is released in forms of pulsed X-rays. To prevent the first wall from fatal damages by the intense X-rays, a thin spherical metal shell and rare Ar buffer gas are introduced to mitigate the transient X-ray bursts. Radiation hydrodynamics in the fusion chamber were investigated by MULTI-1D simulations, and the corresponding thermal and mechanical loads on the first wall were also obtained. The simulations indicated that by optimizing the design parameters of the metal shell and Ar buffer gas, peak power flux of the thermal heats on the first wall could be mitigated to less than 10{sup 4} W/cm{sup 2} within a time scale of several milliseconds, while peak overpressures of the mechanical loads varying from 0.6 to 0.7 MPa. In addition, the thermomechanical response in a W–coated Zr-alloy first wall was performed by FWDR1D calculations using the derived thermal and mechanical loads as inputs. The temperature and stress fields were analyzed, and the corresponding elastic strains were conducted for primary lifetime estimations by using the Coffin–Manson relationships of both W and Zr-alloy. It was shown that the maximum temperature rises and stresses in the first wall were less than 50 K and 130 MPa respectively, and lifetime of the first wall would be in excess of 10{sup 9} cycles. The chamber exhibits good viability as a long-lived component to sustain the Z-FFR conceptual

  4. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    1989-02-01

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  5. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  6. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  7. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...... requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW...... less ‘environment’ for the construction than renewable technologies, especially wind and solar....

  8. Energy. From firewood to solar cell

    International Nuclear Information System (INIS)

    Reijnders, L.

    2006-01-01

    An outline is given of the development of energy and the options to secure the energy supply for the future. Much information is given about energy efficiency, the exploitation of tar sands, reopening of the coal mines in the Netherlands, nuclear fusion and fission, wave energy and solar cells, etc [nl

  9. The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations.

    Science.gov (United States)

    Barbosa, Daniel José; Serrat, Romàn; Mirra, Serena; Quevedo, Martí; de Barreda, Elena Goméz; Àvila, Jesús; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Lourdes Bastos, Maria de; Capela, João Paulo; Soriano, Eduardo; Carvalho, Félix

    2014-06-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.

  10. Craving Ravens: Individual ‘haa’ Call Rates at Feeding Sites as Cues to Personality and Levels of Fission-Fusion Dynamics?

    Directory of Open Access Journals (Sweden)

    Georgine Szipl

    2014-08-01

    Full Text Available Common ravens aggregate in large non-breeder flocks for roosting and foraging until they achieve the status of territorial breeders. When discovering food, they produce far-reaching yells or ‘haa’ calls, which attract conspecifics. Due to the high levels of fission-fusion dynamics in non-breeders’ flocks, assemblies of feeding ravens were long thought to represent anonymous aggregations. Yet, non-breeders vary in their degree of vagrancy, and ‘haa’ calls convey individually distinct acoustic features, which are perceived by conspecifics. These findings give rise to the assumption that raven societies are based on differential social relationships on an individual level. We investigated the occurrence of ‘haa’ calling and individual call rates in a group of individually marked free-ranging ravens. Calling mainly occurred in subadult and adult females, which showed low levels of vagrancy. Call rates differed significantly between individuals and with residency status, and were correlated with calling frequency and landing frequency. Local ravens called more often and at higher rates, and were less likely to land at the feeding site than vagrant birds. The results are discussed with respect to individual degrees of vagrancy, which may have an impact on social knowledge and communication in this species.

  11. Nuclear structure effects in fusion-fission of compound systems 20,21,22Ne formed in 10,11B+10,11B reactions

    International Nuclear Information System (INIS)

    Singh, BirBikram; Kaur, Manpreet; Kaur, Varinderjit; Gupta, Raj K.

    2014-01-01

    The dynamical cluster-decay model (DCM) of Gupta and collaborators has been successfully applied to the decay of number of hot and rotating compound nuclei in different mass regions, formed in low-energy heavy ion reactions. Recently, its application to the binary symmetric decay (BSD) of very light mass compound systems 20,21,22 Ne formed in 10,11 B+ 10,11 B reactions at E lab =48 MeV is extended, as the experimental data for σ BSD Expt . is available, namely, for 20 Ne (∼ 270 mb), 21 Ne ( 22 Ne ( BSD DCM for the BSD of the three Ne systems is calculated, comprising fusion-fission σ ff and deep inelastic scattering/orbiting σorb contributions (evaluated empirically here) from compound nucleus CN and non-compound nucleus nCN processes, respectively. The significant observation from this study is that, of the total σ BSD DCM , σ ff contribution is very strong for the decay of 20 Ne (=195.270 mb; >70%), followed by 21 Ne (=65.723 mb; ∼50%) and 22 Ne (=8.677 mb; almost 10%). This means that the process of collective clusterization within the DCM is playing very strong role for the decay of 20 Ne

  12. Fusion-Fission process and gamma spectroscopy of binary products in light heavy ion collisions (40 {<=} A{sub CN} {<=} 60); Processus de fusion-fission et spectroscopie gamma des produits binaires dans les collisions entre ions lourds legers (40 {<=} A{sub NC} {<=} 60)

    Energy Technology Data Exchange (ETDEWEB)

    Nouicer, Rachid [Institut de Recherche Subatomique, CNRS-IN2P3 - Universite Louis Pasteur, 67 - Strasbourg (France)

    1997-11-21

    During the work on which this Thesis is based, the significant role of the Fusion-Fission Asymmetric mechanism in light heavy ion collisions (A{sub NC} {<=} 60) has been emphasized. The Spin Dis-alignment in the oblate-oblate system has supplied evidence for the first time for the Butterfly mode in a resonant-like reaction. These two aspects, one macroscopic and the other more closely related to microscopic effects are certainly different from a conceptual point of view but are quite complementary for a global understanding of dinuclear systems. In the first part, inclusive and exclusive measurements of the {sup 35}Cl + {sup 12}C and {sup 35}Cl + {sup 24}Mg reaction have been performed at 8 MeV/nucleon in the Saclay experiment. These measurements have permitted us to verify the origin of products which have given rise of the asymmetric fusion-fission mechanism and which have demonstrated that the three-body process in this energy range is very weak. In the second part the {sup 28}Si + {sup 28}Si reaction has been performed at the resonance energy E{sub lab}> = 111.6 MeV at Strasbourg with the Eurogam phase II multi-detector array and VIVITRON accelerator. An angular momentum J{sup {pi}} 38{sup +} for inelastic and mutual channels of the {sup 28}Si + {sup 28}Si exit channel has been measured and has supplied evidence for a spin dis-alignment which has been interpreted in the framework of a molecular model by Butterfly motion. The spectroscopic study of {sup 32}S nucleus, has revealed the occurrence of a new {gamma}-ray transition 0{sup +}(8507.8 keV) {yields} 2{sub 1}{sup +}(2230.2 keV). (author) 105 refs., 116 figs., 26 tabs.

  13. EPFL (Swiss) fusion-fission hybrid experiment. Progress report No. 9, November 1, 1983-March 1, 1984

    International Nuclear Information System (INIS)

    Woodruff, G.L.; Sitaraman, S.

    1984-01-01

    The Monte Carlo work done during this period focused on studying the effect of a 316-stainless steel ring which has been proposed to fit around the Haefely tube. The motivation for adding such a ring is to reflect more neutrons in the forward direction and hence minimize room return. Additional benefits which might be expected include an increase in the current of neutrons crossing the first wall, and a somewhat softer source spectrum. The latter is a desirable change since in an actual fusion reactor the spectrum of neutrons crossing the first wall consists of lower energy scattered neutrons in addition to the 14 MeV neutrons from the D-T reactions

  14. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals. Final report

    International Nuclear Information System (INIS)

    Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.

