WorldWideScience

Sample records for solar energy final

  1. Solar Energy Installers Curriculum Guides. Final Report.

    Science.gov (United States)

    Walker, Gene C.

    A project was conducted to develop solar energy installers curriculum guides for use in high school vocational centers and community colleges. Project activities included researching job competencies for the heating, ventilation, and air conditioning industry and determining through interviews and manufacturers' literature what additional…

  2. 77 FR 44267 - Notice of Availability of the Final Programmatic Environmental Impact Statement for Solar Energy...

    Science.gov (United States)

    2012-07-27

    ...] Notice of Availability of the Final Programmatic Environmental Impact Statement for Solar Energy... Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Final Programmatic EIS... RMP Amendments, references, and additional information regarding solar energy development are...

  3. Solar energy legal bibliography. Final report. [160 references

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, D.; Euser, B.; Joyce, C.; Morgan, G. H.; Laitos, J. G.; Adams, A.

    1979-03-01

    The Solar Energy Legal Bibliography is a compilation of approximately 160 solar publications abstracted for their legal and policy content (through October 1978). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

  4. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  5. NCSU solar energy and conservation house. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A passive solar energy house has been built adjacent to the NCSU McKimmon Continuing Education Center. The house contains a two-story embedded sunspace, two Trombe walls, active solar hot water heating, thermal storage in a rock filled ceiling/floor, and numerous research treatments, and energy conservation features. (See attached photo brochure; Appendix 1). The house is completely decorated and furnished in an attractive manner and the exterior architecture is traditional and has broad consumer appeal. It is also thoroughly instrumented to monitor performance. The house is open to the public on weekends and numerous people come to visit on their own initiative and others take advantage of the close proximity to McKimmon while there attending conferences. The house will influence and motivate large numbers of people to consider solar and energy conservation facets in their homes and will provide data to substantiate performance to prospective home buyers and meaningful data on design and construction for builders.

  6. Solar Energy Research and Education Foundation. Final reports by task

    Energy Technology Data Exchange (ETDEWEB)

    von Reis, K.; Waegel, A.S.; Totten, M.

    1997-12-10

    This document contains final reports for the following tasks: kiosk for the children`s museum renewable energy exhibit and display, internet promotional and educational material, Aurora renewable energy science and engineering, CD-ROM training materials, presentations and traveling display, radio show `Energy Matters`, and newspaper articles and weekly news column.

  7. 76 FR 47608 - Notice of Availability of the Final Environmental Impact Statement for the Rice Solar Energy, LLC...

    Science.gov (United States)

    2011-08-05

    ... Availability of the Final Environmental Impact Statement for the Rice Solar Energy, LLC Rice Solar Energy... Desert Conservation Area (CDCA) Plan Amendment for the Rice Solar Energy Project (RSEP) in Riverside... proposed Rice Solar Energy Project (Project) is a 150 megawatt (MW) solar electric power plant that would...

  8. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  9. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  10. 75 FR 72836 - Notice of Availability of Final Environmental Impact Statement for the Tonopah Solar Energy...

    Science.gov (United States)

    2010-11-26

    ... Statement for the Tonopah Solar Energy Crescent Dunes Solar Energy Project, Nye County, NV AGENCY: Bureau of... Statement (EIS) for the Crescent Dunes Solar Energy Project, Nye County, Nevada, and by this notice is... . SUPPLEMENTARY INFORMATION: Tonopah Solar Energy, LLC applied to the BLM for a 7,680-acre right-of-way (ROW) on...

  11. Solar 2 Green Energy, Arts & Education Center. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Jamie C; Collins, Christopher J

    2011-07-18

    The Solar 2 Green Energy, Arts and Education Center is an 8,000 sq.ft. demonstration project that will be constructed to Platinum LEED certification and will be the first carbon-neutral, net-zero energy use public building in New York City, giving it local and national appeal. Employing green building features and holistic engineering practices throughout its international award-winning design, Solar 2 will be powered by a 90kW photovoltaic (PV) array in conjunction with a geothermal heating and cooling system and a high efficient design that seeks to reduce the overall energy load of the building. Solar 2 will replace our current 500 sq.ft. prototype facility - known as Solar 1 - as the educational and cultural centerpiece of a five-block public greenway on the East River in Stuyvesant Cove Park, located along two acres of public riverfront on a newly reclaimed, former brownfield in lower Manhattan. Designed as a public-use complex for year-round environmental education exhibits and onsite activities for all ages and backgrounds, Solar 2 will demonstrate energy-efficiency technologies and sustainable environmental practices available now to all urban residents, eco-tourists, teachers, and students alike. Showcasing one of Solar 2's most striking design elements is the PV roof array with a cafe and river vistas for miles of New York City's skylines. Capping the building as a solar-powered landmark, and visible from the FDR Drive, the PV array is also designed to provide visitors below a view of the solar roof when standing outside, as well as directly underneath it. Recognized by an international jury of architects, civil engineers and urban designers by the Swiss-based Holcim Foundation, the Solar 2 design was awarded the prestigious Holcim North American 2008 Gold Award for Sustainable Construction for innovative, future-oriented and tangible sustainable construction projects, selected from more than 1900 entries. Funding from the Department of Energy

  12. Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

  13. Final evaluation of the `solar garden house`, a new concept for energy conscious design

    Energy Technology Data Exchange (ETDEWEB)

    Voorden, M. van der; Pel-Hoogendoorn, M.; Tilde, P. de [Building Physics Group, Faculty of Architecture, Delis University of Technology, Delft (Netherlands)

    1997-12-31

    The `Solar Garden House` is an example of a recently developed concept for Energy Conscious Building Design. One of the striking features of this house is a huge sun space connecting two small housing blocks. The sun space is meant as an air collector from which heated air can be conducted through a cavity wall in each of the mentioned housing blocks. The cavity wall is used as a component for storage of energy supplied by the heated air and can be used as a source for supplementary heating of inner spaces on both sides of the wall. A preliminary computational study, carried out at Dells University of Technology, indicated that the contribution of the cavity wall to energy savings was negligible. Therefore, as a follow-up the alternative use of the sun space as a device for pre-heating air for ventilation purposes has been investigated. This option turned out to be far more promising from the energy saving point of view. This presentation focuses on the original building concept. A final evaluation of the Solar Garden House will be given. The following aspects will be discussed: energy behaviour and thermal comfort, relevant design parameters and accuracy of obtained computational results. (orig.) 4 refs.

  14. Light and energy - solar cells in transparent facades. Final report; Lys og energi - solceller i transparente facader. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The overall purpose with the project 'LIGHT AND ENERGY - solar cells in transparent facades' is to demonstrate and disseminate the potentials for the application of light-filtering solar cells as multi-functional components, which meets the architectural objectives while contributing to a good indoor climate, a suitable quality of lighting indoor and at the same time produces electricity. The project was divided into six activities. The first activity 'zooms in' on the light-filtering solar cells on the market today. The following activities gradually 'zoom out' from the solar cell itself to the building component and ends up in the facade and the room behind. This order - which largely reflects the chronological development of the project - is repeated in the final project report to ensure the best possible overview. The characterisation in the different activities has been a combination of technical measurements, simulations, calculations and a thorough architectural evaluation of solar cell component, facade and room for attain an overall, interprofessional evaluation of the solar cell panels. It is important to stress that the basis of the project is the solar cell products available on the market today and In the near future. The possibilities and ideas have been evaluated and documented using mock-ups in 1:1 scale since the individual components have completely other qualities when they are integrated in a facade - the platform of this project. These models in full scale are a possibility to register and experience the character of the light inside out and under different light settings. It has been important to think of the solar cell filter as a part of the architecture instead of a replacement for windows and actively use the light-filtering features as a possibility in new facade designs - a filter which in combination with the completely transparent glass and completely light-blocking materials opens up for new possibilities

  15. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

  16. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    Science.gov (United States)

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  17. Mid-South solar total energy: institutional analysis. Final report, May 1, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Powe, R.E.; Carley, C.T.; Forbes, R.E.; Johnson, L.R.; Stiffler, A.K.; Hodge, B.K.; Bouchillon, C.W.

    1979-01-01

    A comprehensive survey was undertaken to determine the current usage of energy by the Mississippi State University, considering electricity and fuel separately. A variety of individual components likely to be employed in total energy systems are then considered in detail, including: solar assisted space heating system, space cooling system design, solar electric system, flat plate solar collector system, central solar receiver, and geothermal heat pump system. Also, algorithms have been developed for the approximate prediction of building heating and cooling loads based on gross parameters such as floor area, type of wall construction, etc. System considerations and evaluation are then presented. (LEW)

  18. Passive solar design strategies: Remodeling guidelines for conserving energy at home. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler`s typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house`s need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  19. Final Report: The Influence of Novel Behavioral Strategies in Promoting the Diffusion of Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth [Yale Univ., New Haven, CT (United States); Bollinger, Bryan [Duke Univ., Durham, NC (United States)

    2017-08-30

    This is the final report for a systematic, evidence-based project using an unprecedented series of large-scale field experiments to examine the effectiveness and cost-effectiveness of novel approaches to reduce the soft costs of solar residential photovoltaics. The approaches were based around grassroots marketing campaigns called ‘Solarize’ campaigns, that were designed to lower costs and increase adoption of solar technology. This study quantified the effectiveness and cost-effectiveness of the Solarize programs and tested new approaches to further improve the model.

  20. Commercial applications of solar total energy systems. Volume 3. Conceptual designs and market analyses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. The STES concept trade studies, sensitivity parameters, performance characteristics, and selected concepts are discussed. Market penetration rate estimates are provided, and technology advancements and utilization plans are discussed. Photovoltaic STES configurations and Rankine cycle thermal STES systems are considered. (WHK)

  1. Application of solar energy to industrial drying of soybeans: Phase III, performance evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B.R.

    1979-10-31

    A 15-month performance evaluation was conducted on a solar system designed and constructed to augment the industrial drying of soybeans at the Gold Kist, Inc., extraction plant in Decatur, Alabama. The plant employs three oil-fired, continuous-flow dryers of 3,000 bu/hr each. The solar system consists of 672 Solaron air collectors that temper the airflow into the existing dryers. Since the requirement for energy exceeds the peak solar system capacity, no storage is provided. The interface with the existing facility is simply accomplished by three ducts that release the solar heated air directly adjacent to the dryer air intakes, and no mechanical coupling is needed. The solar system was operated for 1,752 hr on 290 days during the 15-month period without a single failure sufficient to cause shutdown. No interference with normal plant operations was experienced. Maintenance of the solar system, consisting of service to the air handling unit, cleaning of collector glazing, and minor duct repair, totaled $1,564. System utilization was only 46.3%. This was primarily due to daytime routine maintenance performed on the conventional drying and processing equipment. The solar fraction was not large enough to justify maintenance shift changes. An average collector efficiency of 26.2% was experienced. Contamination caused by the local plant environment reduced the average collector efficiency by 9.3 percentage points. A prototype of an automatic cleaning system was constructed and tested.

  2. National plan for the accelerated commercialization of solar energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    After a brief profile of the Mid-American region and characterization of the residential and commercial markets and the industry of the region, a short description is given of a regional planning meeting held for the purpose of preparing input for the Mid-American section of the National Program for the Accelerated Commercialization of Solar Energy (NPAC) Implementation plans. For each of thirty-eight programs, the objective, rationale, task statement/description, evaluation measures, and implementor are given. The programs are in these areas: public education/awareness; education/training; legislative/regulatory; performance/analysis; design/planning;demonstrations; state interface; technology; information dissemination; legal and regulatory; analysis and assessment; and regional coordination. Two policy statements are included - one on cratering a solar society and the other recommending the expansion of the commercialization to encompass and include the concepts of utilization and popularization in the plan for the advancement of solar energy. (LEW)

  3. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  4. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  5. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  6. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  7. Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

  8. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  9. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  10. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  11. Standalone cool/freeze cluster driven by solar photovoltaic energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.; Pedersen, Per Henrik; Jacobsen, Emil

    2010-12-15

    The objective of the project is to develop and demonstrate a grid-independent cold storage system for perishable food, medicine or other goods, with a special focus on the need for such systems in developing countries with a sparse and unreliable supply of electricity. The project is directly based on the result from the international SolarChill project where a unique battery less solar driven vaccine refrigerator was developed by Vestfrost in cooperation with Danish Technological Institute (DTI). The project partners are Danish Technological Institute (Project manager), Danfoss, Grundfos, Fresvik (Norway) and Karise Klejnsmedie. The refrigeration system is set up at the solar energy test area of DTI, where a PV array with a nominal power of 800 W has been established. The batteries and charge controller are purchased from a Danish PV system retailer. The inverter is a trapezoid 50 Hz 230 Vac inverter is a robust type with high surge current. The two AC cabinets are standard low energy household freezers, whereas the DC cabinet is a special ice-lined refrigerator (fresh food/middle temperature) with high thermal capacity in its walls. The selection of large chest type freezers gives low specific energy consumption due to a high volume/surface ratio and low air infiltration. The commercial low energy cabinets are relatively inexpensive, and can operate with an extremely low consumption if the thermostat is set to cooling mode. As part of this quite extensive project, there have been a number of contacts with associated activities as well as direct requests from companies operating in 3rd world countries. The two most important cases have been a milk-cooling project in Uganda and a World Bank GEF project regarding improved storage methods for vaccines. The current design of the PV driven refrigeration system could be modified to milk cooling, and this is actually being investigated by the Danish company Karise Klejnsmedie who are specialist in stainless steel

  12. 3X compound parabolic concentrating (CPC) solar energy collector. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ballheim, R.W.

    1980-04-25

    Chamberlain engineers designed a 3X compound parabolic concentrating (CPC) collector for the subject contract. The collector is a completely housed, 105.75 x 44.75 x 10.23-inch, 240-pound unit with six each evacuated receiver assemblies, a center manifold and a one-piece glass cover. A truncated version of a CPC trough reflector system and the General Electric Company tubular evacuated receiver have been integrated with a mass producible collector design suitable for operation at 250 to 450/sup 0/F. The key criterion for optimization of the design was minimization of the cost per Btu collected annually at an operating temperature of 400/sup 0/F. The reflector is a 4.1X design truncated to a total height of 8.0 inches with a resulting actual concentration ratio of 2.6 to 1. The manifold is an insulated area housing the fluid lines which connect the six receivers in series with inlet and outlet tubes extending from one side of the collector at the center. The reflectors are polished, anodized aluminum which are shaped by the roll form process. The housing is painted, galvanized steel, and the cover glass is 3/16-inch thick tempered, low iron glass. The collector requires four slope adjustments per year for optimum effectiveness. Chamberlain produced ten 3X CPC collectors for the subject contract. Two collectors were used to evaluate assembly procedures, six were sent to the project officer in Albuquerque, New Mexico, one was sent to Argonne National Laboratory for performance testing and one remained with the Company. A manufacturing cost study was conducted to estimate limited mass production costs, explore cost reduction ideas and define tooling requirements. The final effort discussed shows the preliminary design for application of a 3X CPC solar collector system for use in the Iowa State Capitol complex.

  13. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  14. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  15. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  16. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  17. Research on the application of solar energy to industrial drying or dehydration processes. Final Phase report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The dehydration operation is described. The system design and its economic analysis are discussed. The system analysis covers the solar collectors, fan and ducting selection, rock storage design, heat recovery, control system, system simulation, and the monitoring system. The construction costs are discussed thoroughly. The construction design is presented including engineering drawings. (MHR)

  18. Solar Energy Installers Curriculum Guide. Final Report, September 18, 1980-August 15, 1981.

    Science.gov (United States)

    Seaman, George B., Sr.

    This publication is a curriculum guide for the installation of solar equipment. It is divided into the three major areas of general knowledge, technical design, and installation/maintenance. Associated is a list of relevant and prerequisite competencies identified as appropriate toward student interest groups of technician, installer,…

  19. Solar Thermal Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Pitsenbarger, J. [eds.

    1996-02-01

    Solar Thermal Energy Technology (PST) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy resource.

  20. Advanced storage concepts for solar thermal systems in low energy buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Andersen, Elsa; Schultz, Joergen M.

    2006-04-07

    The aim of Task 32 is to develop new and advanced heat storage systems which are economic and technical suitable as long-term heat storage systems for solar heating plants with a high degree of coverage. The project is international and Denmark's participation has focused on Subtask A, C, and D. In Subtask A Denmark has contributed to a status report about heat storage systems. In Subtask C Denmark has focused on liquid thermal storage tanks based on NaCH{sub 3}COO?3H{sub 2}O with a melting point of 58 deg. C. Theoretical and experimental tests have been conducted in order to establish optimum conditions for storage design. In Subtask D theoretical and experimental tests of optimum designs for advanced water tanks for solar heating plants for combined space heating and domestic hot water have been conducted. (BA)

  1. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  2. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  3. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

  4. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-05

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology. CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.

  5. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  6. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  7. Experimenting with Solar Energy

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  8. Solar energy potential

    Science.gov (United States)

    1973-01-01

    The potential of solar energy as a national resource is discussed. Research and development programs for the development of eleven concepts are described to show the proposed funding for each year over a fifteen year period. The estimated energy contributions by period for each of the solar concepts are analyzed. The estimated impact of the solar concepts to the year 2020 are tabulated.

  9. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  10. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  11. Solar energy in Israel

    International Nuclear Information System (INIS)

    Zvirin, Y.; Zamkow, S.

    1993-01-01

    The state of Israel has been a pioneer in the solar energy development and utilization since it was founded. In the 50's solar domestic home heaters became commercially available. At the same time research work has been started in different areas of solar energy, which led to more advanced solar systems for additional applications. The presentation includes some details of commercial utilization of solar energy and a brief description of the main Research and Development projects in industry, universities and research institutes. (authors)

  12. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  13. Solar energy system economic evaluation: final report for SEMCO-Loxahatchee, Loxahatchee National Wildlife Refuge, Palm Beach County, Florida

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The economic analysis of the solar energy system that was installed at Loxahatchee, Florida Operational Test Site (OTS) is developed for Loxahatchee and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-Chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system costs over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. The results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  14. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  15. Solar-assisted low energy dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  16. Solar energy and the aeronautics industry. Thesis

    Science.gov (United States)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  17. Tribal Renewable Energy Report - Final Report: Bishop Paiute Tribe Residential Solar Program. Phase 1 (DOE Award # DE-EE0006949)

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Brian [Bishop Paiute Tribe; Castilone, Lisa

    2018-03-30

    The objective of the project was to provide affordable renewable energy to 22 low income reservation homeowners; provide job training to tribal members and reduce air pollution by equivalent carbon offsets. The project exceeded grant objectives installing 66kW of rooftop solar on 22 low income single family homes and providing hands-on PV rooftop solar installation training to 24 tribal individuals (four more than planned). The project was a phased installment of an on-going partnership between the Tribe and GRID that was initiated in 2013 whereby 62 rooftop solar units were installed prior to this funded effort. The reported work in this report describes the funded effort where US Department of Energy provided partial funding through grant award IE0006949 and marks the first phase of an effort matching California Solar SASH Initiative funding with DOE Office of Indian Energy Funding and brings the total for the program to 84 installed systems (running total of 271 Kw installed) and the end of the project. Tribal workforce development was a key aspect of the project and trained 24tribal members for a total 1168 cumulative on-job training hours. The solar installations and training efforts were fully completed by September of 2016 with 66.6 kW installed - 8 kW more than the original estimate stated in the grant application.

  18. Fort Yukon, Alaska DOE Implementation Grant Gwich'in Solar and Energy Efficiency in the Arctic Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cadzow, Janet [Gwichyaa Zhee Gwich' in Tribal Government, Fort Yukon, AK (United States); Messier, Dave [Gwichyaa Zhee Gwich' in Tribal Government, Fort Yukon, AK (United States)

    2017-01-30

    Gwichyaa Zhee Gwich’in Tribal Government (GZGTG) applied for funding in 2014 under the U.S. Department of Energy Office of Indian Energy Deployment of Clean Energy on Tribal Lands funding opportunity. They were awarded 50% of the project costs for the construction of an 18kW, grid-tied solar PV array on the fort Yukon Tribal Hall, the construction of a 3kW solar PV array on the tribally owned greenhouse, the replacement of inefficient florescent lighting fixtures in the tribal hall to higher efficiency LED lights and the addition of blow in cellulose insulation to the attic of the tribal hall to assist with heat retention. Total DOE Funding for the project was $124,735. Total GZGTG funding for the project was $133,321 for a total project cost of $258,056. The Project was completed with 100% local labor on the tribal hall solar PV installation, the LED lighting retrofit and the insulation on the tribal hall. Based on the results at the tribal hall/office, the tribe also used their own tribal funding to retrofit the lighting in the community hall from florescent to LED lights. The resulting project was completed by the end of Sept 2016 and results have shown a decrease in fuel used at the tribal hall/office of 35% and a decrease in electric costs at the tribal hall of 68%. The total energy costs before the project were approximately $28,000 a year and the energy equivalent of 385 MMBTU/yr. After the project the total energy costs decreased to $11,200/yr. and an energy equivalent of only 242 MMBTU. This represents an overall decrease in energy use of 38%. All in all the tribe and the community regard this project as a huge success!

  19. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  20. Solar energy: principles and possibilities.

    Science.gov (United States)

    Rhodes, Christopher J

    2010-01-01

    As the world faces an impending dearth of fossil fuels, most immediately oil, alternative sources of energy must be found. 174 PW worth of energy falls onto the top of the Earth's atmosphere in the form of sunlight which is almost 10,000 times the total amount of energy used by humans on Earth, as taken from all sources, oil, coal, natural gas, nuclear and hydroelectric power combined. If even a fraction of this could be harvested efficiently, the energy crunch could in principle be averted. Various means for garnering energy from the Sun are presented, including photovoltaics (PV), thin film solar cells, quantum dot cells, concentrating PV and thermal solar power stations, which are more efficient in practical terms. Finally the prospects of space based (satellite) solar power are considered. The caveat is that even if the entire world electricity budget could be met using solar energy, the remaining 80% of energy which is not used as electricity but thermal power (heat) still needs to be found in the absence of fossil fuels. Most pressingly, the decline of cheap plentiful crude oil (peak oil) will not find a substitution via solar unless a mainly electrified transportation system is devised and it is debatable that there is sufficient time and conventional energy remaining to accomplish this. The inevitable contraction of transportation will default a deconstruction of the globalised world economy into that of a system of localised communities.

  1. The Solar Energy Notebook.

    Science.gov (United States)

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  2. Solar energy in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  3. Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-07

    The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

  4. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  5. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  6. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  7. Advanced thermal-energy-storage concept-definition study for solar Brayton power plants. Final technical report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The detailed results are presented of a technical and economic assessment of phase change and thermochemical energy storage systems in a solar power plant employing a high temperature Brayton cycle thermal engine with helium as the heat transport fluid. The assessment included an examination of the storage system operation, efficiency, power plant interaction, design, materials, safety, maintenance, environmental impact, system life, and economics. These considerations are implemented in the conceptual design of three baseline storage systems and their components for use in a solar power plant module of 50 megawatt electrical power output. Rationale is provided to support the configuration, operation and material choices. A preliminary assessment of the technology development and experimental test program requirements are also included. The report is contained in four separate volumes. This volume is the technical report.

  8. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  9. Environmental and solar energy techniques

    International Nuclear Information System (INIS)

    Zaidi, Z.I.

    2003-01-01

    Technologies for fossil fuel extraction, transportation, processing and their use have harmful impact on the environment which cause direct and indirect negative impact on human heath, animals, crops and structure etc. The end use of all the fossil fuels is combustion irrespective of the final purpose i.e. heating, electricity production and motive power for transportation. The main constituents of fossil fuels are carbon and hydrogen but some other ingredients, which are originally in the fuel e.g. sulfur or are added during refining e.g. lead, alcohol etc. Combustion of the fossil fuel produces various gases (CO/sub x/, SO/sub x/ NO/sub x/, CH,), soot, ash, droplets of tar and other organic compounds, which are all released into the atmosphere. High rate of population growth and industrialization in the developing countries are causing unsustainable use of forest resources and fossil fuels, hence, are serious hurdles in environmental improvement. The situation in Pakistan is even worse as it has very limited fossil fuels and 40% of its commercial energy requirement are to be imported every year. Renewable energy technologies on the other hand, can play a vital role in improving the environmental condition globally. Pakistan Council of Renewable Energy Technologies (PCRET) is working in the field of renewable energy technologies. The Council has developed solar modules and solar thermal devices including solar cookers, solar dryers, solar stills and solar water heaters. The paper describes these devices and contribution they can make towards the improvement of environment. (author)

  10. The Energy Crisis and Solar Energy

    Science.gov (United States)

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  11. Virginia Solar Pathways Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Katharine; Cosby, Sarah

    2018-03-28

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments. The U.S. Department of Energy (DOE) funding award enabled DEV to take a focused approach to developing the Solar Strategy for its Virginia service territory. The structure and funding from the DOE award also facilitated valuable input from a formal stakeholder team convened to serve as advisors (Advisory Team) to the VSPP and contribute their perspectives and expertise to both the analysis and strategy development aspects of the Project. The development of the Solar Strategy involved three main goals: • Establish a policy and program framework that would integrate existing solar programs with new options appropriate for the Commonwealth’s policy environment and broader economic development objectives; • Promote wider deployment of solar within a low retail electric rate environment; and • Serve as a sustainable, utility-administered solar model that could be replicated in other states with similar policy environments, including, but not limited to, the entire Southeast region. In support of the VSPP goals, the Project Team commissioned four studies to support the Solar Strategy development. Two studies, completed by Navigant Consulting, focused on the integration of solar into the electric grid. The first solar integration study focused on integration of solar into the distribution grid where the utility system directly connects to and serves end-use customers

  12. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  13. Solar energy in practice

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1996-01-01

    One of the Dutch energy distribution companies (REMU) applies integrated passive, thermal and photovoltaic solar energy systems in fifty newly built dwellings in Amersfoort, Netherlands. The houses are equipped with a combi-boiler (solar energy and natural gas) and 22.5m 2 photovoltaic panels to produce electricity. Six houses are equipped with an electric heat pump, while the other 44 houses have a high-efficiency low-NO x combi-boiler. The experiences with the project so-far are outlined. 6 figs., 1 tab., 10 refs

  14. Production of high-energy chemicals using solar energy heat. Project 8999, final report for the period September 1, 1977--May 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Sinnott, J.; Novil, M.; Yudow, B.D.; Rackoff, M.G.

    1978-12-01

    The first phase of a study to identify candidate processes and products suitable for future exploitation using high-temperature solar energy is presented. This phase has been principally analytical, consisting of techno-economic studies, thermodynamic assessments of chemical reactions and processes, and the determination of market potentials for major chemical commodities that use significant amounts of fossil resources today. The objective was to identify energy-intensive processes that would be suitable for the production of chemicals and fuels using solar energy process heat. Of particular importance was the comparison of relative costs and energy requirements for the selected solar product versus costs for the product derived from conventional processing. The assessment methodology used a systems analytical approach to identify processes and products having the greatest potential for solar energy-thermal processing. This approach was used to establish the basis for work to be carried out in subsequent phases of development. It has been the intent of the program to divide the analysis and process identification into the following three distinct areas: (1) process selection, (2) process evaluation, and (3) ranking of processes. Four conventional processes were selected for assessment namely, methanol synthesis, styrene monomer production, vinyl chloride monomer production, and terephthalic acid production.

  15. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

  16. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  17. Solar energy conversion: an analysis of impacts on desert ecosystems. Final report, June 1, 1977-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Patten, D.C.

    1978-05-01

    A research program is proposed to determine the response of desert ecosystems to the operation of various solar conversion systems. Existing solar powered irrigation pumping systems are described, as well as the 5 MW solar thermal test system at Albuquerque, the proposed 10 MW central receiver system at Barstow, and photovoltaic solar dispersed power systems. The theoretical ecological impacts of solar conversion system are described. Three major impact categories are discussed in detail: shading, wind deflection, and physical disturbance. Research needs necessary to evaluate biotic and abiotic changes in the desert ecosystem are delineated, and specific monitoring and manipulation programs for existing and proposed solar conversion sites are proposed.

  18. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

  19. Regional final energy consumptions

    International Nuclear Information System (INIS)

    2011-01-01

    This report comments the differences observed between the French regions and also between these regions and national data in terms of final energy consumption per inhabitant, per GDP unit, and per sector (housing and office building, transport, industry, agriculture). It also comments the evolutions during the last decades, identifies the most recent trends

  20. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  1. Solar Energy Now.

    Science.gov (United States)

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  2. Nuclear energy + solar energy, why not?

    International Nuclear Information System (INIS)

    Hernandez C, I.; Nelson E, P.

    2016-09-01

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  3. Solar energy research and utilization

    Science.gov (United States)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  4. Central solar energy receiver

    Science.gov (United States)

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  5. Data on incident solar energy

    Science.gov (United States)

    Thekaekara, M. P.

    1974-01-01

    Instrumentation for solar irradiance monitoring, and radiation scales are discussed in a survey of incident solar energy data. The absolute accuracy and intrinsic reliability of the values of the solar constant and zero air mass solar spectrum proposed by the Institute of Environmental Sciences as an ASTM standard are evaluated. Extraterrestrial observations are used for deriving solar irradiance data at ground level for widely varying atmospheric parameters, with special reference to air pollution. The effects of diffuse sky radiance and those of varying slopes of the solar energy collecting surface are examined. Average values of solar energy available at different locations in the United States are included.

  6. The solar energy in Israel

    International Nuclear Information System (INIS)

    Bocquet, L.

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  7. Plasmasol, photovoltaic effect in a solar photo plasma. Final report of the project. Concerted action energy - 2003; Plasmasol, effet photovoltaique dans un photoplasma solaire. Rapport final du Projet. Action Concertee Energie - 2003 CNRS-MRNT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this project was to study the feasibility of the solar energy photovoltaic conversion from the photo-ionization of a gaseous medium constituted of metallic vapors. After a bibliography and a recall of based physical data the report presents the absorption of the solar radiation by the cesium vapor, a simplified model of the photovoltaic effect in a photo-plasma, the experimental device and the results. (A.L.B.)

  8. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  9. Solar energy heating panel

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrie, T.

    1984-08-14

    A solar energy collecting and radiating panel for heating a fluid such as air circulating in an enclosure disposed behind the panel. The panel is in the form of a pan made of sheet metal, such as thin aluminum, darkened on its irradiated surface, the blackened or darkened surface being protected by a pane of glass. The panel has a plurality of dome-shaped dimples embossed on and projecting from its irradiated surface such as to present a large surface area to exposure to sun rays and to capture solar energy independently of the sun height or position relative to the horizon. The heat absorbed by the panel is conveyed by its back surface to air circulating by convection or by forced circulation in a thermally insulated enclosure, for heating a building or for any other utilization. A plurality of panels may be disposed side by side to form a solar energy collecting array preferably mounted on an outside wall of a building, in a southerly orientation.

  10. The marketing of solar energy

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1994-01-01

    After two decades of research and development the market introduction of solar water heaters finally is developing rapidly. In a number of progressive countries, amongst which the Netherlands, preparations are made for the large-scale introduction of photovoltaic (PV) power systems. A brief overview is given of market introduction activities with regard to solar energy applications in several countries. Also attention is paid to new technological developments for the improvement of solar boilers: the Integrated Collector Storage system, the integration of the storage tank in the solar water heater (combi-boiler), and the new principle for a combined system for the production of hot tap water and space heating, the so-called solar-gas-combi. The Dutch-developed boilers, however, must compete with the the foreign thermosyphon boilers, although these boilers probably require more maintenance than the Dutch boilers. The market for PV-systems is still in its infancy. The marketing efforts and research activities in Japan, USA and European countries for PV-systems are briefly discussed. Although financial incentives from the national governments are still necessary contributions from other market parties for the development of PV-systems are expected. 4 ills

  11. Solar energy - design element

    International Nuclear Information System (INIS)

    Sudimac, Budimir S.; Dubljevic, Andjela N.

    2015-01-01

    The main focus of this study is the theoretical examination of the possibilities of applying technological, functional, aesthetic and energy resources in elements of urban design. Designed solutions are treated as part of the overall optimization of architectural elements and urban space, in which technological development enables the use of certain energy potentials of elements of urban design. The paper presents student hypothetical design models of urban architectural elements with integrated photovoltaic modules. The analytical procedure was applied in the analysis of student work in a seminar of the first year of master studies at the Faculty of Architecture. The aim is to improve students' awareness of the need for proper handling of energy and the possibility of integration with other architectural elements. The research and the results have enabled further work on the sustainable development of architectural elements with a focus on the use of solar energy by promoting the modern design approach. Key words: PV module, teaching, solar energy, urban design

  12. Public Policies of Solar Energy

    International Nuclear Information System (INIS)

    Bouvier, Yves; Pehlivanian, Sophie; Teissier, Pierre; Chauvin-Michel, Marion; Forget, Marie; Raymond, Roland; Hyun Jin Yu, Julie; Popiolek, Nathalie; Guthleben, Denis

    2013-01-01

    This dossier about the Public Policies of Solar Energy brings together the presentations given in June 2013 at a colloquium organised by the Savoie university of Chambery (France): Introduction (Yves Bouvier, Sophie Pehlivanian); Passive solar energy in the shade of the French energy policy, 1945-1986 (Pierre Teissier); Solar architectures and energy policies in France: from oil crisis to solar crisis (Marion Chauvin-Michel); Sun in media, between promotion and contestation (Sophie Pehlivanian); Public policies of solar energy and territorial jurisdictions: the example of village photovoltaic power plants (Marie Forget); Energy social system and ordinary creative movement (Roland Raymond); The Historical Evolution of South Korea's Solar PV Policies since the 1970's (Julie Hyun Jin Yu, Nathalie Popiolek); Research on solar energy from yesterday to the present day: an historical project (Denis Guthleben); Photovoltaic power: public policies and economical consequences. The French choices in the international context - 1973-2013 (Alain Ricaud)

  13. Switchable insulation for using solar energy in buildings. Final report; Schaltbare Waermedaemmung (SWD) zur Nutzung der Sonnenenergie in Gebaeuden. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stark, C.; Horn, R.; Hetfleisch, J.; Fricke, J.

    2003-02-25

    Solar energy can be used in buildings via use of transparent insulations. But thereby problems occur, like overheating of building walls in summer and heat losses in the cold season. To solve these problems ZAE Bayern has designed and optimized the switchable insulation SWD, the thermal conductivity of which can be changed from highly insulating to conducting. A computer routine was developed to calculate and to optimize the heat gains. The SWD is switched by desorbing/adsorbing as small amount of hydrogen gas. Desorption is facilitated with an electric heating element. The thermal conductivity of the filling can be varied by about a factor of 40. Several SWD-modules were produced and installed in an outside measuring facility. The heat gains and the durability were investigated for three years. The results of the simulation could be verified and ageing did not occur. For an optimal system the heat gains are in the range of 150 kWh/(m{sup 2}a). The mounting of these panels at south facades is simple, especially for post bolt systems. Contrary to transparent systems the loss of heat in winter is very small and the overheating of the walls behind the SWD in summer can be avoided. (orig.) [German] Zur Nutzung der Sonnenenergie in Gebaeuden werden bisher transparente Waermedaemmsysteme eingebaut, die jedoch oft mit Problemen wie Wandueberhitzung im Sommer und Waermeverlusten in der kalten Jahreszeit behaftet sind. Zur Loesung dieser Probleme wurde am ZAE Bayern eine schaltbare Waermedaemmung entwickelt und optimiert, deren Daemmeigenschaft je nach Sonneneinstrahlung und Waermebedarf variiert werden kann. Es wurde ein Programm entwickelt, mit dem die Waermegewinne berechnet und optimiert werden koennen. Die Schaltbarkeit wird durch einen Getter ermoeglicht, der eine ungefaehrliche Menge Wasserstoffgas reversibel aufnehmen und abgeben kann. Die Wasserstoff-Austreibung erfolgt mittels elektrischer Heizung und veraendert die Waermeleitfaehigkeit der Fuellung um einen

  14. Solar Energy Education. Reader, Part IV. Sun schooling

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  15. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  16. Institutionalizing solar energy education

    Energy Technology Data Exchange (ETDEWEB)

    Arwood, J.W. [Arizona Dept. of Commerce, Phoenix, AZ (United States). Energy Office

    1997-12-31

    As America entered the final decade of the 20th century, millions of people turned out to celebrate Earth Day`s 20th anniversary. Environmental awareness was on an upswing, and as a result, environmental education became a priority across the country. Environmental education was making significant headway into the public school system, and recycling emerged as the vanguard of this movement. At first the exclusive province of school children, recycling soon became a household habit. As children collected cans for cash, they also taught their parents to recycle. In its movement from classroom to curbside, recycling rode the school bus to Main Street and, within a few short years, became institutionalized. In this paper, the author demonstrates how the Solar Information and Education Program has evolved to the point where it has become an institutionalized, lasting part of the school experience for thousands of Arizona students. It is hoped that the solar experience for the state`s young people will duplicate the recycling experience of a decade ago, this time taking solar technology from chalkboard to rooftop.