    1976-01-01

    Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated

  15. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the {sup 56}Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the {sup 242}Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  16. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2017-01-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the 56 Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the 242 Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  17. Measurement of solar proton-proton fusion neutrinos with a Soviet-American gallium experiment: Technical progress report

    International Nuclear Information System (INIS)

    Cherry, M.L.

    1989-06-01

    A gallium solar neutrino detector is sensitive to low-energy proton-proton fusion neutrinos. A flux of 70 SNU is expected in a gallium detector from the p-p reaction independent of solar model calculations. If, however, neutrino oscillations in the solar interior are responsible for the suppressed 8 B flux measured by the Homestake 37 Cl experiment, then a comparison of the gallium and chlorine results may make possible a determination of the neutrino mass difference and mixing angle. A 60-ton gallium detector is currently being constructed in the Baksan Laboratory in the Soviet Union, and should be taking data by the end of 1989

  18. Book of abstracts of the joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems

    International Nuclear Information System (INIS)

    2009-01-01

    Materials performance and reliability are key issues for the safety and competitiveness of future nuclear installations: Generation IV nuclear systems for increased sustainability, advanced systems for non-electrical uses of nuclear energy, partitioning and transmutation systems, as well as thermo-nuclear fusion systems. These systems will have to feature high thermal efficiency and optimized utilization of fuel combined with minimized nuclear waste. For the sustainability of the nuclear option, there is a renewed interest worldwide in new reactor systems, closed fuel cycle research and technology development, and nuclear process heat applications. This requires the development and qualification of new high temperature structural materials with improved radiation and corrosion resistance. To achieve the challenging materials performance parameters, focused research and targeted testing of new candidate materials are necessary. Recent developments regarding new classes of materials with improved microstructural features, such as fibre-reinforced ceramic composite materials, oxide dispersion strengthened steels or advanced ferritic-martensitic steels are promising since they combine good radiation resistance and corrosion properties with high-temperature strength and toughness. In view of a successful and timely implementation of design parameters, in particular for primary circuits, new structural materials have to be qualified during the next decade. To this end an international R and D effort is being undertaken. Recent progress in materials science, supported by computer modelling and advanced materials characterisation techniques, has the potential to accelerate the process of new structural materials development. The scope of the meeting is information exchange and cross-fertilisation of various disciplines, including an overview of recent status of world-wide R and D activities. A comprehensive review of the designs of fission as well as fusion reactor systems

  19. Dynamics of {sup 47}V* formed in {sup 20}Ne + {sup 27}Al reaction in view of fusion-fission and DIC mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Neha; Sharma, Kanishka; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India)

    2017-12-15

    The decay mechanism of {sup 47}V* formed in direct kinematics ({sup 20}Ne + {sup 27}Al) is investigated within the collective clusterization approach of dynamical cluster decay model (DCM). All calculations are done for quadrupole (β{sub 2i}-deformed) choice of fragments by taking optimum orientations over a wide range of center of mass energies (E{sub c.m.} ∝ 83-125 MeV). According to the experimental evidence, there is a strong competition between fusion fission (FF) and deep inelastic collision (DIC) in the decay of {sup 47}V*, which are recognized as compound nucleus process and non-compound nucleus process, respectively. The decay cross sections of {sup 47}V* for both FF and DIC decay modes are addressed using DCM, and are found to be in agreement with the experimental data. It is important to mention that emitting fragments in both these decay channels maintain their homogeneity in terms of charge number, that lies in the region 3 ≤ Z ≤ 9. Hence, all possible isotopes contributing towards 3 ≤ Z ≤ 9 are taken into consideration here. Calculations of both FF and DIC are segregated on the basis of angular momentum windows, where 0 ≤ l ≤ l{sub cr} has been taken for FF and l{sub cr} < l ≤ l{sub gr} for DIC, as the later operates only due to the partial waves near grazing angular momentum. In DIC, preformation probability (P{sub 0}) is divided equally amongst the most favoured outgoing fragments. Moreover, the behavior of fragmentation potential, preformation probability, penetrability and emission time etc. is examined, in order to identify the most favorable isotopes contributing towards FF and DIC. (orig.)

  20. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  1. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  2. Fusion as a source of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Steinberg, M.

    1981-01-01

    In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000 0 C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions

  3. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey James [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  4. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  5. Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

    International Nuclear Information System (INIS)

    T.S. Park; L.E. Marcucci; R. Schiavilla; M. Viviani; A. Kievsky; S. Rosati; K. Kubodera; D.P. Min; M. Rho

    2002-01-01

    Spurred by the recent complete determination of the weak currents in two-nucleon systems up to Ο(Q 3 ) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S-factors for the solar pp (proton-fusion) and hep processes in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium β-decay rate as an input to fix the only unknown parameter in the theory, we can evaluate the threshold S factors with drastically improved precision; the results are S pp (0) = 3.94 x (1 ± 0.004) x 10 -25 MeV-b and S hep (0) = (8.6 ± 1.3) x 10 -20 keV-b. The dependence of the calculated S-factors on the momentum cutoff parameter Λ has been examined for a physically reasonable range of Λ. This dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep process, substantiating the consistency of our calculational scheme

  6. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  7. Fusion-breeder program

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The various approaches to a combined fusion-fission reactor for the purpose of breeding 239 Pu and 233 U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed

  8. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  9. SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI

    NARCIS (Netherlands)

    SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A

    Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight

  10. Viscosity, fission time scale and deformation of Dy-156

    NARCIS (Netherlands)

    van't Hof, G; Bacelar, JCS; Dioszegi, [No Value; Harakeh, MN; Hesselink, WHA; Kalantar-Nayestanaki, N; Kugler, A; van der Ploeg, H; Plompen, AJM; van Schagen, JPS

    1998-01-01

    In the fusion-fission reaction Ar-40 + Cd-116 --> Dy-156*, fission, at E-b = 216 MeV and 238 MeV, gamma-rays were measured in coincidence with fission fragments. The interpretation of the gamma-ray spectra is done with the help of a modified version of the statistical-model code CASCADE. The spectra

  11. Environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Coffman, F.E.; Williams, J.M.

    1975-01-01

    With the continued depletion of fossil and uranium resources in the coming decades, the U. S. will be forced to look more toward renewable energy resources (e.g., wind, tidal, geothermal, and solar power) and toward such longer-term and nondepletable energy resources as fissile fast breeder reactors and fusion power. Several reference reactor designs have been completed for full-scale fusion power reactors that indicate that the environmental impacts from construction, operation, and eventual decommissioning of fusion reactors will be quite small. The principal environmental impact from fusion reactor operation will be from thermal discharges. Some of the safety and environmental characteristics that make fusion reactors appear attractive include an effectively infinite fuel supply at low cost, inherent incapability for a ''nuclear explosion'' or a ''nuclear runaway,'' the absence of fission products, the flexibility of selecting low neutron-cross-section structural materials so that emergency core cooling for a loss-of-coolant or other accident will not be necesary, and the absence of special nuclear materials such as 235 U or 239 Pu, so that diversion of nuclear weapons materials will not be possible and nuclear blackmail will not be a serious concern

  12. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  13. Study of fusion reactions forming Cf nuclei

    International Nuclear Information System (INIS)

    Khuyagbaatar, J.; Hinde, D. J.; Du Rietz, R.; Carter, I. P.; Dasgupta, M.; Duellmann, C. E.; Evers, M.; Wakhle, A.; Williams, E.; Yakushev, A.