  17. Hydrogen production by solar energy. Final report of the integrated project HYSOL (2002-2004); Production d'hydrogene par energie solaire. Rapport Final du Projet Integre HYSOL (2002-2004)

    Energy Technology Data Exchange (ETDEWEB)

    Flamant, G.

    2004-07-01

    The HYSOL project aims to study three thermal processes using the solar energy at temperatures of more than 1000 C: hydrocarbons cracking, non catalytic reforming at high temperature and water decomposition by thermal-chemical cycles. This report presents the HYSOL project and the main results and gives a special part to the methane cracking. (A.L.B.)

  18. Solar energy receiver

    Science.gov (United States)

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  19. High temperature process steam application at the Southern Union Refining Company, Hobbs, New Mexico. Solar energy in the oil patch. Final report, Phase III: operation, maintenance, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, L.E.; McGuire, D.R.

    1984-05-01

    This final report summarizes the technical reports for Phase III of this project. The third phase included the operation, maintenance, upgrade and performance reporting of a 10,080 square foot Solar Industrial Process Heat System installed at the Famariss Energy Refinery of Southern Union Refining Company near Hobbs, New Mexico. This report contains a description of the upgraded system, and a summary of the overall operation, maintenance and performance of the installed system. The results of the upgrade activities can be seen in the last two months of operational data. Steam production was significantly greater in peak flow and monthly total than at any previous time. Also monthly total cost savings was greatly improved even though natural gas costs remain much lower than originally anticipated.

  20. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  1. Low energy solar neutrino experiments: The Soviet American Gallium Experiment (SAGE). Final report, August 12, 1988--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Two {sup 71}Ga experiments are currently in operation. The first is the 60 ton Soviet American Gallium Experiment (SAGE) at Baksan, which has recently reported a signal level of 73+18/{minus}16(stat)+5/{minus}7(syst) SNU; the second is the 30 ton GALLEX experiment at Gran Sasso, which sees 87{+-}14{+-}7 SNU. Both results are consistent, and both suggest a neutrino flux level low compared to the total expected from standard solar model calculations. It is not possible, however, to make a case for flux levels lower than the p-p prediction. Assuming the experiments are correct (Neutrino source calibrations are planned for both SAGE and GALLEX in the near future.), it is not at all clear yet whether the answer lies with the neutrino physics, solar physics, or a combination of both. Nevertheless, though solar model effects cannot be ruled out, if the Homestake and Kamiokande results are taken at face value, then these two experiments alone imply that neutrino oscillations or some similar particle physics result must be present to some degree. This report reviews the SAGE experiment and recent results. Non-radiochemical experiments are also discussed, with an emphasis on the Kamiokande water Cerenkov results.

  2. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  3. Eighth national passive solar conference. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, A.; Zee, R.

    1983-12-01

    The Eighth National Passive Solar Conference was held near Santa Fe, New Mexico at the Glorieta Conference Center on September 5 to 11, 1983. Nearly 900 people from all across the nation and the world attended the conference. Close to 200 technical papers were presented, 50 solar product exhibits were available; 34 poster sessions were presented; 16 solar workshops were conducted; 10 renowned solar individuals participated in rendezvous sessions; 7 major addresses were delivered; 5 solar home tours were conducted; 2 emerging architecture sessions were held which included 21 separate presentations; and commercial product presentations were given for the first time ever at a national passive solar conference. Peter van Dresser of Santa Fe received the prestigious Passive Solar Pioneer Award, posthumously, from the American Solar Energy Society and Benjamin T. Buck Rogers of Embudo received the prestigious Peter van Dresser Award from the New Mexico Solar Energy Association. This report reviews conference organization, attendance, finances, conference evaluation form results, and includes press coverage samples, selected conference photos courtesy of Marshall Tyler, and a summary with recommendations for future conferences. The Appendices included conference press releases and a report by the New Mexico Solar Industry Development Corporation on exhibits management.

  4. Solar energy perspectives in France

    International Nuclear Information System (INIS)

    2008-01-01

    In a context combining climate change, energy supply crisis, an increased interest in solar energy, a strongly increasing market of solar installations, new technologies, a promotion of the development of the use solar energy in France and a fast development of the water heater and photovoltaic generator markets in France, this report proposes a wide overview of the past, present and future development of solar energy. It discusses the evolution of the French national energy policy and of the solar energy within this policy. It presents and discusses the solar energy resources, their strengths and weaknesses, their geographical and time distribution. It describes the various uses and applications of solar energy in buildings, discusses different aspects of this market (actors, economical data, evolutions, public incentives, perspectives). Then, it describes and discusses technical and economical aspects of two important technologies, the photovoltaic solar energy and the thermodynamic conversion of solar energy. Public incentives, laws and regulations, technical and economic aspects of the connection to the distribution network are then discussed. Some recommendations and ideas are formulated concerning research activities, industrial development, quality of equipment and facilities, personnel education, investment needs

  5. Solar heating demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bonicatto, L.; Kozak, C.

    1980-01-01

    The demonstration involved a 4-panel solar collector mounted on the industrial arts building. A 120 gallon storage tank supplements a 66 gallon electric hot water heater which supplies hot water for 5 shop wash basins, girl's and boy's lavatories, and a pressure washer in the auto shop. The installation and educational uses of the system are described. (MHR)

  6. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  7. Support for solar energy collectors

    Science.gov (United States)

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  8. When the solar energy pays

    International Nuclear Information System (INIS)

    Laramee, V.

    1997-01-01

    In the californian desert of Mojave, the three biggest solar power plants in the world produce 90% of world solar electric power. They have been operating for ten years, and their managers go on to improve them. These installations beat the productivity record every year, proving that the thermal solar energy can be competitive. (N.C.)

  9. Solar energy technical training directory

    Energy Technology Data Exchange (ETDEWEB)

    Corcoleotes, G; Kramer, K; O& #x27; Connor, K

    1979-06-01

    Available solar energy offerings in the technical training area are presented. Institutions are listed alphabetically by state. Each listing includes an institution address and phone number, solar programs or curricula offered, and detailed solar couse information. An alphabetical index of institutions in included. (MHR)

  10. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  11. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  12. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  13. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Cuesta-Santianes, M. J.; Cabrera Jimenez, J. A.

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  14. Solar energy enters the market

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1995-11-01

    Everybody agrees that there is a bright future for solar energy. After two decades of research and development, the market introduction of solar hot water systems is now taking off. In several countries, including the Netherlands, preparations are also underway for the large-scale introduction of photovoltaic systems. Although the share of thermal and photovoltaic solar energy in the energy supply sector in the Netherlands is very small (0.1 PJ) there are signs of imminent change. According to the Follow-up Policy Document on Energy Conservation, the share of solar energy should increase to 7 PJ by the year 2010. After years of concentrating on research and development, it is now generally recognised that it is time to introduce these technologies onto the market in order to realize the long-term objectives. In this respect, thermal solar energy is ahead of photovoltaics. 4 ills

  15. Getting down to business with solar energy

    International Nuclear Information System (INIS)

    Niederhaeusern, A.

    2008-01-01

    In this interview with Hans Ruedi Schweizer, President of the Board of Governors of the Swiss Ernst Schweizer AG company and this company's Head of Solar Energy Systems, Andreas Haller, the over thirty year history of the company's solar activities is examined. The company's efforts and its success in the area of solar energy and the efficient use of energy in the company's own facilities are discussed. The other areas of activity of the company cover facade elements, windows and doors through to mailboxes. Competition on the solar collector market and the need for more professional installation experts are discussed, as is the company's patented mounting system for photovoltaic panels. Finally, the wishes of the interviewees with respect to Swiss energy politics are noted.

  16. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  17. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  18. ATU/Fort Hood Solar Total Energy Military Large-Scale Experiment (LSE-1): system design and support activities. Final report, November 23, 1976-November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ATU/Fort Hood Solar Total Energy System will include a concentrating solar collector field of several acres. During periods of direct insolation, a heat-transfer fluid will be circulated through the collector field and thus heated to 500 to 600/sup 0/F. Some of the fluid will be circulated through a steam generator to drive a turbine-generator set; additional fluid will be stored in insulated tanks for use when solar energy is not available. The electrical output will satisfy a portion of the electrical load at Fort Hood's 87,000 Troop Housing Complex. Heat extracted from the turbine exhaust in the form of hot water will be used for space heating, absorption air conditioning, and domestic water heating at the 87,000 Complex. Storage tanks for the hot water are also included. The systems analysis and program support activities include studies of solar availability and energy requirements at Fort Hood, investigation of interfacing LSE-1 with existing energy systems at the 87,000 Complex, and preliminary studies of environmental, health, and safety considerations. An extensive survey of available concentrating solar collectors and modifications to a computerized system simulation model for LSE-1 use are also reported. Important program support activities are military liaison and information dissemination. The engineering test program reported involved completion of the Solar Engineering Test Module (SETM) and extensive performance testing of a single module of the linear-focusing collector.

  19. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    Science.gov (United States)

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  20. High-temperature process-steam application at the Southern Union Refining Company, Hobbs, New Mexico (solar energy in the oil patch). Phase I design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-31

    Southern Union Refining Company's Famariss Energy Refinery has worked diligently with Monument Solar Corporation in the conceptual and detail design for this unique application of solar generated steam. An area closely adjacent to the refinery and fronting New Mexico State Highway No. 18 has been designated for the solar collector array. Space planned for the demonstration parabolic trough array is sufficiently large to handle an array of 25,200 square feet in size - an array more than twice the size of the 10,080 square feet proposed originally. The conceptual design, performance, safety, environmental impact, and economic analysis are described. Engineering drawings are included. (WHK)

  1. Solar energy perspectives for public power

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, N. H.

    1979-06-01

    Perspectives on the utilization of solar energy for electricity production and thermal energy utilization by the public are briefly discussed. Wind energy conversion, biomass conversion, solar thermal, OTEC, photovoltaics, and solar heating and cooling are discussed. (WHK)

  2. Here comes the sun. Solar energy technology in the USA

    International Nuclear Information System (INIS)

    Van der Wees, G.

    1998-01-01

    An overview is given of the energy policy in the USA with respect to solar energy technology and the marketing of solar energy applications. In particular, attention is paid to the Million Solar Roofs programme, small-scale and medium-scale photovoltaic (PV) systems (Residential PV and Utility Scale PV), solar thermal systems (Parabolic Trough, Power tower, and Solar Dish/Engine). Also examples of passive solar systems are given. Finally, a number of aspects with regard to market implementation, e.g. net-metering. 9 refs

  3. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  4. 76 FR 54454 - Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF ENERGY Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar... Energy Project (GSEP), a 250-megawatt (MW) nominal capacity solar power generating facility on.../Final Environmental Impact Statement for the Genesis Solar Energy Project, Riverside County, California...

  5. Protocol Monitoring Passive Solar Energy

    International Nuclear Information System (INIS)

    Van den Ham, E.R.; Bosselaar, L.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The contribution was 57 PJ in 1990 and also 57 PJ in 1995. The efficiency of passive solar energy systems increased from -31.5% to -28.1% in the period 1990-1995, mainly as a result of the use of extra insulating glazing. As a result of the reduction of energy consumption for heating in houses it is expected that the extra contribution of 2 PJ will not be realized in the year 2010. It is suggested that the method to determine the absolute contribution of passive solar energy to the energy demand of dwellings is to be included in the protocol monitoring renewable energy. For the method to be included in the energy statistics of Statistics Netherlands (CBS) it can be considered only to take into account the difference compared to 1990. 11 refs

  6. Priority to solar energy

    International Nuclear Information System (INIS)

    Berner, Joachim

    2011-01-01

    There are many different combinations of solar heating systems and heat pumps in the market; some of them differ considerably in terms of the design concept, control management and storage technology. One thing they all have in common is that solar heating comes first.

  7. Solar energy conference, final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-24

    The conference attendance, publicity and press coverage, brochure mailing, presentations, displays, exhibitors, management seminar checklist, and seminar evaluation by attendees are presented. Also included are the proposal for funding of the conference, the list of attendees, keynote speeches, agenda, and feedback questionnaire. (MHR)

  8. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  9. Solar Urban Neighborhood (SUN). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ellertson, J.

    1984-07-10

    The Solar Urban Neighborhood (SUN) project was conceived to demonstrate a widely applicable cooperative procedure for low and moderate income urban residents to conserve energy and promote neighborhood revitalization through installing affordable energy conservation and solar retrofit measures on their homes. The self-help retrofit systems demonstrated fan-assisted air panels for walls and a mansard roof as well as vented Trombe wall and a sunspace. Building upon a strong tradition of cooperation within their neighborhood (security watches, community gardening, bartering of skills for do-it-yourself projects), these Roxbury neighbors were able to use the DOE grant as a catalyst for doing a far more ambitious undertaking. Additionally, the project used elements of a private-public partnership since the project director was also an energy retrofit contractor with specialized equipment and skills to share, wholesale purchase access, etc. Countervailing negative forces which impeded the progress of the project were the very ambitiousness of the solar retrofit itself, the delays in receiving the initial start up grant advance and in overcoming zoning restrictions which required design modifications; and discovery of building defects (dry rot, carpenter ants) within the structures at the time of retrofit. Nevertheless, the SUN project did have a wide impact through formal and informal outreach; through an associated project, SUN-TECH, which promoted solar retrofit awareness and involvement of City of Boston building, energy, and housing officials; and through evolvement of a grass roots level public-private partnership.

  10. The Energy Impacts of Solar Heating.

    Science.gov (United States)

    Whipple, Chris

    1980-01-01

    The energy required to build and install solar space- and water-heating equipment is compared to the energy saved under two solar growth paths corresponding to high and low rates of solar technology implementation. (Author/RE)

  11. Nanoparticle Solar Cell Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  12. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  13. Northeast Solar Energy Market Coalition (NESEMC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, Karl R. [Pace Energy and Climate Center Pace University School of Law

    2018-03-31

    The Northeast Solar Energy Market Coalition (NESEMC) brought together solar energy business associations and other stakeholders in the Northeast to harmonize regional solar energy policy and advance the solar energy market. The Coalition was managed by the Pace Energy and Climate Center, a project of the Pace University Elisabeth Haub School of Law. The NESEMC was funded by the U.S. Department of Energy SunShot Initiative as a cooperative agreement through 2017 as part of Solar Market Pathways.

  14. STI/DOE Solar decathlon- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington, Gregory [Univ. of California, Irvine, CA (United States)

    2016-04-14

    Team Orange successfully designed and constructed a house driven by new design concepts and technical innovations that harmonize with Southern California’s lifestyle and respect its cultural heritage. The basic elements of our 2015 proposal can be summarized as follows: Increased emphasis on the passive solar design concept, with a visually stimulating design that enhances the Southern California lifestyle; Use of design and construction techniques to create a market-ready home for an efficient and affordable lifestyle; Integrated use of new technology to create a behavior-adaptive smart home; A zero net energy house complying with the Living Building philosophy; and compliance with all DOE Solar Decathlon requirements.

  15. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  16. Solar heating system final design package

    Science.gov (United States)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  17. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  18. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Precision calibration and energy rating of solar cells and moduls. Final report; Praezisionskalibrierung und energetische Bewertung von PV-Modulen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zastrow, A. (ed.); Buecher, K.; Bopp, G.

    2001-05-01

    The main targets of the project, increased calibration accuracy for solar cells and moduls and the energy rating for solar moduls was achieved. Now the Fraunhofer can make secondary calibration of conventionell solar Cells with 1,5% accuracy, the Physikalisch-Technische Bundesanstalt Braunschweig (PTB) can make primary calibration of reference cells with 0,5% accuracy. The measurement accuracy for solar moduls was increased from 5% to 2,5%. For the STC calibration and characterization of solar moduls an extensive measurement equipment was established. Several efficient simulation tools have been developed for the estimation of seasonal energy efficiencies. The estimation based on recorded climate and module data. The calculated yearly efficiency correspond good with measured values in selected PV - systems from the 'German 1.000 roof program'. (orig.) [German] Die drei uebergeordneten Ziele des Projekts, naemlich die Erhoehung der Kalibriergenauigkeit von Referenzzellen mit Rueckfuehrung auf internationale Normale, die Praezisionskalibierung von Modulen und die energetische Bewertung von Modulen, wurden erreicht. Fuer die Sekundaerkalibrierung konventioneller Technologie kann das Fraunhofer ISE heute eine Messunsicherheit von nur 1,5% angeben, die Physikalisch-Technische Bundesanstalt Braunschweig (PTB) kalibriert ihre Referenzzellen jetzt mit 0,5% Unsicherheit. Fuer marktuebliche PV-Module wurde der Messfehler von zuvor 5% auf 2,5% reduziert. Fuer die STC-Kalibrierung von PV-Modulen und Charakterisierung unter realistischen Bezugsbedingungen wurde ein umfangreicher Geraetepark aufgebaut. Leistungsfaehige Modellierungswerkzeuge wurden bereitgestellt, die es erlauben, anhand von gemessenen Klimadaten oder von Klimamodellen gewonnenen Zeitreihen, sowie der gemessenen Modulparameter saisonale Wirkungsgrade zu ermitteln. Die Aussagen dieser Jahreswirkungsgradrechnungen ergaben eine gute Uebereinstimmung mit ausgewaehlten Ergebnissen des begleitenden

  20. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  1. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  2. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  3. Photovoltaic solar energy; Energie solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Labouret, A.

    2003-07-01

    This book proposes a practical approach of photovoltaic energy. It deals with all practical and economical questions that professionals may encounter, using a detailed presentation of the physical phenomena and technologies in concern. It is organized around 4 concrete cases, fully described, which are used as references during the whole approach. These 4 cases are representative of the general situations encountered from the small-size solar cell used in electronics to big power generators. They show the diversity of solar photovoltaic applications. Content: foreword; introduction; photovoltaic energy: why and how?; solar radiation; conversion of light into electricity; components of a photovoltaic system; applications of photovoltaic energy; design, installation and maintenance; case studies; appendix 1: physical data and units; appendix 2: insolation data; appendix 3: control of systems, check-list; bibliography; useful addresses. (J.S.)

  4. PHOTOELECTROCHEMICAL SOLAR ENERGY CONVERSION ...

    African Journals Online (AJOL)

    Preferred Customer

    the PEC, which is based on a narrow bandgap semiconductor and a redox couple, optical energy is converted into electrical energy without change of the free energy of the redox electrolyte (ΔG. = 0). The electrochemical reaction occurring at the counter electrode (CE) is opposite to the photoassisted reaction occurring at ...

  5. Solar Energy-An Everyday Occurrence

    Science.gov (United States)

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  6. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  7. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  8. Solar Living House Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Bradley [Univ. of Florida, Gainesville, FL (United States)

    2017-03-09

    The Solar Living House is a high-performance solar-powered dwelling designed by a team of faculty and students from the University of Florida, in collaboration with Santa Fe College, the National University of Singapore, and Alachua Habitat for Humanity. The project was designed in accordance with the Solar Decathlon 2015, a research, design, education, and outreach program developed by the U.S. Department of Energy (DOE). The Solar Living House is fundamentally a house for living, centered on people and the activities of daily life while quietly introducing advanced design, construction, and engineering technologies. The 993 square-foot two-bedroom one-bath home was designed to embrace and frame an exterior courtyard space. This courtyard acts as an extension of the interior living spaces, maximizing the spatial potentials of a modest building footprint and introducing natural light into the primary living spaces of the house. Research Outcomes: The Solar Living House advances work on high-performance buildings through three principal technological innovations: wet/dry modular construction, a building automation system, and solar dehumidification systems. Wet / Dry Modular Construction: The house is designed as a series of five modules, including one that is designated as the “wet core.” The wet core consolidates the mechanical systems and bathroom into a single module to reduce plumbing runs, efficiency losses, and on-site construction time. The other four modules are designed to eliminate interior load bearing walls to allow for maximum flexibility in the reconfiguring of the space over time. The modules are designed to meet the structural challenges of both Florida’s hurricanes and California’s earthquakes. Building Automation System: The house is equipped with an integrated building automation system, allowing the houses environmental systems, lights, security systems, and smoke detectors to be programmed, monitored, and controlled through any mobile

  9. Energy situation and perspectives of using solar energy in Crimea

    International Nuclear Information System (INIS)

    Stoyanova, I.I.; Mashkara, O.G.; Vikhorev, Yu.A.; Sokolovskaya, N.I.

    1997-01-01

    The article presents the talk on the energy situation and perspectives of the use of solar energy in Crimea, Ukraine, given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. The main use of solar energy is solar energy heating systems developed and produced in Crimea. The project of 100 MWt solar power plant is proposed for construction in Crimea and will improve ecological situation in resort area. (A.A.D.)

  10. RE-SUPPLY: Securing the supply chains of wind power and solar PV Securing the supply chain for renewable energy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Franz; Vuille, Francois; Ziem, Sabine [E4tech UK Ltd, London (United Kingdom); Rastogi, Ankur; Sengupta, Subhabrata [Avalon Consulting, Mumbai (India)

    2012-11-15

    The RE-SUPPLY project aimed to provide insight into the elements of the supply chains which are presently or can in the future evolve as critical constraints in further large-scale deployment of on- and offshore wind and solar photovoltaic energy. The objectives of the study were twofold: Risk assessment: identify potential bottlenecks in the supply chains of wind and PV and assess their criticality and timeline for occurrence; and, Risk management: identify suitable mitigation strategies and recommend specific actions at policy and industry level.

  11. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Brainard, James Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). National Security Applications; McIntyre, Annie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics; Akin, Lili A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis; Nicol, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Surety Engineering and Analysis; Hayden, Herb [Southwest Solar Technologies, Inc., Phoenix, AZ (United States)

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwest Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.

  12. Food dehydration by solar energy.

    Science.gov (United States)

    Bolin, H R; Salunkhe, D K

    1982-01-01

    Solar driers that are currently being investigated for drying of agricultural products can be divided into two major divisions, depending upon how they transfer the incident solar energy to the product to be dried. These two divisions are direct and indirect drying, with some work also being done on combination drying procedures. In direct solar driers, the product to be dried is usually either inside a tent, greenhouse, or a glass-topped box, where the product to be dried is heated by the direct rays from the sun and the moist air is removed by ambient wind movement. These dryers do accelerate moisture loss rate and the product is usually safe from inclement weather. These dryers usually do not require fans for forced air circulation. With indirect drying, the opposite is true, where most require powered fans for forced air circulation. With this type of dryer, both flatplate and inflated tube solar heat absorbers are used, with each offering certain advantages. Also, combination dryers have been built that utilize both direct and indirect principles. Product evaluation of solar dried foods indicate that in most cases the physical properties, flavor, and vitamin A and C retention were as good as, or better than, conventional dried foods. The economics of the solar systems indicate that most drying procedures are economically feasible for use in small-scale operations only, with the exception of grain drying.

  13. Solar energy in Uruguay. Increase the use of solar panels

    International Nuclear Information System (INIS)

    Matos, V.

    2010-01-01

    This article is about the future of the solar energy in Uruguay. The main aspects of this kind of energy are solar thermic which is used for cooking food and heating water through solar collectors as well as the photovoltaics which allows the generation of electricity

  14. Economic Feasibility and Market Readiness of Solar Technologies. Draft Final Report. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, Silvio J.; Buchanan, Deborah L.; Christmas, Susan; Fellhauer, Cheryl; Glenn, Barbara; Ketels, Peter A.; Levary, Arnon; Mourning, Pete; Steggerda, Paul; Trivedi, Harit; Witholder, Robert E.

    1978-09-01

    Systems descriptions, costs, technical and market readiness assessments are reported for ten solar technologies: solar heating and cooling of buildings (SHACOB), passive, agricultural and industrial process heat (A/IPH), biomass, ocean thermal (OTEC), wind (WECS), solar thermal electric, photovoltaics, satellite power station (SPS), and solar total energy systems (STES). Study objectives, scope, and methods. are presented. of Joint Task The cost and market analyses portion 5213/6103 will be used to make commercialization assessments in the conclusions of. the final report.

  15. Central solar-energy receiver

    Science.gov (United States)

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  16. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    Science.gov (United States)

    Cushing, Scott K.

    possible: i) increasing light absorption in the semiconductor by light trapping through scattering, ii) transferring hot carriers from metal to semiconductor after light absorption in the metal, and iii) non-radiative excitation of interband transitions in the semiconductor by plasmon-induced resonant energy transfer (PIRET). The effects of the metal on charge transport and carrier recombination were also revealed. Next, it has been shown that the strength and balance of the three enhancement mechanisms is rooted in the plasmon's dephasing time, or how long it takes the collective electron oscillations to stop being collective. The importance of coherent effects in plasmonic enhancement is also shown. Based on these findings, a thermodynamic balance framework has been used to predict the theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions. These calculations have revealed how plasmonics is best used to address the different light absorption problems in semiconductors, and that not taking into account the plasmon's dephasing is the origin of low plasmonic enhancement Finally, to prove these guidelines, each of the three enhancement mechanisms has been translated into optimal device geometries, showing the plasmon's potential for solar energy harvesting. This dissertation identifies the three possible plasmonic enhancement mechanisms for the first time, discovering a new enhancement mechanism (PIRET) in the process. It has also been shown for the first time that the various plasmon-semiconductor interactions could be rooted in the plasmon's dephasing. This has allowed for the first maximum efficiency estimates which have combined all three enhancement mechanisms to be performed, and revealed that changes in the plasmon's dephasing leads to the disparity in reported plasmonic enhancements. These findings are combined to create optimal device design guidelines, which are proven by fabrication of several devices with top

  17. Solar Cell Nanotechnology Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Das, Biswajit [Univ. of Nevada, Las Vegas, NV (United States)

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the

  18. Solar total energy: large scale experimental at Shenandoah, Georgia. Phase III. Preliminary design. Final report, October 1, 1977-July 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The basic function of the STES at Shenandoah is to supply the electric power, process steam, and space heating and cooling demands of the expanded 3900 square meters (42,000 ft/sup 2/) Bleyle Plant and for the STES Mechanical Building. The Bleyle factory, initially equipped with its own independent (conventional) energy source, will derive at least 60% of its annual energy needs from the sun when the solar energy system becomes operational in the first quarter of 1981. The design and systems analysis of the STES are detailed. The Solar Collection Substation consists of an array of 192 seven meter diameter, parabolic dish collectors which provide a temperature rise to a flow of Syltherm 800 fluid through each collector in a parallel closed, hydraulic circuit. The receiver is a cavity type with the incident concentrated solar flux impinging upon an absorptive surface enclosed within an insulated cylindrical shell. The trickle oil/dual media concept was selected for the high temperature storage system. The Power Conversion Subsystem consists of a three piece pool-type boiler with preheater, boiler, and superheater, a GFE steam turbine-generator set rated at 400kWe supplied by Mechanical Technology, Inc., a condenser and condensate storage tank, make-up demineralizer, deaerating heater, and boiler feed pump. In normal operation, steam at 655/sup 0/K (720/sup 0/F) and 4.8 x 10/sup 6/ N/m/sup 2/ (700 psig) is generated in the boiler-super-heater, heated by Syltherm 800, and delivered to the turbine inlet. The Thermal Utilization Subsystem major components include a 2.1 x 10/sup 10/ Joule (20 MBtu) capacity, sensible heat water, low temperature storage (LTS) subsystem, a 1.25 x 10/sup 6/ Joules/second (354 ton) absorption chiller derated to provide 6.09 x 10/sup 5/ Joules/second (173 tons) with inlet hot water at 372/sup 0/K (210/sup 0/F), and two separate cooling towers for heat rejection from both the absorption chiller and the PCS condenser. (WHK)

  19. Analysis of Photovoltaic Concentrating Solar Energy Systems

    OpenAIRE

    Garo Pilawjian

    2012-01-01

    In this paper the photovoltaic concentrating solar energy systems are analyzed. Both the Fresnel lens light refraction and mirror light reflection concentrating optical systems are considered. The main parameters and properties of photovoltaic concentrating solar energy systems are outlined. It is shown that the multi-parameter cost optimization is necessary to conduct to reduce the cost of photovoltaic concentrating solar energy systems.

  20. Solar Energy in the Home. Revised.

    Science.gov (United States)

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site…

  1. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  2. Electrolysers Powered with Solar Energy

    Directory of Open Access Journals (Sweden)

    Ivaylo Y. Nedelchev

    2015-08-01

    Full Text Available The vast fossil fuel consumption and decreasing oil reserves and natural resources, enforce much more need of finding decision for renewable energies and development of constructions for using the so called green resources. One solution of this problem is combination ofalready established solar based sources and brown gas cell construction. Brown gas cell production is based on electrolysis of pure water and as a result generating a real gas fuel. This production can find large utility in different usages.

  3. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  4. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  5. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  6. The energy impacts of solar heating.

    Science.gov (United States)

    Whipple, C

    1980-04-18

    The energy required to build and install solar space- and water-heating equipment is compared to the energy it saves under two solar growth paths corresponding to high and low rates of implementation projected by the Domestic Policy Review of Solar Energy. For the rapid growth case, the cumulative energy invested to the year 2000 is calculated to be (1/2) to 1(1/2) times the amount saved. An impact of rapid solar heating implementation is to shift energy demand from premium heating fuels (natural gas and oil) to coal and nuclear power use in the industries that provide materials for solar equipment.

  7. Utilization of solar energy in cold climate

    OpenAIRE

    Tazeeva, Elena

    2010-01-01

    Solar radiation is a source of life on the Earth. The sun heats the atmosphere and the surface of our planet. Because of the sun winds are blowing, circulation of water is happened, seas and oceans are heated, and plants are growing. Nowadays people know how to transfer solar radiation straightly into energy. The subject of the project is to research the possibilities of utilization of solar energy in cold climate. At this project the model of calculation solar energy is shown. Following ...

  8. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A.; Nueesch, P.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A. [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  9. Solar energy applications in telecommunications

    Science.gov (United States)

    Girard, J.

    The results of a half-decade of a coupled wind-photovoltaic powered, remotely sited telecommunications installation called 'Aerosolec' are reported. A station is examined which was situated at 500 m altitude between Nice and Monaco and comprised a 4 module solar cell plant generating 180 W, a 300 W windpowered generator, and a battery bank. The batteries were linked by a diode, charged by the photovoltaics only when load was met, and provided voltage when the wind/solar cell configuration failed to produce enough power to meet demand. Output of the generators and meteorological parameters were recorded for two years. The station drew a nominal 180W, which was met by the power systems, and involved an actual extra discharge of excess energy. Other, similar stations are outlined, and the use of coupled wind/solar systems for telephone service in remote sites, for optic fiber repeaters, and for telephone relay station are recommended. Cost advantages are seen with the solar/wind systems over liquid hydrocarbon fueled generator systems for low power demand installations.

  10. Energy Efficient Solar Milk Chiller

    Directory of Open Access Journals (Sweden)

    Muneeb Bin Muzzamal

    2017-12-01

    Full Text Available Life stock is the major sector of agriculture which is of great importance for Pakistan. It has a major contribution towards the economy of Pakistan with a 55.9 participation in agriculture sector. Pakistan is fourth largest country in milk production with 50.9 Billion tons per annum out of which only 5 is processed and pasteurized hardly and remaining milk is handled by milk men under non-hygienic conditions which causes milk borne diseases. Milk is perishable food having shelf life of few hours therefore milk processing is done to deactivate the microorganisms in the milk and increase its shelf life for future use. It is an energy intensive process and mostly conventional form of energy is used for this purpose. Solar power is the sustainable source of energy and there is an average solar global radiation of 5.3kWhm2day persist in the country with more than 300 sunny days in a year. The objective of the study was to design and develop a solar assisted milk pasteurizer and to evaluate its performance. The developed solar assisted milk pasteurizer consisted of heating and cooling unit. Heating unit made of shell and tube type coil to heat up the milk up-to 730C for 15 seconds. Cooling unit has a chiller for sudden cool down the milk from 350C to 40C within 2 hours. Solar milk chiller had capacity of 200 liters chiller semicircular pug mill type SS-304 a 2kWp PV system having eight PV modules each of 250Wp a hybrid inverter 3kVA that convert 24V DC current into 220V AC current and two batteries 150Ah each as a backup source to meet weather fluctuations. One ton of vapor compression refrigeration system was filled with R410a refrigerant with inlet pressure of 118psi and the outlet pressure of 300psi was coupled with the chiller through coils at bottom side of the vessel. An agitator was installed with a lid on the tank to stir the milk continuously inside the chiller to make sure that homogeneous milk cooling to avoid freezing of the milk in the

  11. Interstate Solar Coordination Council. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L.

    1981-02-15

    The ISCC program accomplishments and future plans are reported as follows: overall activities; development of a national standards and certification program for solar collectors; development of a national organization for operating the collector certification program; review of applicability and use of solar collector rating procedures; development of a program for evaluation/testing/certification of solar systems; development of ISCC as a formal and independent organization; development of sizing and installation manual; and coordination efforts with other solar groups. (MHR)

  12. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  13. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    OpenAIRE

    Vanya Zhivkova

    2013-01-01

    Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  14. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Vanya Zhivkova

    2013-06-01

    Full Text Available Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  15. Germany: the blind faith in solar energy - The blind faith in solar energy put in question again

    International Nuclear Information System (INIS)

    2012-01-01

    The author first outlines that, in winter, all solar arrays in Germany stop producing electricity and Germany must therefore import energy from French and Czech power stations: in this respect, solar energy, after having been a dream, has become and obstacle to electric supply reliability. The author then evokes discussions between German political parties on energy transition choices in a context of economic crisis, outlines that supporting solar systems is finally throwing money in a bottomless pit, that this energy has known a too strong development which also resulted in a costly and redundant structure, and in a decline of the solar industry. Data related to exports and solar energy production are given in appendix

  16. Solar energy in the United States

    International Nuclear Information System (INIS)

    Ochoa, D.; Slaoui, A.; Soler, R.; Bermudez, V.

    2009-01-01

    Written by a group of five French experts who visited several research centres, innovating companies and solar power stations in the United States, this report first proposes an overview of solar energy in the United States, indicating and commenting the respective shares of different renewable energies in the production, focusing on the photovoltaic energy production and its RD sector. The second part presents industrial and research activities in the solar sector, and more specifically photovoltaic technologies (silicon and thin layer technology) and solar concentrators (thermal solar concentrators, photovoltaic concentrators). The last chapter presents the academic research activities in different universities (California Tech Beckman Institute, Stanford, National Renewable Energy Laboratory, Colorado School of Mines)

  17. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  18. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  19. Application of diffusion research to solar energy policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

    1979-03-01

    This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

  20. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  1. 78 FR 63276 - Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports

    Science.gov (United States)

    2013-10-23

    ... policy for proposals by sponsors of federally obligated airports to construct solar energy systems on... by clarifying and adding standards for measuring ocular impact of proposed solar energy systems which... issuing a final policy. The policy applies to any proposed on-airport solar energy system that has not...

  2. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  3. Improving Air Quality with Solar Energy

    Science.gov (United States)

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

  4. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  5. The thermodynamic solar energy; Le solaire thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  6. Organoruthenium Complexes for Solar Energy Harvesting

    NARCIS (Netherlands)

    Wadman, S.H.

    2008-01-01

    One of the greatest challenges of this time is providing the world with the energy it needs to sustain human kind's current standard of living. Solar energy is the most abundant and ubiquitous renewable energy source available, and as such it holds great promises. Traditionally, the field of solar

  7. Teaching Children to Value Solar Energy

    Science.gov (United States)

    Hugerat, Muhamad; Saker, Salem; Odeh, Saeed; Agbaria, Adnan

    2011-01-01

    In this educational initiative, we suggest to build a real model of solar village inside the school, which uses only solar energy. These educational initiatives emphasize the importance of energy for a technological society and the advantage of alternative energy sources. In this scientific educational initiative, the pupils in three elementary…

  8. Solar Energy for Pacific Northwest Buildings.

    Science.gov (United States)

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  9. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  10. The necessity of solar energy

    International Nuclear Information System (INIS)

    Lovejoy, D.