    2013-01-01

    The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34 S+ 208 Pb in comparison to 36 S+ 206 Pb; both reactions lead to the compound nucleus 242 Cf*.The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission. (authors)

  14. Future of fusion implementation

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.R.

    1978-01-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a cost/benefit oriented assessment methodology, because of both the time-frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the US energy system are posited and analyzed under various assumptions about costs. The Reference Energy System approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumptions levels and technology mix in each scenario. Not unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  15. Unified Treatise of Phenomena of Seismic Fusion-Fission Under Seismonomy in the Light of Monistic Weltanschauung: the Doctrine of Dynamics Monism With Implication to the Earthquake Source Physics}

    Science.gov (United States)

    Zaurov, D.

    2006-12-01

    Established profoundly new conceptual framework by the five postulates of seismonomy, enables unified treatise of processes such as dynamic structural devastation, seismic blowing up of mount ridges, collision physics, meteorite impact cratering, and seismic global faulting with insight into the earthquake source physics. Hence, by establishing the parametric method of identification of natural modes and then Parametric Scan- Window Observation of Dynamic Responses (PSW-method), it becomes possible to obtain crucial field data. Thus, earth-dam dynamics data revealed an essential non-stationarity of dam's dynamic characteristics throughout earthquakes, the effect of stochastic alternation of the locally-stationary modal states with the discrete characteristics of their spectral distribution. At this point, in the course of other, separate line of far beyond lasting quest concerning metaphysical constituents of matter, and then constitutive relation between excited modal oscillation of structures and causal pattern of their fracture, the results of such analysis, resuming obscurity of the well known jaggedness of observing earthquake spectra, were illuminated and perceived. It was succeeded, on the one hand, to establish unitary conceptualized framework of seismic records analysis consisting both the PSW- and spectral- analysis, which reformulated to be a statistical representation complementary to PSW-method, and, on the other hand, to realize genesis of the doctrine of dynamics monism consisting concepts of both: fission-fusion dynamics and dynamics coherentism as an inspiration of the paradigm of seismic fusion-fission phenomena. Global faulting originating straight plane faults, which often stretch through large scale substantially inhomogeneous volumes, are, uncontestably, the result of dynamics fission, the first step of dynamics binary division of an emerged geoseismoid onto two secondary seismoids with a potential, occasionally stretched rupture plane. That

  16. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  17. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. I. Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation

  18. Study of fission dynamics of the excited nuclei produced in fusion reactions in the framework of the four-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2014-12-01

    The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei {sup 162}Yb, {sup 172}Yb, {sup 215}Fr, {sup 224}Th, {sup 248}Cf, {sup 260}Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, {sub γK} (MeV zs){sup -1/2}, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high. (orig.)

  19. α and p emission before, during, and after fission of the fusion nucleus 169Ta: Nuclear deformation, field emission, and nuclear shadow

    International Nuclear Information System (INIS)

    Brucker, A.

    1986-01-01

    In the asymmetric system 318 MeV 28 Si + 141 Pr the angular and energy distributions of α particles and protons were measured in coincidence with fission fragments. Identification and separation of the sources of sequential emission before (CN) and after (F) fission of the compound-nucleus 169 Ta yields following multiplicities: M CN α =0.38±0.04, M CN p =0.6±0.15; M F α =0.16±0.03, M F p =0.54±0.15. Measurement of the cross sections δ ER =(608±81) mb and δ F =(679±159) mb for residual nucleus formation respectively fission fixes the mean angular momentum for fission l F =(94±7)ℎ and the maximal angular momentum l F,max =(110±10)ℎ (sharp cut-off model). From the angular correlation relative to the spin direction of the compound-nucleus an anisotropy parameter of A α =6.7±0.8 and A p =1.3±0.2 for α respectively proton emission from the compound-nucleus is measured, and by means of the semiclassical model of Dossing a quadrupole deformation parameter of the compound-nucleus of vertical strokeδvertical stroke=0.43±0.05 consistent within the uncertainties of the analysis determined. Apart from pre-equilibrium emission under small angles to the beam significant deviations from sequential emission are observed only in the α emission and detailedly studied by means of angular correlation and energy spectra: (I) an strong nuclear shadowing of the fragment emission of 1/7 of its sequential value in a narrow angular range (≅40 0 (FWHM)) in the direction of the detected fission fragment. From this a mean lifetime of the compound nucleus τ CN =(140-240).10 -22 s is obtained. (II) A perpendicularly to the scission axis strongly pronounced surplus M SC α =(1.7±0.4).10 -2 and an observed deficit of equal magnitude in direction of the scission axis. (orig./HSI) [de

  20. Fusion energy in context: its fitness for the long term

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1978-01-01

    Long-term limits to growth in energy will be imposed not by inability to expand supply, but by the rising environmental and social costs of doing so. These costs will therefore be cental issues in choosing long-term options. Fusion, like solar energy, is not one possibility but many, some with very attractive environmental characteristics and others perhaps little better in these regards than fission. None of the fusion options will be cheap, and none is likely to be widely available before the year 2010. The most attractive forms of fusion may require greater investments of time and money to achieve, but they are the real reason for wanting fusion at all

  1. Development of fine-group (315n/42γ) cross section library ENDL3.0/FG for fusion-fission hybrid systems

    International Nuclear Information System (INIS)

    Zeng Qin; Zou Jun; Xu Dezhen; Jiang Jieqiong; Wang Minghuang; Wu Yican; Qiu Yuefeng; Chen Zhong; Chen Yan

    2011-01-01

    To improve the accuracy of the neutron analyses for subcritical systems with thermal fission blanket, a coupled neutron and photon (315 n + 42γ) fine-group cross section library HENDL3.0/FG based on ENDF/B-Ⅶ. 0 has been produced by FDS team. In order to test the availability and reliability of the HENDL3.0/FG data library, shielding and critical safety benchmarks were performed with VisualBUS code. The testing results indicated that the discrepancy between calculation and experimental values of nuclear parameters fell in a reasonable range. (authors)

  2. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  3. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  4. Enabling the Use of Space Fission Propulsion Systems

    International Nuclear Information System (INIS)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-01-01

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center

  5. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  6. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  7. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  8. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  9. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  10. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fissionfusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  11. Fission meter

    Science.gov (United States)

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  12. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  13. Fusion breeder: its potential role and prospects

    International Nuclear Information System (INIS)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T → n(14.1 MeV) + α(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device

  14. Measurement and analysis of 14 MeV neutron-induced double-differential neutron emission cross sections needed for fission and fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai; Mehta, M.K.

    1988-07-01

    The main objectives of this IAEA Co-ordinated Research Programme are to improve the current status of data for 14 MeV neutron-induced double-differential neutron emission cross sections for V, Cr, Fe, Nb, Ta and 238 U. The principal objectives of this first meeting were to report on the status of participants' work, to exchange experience in experimental work and to establish the future work. Considering the unsatisfactory status of the data for 6 Li, 7 Li, 9 Be, Mo, W and Bi and their importance in fusion reactor technology participants agreed to include these isotopes in the programme

  15. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  16. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...