    1996-01-01

    The idea of limits to growth has, understandably, achieved notoriety since the days of Malthus and, more recently, the Club of Rome. However, there must be some limits to the ability of the Earth to sustain a growing population. Fortunately, population models suggest that the world's population will probably level out at about two to three times the present numbers over the next hundred years. The question is whether the Earth's resources are sufficient to sustain that population at a high standard of living for all. In this the key issue is energy. It is clear that present trends in energy consumption, especially oil, cannot be sustained much longer. Regardless of this, however, prudence demands a drastic reduction in fossil fuel consumption, in view of the possibility of global warming. It can be shown that, combined with greatly improved energy efficiency, a transition to a solar (renewable) energy based economy capable of sustaining the anticipated growth in the world economy, is possible, but the constraints are extremely tight. (Author)

  11. Environmental aspects of solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  12. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  13. Solar 92: The 1992 American Solar Energy Society annual conference

    International Nuclear Information System (INIS)

    Burley, S.; Arden, M.E.

    1992-01-01

    The purpose of this symposium is to document the lessons learned from federal and state policies and programs in the late 1970's and 1980's aimed at promoting consumer use of solar energy. During this period the primary emphasis was on solar thermal technologies and passive solar design that could be used at the residential level, though there was also some information on stand-alone photovoltaic systems as well

  14. Nuclear energy + solar energy, why not?; Energia nuclear + energia solar, por que no?

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, I.; Nelson E, P., E-mail: ihernandezc91@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-09-15

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  15. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  16. Solar energy application, economics, and public perception

    CERN Document Server

    Adaramola, Muyiwa

    2015-01-01

    Due to climate change, the rise in energy demand, and issues of energy security, more countries are being forced to reexamine their energy policies and consider more renewable sources of energy. Solar power is expected to play a significant role in the changing face of energy economies, due in a large part to the recent technological advances in the field and the significant decrease in cost. This book describes these advances and examines the current state of solar power from a variety of angles. The various sections of the book cover the following topics: an overview of hybrid solar energy s

  17. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  18. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  19. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  20. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available An attractive and cheaper alternative to siliconbased photovoltaic (PV) cells for the conversion of solar light into electrical energy is to utilise dyeadsorbed, large-band-gap metal oxide materials such as TiO2 to absorb the solar light...

  1. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  2. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  3. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  4. Solar energy in Norway; Solstroem i Norge

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern; Nordal, Siv Helen; Bugge, Lars; Authen, Mari L.; Bernhard, Peter

    2012-10-15

    Enova SF produced in 2010/11 a report that described the potential of solar energy until 2020. Developments in the market for the production of electricity from solar energy happens so fast that it is prepared a new report describing the market and technology per 2012. (eb)

  5. Solar energy for industrial process heat

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  6. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  7. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  8. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m 2 , the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m 2 , the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  9. Solar Energy Education. Renewable energy activities for biology

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  10. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  11. Solar energy education. Renewable energy activities for general science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  12. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  13. Solar cells: photovoltaic energy; Les cellules solaires: energie photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.P.; Faraggi, B.; Labouret, A.; Cumunel, P.

    2001-07-01

    This book presents the principles of the photovoltaic conversion of solar energy, the characteristics of solar cells of various technologies, the related equipments (batteries, charge controllers) and all necessary knowledge for the design of solar power supplies and circuits. (J.S.)

  14. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  15. Solar energy for electricity and fuels.

    Science.gov (United States)

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  16. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  17. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  18. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  19. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  20. Energy. From firewood to solar cell

    International Nuclear Information System (INIS)

    Reijnders, L.

    2006-01-01

    An outline is given of the development of energy and the options to secure the energy supply for the future. Much information is given about energy efficiency, the exploitation of tar sands, reopening of the coal mines in the Netherlands, nuclear fusion and fission, wave energy and solar cells, etc [nl

  1. Potency of Solar Energy Applications in Indonesia

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2012-07-01

    Full Text Available Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.

  2. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast...... the power output from PV and solar thermal collector systems. The first approach is based on a developed statistical clear-sky model, which is used for estimating the clear-sky output solely based on observations of the output. This enables local effects such as shading from trees to be taken into account....... The second approach to solar power forecasting is based on conditional parametric modelling. It is well suited for forecasting of solar thermal power, since is it can be make non-linear in the inputs. The approach is also extended to a probabilistic solar power forecasting model. The statistical clear...

  3. Renewable Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, Tim [Antares Group Inc.

    2013-10-30

    The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.

  4. Functional Imaging of Hybrid Nanostructures. Visualization of Mechanisms for Solar Energy Utilization. Northwestern FG-02-07ER46401 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lauhon, Lincoln J. [Northwestern Univ., Evanston, IL (United States)

    2015-03-20

    The report describes advances in understanding the interaction of light with hybrid nanostructured materials, and the influence of physical and electronic structure on the flow of excess energetic charge carriers to support the design and optimization of new materials for photoelectrical and photoelectrochemical energy conversion. Raman scattering, multi-wavelength optical excitation, and numerical modeling are combined with electrical transport measurements on model hybrid materials structures and devices to resolve, in energy and space, the absorption of light, the generation of excess energetic charge carriers, and the efficiency of their separation to generate electrical and chemical energy. Appropriate combinations of spatially-resolved, time-resolved, and spectrally-resolved measurements are used to isolate and quantify various steps in the energy conversion process, including geometrically and plasmonically enhanced absorption, the generation of carriers with excess energy, and the efficiency with which the carriers can move to and perform useful chemistry at interfaces.

  5. Lessons learned from solar energy projects in Saudi Arabia

    International Nuclear Information System (INIS)

    Huraib, F.S.; Hasnain, S.M.; Alawaji, S.H.

    1996-01-01

    This paper describes the lessons learned from the major RD and D activities at Energy Research Institute (ERI), King Abdulaziz City for Science and Technology (KACST) in the field of solar energy. Photovoltaic, solar thermal dishes, solar water heating, solar water pumping and desalination, solar hydrogen production and utilization are some of the areas studied for solar energy applications. Recommendations and guidelines for future solar energy research, development, demonstration and dissemination in Saudi Arabia are also given. (Author)

  6. Solar energy storage researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  7. Solar energy, architecture and climate in Colombia

    International Nuclear Information System (INIS)

    Carrillo B, J.

    1983-01-01

    In Colombia, the climatological conditions are such that with a possible serious appropriate technology to use the solar energy in the cities when the electricity rationing increases, for the illumination, the refrigeration, the electricity production, the heating, etc. The use of the solar energy is also been worth to look for a better adaptation between climate and architecture. In this sense, the article exposes some of the existent possibilities of application of the solar energy for the comfort of the habitat, possibilities of high efficiency and low cost that can be easily applicable in Colombia

  8. Consumer demand analysis: solar heating and cooling of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.E.

    1976-09-01

    This study concerns the acceptability of solar heating and cooling to homebuyers for residential applications. The study assesses the extent of homeowner awareness of solar technologies, estimates the acceptability of elevated first costs including willingness to trade higher initial costs for life cycle savings, and investigates the impact of solar aesthetics. Also explored are other areas of potential concern to homeowners in evaluating a solar alternative as well as positive motivations that would encourage purchase. Finally, the socioeconomic and attitudinal characteristics of individuals more likely to purchase a solar home rather than a conventional home were studied. The results are based on group depth interviews and personal interviews with active homeseekers, top executives of large residential development firms, and architects. The sample was split evenly between Denver, Colorado and the Philadelphia, Pa./Wilmington, Del. areas. Implications of the results for the commercialization of solar energy and possible public policy decisions are also discussed.

  9. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  10. Commercial green energy. Final report

    International Nuclear Information System (INIS)

    Kalweit, B.

    1998-11-01

    Firms offering a Green electricity product have discovered that residential customers are willing to pay extra for the assurance that their electricity is generated through the use of non-polluting or renewable resources. This research investigated the market potential for Green energy at the next level of the energy consuming chain, commercial establishments at which small and medium sized businesses interface with customers. Green energy is proving to be an attractive proposition to some consumers in the residential marketplace. Is there a possibility that Green energy can also be sold to commercial enterprises? This research project sought to answer this question and to investigate the factors that might lead small business people to opt for Green. Answers to these questions will help energy companies target the businesses most likely to accept Green power with the right product set and product features

  11. Final environmental assessment: Sacramento Energy Service Center

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Sacramento Area Office (SAO) of the Western Area Power Administration (Western) needs to increase the security of operations, to eliminate overcrowding at the current leased location of the existing facilities, to provide for future growth, to improve efficiency, and to reduce operating costs. The proposed action is to construct an approximate 40,000-square foot building and adjacent parking lot with a Solar Powered Electric Vehicle Charging Station installed to promote use of energy efficient transportation. As funding becomes available and technology develops, additional innovative energy-efficient measures will be incorporated into the building. For example the proposed construction of the Solar Powered Electric Vehicle Charging.

  12. Final Technical Report DE-EE0006911 Vermont Solar Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Damon [VEIC; Hill, David [VEIC

    2018-03-23

    Solar PV is the fastest-growing form of energy in Vermont. From 2012 to 2017, Vermont’s solar energy capacity increased almost nine times to 227 MW, a compound annual growth rate of 54%. During this time, the portion of electricity from solar grew from 0.5% to 5%. The state is one of the national leaders in net metering, community solar, and solar jobs per capita. In 2011, the Vermont Comprehensive Energy Plan set a goal to have renewable energy supply 90% of the state’s total energy needs (including electricity, heating and cooling, and transportation) by 2050. The Department of Public Service completed a Total Energy Study to examine the feasibility and cost-effectiveness of various paths to the 90% goal and related emissions goals. The General Assembly created a Renewable Portfolio Standard (RPS) that includes credit for projects—such as electric vehicles and modern wood heating—that switch end uses away from fossil fuel, making the RPS essentially a total energy portfolio standard. Achieving the state’s energy goals will require major contributions from distributed resources and the development of supporting infrastructure such as energy storage, electric vehicle charging stations, and upgraded distribution systems. The Vermont Solar Pathways project used scenario modeling and stakeholder engagement to create a broadly supported plan to get 20% of the state’s electricity from solar by 2025. Scenario modeling provided numbers and graphs for examining issues, costs, and benefits, and spurred discussions at the 11 stakeholder meetings held over the course of the project. Stakeholders provided feedback to improve the model and made suggestions for variations on the scenarios.

  13. Quantum dot nanoscale heterostructures for solar energy conversion.

    Science.gov (United States)

    Selinsky, Rachel S; Ding, Qi; Faber, Matthew S; Wright, John C; Jin, Song

    2013-04-07

    Quantum dot nanoscale semiconductor heterostructures (QDHs) are a class of materials potentially useful for integration into solar energy conversion devices. However, realizing the potential of these heterostructured systems requires the ability to identify and synthesize heterostructures with suitably designed materials, controlled size and morphology of each component, and structural control over their shared interface. In this review, we will present the case for the utility and advantages of chemically synthesized QDHs for solar energy conversion, beginning with an overview of various methods of heterostructured material synthesis and a survey of heretofore reported materials systems. The fundamental charge transfer properties of the resulting materials combinations and their basic design principles will be outlined. Finally, we will discuss representative solar photovoltaic and photoelectrochemical devices employing QDHs (including quantum dot sensitized solar cells, or QDSSCs) and examine how QDH synthesis and design impacts their performance.

  14. General solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  15. Solar Energy in the Nineteen Eighties

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    Solar energy is abundant inexhaustible and nonpolluting. Its utilization does not affect the climate, and it does not lend itself to military applications. The solar-thermal, solar-electric and solar-chemical options are available. The production of low-temperature heat for warm water and for space heating, of enormous importance in the energy budget, is economic already now in many situations. Technical progress is still considerable. With the further rise in fuel prices the application will increase dramatically. Use of solar heat for large-scale generation of electricity, i.e. of power on the basis of the solar-thermal option, should be approached cautiously. Possibilities include the tower concept and ocean thermal-electric conversion (OTEC). Investment would be large, and the technology hard. Better long-term chances may be given, for decentralized application in developing countries, to the farm concept. In contrast, the chances for cheap small-scale, and later large-scale, use of solar semiconductor cells (solar-electric option) are most favourable. Technical progress is rapid, and prices drop precipitously. For the production of fuel, the solar-chemical option is in the foreground. Gaseous, liquid and convenient solid fuels can be obtained from biomass, especially by fermentation. At the moment, biogenic wastes are already available in relatively large amounts. Subsequently, energy farming is to be introduced. Biomass converted to hydrogen can be employed for production of electricity by means of fuel cells. In the more distant future, hydrogen is to be made abiotically by photolysis of water, and is to be introduced into a hydrogen economy. Probably the technology will be based on the application of synthetic membranes. It is possible that regenerative solar energy in all its forms can in the end replace all existing energy used by man. This substitution will s however, be a gradual process. (author)

  16. Geopressured energy availability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Near- and long-term prospects that geopressured/geothermal energy sources could become a viable alternative fuel for electric power generation were investigated. Technical questions of producibility and power generation were included, as well as economic and environmental considerations. The investigators relied heavily on the existing body of information, particularly in geotechnical areas. Statistical methods were used where possible to establish probable production values. Potentially productive geopressured sediments have been identified in twenty specific on-shore fairways in Louisiana and Texas. A total of 232 trillion cubic feet (TCF) of dissolved methane and 367 x 10/sup 15/ Btu (367 quads) of thermal energy may be contained in the water within the sandstone in these formations. Reasonable predictions of the significant reservoir parameters indicate that a maximum of 7.6 TCF methane and 12.6 quads of thermal energy may be producible from these potential reservoirs.

  17. Burst of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Discovery Center of Idaho (DCI) was the recipient of a grant from US DOE`s Museum Science Education Program to build six permanent energy related exhibits to provide the public with hands-on experience with energy issues. Because of its volunteer support system, DC was able to build eleven exhibits. These exhibits are described and photographs are included. The signs used for the exhibits are reproduced as well as the materials used to advertise them to the public. Examples of DCI`s newsletter are included that mention the new exhibits.

  18. Overview of solar energy developments in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Kekelia, B.; Ramishvili, G.; Shanidze, N. [PA Government Services (PA Consulting Group), Tbilisi (Georgia)

    2004-07-01

    This paper provides an overview of current state and future development prospects for solar energy technologies in Georgia. It gives a brief description of climatic and geographical location advantages/drawbacks of the country and provides the authors' views on possibilities for various solar energy applications in the given area. It also gives an overview of currently used technologies and companies present on the Georgian market. (orig.)

  19. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  20. Community impediments to implementation of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M. D.; Armstrong, J. E.

    1979-11-01

    The complete array of institutional problems expected to energy when solar technology are implemented on a national scale is assembled. The findings of the study are presented in two formats. First, the results are organized by the time frames of delays in solar implementation caused by the inherent difficulties a national energy policy would encounter in changing the way a given institution responds to specific solar technologies. Delay categories of 10 years or more, 6 to 8 years, and 3 to 5 years were selected; all were assigned under the assumption that a strong national policy promoting adoption of solar technologies would be in effect. The second format constitutes a description of the difficulties at the community level, associated with implementing each solar technology. (MHR)

  1. Energy Smart Colorado, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gitchell, John M. [Program Administrator; Palmer, Adam L. [Program Manager

    2014-03-31

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions to their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.

  2. Solar Energy and the Western Asian Countries

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    The Western Asian countries receive the most abundant solar radiation of the world. They also have enormous reserves of oil and natural gas. But the world reserves of those fuels will certainly diminish greatly as the worldwide demand for energy will increase steadily in the coming decades. And the suppliers of energy will have to contend with public concerns about the polluting effects of those fuels and the possible dangers of nuclear energy. Clearly a power source based on an non exhaustible and non-polluting fuel could be expected to find a role. It now appears that such a source is at hand in the solar energy. Here in this paper, under the principles in the United Nations' Agenda 21, we suggest to Western Asian countries, the study and own development of the following technologies based on solar energy; and comment about them: *photo-voltaic solar cell power plants - in the future, its cost per kilowatt-hour will probably be competitive as to other sources of electrical energy. A new technique, the solar non-imaging concentrator, with amorphous silicon-based thin films solar cells at the focus of the concentrators, can collect and intensify solar radiation far better than conventional concentrators do, thus reducing much more the cost; *bio-gas - using biological gas to produce energy and for heating/cooling purposes; *wind generation of electricity - it's nowadays, a non-expensive technique; *water pump for irrigation and human consuming, driving their power from photovoltaic cells; *and the study and own development of solar lasers for peaceful scientific studies. In this new kind of laser, the external necessary pumping energy comes from the high intensity of sunlight, produced with non-imaging concentrators. Solar lasers can give unexpected new great uses for mankind. Those achievements will require international cooperation and transfer of information, sustained research and development work, and some initial subsides by independent governments. Solar

  3. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  4. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  5. Solar energy in light of sustain development

    International Nuclear Information System (INIS)

    Markovska, Natasha; Pop-Jordanov, Jordan

    2001-01-01

    In the paper, a correlation between solar energy and sustain development has been considered, based on the concept of negentropy. Namely, the introduction of solar energy and renewable s in general corresponds to the proposed negentropic extension of the standard pathways in world metabolism, including science and technology as a supplementary negentropic resource. In this connection, the solar cell processes are based on micropatticies and their interactions, making the quantum mechanical approach in their analysis of exceptional importance. At the same time, it opens a possibility for revealing new quantum phenomena which could contribute to improvement of the cell performances. (Original)

  6. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  7. Advanced Cloud Forecasting for Solar Energy Production

    Science.gov (United States)

    Werth, D. W.; Parker, M. J.