  17. Neutronic Parametric Study on a Conceptual Design for a Transmutation Fusion Blanket

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2011-01-01

    Fusion energy may be the one of options of future energy. In all over the world, researchers are putting their efforts for its commercial and economical availability. Fusion-fission hybrid reactors have been studied for various applications in China. First milestone of fusion energy is expected to be the fusion fission hybrid reactors. In fusion-fission hybrid reactor the blanket design is of second prime importance after fusion source. In this study conceptual design of a fusion blanket is initiated for calculation of tritium production, transmutation of minor actinides (MA) and fission products (FP) and energy multiplication calculations

  18. Fission dynamics of superheavy nuclei formed in uranium induced reactions

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-01-01

    The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets

  19. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    ; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  20. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  1. Basic characteristics of an efficient fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, C W; Harms, A A [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Physics

    1977-01-01

    Some reactor physics characteristics of an efficient fusion breeder, consisting of an integrated fusion-fission reactor system with fissile and fusile fuel linkages, are examined. Core parameters of existing fission reactors and proposed fusion reactors are used to determine the system fissile fuel breeding gain, the fissile fuel doubling time, the nuclear fuel production capacity and the ratio of fusion-to-fission thermal power. It is concluded that such a symbiotic reactor configuration possesses considerable merit from the standpoint of long-term supply of fissile fuel and provides new options for the development of the next generation of nuclear energy systems.

  2. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  3. Advanced latent heat of fusion thermal energy storage for solar power systems

    Science.gov (United States)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  4. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    fissioning nuclei, with great accuracy. By putting together numerous experimental facts, and carefully analysing their observations, scientists have designed a coherent picture of the products of fission The ball is now back in the theorist's court. He must find a satisfactory explanation which will agree with the available data. New insights into the fission process can be obtained if the nucleus which is to be split, is first created. By utilizing modern accelerators, heavy ions are shot, at a high velocity, at the target nuclei. For example, ions of 20 Ne bombard nuclei of 133 Cs and create nuclei of 153 Tb which has such a large amount of surplus energy that it fissions. This process, called fusion/ fission is being intensively studied, several reports at the symposium indicated the potential power of this method, but they also showed how extremely difficult the interpretation of the results from such complex experiments is The reports and discussions at the 1979 symposium on Physics and Chemistry of Fission demonstrated steady and solid progress in the field At the same time, they opened up a number of new problems and hinted at the difficult tasks facing experimenters and theorists in the coming years. (author)

  5. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  6. Mass distribution of fission-like fragments formed in 20Ne + 165Ho system at Elab≈ 8.2 MeV/A

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.

    2017-01-01

    In the present work, an attempt has been made to study CFF and IFF in 20 Ne + 165 Ho system at projectile energy ≈ 8.2 MeV/A. Twelve fission like fragments (FLF) produced through complete fusion-fission (CFF) and/or incomplete fusion-fission (IFF) in the present system have been identified. The production cross-sections of identified fission like fragments have been measured and the mass distribution of fission like fragments studied

  7. Dynamic of fission and quasi-fission revealed by pre-scission neutron evaporation

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-06-01

    The dependence of pre-scission neutron multiplicities (ν-pre) on the mass-split and total kinetic energy (TKE) in fusion-fission and quasi-fission has been measured for a wide range of projectile-target combinations. the data indicate that the fusion-fission time scale is shorter for asymmetric splits than for symmetric splits, whilst there is no dependence on TKE. For quasi-fission reactions induced using 64 Ni projectiles, ν-pre falls rapidly with increasing TKE, indicating that these neutrons are emitted near to or after scission. A new interpretation of both neutron multiplicities and mean energies (the neutron clock-thermometer) allows the extraction of time scales with much less uncertainty than previously, and also gives information about the deformation from which the neutrons are emitted. 15 refs., 13 figs

  8. A direct method for numerical solution of a class of nonlinear Volterra integro-differential equations and its application to the nonlinear fission and fusion reactor kinetics

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki

    1975-12-01

    A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)

  9. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  10. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte

    2014-06-01

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  11. Energy payback and CO2 gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    2002-01-01

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES)

  12. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  13. Reexamination of fission fragment angular distributions and the fission process: Formalism

    International Nuclear Information System (INIS)

    Bond, P.D.

    1985-01-01

    The theory of fission fragment angular distributions is examined and the universally used expression is found to be valid only under restrictive assumptions. A more general angular distribution formula is derived and applied to recent data of high spin systems. At the same time it is shown that the strong anisotropies observed from such systems can be understood without changing the essential basis of standard fission theory. The effects of reaction mechanisms other than complete fusion on fission fragment angular distributions are discussed and possible angular distribution signatures of noncompound nucleus formation are mentioned

  14. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  15. Validation of a new 39 neutron group self-shielded library based on the nucleonics analysis of the Lotus fusion-fission hybrid test facility performed with the Monte Carlo code

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.

    1985-02-01

    The Swiss LOTUS fusion-fission hybrid test facility was used to investigate the influence of the self-shielding of resonance cross sections on the tritium breeding and on the thorium ratios. Nucleonic analyses were performed using the discrete-ordinates transport codes ANISN and ONEDANT, the surface-flux code SURCU, and the version 3 of the MCNP code for the Li 2 CO 3 and the Li 2 O blanket designs with lead, thorium and beryllium multipliers. Except for the MCNP calculation which bases on the ENDF/B-V files, all nuclear data are generated from the ENDF/B-IV basic library. For the deterministic methods three NJOY group libraries were considered. The first, a 39 neutron group self-shielded library, was generated at EIR. The second bases on the same group structure as the first does and consists of infinitely diluted cross sections. Finally the third library was processed at LANL and consists of coupled 30+12 neutron and gamma groups; these cross sections are not self-shielded. The Monte Carlo analysis bases on a continuous and on a discrete 262 group library from the ENDF/B-V evaluation. It is shown that the results agree well within 3% between the unshielded libraries and between the different transport codes and theories. The self-shielding of resonance cross sections results in a decrease of the thorium capture rate and in an increase of the tritium breeding of about 6%. The remaining computed ratios are not affected by the self-shielding of cross sections. (Auth.)

  16. Corrosion of oxide dispersion strengthened iron–chromium steels and tantalum in fluoride salt coolant: An in situ compatibility study for fusion and fusion–fission hybrid reactor concepts

    International Nuclear Information System (INIS)

    El-Dasher, Bassem; Farmer, Joseph; Ferreira, James; Serrano de Caro, Magdalena; Rubenchik, Alexander; Kimura, Akihiko

    2011-01-01

    Highlights: ► ODS steel corrosion in molten fluoride salts was studied in situ using electrochemical impedance spectroscopy. ► Steel/coolant interfacial resistance increases from 600 to 800 °C due to an aluminum enriched layer forming at the surface. ► The addition of tungsten to ODS steels increases corrosion resistance measurably at 600 °C. - Abstract: Primary candidate classes of materials for future nuclear power plants, whether they be fission, fusion or hybrids, include oxide dispersion strengthened (ODS) ferritic steels which rely on a dispersion of nano-oxide particles in the matrix for both mechanical strength and swelling resistance, or tantalum alloys which have an inherent neutron-induced swelling resistance and high temperature strength. For high temperature operation, eutectic molten lithium containing fluoride salts are attractive because of their breeding capability as well as their relatively high thermal capacity, which allow for a higher average operating temperature that increases power production. In this paper we test the compatibility of Flinak (LiF–NaF–KF) salts on ODS steels, comparing the performance of current generation ODS steels developed at Kyoto University with the commercial alloy MA956. Pure tantalum was also tested for comparative purposes. In situ data was obtained for temperatures ranging from 600 to 900 °C using a custom-built high temperature electrochemical impedance spectroscopy cell. Results for ODS steels show that steel/coolant interfacial resistance increases from 600 to 800 °C due to an aluminum enriched layer forming at the surface, however an increase in temperature to 900 °C causes this layer to break up and aggressive attack to occur. Performance of current generation ODS steels surpassed that of the MA956 ODS steel, with an in situ impedance behavior similar or better than that of pure tantalum.

  17. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  18. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  19. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  20. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  1. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  2. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  3. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  4. Economic analysis of fusion breeders

    International Nuclear Information System (INIS)

    Delene, J.G.

    1985-01-01

    This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included

  5. An introduction to hybrid fusion

    International Nuclear Information System (INIS)

    Reynolds, J.A.

    1982-01-01

    This report gives a brief introduction to some hybrid fusion proposals. The idea is to take advantage of the high neutron energy in fusion compared to fission either to breed fuel more efficiently than in a fast reactor, or increase the power output by fission of U 238 or transmute radioactive waste. The penalty is an increased cost and complexity of the blanket and the loss of environmental and safety arguments for fusion systems which rest on their low inventory of radioactive materials. (author)

  6. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  7. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  8. U. S. Fusion Energy Future

    International Nuclear Information System (INIS)

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  9. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  10. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  11. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  12. Prospects for alternative Fusion Fuels

    International Nuclear Information System (INIS)

    Glancy, J.

    1986-01-01

    The author has worked on three different magnetic confinement concepts for alternate fusion fueled reactors: tokamaks; tanden mirrors, and reversed field pinches. The focus of this article is on prospects for alternate fusion fuels as the author sees them relative to the other choices: increased numbers of coal plants, fission reactors, renewables, and D-T fusion. Discussion is limited on the consideration of alternate fusion fuels to the catalyzed deuterium-deuterium fuel cycle. Reasons for seeking an alternate energy source are cost, a more secure fuel supply, environmental impact and safety. The technical risks associated with development of fusion are examined briefly

  13. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  14. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  15. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  16. Search of fission products in 20Ne-ion beam interaction with 165Ho at 8 MeV/nucleon

    International Nuclear Information System (INIS)

    Singh, D.; Ali, R.; Afzal Ansari, M.; Rashid, M.H.

    2006-01-01

    In the present work, during the study complete fusion (CF) and incomplete fusion (ICF) in 20 Ne-induced reactions, the production cross-sections for several fission products in 20 Ne + 165 Ho system have been measured

  17. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  18. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  19. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  20. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  1. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  2. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  4. Is there hope for fusion?

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs

  5. Economics of fusion-fission (hybrid) reactors

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1977-03-01

    This paper analyzes the range of allowable performance characteristics (capital costs, operating costs, plutonium production rate and thermal-to-electrical conversion) which will result in net benefits to the public through reduced electrical costs at levels ranging from zero to $20 billion. These targets for performance will be established in light of nine different development scenarios for the remaining electric generating alternatives

  6. Review of mirror fusion reactor designs

    International Nuclear Information System (INIS)

    Bender, D.J.

    1977-01-01

    Three magnetic confinement concepts, based on the mirror principle, are described. These mirror concepts are summarized as follows: (1) fusion-fission hybrid reactor, (2) tandem mirror reactor, and (3) reversed field mirror reactor

  7. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  8. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  9. The role of fusion as a future power source

    International Nuclear Information System (INIS)

    Kintner, E.E.; Hirsch, R.L.

    1977-01-01

    potentials of fusion power in relation to nuclear fission, solar and other future energy sources can be assessed in general terms. The probability of success in fusion development, while not susceptible to measurement, continues to improve. Fusion can be expected to play an increasingly important role in energy supply world-wide in the early decades of the 21st century. If a commercial scale demonstration reactor (greater than or equal to 500 MWe) operates successfully by 2000, it is reasonable to anticipate as many as 20 to 100 large (1000 MWe) plants by 2020 and an increasing percentage of fusion electrical generating stations thereafter

  10. An analysis of the estimated capital cost of a fusion reactor

    International Nuclear Information System (INIS)

    Hollis, A.A.

    1981-06-01

    The cost of building a fusion reactor similar to the Culham Conceptual Tokamak reactor Mark IIB is assessed and compared with other published capital costs of fusion and fission reactors. It is concluded that capital-investment and structure-renewal costs for a typical fusion reactor as presently conceived are likely to be higher than for thermal-fission reactors. (author)

  11. An analysis of the estimated capital cost of a fusion reactor

    International Nuclear Information System (INIS)

    Hollis, A.A.; Evans, L.S.

    1981-01-01

    The cost of building a fusion reactor similar to the Culham Conceptual Tokamak reactor Mark IIB is assessed and compared with other published capital costs of fusion and fission reactors. It is concluded that capital-investment and structure-renewal costs for a typical fusion reactor as presently conceived are likely to be higher than for thermal-fission reactors. (author)

  12. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    Science.gov (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  13. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  14. Solar thermochemical and electrochemical research - how they can help reduce the carbon dioxide burden

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, E.A. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Mechanical Engineering

    1996-07-01

    Any process which decreases the use of fossil fuels as a prime energy source will be used only if it is attractive to industry. To be attractive, an alternative energy source must be cost effective. The only alternative prime energy sources which appear likely to be cost effective in the foreseeable future are nuclear fission and the various manifestations of solar. Fission, no matter how well it is engineered on earth, can cause major disasters because of human error; its apparent cost effectiveness is illusory. Thermonuclear fusion energy is no closer to fruition than it was fifty years ago, when it was first proposed. Solar energy is thermonuclear fusion. The source is far removed from humans. We can`t manipulate the safety devices. The realization that one cannot divorce nuclear energy from the hazards of human error and malice is already a given in public policy. Being a 5800K source, solar is most efficiently used when it is directly absorbed at the site of an endothermic reaction at the highest practicable temperature. In recognizing the special thermodynamic attributes of solar energy, for the past 20 years my students and I have explored various solar thermochemical and solar thermoelectrochemical processes. This paper presents a summary of some of our pertinent observations and suggests directions that I believe future research and development should take. (UK)

  15. Results of nuclear fusion development

    International Nuclear Information System (INIS)

    Yamamoto, Kenzo

    1975-01-01

    Compared with the nuclear fission research which followed that in advanced countries, Japan has treaded on its own track in nuclear fusion development; in the former, she had been far behind other leading countries. Characteristic of the efforts in Japan is the collaboration with educational institutions. Works are now carried out mainly in Tokamak plasma confinement, though other means being studied simultaneously. The nation's fusion research program is the realization of a fusion reactor at the turn of the present century, based on the world-level results attained with Tokamak. Past developments in the nuclear fusion research, the current status, and aspects for the future are discribed. (Mori, K.)

  16. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  17. 50 years of fusion research

    Science.gov (United States)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  18. Risk considerations for fusion energy

    International Nuclear Information System (INIS)

    Kazimi, M.S.

    1983-01-01

    An assessment is made of the public and occupational health effects implied in the utilization of fusion reactors as a source of electricity. Three conceptual designs for TOKAMAK fusion reactors are used in the assessment. It was assumed in this analysis that a fusion plant will release 10 Ci/day of tritium to the atmosphere. Risk from waste management and accidents are estimated relative to risk of LWR's energy cycle. Comparison of the fusion occupational and public risk from coal, LWR, solar thermal and solar-photovoltaic plants has been undertaken. It is concluded that, compared to other fuel cycles, fusion can potentially have a favorable position with respect to risk

  19. Fusion barrier distributions - What have we learned?

    International Nuclear Information System (INIS)

    Hinde, D. J.; Dasgupta, M.