    2017-12-01

    A power utility must decide days in advance how it will allocate projected loads among its various generating sources. If the latter includes solar plants, the utility must predict how much energy the plants will produce - any shortfall will have to be compensated for by purchasing power as it is needed, when it is more expensive. To avoid this, utilities often err on the side of caution and assume that a relatively small amount of solar energy will be available, and allocate correspondingly more load to coal-fired plants. If solar irradiance can be predicted more accurately, utilities can be more confident that the predicted solar energy will indeed be available when needed, and assign solar plants a larger share of the future load. Solar power production is increasing in the Southeast, but is often hampered by irregular cloud fields, especially during high-pressure periods when rapid afternoon thunderstorm development can occur during what was predicted to be a clear day. We are currently developing an analog forecasting system to predict solar irradiance at the surface at the Savannah River Site in South Carolina, with the goal of improving predictions of available solar energy. Analog forecasting is based on the assumption that similar initial conditions will lead to similar outcomes, and involves the use of an algorithm to look through the weather patterns of the past to identify previous conditions (the analogs) similar to those of today. For our application, we select three predictor variables - sea-level pressure, 700mb geopotential, and 700mb humidity. These fields for the current day are compared to those from past days, and a weighted combination of the differences (defined by a cost function) is used to select the five best analog days. The observed solar irradiance values subsequent to the dates of those analogs are then combined to represent the forecast for the next day. We will explain how we apply the analog process, and compare it to existing

  8. Bioinspired fractal electrodes for solar energy storages.

    Science.gov (United States)

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3  Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1  Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  9. Bioinspired fractal electrodes for solar energy storages

    Science.gov (United States)

    Thekkekara, Litty V.; Gu, Min

    2017-03-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  10. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  11. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  12. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  13. Future of solar energy in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    A.H. Almasoud

    2015-07-01

    Full Text Available The continued rise of electricity demand in Saudi Arabia means that power generation must expand. Conventional generation is a major cause of environmental pollution and negatively impacts human health through greenhouse gas emissions. It is therefore essential that an alternative method of generation is found that preserves the environment and health and would support existing conventional generation during peak hours. Saudi Arabia is geographically suitable because it is located in the so-called sun belt, which has led it to become one of the largest solar energy producers. Solar energy is a serious competitor to conventional generation when the indirect costs of fossil fuels are included. Thus, processing sunlight via photovoltaic cells is an important method of generating clean energy. This article proves that the cost of solar energy will be less than the cost of fossil fuel energy if the cost of the environmental and health damages is taken into account.

  14. 24 CFR 203.18a - Solar energy system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  15. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  16. Passive solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1980-11-01

    The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  17. VT Renewable Energy Sites - Solar

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  18. 76 FR 80961 - Notice of Availability of the Record of Decision for the Sonoran Solar Energy Project, Arizona

    Science.gov (United States)

    2011-12-27

    ...;AZA34187] Notice of Availability of the Record of Decision for the Sonoran Solar Energy Project, Arizona... Management (BLM) announces the availability of the Record of Decision (ROD) for the Sonoran Solar Energy... view the final EIS at the following Web site: http://www.blm.gov/az/st/en/prog/energy/solar/sonoran...

  19. The solar energy; L'Energie solaire

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-07-01

    This document provides information the today technology concerning the photovoltaic cells and presents the research programs in the domain: silver cells, black silicon, spherical cells, mini sensors, solar spectrum cells Hercules europe project of solar energy concentration. Many Internet addresses are provided. (A.L.B.)

  20. Yukon energy sector assessment 2003 : final report

    International Nuclear Information System (INIS)

    Kishchuk, P.

    2003-10-01

    A study was conducted to better understand energy issues in the Yukon. The study was based on the Yukon Energy Matrix which looks at the Yukon energy sector from the perspective of the capacity to supply various forms of energy, the markets for energy in the Yukon, and energy users. The sources of non-renewable energy in the Yukon range from natural gas, coal and oil. Renewable energy sources are also diverse and include water, biomass, wind, solar and geothermal. The main sources of electricity production in the Yukon are oil, water and wind. The link between energy and climate change has gained much attention in recent years, resulting in effective measures to conserve energy and increase energy efficiency. Coal, gas and oil are imported into the Yukon from markets in southern Alaska despite the fact that Yukon has its own vast quantities of these fossil-based forms of energy. As a result, the price of fossil-fuels consumed in the Yukon is determined in national and international markets. The absence of non-renewable energy production in the Yukon is also reflected in the lack of pipeline and rail infrastructure in the territory. The Yukon's electricity transmission grid is also very fragmented. For the purpose of this paper, energy use was categorized into the residential, commercial, industrial and transportation sectors. 19 refs., 8 tabs., 12 figs

  1. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  2. HPC4Energy Final Report : GE Energy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Zandt, Devin T. [GE Energy Consulting, Schenectady, NY (United States); Thomas, Brian [GE Energy Consulting, Schenectady, NY (United States); Mahmood, Sajjad [GE Energy Consulting, Schenectady, NY (United States); Woodward, Carol S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-25

    Power System planning tools are being used today to simulate systems that are far larger and more complex than just a few years ago. Advances in renewable technologies and more pervasive control technology are driving planning engineers to analyze an increasing number of scenarios and system models with much more detailed network representations. Although the speed of individual CPU’s has increased roughly according to Moore’s Law, the requirements for advanced models, increased system sizes, and larger sensitivities have outstripped CPU performance. This computational dilemma has reached a critical point and the industry needs to develop the technology to accurately model the power system of the future. The hpc4energy incubator program provided a unique opportunity to leverage the HPC resources available to LLNL and the power systems domain expertise of GE Energy to enhance the GE Concorda PSLF software. Well over 500 users worldwide, including all of the major California electric utilities, rely on Concorda PSLF software for their power flow and dynamics. This pilot project demonstrated that the GE Concorda PSLF software can perform contingency analysis in a massively parallel environment to significantly reduce the time to results. An analysis with 4,127 contingencies that would take 24 days on a single core was reduced to 24 minutes when run on 4,217 cores. A secondary goal of this project was to develop and test modeling techniques that will expand the computational capability of PSLF to efficiently deal with systems sizes greater than 150,000 buses. Toward this goal the matrix reordering implementation time was sped up 9.5 times by optimizing the code and introducing threading.

  3. Solar Energy of the North

    Energy Technology Data Exchange (ETDEWEB)

    Davis St. Peter Director of Faclities ( retired) Charles Bonin Vice President of Administration & Finance

    2012-01-12

    The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

  4. Energy analysis of the solar power satellite.

    Science.gov (United States)

    Herendeen, R A; Kary, T; Rebitzer, J

    1979-08-03

    The energy requirements to build and operate the proposed Solar Power Satellite are evaluated and compared with the energy it produces. Because the technology is so speculative, uncertainty is explicitly accounted for. For a proposed 10-gigawatt satellite system, the energy ratio, defined as the electrical energy produced divided by the primary nonrenewable energy required over the lifetime of the system, is of order 2, where a ratio of 1 indicates the energy breakeven point. This is significantly below the energy ratio of today's electricity technologies such as light-water nuclear or coal-fired electric plants.

  5. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  6. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  7. Charging electric cars from solar energy

    OpenAIRE

    Liang, Xusheng; Tanyi, Elvis; Zou, Xin

    2016-01-01

    Before vehicles were heavily relied on coal, fossil fuels and wind for power.  Now, they are rapidly being replaced by electric vehicles and or plug-in hybrid electric cars. But these electric cars are still faced with the problem of energy availability because they rely on energy from biomass, hydro power and wind turbines for power generation. The abundance of solar radiation and its use as solar energy as a power source in driving these rapidly increasing electric cars is not only an impor...

  8. Wind and solar energy incentives in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Kazemi Karegar, H.

    2006-01-01

    Incentive have yet been viewed as a means of supporting technological developments until a new technology becomes cost competitive wind based electricity is not jet generally competitive with alternate sources of electricity such as fossil fuels. This paper presents the potential for wind and solar in Iran and shows how much electric energy is now produced by renewable power plants compared to steam and gas. The importance of renewable energy effects on Iran environment and economy is also discussed and the issue of the contribution of renewable energy for producing electricity in the future will be shown. Also this paper highlights the ability of Iran to manufacture the components of the wind turbine and solar system locally, and its effect on the price of wind turbine and solar energy

  9. Remarks About Nuclear And Solar Energy

    International Nuclear Information System (INIS)

    Broda, E.

    1974-01-01

    This paper was written by E. Broda for the 24 th Pugwash Conference on Science and World Affairs, which took place in Baden ( Austria), 28 th August-2 nd September in 1974. In this document issues of energy resources and production are discussed. The focus lies especially on nuclear and solar energy. (nowak)

  10. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  11. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  12. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  13. Marin Solar Village: feasibility study and technical analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-31

    The energy needs of Hamilton Air Force Base's Solar Village for electricity and heating and cooling of buildings are considered and alternative ways of meeting the Village's requirements for these forms of energy are evaluated. First, Solar Village's energy demand is calculated and compared to a base case representing calculations for typical energy usage for a development of similar size and density that is in conformance with current state and local ordinances. The potential of selected alternative technologies to meet the Solar Village projected demand for electrical power and natural gas is evaluated. Scenarios were developed to reduce demand, particularly in the building sector. Four alternative on-site energy technologies have been evaluated: wind, solar thermal electric, biomass conversion, photovoltaics. Each alternative is analyzed in detail. Of the four alternatives considered, the one with the greatest present potential is biomass conversion. Two technologies have been incorporated into the design. A 3-acre land fill is covered with a mantle of soil. A network of pipes carries off the methane gas which is a natural product of anaerobic decomposition of the materials in the land fill. The second technology involves the planting of rapidly-growing trees on denuded and unused portions of the site; 50 acres devoted to tree production could yield 12% of the back-up energy required for home heating on a sustainable basis.

  14. Port of Galveston Solar Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Falcioni, Diane [Port of Galveston (POG), Galveston, TX (United States); Cuclis, Alex [Houston Advanced Research Center, The Woodlands, TX (United States); Freundlich, Alex [Univ. of Houston, Houston, TX (United States)

    2014-03-31

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

  15. Soboba Community Energy Solar Project - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Steven [Soboba Band of Luiseno Indians, San Jacinto, CA (United States)

    2017-12-31

    This is the final technical report for the Soboba Band of Luiseno Indians' second community solar project. Since time immemorial the descendants of the Soboba people are those whom have lived on and occupied the land that is presently known as the cities of San Jacinto, Hemet, Valle Vista and Winchester. On June 19, 1883, President Chester Arthur by Executive Order established the Soboba Indian Reservation, a 3,172-acre tract which included the Soboba village and the adjacent hills. The President had limited authority as he was only able to set aside public land for the establishment of a reservation and had no authority to take private land. Thus the Soboba village; cultivated lands and major springs were part of Rancho San Jacinto Viejo and belonged to Matthew Byrne. Today the Soboba Indian Reservation lies in the lower reaches of the San Jacinto Mountains, across the San Jacinto River from the city of San Jacinto. The Soboba Band of Luiseño Indians was awarded a community solar grant through the U.S. Department of Energy. The incorporated cities of San Jacinto and Hemet, and the unincorporated community of Valle Vista border the Reservation. All three of these surrounding communities have experienced tremendous population growth over the past two decades, with slower growth during the recent economic downturn. The Tribal community that benefits from under this grant includes 1,161 enrolled members, the majority of which live on the reservation. Nearly 41% of the enrolled members are youth, age 18 and under. The elders and community leaders value preserving and maintaining the Luiseño and Cahuilla cultures and Tribal structure for future generations. The proposed project was administered from the Tribal Administration offices located on the reservation. The Soboba Tribal Government consists of five Tribal Members who are elected by the general membership to Tribal Council for a staggered two year term. The Chairman/Chairwoman is elected by a majority vote

  16. Crisis - Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This learning module offers a five-hour class schedule for discussion and study of the overall U.S. energy system including resources, consumption rates, governmental plans and regulations, energy/conservation problems and techniques, and energy/conservation programs. The module includes a pre-post test, suggested class activities, a basic…

  17. An assessment of solar energy as a national energy resource

    Science.gov (United States)

    Donovan, P.; Woodward, W.; Cherry, W. E.; Morse, F. H.; Herwig, L. O.

    1972-01-01

    The applications are discussed of solar energy for thermal energy for buildings; chemical and biological conversion of organic materials to liquid, solid, and gaseous fuels; and the generation of electricity. It is concluded that if solar development programs are successful, building heating for public use is possible within 5 years, building cooling in 6 to 10 years, synthetic fuels from organic materials in 5 to 8 years, and electricity production in 10 to 15 years.

  18. SMUD Community Renewable Energy Deployment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sison-Lebrilla, Elaine [Sacramento Municipal Utility District, Sacramento, CA (United States); Tiangco, Valentino [Sacramento Municipal Utility District, Sacramento, CA (United States); Lemes, Marco [Sacramento Municipal Utility District, Sacramento, CA (United States); Ave, Kathleen [Sacramento Municipal Utility District, Sacramento, CA (United States)

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  19. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  20. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  1. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  2. Impacts of solar energy utilization

    Science.gov (United States)

    1973-01-01

    Various methods of conducting surveys and analyses to determine the attitude of the public toward the energy crisis are discussed. Models to determine the impact of the energy crisis and proposed alternative sources of energy on the social structure are analyzed. The various interest groups which are concerned with energy and the nature of their interest are identified. The government structure for controlling resource production and allocation is defined.

  3. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    Science.gov (United States)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  4. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  5. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  6. Solar energy conscious allotting and building

    International Nuclear Information System (INIS)

    Moor, R.; Winter, R.

    1992-10-01

    In order to use solar energy now and in the future several measures should be taken in the field of urban development and housing construction. A number of policy instruments is available to the local governments to stimulate the use of solar energy. However, little use is made of these possibilities so far. In many municipalities there are uncertainties about the financial consequences of solar energy conscious building. In practice it appears that there are hardly any extra costs for the infrastructure if building blocks and roofs are designed and built with south orientation. Also possibilities to minimize the investment barrier for the occupants of the houses are available. An overview is presented of the policy instruments and practical examples are given for the Dutch municipalities Gouda, Schiedam, Heerhugowaard, Delft and Haarlemmermeer. 2 tabs., 2 appendices, 6 refs

  7. The Determinant of US Consumers Attitudes toward Solar Energy

    Science.gov (United States)

    Lu, Chao-Lin

    2016-01-01

    Solar energy provides several significant advantages, such as reduction of the CO[subscript 2] emissions, increase of energy supply diversification, security of energy, and regional/national energy independence. Due to the reduced installation cost and the rapid advances in solar energy technology, the installed capacity of solar power has been…

  8. Solar energy's economic and social benefits

    International Nuclear Information System (INIS)

    Scheer, H.

    1995-01-01

    There are numerous indications that solar energy is far more than a mere stopgap measure to escape from the present environmental crisis. These include the natural as well as the developed, and still developing, technological potential of solar energy; the vast opportunities offered by abandoning destructive energy sources; and, not least, the new industrial perspectives arising from the conversion of our energy system. In addition to the environmental benefits, solar energy will bring about major economic and social gains. The creation of a solar energy system offers an unexpected and unique chance to release industrial society from the harmful consequences of the Industrial Revolution and to make available its positive accomplishments - particularly the social, democratic and cultural opportunities made possible by freeing mankind from slave labour - to all of mankind. Destruction of the environment is the greatest danger for industrialized societies pursuing economic growth, but it is not the only one. The Western high culture of welfare states is evidently a thing of the past. Created by the pressure of social movements that emerged in the Industrial Revolution, they stabilized capitalism by making it more responsive to the social needs in its strongholds. But both old and new contradictions, as well as the growth of welfare costs, lead to the conclusion that the future of the industrial system is increasingly seen only in terms of jettisoning its social obligations. Political democracy will then once more be in danger. Modern history is unable to provide an example of a stable democracy based on permanent mass misery

  9. Solar Mosaic Inc. Mosaic Home Solar Loan SunShot 9 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Colin James [Solar Mosaic Inc., Oakland, CA (United States)

    2017-02-09

    The 6686 Mosaic SunShot award has helped Solar Mosaic Inc to progress from an early stage startup focused on commercial crowdfunding to a leading multi-state residential solar lender. The software platform is now used by the majority of the nation's top solar installers and offers a variety of simple home solar loans. Mosaic is has originated approximately $1Bil in solar loans to date to put solar on over 35k rooftops. The company now lends to homeowners with a wide range of credit scores across multiple states and mitigates boundaries preventing them from profiting from ownership of a home solar system. The project included milestones in 5 main categories: 1. Lending to homeowners outside of CA 2. Lending to homeowners with FICO scores under 700 3. Packaging O&M with the home solar loan 4. Allowing residential installers to process home solar loans via API 5. Lowering customer acquisition costs below $1500 This report includes a detailed review of the final results achieved and key findings.

  10. The thermal solar energy - September 2010

    International Nuclear Information System (INIS)

    Acket, C.

    2010-01-01

    The author first notices that the use of solar heat to produce electricity is much lesser known than the production of electricity by photovoltaic effect. He also notices that few efforts have been made in France to develop this technology (thermal solar energy, also called helio-thermodynamics). He evokes the Themis project and also some initiatives in Spain and in California. He recalls some data about solar heat, presents the solar concentration technique which either uses a parabolic configuration (point focus concentration) or a cylindrical and parabolic configuration (line concentration system). He briefly presents the different techniques used to transform solar heat into electricity and to store the electricity. He briefly presents different solutions which have been tested over the past years in France, Germany, Spain, California and Israel (tower and air, gas and Stirling cycle, tower and direct vapour production, cylindrical-parabolic collector). He discusses the effect of intermittency and the French context, and questions and discusses the choice between thermal and photovoltaic solar energy (advantages and drawbacks)

  11. Solar Energy: Topographical Asset for Pakistan

    International Nuclear Information System (INIS)

    Pervez Hameed Shaikh; Faheemullah Shaikh; Mushtaq Mirani

    2013-01-01

    The primary energy supply of Pakistan in the financial year 2009-10 was 63.088 million tonnes of oil equivalent (MTOE). Globally, renewable energies generation is around (19%) [1]. Pakistan has a yearly average solar energy shining potential of about 19 Mega Joules per square meter, with 7.6 hours per day with an average solar radiation of 5-7 kW h/(m 2 day). An alarming stage for the government to take serious steps to tackle energy demand, in vision to inclining oil markets, depletion of gas reserves, huge electricity demand and supply gap, lessening of forest reserves, calamity (floods, heavy rainfalls, earth quakes, melting of glaciers etc.), Kyoto bindings etc. All these factors are indicating for the transition towards renewable energy technologies. (authors)

  12. Introductory guide to solar energy

    CSIR Research Space (South Africa)

    Cawood, WN

    1976-01-01

    Full Text Available Since primitive man first set fire to a heap of twigs to warm his cave, mankind has been making use of the earth's energy resources. Fortunately, we still have the sun, which offers us an inexhaustible source of non-polluting energy....