    1998-01-01

    The study of nuclear fusion received a strong impetus from the realisation that an experimental fusion barrier distribution could be determined from precisely measured fusion cross-sections. Experimental data for different reactions have shown in the fusion barrier distributions clear signatures of a range of nuclear excitations, for example the effects of static quadrupole and hexadecapole deformations, single- and double-phonon states, transfer of nucleons, and high-lying excited states. The improved understanding of fusion barrier distributions allows more reliable prediction of fusion angular momentum distributions, which aids interpretation of fission probabilities and fission anisotropies, and understanding of the population of super-deformed bands for nuclear structure studies. Studies of the relationship between the fusion barrier distribution and the extra-push energy should improve our understanding of the mechanism of the extra-push effect, and may help to predict new ways of forming very heavy or super-heavy nuclei

  20. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  1. Fission before mass equilibration in heavy ion reactions

    International Nuclear Information System (INIS)

    Yadav, C.; Thomas, R.G.; Mohanty, A.K.

    2013-01-01

    For compound nucleus (CN) fission, it is expected that the width of the fragment mass distribution is independent of the entrance channel. In quasifission reaction, however, recent experiments reported anomalous broadening of mass distribution for more symmetric systems forming the same compound nucleus in fissile (fissility ∼ 0.8) and less fissile (fissility ∼ 0.7) systems. These measurements have not shown any mass-angle correlation, but width of fission fragment mass distribution was found to be consistently higher than that expected for fusion-fission

  2. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  3. Economic potential of inertial fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents

  4. Modelling animal group fission using social network dynamics.

    Directory of Open Access Journals (Sweden)

    Cédric Sueur

    Full Text Available Group life involves both advantages and disadvantages, meaning that individuals have to compromise between their nutritional needs and their social links. When a compromise is impossible, the group splits in order to reduce conflict of interests and favour positive social interactions between its members. In this study we built a dynamic model of social networks to represent a succession of temporary fissions involving a change in social relations that could potentially lead to irreversible group fission (i.e. no more group fusion. This is the first study that assesses how a social network changes according to group fission-fusion dynamics. We built a model that was based on different parameters: the group size, the influence of nutritional needs compared to social needs, and the changes in the social network after a temporary fission. The results obtained from this theoretical data indicate how the percentage of social relation transfer, the number of individuals and the relative importance of nutritional requirements and social links influence the average number of days before irreversible fission occurs. The greater the nutritional needs and the higher the transfer of social relations during temporary fission, the fewer days will be observed before an irreversible fission. It is crucial to bridge the gap between the individual and the population level if we hope to understand how simple, local interactions may drive ecological systems.

  5. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  6. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  7. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  8. A rationale for large inertial fusion plants producing hydrogen for powering low emission vehicles

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-01-01

    Inertial Fusion Energy (IFE) has been identified in the 1991 National Energy Strategy, along with Magnetic Fusion Energy (MFE), as one of only three inexhaustible energy sources for long term energy supply (past 2025), the other alternatives being fission and solar energy. Fusion plants, using electrolysis, could also produce hydrogen to power low emission vehicles in a potentially huge future US market: > 500 GWe would be needed for example, to replace all foreign oil imports with equal-energy hydrogen, assuming 70%-efficient electrolysis. Any inexhaustible source of electricity, including IFE and MFE reactors, can thus provide a long term renewable source of hydrogen as well as solar, wind and biomass sources. Hydrogen production by both high temperature thermochemical cycles and by electrolysis has been studied for MFE, but avoiding trace tritium contamination of the hydrogen product would best be assured using electrolysis cells well separated from any fusion coolant loops. The motivations to consider IFE or MFE producing renewable hydrogen are: (1) reducing US dependence on foreign oil imports and the associated trade deficient; (2) a hydrogen-based transportation system could greatly mitigate future air pollution and greenhouse gases; (3) investments in hydrogen pipelines, storage, and distribution systems could be used for a variety of hydrogen sources; (4) a hydrogen pipeline system could access and buffer sufficiently large markets that temporary outages of large (>> 1 GWe size) fusion hydrogen units could be tolerated

  9. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  10. Canadian contributions to the safety and environmental aspects of fusion

    International Nuclear Information System (INIS)

    Stasko, R.; Wong, K.

    1987-05-01

    Since next-step fusion devices will be fuelled with mixtures of tritium and deuterium, the knowledge base and tritium handling experience associated with the operation of CANDU reactors is viewed as relevant to the development of safe fusion technology. Fusion safety issues will be compared with fission safety experience, after which specific Canadian activities in support of fusion safety will be overviewed. In addition, recommendations for appropriate fusion safety criteria will be summarized. 18 refs

  11. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  12. Open problems in sub-barrier fusion

    International Nuclear Information System (INIS)

    Vandenbosch, R.

    1992-01-01

    Two aspects of sub-barrier fusion are discussed. A challenge to the use of fission fragment angular distributions to probe the spin distribution in fusion is addressed. Evidence from excitation functions for the importance of neutron transfer and the neck degree of freedom is examined

  13. Asymmetric fission of 47V induced by the 23Na+24Mg reaction

    International Nuclear Information System (INIS)

    Beck, C.; Djerroud, B.; Haas, F.; Freeman, R.M.; Hachem, A.; Heusch, B.; Morsad, A.; Vuillet-A-Cilles, M.; Sanders, S.J.

    1993-01-01

    The properties of fully energy-damped processes (deep-inelastic orbiting, fusion-evaporation, and fusion-fission processes) have been investigated in the nearly mass-symmetric entrance-channel 23 Na + 24 Mg reaction leading to the 47 V compound nucleus. By comparison with previous data for the mass-asymmetric 35 Cl + 12 C reaction forming the same compound system at the same excitation energy, no entrance-channel effects are observed in either the evaporation residue or the fusion-fission yields. This is in contrast to the situation with the 28 Si + 12 C and 24 Mg + 16 O reactions where an orbiting process is evident. The asymmetrical elemental distributions of the fusion-fission fragments of the massA=47 system are well described by a transition-state model that accounts for the spin and mass-asymmetry dependence of the fission saddle point

  14. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  15. Fission gas detection system

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1984-01-01

    A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)

  16. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  17. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  18. External events analysis for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1990-01-01

    External events are those off-normal events that threaten facilities either from outside or inside the building. These events, such as floods, fires, and earthquakes, are among the leading risk contributors for fission power plants, and the nature of fusion facilities indicates that they may also lead fusion risk. This paper gives overviews of analysis methods, references good analysis guidance documents, and gives design tips for mitigating the effects of floods and fires, seismic events, and aircraft impacts. Implications for future fusion facility siting are also discussed. Sites similar to fission plant sites are recommended. 46 refs

  19. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  20. Intitutional constraints to fusion commercialization

    International Nuclear Information System (INIS)

    1979-10-01

    The major thrust of this report is that the long time frame associated with the development of commercial fusion systems in the context of the commercialization and institutional history of an allied technology, fission-power, suggests that fusion commercialization will not occur without active and broad-based support on the part of the Nation's political leaders. Its key recommendation is that DOE fusion planners devote considerable resources to analytical efforts aimed at determining the need for fusion and the timing of that need, in order to convince policymakers that they need do more than preserve fusion as an option for application at some indefinite point in the future. It is the thesis of the report that, in fact, an act of political vision on the part of the Nation's leaders will be required to accomplish fusion commercialization

  1. Fission chamber simulator for data acquisition performance tests

    International Nuclear Information System (INIS)

    Batyunin, A.V.; Vorobev, V.A.; Obudovsky, S.Yu.; Kaschuck, Yu.A.; Shvikin, S.A.

    2013-06-01

    Divertor neutron flux monitor (DNFM) is a diagnostic system to be used for measurement of the total neutron yield and fusion power in the experimental fusion tokamak-reactor ITER. The diagnostic consists of the 18 fission chambers (FC), front-end electronics and data acquisition system to process, collect and archive data. The system should provide neutron flux measurements in dynamic range 7 orders of magnitude with a time resolution 1 ms and an error less 10%. (authors)

  2. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  3. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  4. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility.

    Science.gov (United States)

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.

  5. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  6. The Solar System Origin Revisited

    Science.gov (United States)

    Johnson, Fred M.

    2016-10-01

    A novel theory will be presented based in part on astronomical observations, plasma physics experiments, principles of physics and forensic techniques. The new theory correctly predicts planetary distances with a 1% precision. It accounts for energy production mechanism inside all of the planets including our Earth. A log-log mass-luminosity plot of G2 class stars and solar system planets results in a straight line plot, whose slope implies that a fission rather than a proton-proton fusion energy production is operating. Furthermore, it is a confirmation that all our planets had originated from within our Sun. Other still-born planets continue to appear on the Sun's surface, they are mislabeled as sunspots.

  7. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  8. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  9. Overview of nonelectrical applications of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1979-01-01

    The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study

  10. Effects of nuclear structure on quasi-fission

    International Nuclear Information System (INIS)

    Simenel, Cedric; Wakhle, Aditya; Hinde, D.J.; Rietz, R. du; Dasgupta, M.; Evers, M.; Lin, C.J.; Luong, D.H.; Avez, B.

    2012-01-01

    The quasi-fission mechanism hinders fusion of heavy systems because of a mass flow between the reactants, leading to a re-separation of more symmetric fragments in the exit channel. A good understanding of the competition between fusion and quasi-fission mechanisms is expected to be of great help to optimize the formation and study of heavy and superheavy nuclei. Quantum microscopic models, such as the time-dependent Hartree-Fock approach, allow for a treatment of all degrees of freedom associated to the dynamics of each nucleon. This provides a description of the complex reaction mechanisms, such as quasi-fission, with no parameter adjusted on reaction mechanisms. In particular, the role of the deformation and orientation of a heavy target, as well as the entrance channel magicity and isospin are investigated with theoretical and experimental approaches. (authors)

  11. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I

    2004-04-05

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  12. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  13. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  14. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  15. Recent advances in heavy-ion-induced fission

    International Nuclear Information System (INIS)

    Plasil, F.

    1984-01-01

    Three topics are discussed. The first deals with results that have been published recently on angular-momentum-dependent fission barriers. They are discussed because of the significance that we attach to them. We feel that, after a decade of study and controversy, we have arrived at a quantitative understanding of the competition between heavy-ion-induced fission and particle emission from compound nuclei at relatively low bombarding energies. The second topic concerns the extension of our heavy-ion-induced fission studies to higher energies. It is clear that in this regime the effects, both of fission following incomplete fusion and of extra-push requirements, need to be considered. Finally, discussed are our recent conclusions concerning the fissionlike decay of products from reactions between two 58 Ni nuclei at an incident energy, E/A, of 15.3 MeV, as well as the impact of our findings on the conclusions drawn from previous, similar measurements. 39 references

  16. Singlet fission in pentacene dimers

    Science.gov (United States)

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  17. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  18. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  19. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  20. Symmetric and asymmetric ternary fission of hot nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.

    1993-01-01

    Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped

  1. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  2. Breeder control fusion reactor. Topical interview

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, A [Max-Planck-Institut fuer Plasmaphysik, Garching/Muenchen (Germany, F.R.)

    1977-09-01

    The energy sources of the future are extremely controversial. The consumption of fossil fuel shall decrease during the next decades, because exhaustion of the resources, pollution, increase of CO/sub 2/ in the atmosphere and other reasons. But at present the question it not yet settled which alternative energy system should replace the fossil fuel. First of all nuclear energy in the form of fission reactions seems to come into operation to a larger extent. The next step may be the controlled thermonuclear fusion reaction. Furthermore, a comparison between fusion and fission is given which shows that fusion would bring about less risks than the breeders. An advantage of the fusion reactor would be the fact that the fuel cycle is closed. Unfortunately, the physical questions are not as yet satisfactorily clarified so that one cannot be sure whether a fusion reactor can really be built.

  3. Nuclear fusion: The issues

    International Nuclear Information System (INIS)

    Griffin, R.D.

    1993-01-01

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included

  4. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  5. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  6. Space propulsion by fusion in a magnetic dipole

    International Nuclear Information System (INIS)

    Teller, E.; Glass, A.J.; Fowler, T.K.; Hasegawa, A.; Santarius, J.F.

    1991-01-01

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs

  7. Aggression and conflict management at fusion in spider monkeys.

    Science.gov (United States)

    Aureli, Filippo; Schaffner, Colleen M

    2007-04-22

    In social systems characterized by a high degree of fission-fusion dynamics, members of a large community are rarely all together, spending most of their time in smaller subgroups with flexible membership. Although fissioning into smaller subgroups is believed to reduce conflict among community members, fusions may create conflict among individuals from joining subgroups. Here, we present evidence for aggressive escalation at fusion and its mitigation by the use of embraces in wild spider monkeys (Ateles geoffroyi). Our findings provide the first systematic evidence for conflict management at fusion and may have implications for the function of human greetings.

  8. Fusion Power Program biannual progress report, April-September 1979

    International Nuclear Information System (INIS)

    1980-02-01

    This biannual report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the April-September 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Separate abstracts were prepared for three sections

  9. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  10. Prospects for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1986-01-01

    Ideally, a new energy source must be capable of displacing old energy sources while providing both economic opportunities and enhanced environmental benefits. The attraction of an essentially unlimited fuel supply has generated a strong impetus to develop advanced fission breeders and, even more strongly, the exploitation of nuclear fusion. Both fission and fusion systems trade a reduced fuel charge for a more capital-intensive plant needed to utilize a cheaper and more abundant fuel. Results from early conceptual designs of fusion power plants, however, indicated a capital intensiveness that could override cost savings promised by an inexpensive fuel cycle. Early warnings of these problems appeared, and generalized routes to more economically attractive systems have been suggested; specific examples have also recently been given. Although a direct reduction in the cost (and mass) of the fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils, and primary structure) most directly reduces the overall cost of fusion power, with the mass power density (MPD, ratio of net electric power to FPC mass, kWe/tonne) being suggested as a figure-of-merit in this respect, other technical, safety/environmental, and institutional issues also enter into the definition of and direction for improved fusion concepts. These latter issues and related tradeoffs are discussed

  11. Potential need for fusion in the U. S. energy system

    Energy Technology Data Exchange (ETDEWEB)

    Beardsworth, E; Powell, J

    1977-09-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a ''cost/benefit'' oriented assessment methodology, because of both the time frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the U.S. energy system are posited and analyzed under various assumptions about costs. The ''Reference Energy System'' approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumption levels and technology mix in each scenario. Not-unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion.

  12. Fusion: A necessary component of US energy policy

    International Nuclear Information System (INIS)

    Correll, D.L. Jr.

    1989-01-01

    US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs

  13. Observation of fission residues in the 16O + 181Ta system at Elab ≈ 6 MeV/A

    Directory of Open Access Journals (Sweden)

    Singh B. P.

    2011-10-01

    Full Text Available Present paper reports on the production cross-section of 24 fission like events (30 ≤ Z ≤ 60 formed via complete fusion-fission and/or incomplete fusion-fission processes in 16O+181Ta system at energies ≈ 6 MeV/A. Experiments have been performed using the recoil-catcher technique followed by off-line γ-spectroscopy. The measured cross-section of fission-like events is satisfactorily described by a statistical model code. Further, an attempt has been made to study the mass and isotopic yield distributions of fission fragments. The variance of the presently measured isotopic yield distributions has been found to be in agreement with the literature values for some other fissioning systems.