  13. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  14. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  15. Urban air pollution and solar energy

    Science.gov (United States)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  16. Nanophysics of solar and renewable energy

    International Nuclear Information System (INIS)

    Wolf, Edward L.

    2012-01-01

    This easy accessible textbook provides an overview of solar to electric energy conversion, followed by a detailed look at one aspect, namely photovoltaics, including the underlying principles and fabrication methods. The author, an experienced author and teacher, reviews such green technologies as solar-heated-steam power, hydrogen, and thermoelectric generation, as well as nuclear fusion. Throughout the book, carefully chosen, up-to-date examples are used to illustrate important concepts and research tools. The opening chapters give a broad and exhaustive survey of long term energy resources, reviewing current and potential types of solar driven energy sources. The core part of the text on solar energy conversion discusses different concepts for generating electric power, followed by a profound presentation of the underlying semiconductor physics and rounded off by a look at efficiency and third-generation concepts. The concluding section offers a rough analysis of the economics relevant to the large-scale adoption of photovoltaic conversion with a discussion of such issues as durability, manufacturability and cost, as well as the importance of storage. The book is self-contained so as to be suitable for students with introductory calculus-based courses in physics, chemistry, or engineering. It introduces concepts in quantum mechanics, atomic and molecular physics, plus the solid state and semiconductor junction physics needed to attain a quantitative understanding of the current status of this field. With its comments on economic aspects, it is also a useful tool for those readers interested in a career in alternative energy. (orig.)

  17. 76 FR 60475 - Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy...

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy Project AGENCY: U.S. Department of Energy. ACTION: Record of decision. SUMMARY: The U... and Reinvestment Act of 2009 (Recovery Act), to Tonopah Solar Energy, LLC (TSE), for construction and...

  18. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  19. Geostellar: Remote Solar Energy Assessments Personalized

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    Geostellar has produced an online tool that generates a unique solar profile for homeowners to learn about the financial benefits to installing rooftop solar panels on their home. The website incorporates the physical building characteristics of the home, including shading, slope, and orientation of the roof, and applies electricity costs and incentives to determine the best solar energy estimated energy production values against actual installed rooftop photovoltaic systems. The validation conducted by NREL concluded that over three-quarters of Geostellar's potential size estimates are at least as large as the actual installed systems, indicating a correct assessment of roof availability. In addition, 87% of Geostellar's 25-year production estimates are within 90% of the actual PV Watts results.

  20. Enerplan, Professional association of solar energy - activity report 2007. Network of solar energy professionals in France

    International Nuclear Information System (INIS)

    2008-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2007 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  1. Enerplan, Professional association of solar energy - activity report 2008. Acting for solar energy promotion and development

    International Nuclear Information System (INIS)

    2009-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2008 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  2. Energy in Mexico: a profile of solar energy activity in its national context

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.

    1980-04-01

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  3. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  4. Sacramento State Solar Decathlon 2015: Research Performance Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mikael [California State Univ., Sacramento, CA (United States). Dept. of Construction Management

    2017-03-14

    Our primary objective is to design and build a 600-1000sf home that produces more energy than it consumes and to showcase this home at the 2015 Solar Decathlon in Irvine, CA. Further objectives are to educate consumers and home builders, alike (including K-12 students – the industry’s future consumers), inspire a shift towards the adoption of net-zero energy solutions in residential building, and to be a leader in the transformation of the California residential marketplace to a net-zero standard. Our specific mission statement for this project is as follows: Solar NEST strives to discover the future of sustainable, energy-efficient housing and deliver these innovations to home buyers at an affordable price. To make substantial improvements to conventional building methods with regard to aesthetics, performance, and affordability. Through our efforts, we aspire to bridge the gap between ‘what is’ and ‘what is possible’ by providing unique, elegant simplicity.

  5. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  6. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  7. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results

  8. Utilization of solar energy in South Africa

    CSIR Research Space (South Africa)

    Whillier, A

    1953-04-01

    Full Text Available Design curves based on measurements of solar irradiation in South Africa are presented for two geographic areas, the highveld and the Cape Peninsula, giving data on the amount of thermal energy that can be collected from the sun by use of flat...

  9. Solar Energy Employment and Requirements, 1978-1985.

    Science.gov (United States)

    Levy, Girard W.; Field, Jennifer

    Based on data collected from a mailed survey of 2800 employers engaged in solar energy activities, a study identified the characteristics of establishments engaged in solar work and the number and occupational distribution of persons working in solar energy activities in 1978, and projected solar labor requirements through 1983. The scope of the…

  10. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    Science.gov (United States)

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  11. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  12. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  13. Chalcogenide Perovskites for Solar Energy Harvesting

    Science.gov (United States)

    Perera, Samanthe

    Methylammonium Lead halide perovskites have recently emerged as a promising candidate for realizing high efficient low cost photovoltaic modules. Charge transport properties of the solution processed halide perovskites are comparable to some of the existing absorbers used in the current PV industry which require sophisticated processing techniques. Due to this simple processing required to achieve high efficiencies, halide perovskites have become an active field of research. As a result, perovskite solar cells are rapidly reaching towards theoretical efficiency limit of close to 30%. It's believed that ionicity inherent to perovskite materials is one of the contributing factors for the excellent charge transport properties of perovskites. Despite the growing interest for solar energy harvesting purposes, these halide perovskites have serious limitations such as toxicity and instability that need to be addressed in order to commercialize the solar cells incorporating them. This dissertation focuses on a new class of ionic semiconductors, chalcogenide perovskites for solar energy harvesting purposes. Coming from the family perovskites they are expected to have same excellent charge transport properties inherent to perovskites due to the ionicity. Inspired by few theoretical studies on chalcogenide perovskites, BaZrS3 and its Ti alloys were synthesized by sulfurizing the oxide counterpart. Structural characterizations have confirmed the predicted distorted perovskite phase. Optical characterizations have verified the direct band gap suitable for thin film single junction solar cells. Anion alloying was demonstrated by synthesizing oxysulfides with widely tunable band gap suitable for applications such as solid state lighting and sensing.

  14. Upper Sand Mountain Parish Solar Construction Workshops. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    1983-02-01

    The Upper Sand Mountain Parish continues to employ its initial strategy for involving high school vocational students with the pre cutting and instructional assembly aid to area families. The parish project works with high school vocational classes in pre fabbing solar devices into kit form. Then, students are employed to serve as instructors for Saturday construction workshops at the local electric cooperative. Trained teams of older and unemployed adults work with youth in building solar greenhouses for those able to pay labor. Over three years, the project has assisted and built 50 to 60 attached solar greenhouses with construction teams realizing in excess of $26,000 in labor for newly developed skills. The project continues to assist owners in monitoring and developing horticulturally as well as energy producing greenhouses. During the spring of 1982, the parish assisted greenhouse owners in marketing over 60,000 bedding plants worth over $3000. Monthly Greenhouse Owner Fellowship meetings have been a helpful setting for sharing of ideas and exchange of insights. A low interest solar loan fund, offering 5% loans for three years, has assisted over 30 families in going solar. The principle for this revolving fund has almost reached the $15,000 mark. The track record for loan repayments has been exceptional. Through workshops and tours we have aquainted hundreds of people across the southeast with low cost/low technology solar projects and a workable strategy for involving community groups and students in them. With church involvement, we have provided over $25,000 in grants to over 200 area families. Workshop information and plans are available to those interested for bread box solar water heaters, food dryers, window box collectors, insulation panels, and greenhouses.

  15. Solar Pond Potential as A New Renewable Energy in South Sulawesi

    Science.gov (United States)

    Fadliah Baso, Nur; Chaerah Gunadin, Indar; Yusran

    2018-03-01

    Renewable energy sources need to be developed to maintain the electric energy availability by utilizing oceanic energy, namely solar pond energy. This energy is highly influenced by several factors including salinity, air temperature and solar radiation. This study was focused on finding the potential of solar pond in South Sulawesi, a region with fairly high solar radiation and abundant salt water raw materials availability. The method used in this study was analyzing the values from the mathematic models of daily horizontal solar radiation, air temperature, wind speed, relative humidity and atmospheric pressure for the last 22 years which were finalized using MATLAB. The findings of this study will show the areas with good potentials to apply solar pond in South Sulawesi that can be utilized in various fields including power generator, industrial heating process, desalination and heating for biomass conversion.

  16. Solar Avoided Cost Solution SunShot 6 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, John [Genability, San Francisco, CA (United States); Danziger, Eric [Genability, San Francisco, CA (United States)

    2014-01-29

    The core objectives of this project were two separate but integrated products, collectively providing game-changing Avoided Cost capabilities. The first was a kit of avoided cost tools and data that any solar provider can use a-lacarte or as a whole. It’s open and easily accessible nature allows the rapid and accurate calculation of avoided cost in whatever context and software that make sense (“Typical and Avoided Cost Tools”). This kit includes a dataset of typical energy rates, costs and usage that can be used for solar prospecting, lead generation and any situation where data about an opportunity is missing or imperfect. The second is a web application and related APIs specifically built for solar providers to radically streamline their lead-to-sale process (“Solar Provider Module”). The typical and Avoided Cost tools are built directly into this, and allow for solar providers to track their opportunities, collaborate with their installers and financiers, and close more sales faster.

  17. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  18. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  19. Proceedings of the General Committee for solar thermal energy 2015

    International Nuclear Information System (INIS)

    Gibert, Francois; Loyen, Richard; Khebchache, Bouzid; Cholin, Xavier; Leicher, David; Mozas, Kevin; Leclercq, Martine; Laugier, Patrick; Dias, Pedro; Kuczer, Eric; Benabdelkarim, Mohamed; Brottier, Laetitia; Soussana, Max; Cheze, David; Mugnier, Daniel; Laplagne, Valerie; Mykieta, Frederic; Ducloux, Antoine; Egret, Dominique; Noisette, Nadege; Peneau, Yvan; Seguis, Anne-Sophie; Gerard, Roland

    2017-10-01

    After an introducing contribution which discussed the difficult evolution of the solar thermal energy sector in 2015, contributions addressed development plans for SOCOL (a plan for collective solar thermal and solar heat) which aims at reviving the market and at opening new markets. A next set of contributions discussed how solar thermal energy can be at the service of energy transition. Following sessions addressed issues like innovation at the service of solar thermal energy, energetic display of solar systems and application of the Ecodesign and Labelling directives, and the reduction of carbon footprint and the energy dependence of territories

  20. Solar architecture and energy policies in France: from the oil crisis to the solar crisis

    International Nuclear Information System (INIS)

    Chauvin-Michel, Marion

    2013-01-01

    In 1973, the oil crisis creates a focus on energy efficiency policy. Public institutions implement studies on solar architecture and launch experiments and training campaigns to promote the solar equipment. But the presidential election of 1981 leads to a change in energy policy, plunging the solar sector in crisis, causing the disappearance of solar architecture

  1. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  2. Renewable Energy: Solar Fuels GRC and GRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2010-02-26

    sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  3. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  4. Energy - New business for solar energy

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2014-01-01

    This article proposes an overview of the current status and perspectives for the photovoltaic industries. After a very difficult period (2011-2013), the photovoltaic market is growing again and becomes profitable again. In the same time, the sector has been deeply transformed, and new business models are emerging. If Europe was the location for 70 per cent of new installations in 2011, it only represents 29 per cent in 2013, and this share should not be greater than 25 per cent by 2018. Asia leads the market and price reduction makes photovoltaic energy more competitive. China and Asia are largely the leaders in array production (two thirds of world production in China, 90 per cent in Asia, only one western company in the producers' top 10). In terms of strategy and business model, the business is now aimed on sales of electricity rather than only sales of arrays

  5. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, A.V. Jr.; Orlando, A. DeF.; Magnoli, D.

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  6. Final Scientific/Technical Report Solar America Initiative: Solar Outreach and Communications

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Jane M

    2011-09-10

    The purpose of the Solar America Initiative: Solar Outreach and Communications grant was to promote better communications among stakeholders; address infrastructure barriers to solar energy; and coordinate with industry, the U.S. Department of Energy, national laboratories, states, cities and counties. The Interstate Renewable Energy Council (IREC), a non-profit organization formed in 1982, approached this grant project by establishing a wide range of communication and outreach activities including newsletters, workshops, webinars, model practices and publications; by advancing easy and fair hook-up rules to the utility grid; and by upgrading training based on industry competency standards. The Connecting to the Grid project and the Solar Codes and Standards Public Hearings project offered communication coupled with technical assistance to overcome interconnection, net metering and other regulatory and program barriers. The Workforce Development Project tackled building a strong workforce through quality training and competency assessment programs. IREC's web site, the semi-monthly state and stakeholder newsletter and the metrics report resulted in better communications among stakeholders. Workshops and phone seminars offered technical assistance and kept stakeholders up-to-date on key issues. All of these activities resulted in implementing sustainable solutions to institutional and market barriers to solar energy and getting the right information to the right people.

  7. Energy Impact Illinois - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Daniel [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  8. Applications of solar energy in industrial parks

    Energy Technology Data Exchange (ETDEWEB)

    Greaver, V.W.; Farrington, R.B.; Leboeuf, C.M.

    1980-05-01

    The four phases of ongoing work at SERI that examines many unresolved questions regarding the purpose, solar applicability, economics, and energy modeling of industral parks are presented. The first phase involved site visits to approximately 300 parks in 12 major metropolitan areas of 9 states. Phase 2 entails an analysis of four parks selected from those parks surveyed. Phase 3 narrows the focus to two parks to be examined for detailed technical and engineering analysis. Phase 4 incorporates all of the work of the earlier phases with economic criteria to produce an energy allocation model describing energy delivery and consumption within the park.

  9. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  10. Vehicles using solar energy; Accionamiento de vehiculos mediante energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Mata, F.

    2004-07-01

    The reduction of the fossil fuels reserves and the environmental impact derived from the emission of the conventional engines gases, does necessarily to consider other alternative sources of energy for the vehicles. There are described in this communication the technologies used in the solar and hybrid vehicles, as well as the possibilities of future development. This communication places in the context of the subject {sup E}ngineering vehicle{sup ,} given as subject of free configuration in the Universidad de Castilla-La Mancha from the course 2002-2003. (Author)

  11. Solar space heating for the visitors' center, Stephens College, Columbia, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henley, Marion

    1980-06-01

    This document is the final report of the solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri. The system is installed in a four-story, 15,000 square foot building designed to include the college's Admission Office, nine guest rooms for overnight lodging for official guests of the college, a two-story art gallery, and a Faculty Lounge. The solar energy system is an integral design of the building and utilizes 176 Honeywell/Lennox hydronic flat-plate collectors which use a 50% water-ethylene glycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71% of the heating load. The demonstration period for this project ends June 30, 1984.

  12. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  13. From Molecular Electronics to Solar Thermal Energy Storage

    DEFF Research Database (Denmark)

    Olsen, Stine Tetzschner

    for the utilization of solar energy. An eective technology for storing the solar energy is required. This thesis focuses on solar thermal energy storage in molecules, since it oers a very compact and eective storage method. The rst chapter after the introduction of the thesis, chapter two, introduces the fundamental...... of storing solar thermal energy. A theoretical model describing both the macroscopic and the microscopic parameters of a hybrid solar thermal system consisting of a solar water heating system and a molecular solar thermal system (MOST) for energy storage is presented. The model elucidates how much stored...... energy dierent types of molecular classes can be expected to produce in a realistic system setup. The photochromic system of dihydroazulene (DHA)/ vinylheptafulvene (VHF) is of particular interest. The DHA/VHF system is found to be a very promising molecular system for solar thermal energy storage...

  14. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications

    OpenAIRE

    Sengupta, Manajit; Habte, Aron; Kurtz, Sarah; Dobos, Aron; Wilbert, Stefan; Lorenz, Elke; Stoffel, Tom; Renné, Dave; Gueymard, Christian A.; Myers, Daryl; Wilcox, Steve; Blanc, Philippe; Perez, Richard

    2015-01-01

    This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications; This report presents detailed information about solar resource data and the resulting data products needed for each stage of a solar energy project, from initial site selection to systems operations. It also contains a summary of solar forecasting and its development throughout the last few years. The U.S. Department of Energy's Solar Energy Technologies Office, project devel...

  15. Solar envelope concepts: moderate density building applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R.L.; Berry, R.D.

    1980-04-01

    Solar energy utilization in urban areas requires public guarantees that all property owners have direct access to the sun. The study examines the implications of this premise in relation to the need for cities to also encourage or accommodate rebuilding and future development. The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided. The results of development simulation studies on all test sites are tabulated to show building bulk, density, land-coverage and open space characteristics obtainable under the hypothesized envelopes.

  16. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  17. Solar energy in Italy: a profile of renewable energy activity in its national context

    Energy Technology Data Exchange (ETDEWEB)

    Shea, C.A.

    1980-12-01

    The following are included: country overview; energy summary; Italian Republic-geopolitical, economic, and cultural aspects; the energy profile; imported energy sources; solar energy research and development; solar energy organizations; solar energy related legislation and administration policies; and international agreements, contacts, manufacturers, and projects. (MHR)

  18. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  19. GPP Webinar: The Solar Roadmap—Navigating the Evolving Solar Energy Market

    Science.gov (United States)

    GPP and State & Local Climate and Energy Branch webinar on the Solar Roadmap and the evolving solar energy market. This webinar discussed local and state government’s success stories and opportunities for progress in renewable energy goals using the Solar

  20. Transactive Campus Energy Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, Donna J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Allwardt, Craig H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Brandon J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-26

    Transactive energy refers to the combination of economic and control techniques to improve grid reliability and efficiency. The fundamental purpose of transactive energy management is to seamlessly coordinate the operation of large numbers of new intelligent assets—such as distributed solar, energy storage and responsive building loads—to provide the flexibility needed to operate the power grid reliably and at minimum cost, particularly one filled with intermittent renewable generation such as the Pacific Northwest. It addresses the key challenge of providing smooth, stable, and predictable “control” of these assets, despite the fact that most are neither owned nor directly controlled by the power grid. The Clean Energy and Transactive Campus (CETC) work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) and the Washington State Department of Commerce (Commerce) through the Clean Energy Fund (CEF). The project team consisted of PNNL, the University of Washington (UW) and Washington State University (WSU), to connect the PNNL, UW, and WSU campuses to form a multi-campus testbed for transaction-based energy management—transactive—solutions. Building on the foundational transactive system established by the Pacific Northwest Smart Grid Demonstration (PNWSGD), the purpose of the project was to construct the testbed as both a regional flexibility resource and as a platform for research and development (R&D) on buildings/grid integration and information-based energy efficiency. This report provides a summary of the various tasks performed under the CRADA.