  14. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  15. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  16. Fast fission assisted ignition of thermonuclear microexplosions

    International Nuclear Information System (INIS)

    Winterberg, F.

    2006-01-01

    It is shown that the requirements for fast ignition of thermonuclear microexplosions can be substantially relaxed if the deuterium-tritium (DT) hot spot is placed inside a shell of U-238 (Th-232). An intense laser - or particle beam-projected into the shell leads to a large temperature gradient between the hot DT and the cold U-238 (Th-232), driving thermomagnetic currents by the Nernst effect, with magnetic fields large enough to entrap within the hot spot the α-particles of the DT fusion reaction. The fast fission reactions in the U-238 (Th-232) shell implode about 1/2 of the shell onto the DT, increasing its density and reaction rate. With the magnetic field generated by the Nernst effect, there is no need to connect the target to a large current carrying transmission line, as it is required for magnetized target fusion, solving the so-called ''stand off'' problem for thermonuclear microexplosions. (orig.)

  17. Study of fission dynamics with the three-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2011-11-15

    The dynamics of fission has been studied by solving one- and three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The average prescission neutron multiplicities, fission probabilities and the mean fission times have been calculated in a broad range of the excitation energy for compound nuclei {sup 210}Po and {sup 224}Th formed in the fusion-fission reactions {sup 4}He+{sup 206}Pb, {sup 16}O+{sup 208}Pb and results compared with the experimental data. The analysis of the results shows that the average prescission neutron multiplicities, fission probabilities and the mean fission times calculated by one- and three-dimensional Langevin equations are different from each other, and also the results obtained based on three-dimensional Langevin equations are in better agreement with the experimental data. (orig.)

  18. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  19. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Lee, J.D.; Moir, R.W.; Barr, W.L.

    1982-04-01

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  20. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  1. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  2. Sub-Coulomb fusion with halo nuclei

    International Nuclear Information System (INIS)

    Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.

    1995-01-01

    The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))

  3. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  4. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  5. Fission of heavy hypernuclei

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1993-01-01

    The results on delayed and prompt fission of heavy hypernuclei obtained by the LEAR PS177 collaboration are recalled and discussed. It is shown that the hypernuclei life-times can be explained in term of a weak strangeness violating lambda-nucleon interaction with a cross section close to 6.0 10 -15 barns. The lambda attachment function is shown to be sensitive to the scission configuration, just before fission, and to the neck dynamics. This function provides a new way to study the nuclear scission process. (author)

  6. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  7. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  8. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  9. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  10. Phase 1 space fission propulsion system design considerations

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system

  11. Laser induced photonuclear and fusion-reactions

    International Nuclear Information System (INIS)

    LoDato, V.A.

    1977-01-01

    The energy release from the fusion-fission pellets is demonstrated. It is shown that the coupling of the fusion-fission process is extremely efficient provided one can obtain the proper compression heating. The pellet of an outer core of (Li6D-Li6T) with an inner core of U238 is shown to be an efficient and practical fuel and can be ignited by the present generation of lasers to produce thermonuclear burn. The demonstration of the efficiency for photonuclear and photofission pellets is shown. However no suitable gamma ray source exists at present to initiate these processes. (orig.) [de

  12. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  13. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...

  14. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  15. Interstellar rendezvous missions employing fission propulsion systems

    International Nuclear Information System (INIS)

    Lenard, Roger X.; Lipinski, Ronald J.

    2000-01-01

    There has been a conventionally held nostrum that fission system specific power and energy content is insufficient to provide the requisite high accelerations and velocities to enable interstellar rendezvous missions within a reasonable fraction of a human lifetime. As a consequence, all forms of alternative mechanisms that are not yet, and may never be technologically feasible, have been proposed, including laser light sails, fusion and antimatter propulsion systems. In previous efforts, [Lenard and Lipinski, 1999] the authors developed an architecture that employs fission power to propel two different concepts: one, an unmanned probe, the other a crewed vehicle to Alpha Centauri within mission times of 47 to 60 years. The first portion of this paper discusses employing a variant of the ''Forward Resupply Runway'' utilizing fission systems to enable both high accelerations and high final velocities necessary for this type of travel. The authors argue that such an architecture, while expensive, is considerably less expensive and technologically risky than other technologically advanced concepts, and, further, provides the ability to explore near-Earth stellar systems out to distances of 8 light years or so. This enables the ability to establish independent human societies which can later expand the domain of human exploration in roughly eight light-year increments even presuming that no further physics or technology breakthroughs or advances occur. In the second portion of the paper, a technology requirement assessment is performed. The authors argue that reasonable to extensive extensions to known technology could enable this revolutionary capability

  16. Fusion energy and nuclear liability considerations

    International Nuclear Information System (INIS)

    Fork, William E.; Peterson, Charles H.

    2014-01-01

    For over 60 years, fusion energy has been recognised as a promising technology for safe, secure and environmentally-sustainable commercial electrical power generation. Over the past decade, research and development programmes across the globe have shown progress in developing critical underlying technologies. Approaches ranging from high-temperature plasma magnetic confinement fusion to inertial confinement fusion are increasingly better understood. As scientific research progresses in its aim to achieve fusion 'ignition', where nuclear fusion becomes self-sustaining, the international legal community should consider how fusion power technologies fit within the current nuclear liability legal framework. An understanding of the history of the civil nuclear liability regimes, along with the different risks associated with fusion power, will enable nations to consider the proper legal conditions needed to deploy and commercialise fusion technologies for civil power generation. This note is divided into three substantive parts. It first provides background regarding fusion power and describes the relatively limited risks of fusion technologies when compared with traditional nuclear fission technologies. It then describes the international nuclear liability regime and analyses how fusion power fits within the text of the three leading conventions. Finally, it examines how fusion power may fall within the international nuclear liability framework in the future, a discussion that includes possible amendments to the relevant international liability conventions. It concludes that the unique nature of the current civil nuclear liability regime points towards the development of a more tailored liability solution because of the reduced risks associated with fusion power. (authors)

  17. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  18. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  19. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  20. Fission blanket benchmark experiment on spherical assembly of uranium and PE with PE reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tonghua; Lu, Xinxin; Wang, Mei; Han, Zijie, E-mail: neutron_integral@aliyun.com; Jiang, Li; Wen, Zhongwei; Liu, Rong

    2016-04-15

    Highlights: • The fission rate distribution on two depleted uranium assemblies was measured with plate fission chambers. • We do calculations using MCNP code and ENDF/B-V.0 library. • The overestimation of calculations to the measured fission rates was found. • The observed discrepancy are discussed. - Abstract: New concept of fusion-fission hybrid for energy generation has been proposed. To validate the nuclear performance of fission blanket of hybrid, as part of series of validation experiment, two types of fission blanket assemblies were setup in this work and measurements were made of the reaction rate distribution for uranium fission in the spherical assembly of depleted uranium and polyethylene by Plate Fission Chamber (PFC). There are two PFCs in experiment, one is depleted uranium chamber and the other is enriched uranium chamber. The Monte-Carlo transport code MCNP5 and continuous energy cross sections library ENDF/BV.0 were used for the analysis of fission rate distribution in the two types of assemblies. The calculated results were compared with the experimental ones. The overestimation of fission rate for depleted uranium and enriched uranium were found in the inner boundary of the two assemblies. However, the C/E ratio tends to decrease for the distance from the core slightly and the results for enriched uranium are better than that for depleted uranium.