  1. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  2. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  3. Solar Energy Education. Reader, Part I. Energy, Society, and the Sun

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which were selected for information on solar energy is presented in this booklet. This booklet is the first of a four part series of the Solar Energy Reader. The articles provide brief discussions on topics such as the power of the sun, solar energy developments for homes, solar energy versus power plants, solar access laws, and the role of utilities with respect to the sun's energy. (BCS)

  4. Big data in energy. Final project

    International Nuclear Information System (INIS)

    Fraysse, Clemence; Plaisance, Brice

    2015-01-01

    Within the context of development of the use of always more abundant digital data in energy production, distribution and consumption networks, for instance as real time input of Smart Grids, the authors propose a description of the present energy sector, of its recent evolutions, of its actors and of its future challenges. They focus on the case of France, but also make reference to other countries where these evolutions of the energy sector are already further advanced. They discuss the evolutions generated by the emergence of the Bid Data on the whole value chain. They also discuss the various challenges associated with these transformations, notably for energy transition, for a better integration of renewable energies into the national energy grid, but also in terms of emergence of an energy related data services sector, and in terms of upheaval of business models. They finally discuss the various obstacles that the Big Data revolution will have to face and overcome to deeply transform the energy sector, notably the risk of a malevolent use of data, and of a loss of confidence from the consumer

  5. Solar energy parking canopy demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Cylwik, Joe [City of Big Bear Lake, Big Bear, CA (United States); David, Lawrence [City of Big Bear Lake, Big Bear, CA (United States)

    2015-09-24

    The goal of this pilot/demonstration program is to measure the viability of using solar photovoltaic (PV) technology at three locations in a mountain community environment given the harsh weather conditions. An additional goal is to reduce long-term operational costs, minimize green house gas emissions, lower the dependency on energy produced from fossil fuels, and improve the working environment and health of city employees and residents.

  6. Solar energy: from shadow to bright spot?

    International Nuclear Information System (INIS)

    2005-10-01

    It seems that the solar energy is developing, especially more in the thermal sector that in the photovoltaic. The result is a bad place for the France. In 200 the national production part was only 10% of the world production and 2% in 2002. The France passed from fifth to tenth place in five years. This document takes stock on the technology and the economical sector. Examples are presented. (A.L.B.)

  7. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  8. 76 FR 78021 - Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar...

    Science.gov (United States)

    2011-12-15

    ... LVRWB10B3780] Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar... Solar Energy, LLC, a subsidiary of SolarReserve, LLC plans to construct a 150 megawatt (MW) solar... allows solar energy to be captured throughout the day and retained in a molten salt heat transfer fluid...

  9. U.S. Solar Holdings Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jake [U.S. Solar Holdings, Boise, ID (United States); Stekli, Joe [U.S. Solar Holdings, Boise, ID (United States); Rueckert, Tommy [U.S. Solar Holdings, Boise, ID (United States); Irwin, Levi [U.S. Solar Holdings, Boise, ID (United States); Mehos, Mark [U.S. Solar Holdings, Boise, ID (United States); Ho, Cliff [U.S. Solar Holdings, Boise, ID (United States)

    2012-03-06

    This report summarizes the work of the US Solar Thermal Storage LLC (“USSTS”) team on SandShifter subproject for Phase 2 of U.S. Department of Energy’s FOA #DE-FC36-08GO18155.005. This subproject develops a new-to-the-world, disruptive technology which leverages an abundant, inexpensive, and benign material, Sand, for application in Thermal Energy Storage (TES) in association with power generation from Concentrating Solar Thermal (CST) systems. Sand, as a standalone TES media, has a 10 to 25X cost per unit of storage capacity cost advantage over the prevailing technology, molten salt. The work summarized herein suggests that SandShifter, which has a non-linear cost curve favoring higher hours of storage, could likely achieve economics of $15 per kWh-th or less for several hours of storage in high temperature steam- or salt-as-HTF configurations with further technology development.

  10. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  11. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number......The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  12. Solar energy in the context of energy use, energy transportation and energy storage.

    Science.gov (United States)

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low

  13. Renewable Firming EnergyFarm Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stepien, Tom [Primus Power, Hayward, CA (United States); Collins, Mark [Primus Power, Hayward, CA (United States)

    2017-01-26

    flexible EnergyFarm®. 2. Accelerate adoption of renewable energy and enhance grid stability by firming the output of wind & solar farms. 3. Demonstrate improved grid asset utilization by storing energy during off-peak periods for dispatch during local load peaks. 4. Establish an advanced battery manufacturing industry in the U.S. 5. Reduce CO2 emissions from utilities. This report summarizes the key milestones, data, results and lessons learned from the project. The desired goals and benefits of the cooperative agreement with the DOE have all been achieved. The project has contributed to reducing power costs, accelerating adoption of renewable energy resources, reducing greenhouse gas emissions and establishing advanced battery manufacturing in the U.S. The Recovery Act funds provided thru the DOE have been leveraged multiple times by additional private equity investment. Primus Power continues to ship low cost, long life and long duration EnergyPod® flow battery systems to utilities, commercial/industrial, microgrid and data center customers. After the conclusion of this project, Primus Power has modified the EnergyPod® design to optimize around energy performance. Primus Power has moved to a prefabricated enclosure instead of multiple EnergyCells in a container. This lowers capital and maintenance costs and can optimize site design. Utilities are starting to adopt energy storage for a variety of functions. The market will grow as the technology is proven and profitable applications expand.

  14. Energy Justice and the Stakeholders Involved: A Case Study of Solar Power in Rural Haiti

    Science.gov (United States)

    Romulus, Elijah Rey Asse

    This paper explores and analyzes energy justice and the stakeholders involved. Energy insecurity, specifically the lack of access to electricity effects over 1.3 billion people worldwide and energy justice is a way to address it. This paper is supported by a case study with data collected in the southern rural regions of Haiti regarding energy justice communities. Three cities were studied: Les Cayes, Anse-a-Veau, and Les Anglais. It examines how solar businesses can aid energy justice communities seeking access to electricity. Stakeholders such as the communities themselves, solar businesses, and nonprofits in the region are studied and analyzed. The paper concludes solar businesses are helping said communities but needs participation from other stakeholders to be successful. Finally, there are five recommendations to build capacity, develop infrastructure in the region, explore the possibility of solar cooperatives, strengthen the solar economy in Haiti, and demand reparations.

  15. Solar energy in the Northern Cameroon

    International Nuclear Information System (INIS)

    Djuikom, M.; Ndjomaha, Ch.; Vandenbergh, M.

    2004-01-01

    In 2003, the Cameroon Ministry of the Environment and Forestry has initiated a research project for studying the promotion of renewable energies and their impact on rural development. This work has been realized jointly with the department of Economy and Rural Development of the Agronomic University of Gembloux (Belgium), the Centre Des Etudes de L'Environnement et de Developpement du Cameroun (CEDC, Maroua) and the Institut fur Solare Energieversorgungstechnik (ISET, Germany). This initiative comes when the electricity sector in Cameroon has been facing important changes (Privatization of the national company of electricity, creation of a rural electrification agency, multiplication of the dialogues and seminars around the strategies of promotion for renewable energies, frequent black-outs during the dry season). The first objective of the project is to contribute to a better knowledge of the situation of the use of renewable energies in Cameroon. Therefore, Mrs Marthe Djuikom undertook from July to September 2003 a socio-economic survey on the use of solar energy in the northern Cameroon. The next step will be the creation of an energy program at the CEDC with the following tasks: promotion of photovoltaic technology, support of local and international synergies on the organisational aspects, training, information and coordination of reflexions at the local level for the promotion of rural electrification projects. (authors)

  16. Solar-energy potential in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet; Kanit, E. Galip

    2005-04-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000 {yields} 2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingoel, Batman, Bodrum, Uzunkoeprue, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koeycegiz, Manavgat, Doertyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R{sup 2} value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R{sup 2}=0.9998). The MAPE and R{sup 2} for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely.

  17. Solar-energy potential in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sozen, Adnan; Ozalp, Mehmet [Gazi Univ., Mechanical Education Dept., Ankara (Turkey); Arcaklioglu, Erol [Kirikkale Univ., Mechanical Engineering Dept., Kirikkale (Turkey); Kanit, E. Galip [Turkish State Meteorological Office, Ankara (Turkey)

    2005-04-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000-2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingol, Batman, Bodrum, Uzunkopru, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koycegiz, Manavgat, Dortyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R{sup 2} value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R{sup 2}=0.9998). The MAPE and R{sup 2} for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely (Author)

  18. Solar-energy potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet; Kanit, E. Galip

    2005-01-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000 → 2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingoel, Batman, Bodrum, Uzunkoeprue, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koeycegiz, Manavgat, Doertyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R 2 value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R 2 =0.9998). The MAPE and R 2 for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely

  19. Solar Energy and the United Nations

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    Some applications of solar power have an easy technology, and are a matter for the present or immediate future. The methods for the large-scale production of electricity, however, cannot mature before the end of the century, even if determined efforts are begun now. May it be recalled that some 30 years also elapsed between the discovery of nuclear fission and the start of the first economic nuclear power stations. Investments into R and D were thus needed for decades. In nuclear science, it was relatively easy to find the finance because the military was interested. But in view of its tremendous importance for the welfare of mankind it should be at least equally easy to bridge the gap in respect to solar power. May it be underlined that far more money has indeed been found, and is being found, for CERN in Geneva, which is of purely scientific-academic interest and cannot promise much valuable practical 'spin-off'. The United Nations, the countries of the First, Second and Third World, ought to shoulder their responsibility in respect to solar energy. Energetic steps towards the founding of the International Solar Power Institute should be taken right now. (author)

  20. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    Science.gov (United States)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad

  1. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  2. Team Massachusetts & Central America Solar Decathlon 2015 Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kenneth [Western New England Univ., Springfield, MA (United States)

    2016-04-29

    Our team was Team MASSCA (Massachusetts and Central America), which was a partnership of Western New England University (WNE) located in Massachusetts USA, The Technological University of Panama (UTP), and Central American Technological University (UNITEC) of Honduras. Together we had a group of 6 faculty members and approximately 30 undergraduate students. Our house is ‘The EASI’ House, which stands for Efficient, Affordable, Solar Innovation. The EASI house is rectangular with two bedrooms and one bath, and offers a total square footage of 680. Based on competition estimates, The EASI house costs roughly $121,000. The EASI house has a 5kW solar system. Faculty and students from all three institutions were represented at the competition in Irvine California. Team MASSCA did well considering this was our first entry in the Solar Decathlon competition. Team MASSCA won the following awards: First Place – Affordability Contest Second Place – Energy Balance Contest. The competition provided a great experience for our students (and faculty as well). This competition provided leadership, endurance, and technical knowledge/skills for our students, and was the single most important hands-on experience during their undergraduate years. We are extremely pleased with the awards we received. At the same time we have learned from our efforts and would do better if we were to compete in the future. Furthermore, as a result of our team’s Inter-Americas collaborative effort, UTP and WNE have partnered to form Team PANAMASS (PANAma and MASSachusetts) and have developed The 3 SMART House for the inaugural Solar Decathlon Latin America & Caribbean competition held in Colombia.

  3. The solar greenhouse: a survey of energy saving methods

    NARCIS (Netherlands)

    Saye, A.; Loon, van W.K.P.; Bot, G.P.A.; Zwart, de H.F.

    2000-01-01

    The solar greenhouse project is aimed at the development of a greenhouse concept for the Netherlands with zero-fossil energy consumption. The solar greenhouse is formulated as a combination of a low energy demand greenhouse, an energy recovery installation and an energy storage facility. In this

  4. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  5. Evaluation of the Measured Energy Performance of Four Solar Systems.

    Science.gov (United States)

    1984-09-01

    exception occurred because a building occupant manually operated the system. Although the manual operacion of this one system prevented damage to the solar...Specification 13985, Solar Equipment and the Army Technical Manual 5-804-2, Solar Energy Systems. -....... .. . .. . 2 DESCRIPTION OF THE SOLAR...standard built-up roof. *Metric Conversion Table is on p 81. 3C. Knapp, T. Stoffel, and S. Whitaker, Insolation Data Manual , SERI/SP-755- 789 (Solar

  6. Current solar energy events in France. Situation and perspectives

    International Nuclear Information System (INIS)

    2008-06-01

    Solar energy has a bright future ahead thanks to a promising political context. This brief publication presents some 2007 key figures about the solar thermal and photovoltaic markets in Europe and in France together with the 2020 goals. The French solar industry is pursuing a quality approach through three quality assurance systems: Qualisol for solar thermal installations, QualiPV for the photovoltaic ones, and 'O Solaire' for domestic solar thermal equipments

  7. Energy Conservation and Passive Solar Techniques in Campus Renovation.

    Science.gov (United States)

    Probasco, Jack; And Others

    1981-01-01

    The analysis of a building from an energy conservation and passive solar potential has three aspects: building envelope, landscaping, and room utilization. Typical conservation and solar control modifications are listed. (Author/MLF)

  8. Analysis of PURPA and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1980-03-01

    The Public Utility Regulatory Policies Act of 1978 (PURPA) is designed to promote energy conservation, the efficient use of utility resources, and equitable rates. PURPA specifically directs the Federal Energy Regulatory Commission (FERC) to encourage small power production from renewable resources (and also cogeneration of electric energy as well as heat) by setting standards under which facilities qualify for interconnection, and guidelines for sales between utilities and independent facilities. The way FERC carries out this mandate may critically affect the development of solar alternatives to electric power production from fossil and nuclear resources. This report comments on proposed FERC regulations and suggests ways to encourage small power production within the PURPA mandate. In addition, some internal strains within PURPA are analyzed that seem to limit the effectiveness with which FERC can encourage independent facilities, and possible modifications to PURPA are suggested. 255 references.

  9. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  10. Solar energy: a necessary investment in a developing economy

    Science.gov (United States)

    Okoro, O. I.; Madueme, T. C.

    2006-03-01

    Electrical energy is the pivot of all developmental efforts in both the developed and the developing nations. Because sources of conventional energy are finite and fast depleting, most industrialized countries have started research on solar energy as a renewable source of energy. This paper presents the present state of conventional energy generation in a developing economy like Nigeria. The efforts made in solar energy research and utilization are highlighted. A case is made for a systematic and coordinated financial investment in solar energy research and adaptation to complement energy generation from conventional sources.

  11. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  12. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  13. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  14. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    Science.gov (United States)

    Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J.

    2014-06-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m2, equivalent to 4.8 kWh/m2/day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures.

  15. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    International Nuclear Information System (INIS)

    Ordóñez, G; Osma, G; Vergara, P; Rey, J

    2014-01-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m 2 , equivalent to 4.8 kWh/m 2 /day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures

  16. A study of solar energy entrepreneurs and financing

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    2005-12-01

    In this paper, a description is given about entrepreneurs to start a business of renewable energy technologies as solar photovoltaic, solar water heating systems which are well established products in the market. Some points are mentioned to establish a successful business as quality assurance, marketing and sell skills etc. The purpose of this study is to boost the confidence in solar energy entrepreneurs. Technical specifications of solar home systems, solar street lighting system, solar photovoltaic water pumping and 2.5 KW solar photovoltaic power plant have been provided in Annexure-I. The list of maximum prices has been given in Annexure-ll and a list of empanelled manufactures/suppliers of various solar photovoltaic (SPV) systems under the Ministry of Non-Conventional Energy Sources, MNES (Government of India) has been also mentioned in Annexure-lll. (author)

  17. Solar energy: energy to come? The photochemical field; Energie solaire: energie du futur? la filiere photochimique

    Energy Technology Data Exchange (ETDEWEB)

    Amouyal, E. [Ecole Polytechnique, CEA-CNRS UMR 7642, 91 - Palaiseau (France). Lab. CEA d' Etudes des Solides Irradies

    2007-05-15

    The use of solar energy, as alternative or in complement to fossil fuels or nuclear power, gives rise to great hopes. The qualities of this renewable energy source are known. Free and inexhaustible, it is the most abundant energy in the world. A lot of researches have then been carried out in this field mainly in three ways: 1)the crystal structure of the reaction center of the photosystem and its modelling 2)the charges separation systems - bio-mimetic or not - in order to carry out the whole water photolysis into hydrogen and oxygen 3)the photo-sensitization of semiconductors to directly convert the solar energy into electric power. For each of these three aspects, a detailed article is given in this issue. (O.M.)

  18. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  19. Streamline, Organizational, Legislative and Administrative Response to Permitting, PV Market Share, and Solar Energy Costs (Broward Go SOLAR)

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, Jeffery D. [Broward County, Fort Lauderdale, FL (United States)

    2013-08-28

    Broward County and its partners (the Go SOLAR Team), operating under a Department of Energy Rooftop Solar Challenge Agreement, designed, developed and implemented an online permitting system for rooftop solar PV systems. This is a single web based system with a single permit fee that will issue a permit, with a set of design plans preapproved by partner building officials, within one hour. The system is currently available at gosolar.broward.org for use within any of the partner Authorities Having [permitting] Jurisdiction (AHJ). Additionally, the Go SOLAR Team researched, developed and to the extent feasible, implemented three best management practices to make a fertile environment for the new online permit system. These included Net Metering and Interconnection Standards, Solar-Friendly Financing, and Planning and Zoning Ordinances. Finally, the team implemented a substantial outreach effort to advocate for the development of solar in Broward County, with an emphasis on Solar Rights, concluding with a Go SOLAR Fest day and a half conference with over 1,200 attendees and 50 exhibitors. The Go SOLAR project was completed on time, under DOE’s budgeted amount, and all project objectives were met or exceeded.

  20. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.

  1. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  2. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  3. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  4. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  5. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  6. SOLAR ENERGY AND ITS APPLICATIONS IN NIGERIA: Short ...

    African Journals Online (AJOL)

    Solar energy is the energy transmitted from the sun in the form of electromagnetic radiation, which requires no medium for its transmission. The earth receives about one – half of one billionth of the total solar output. The sun is largely responsible for almost all of our conventional energy sources. For example, photosynthesis ...

  7. Steric effect studies on solar energy storage of norbornadiene ...

    African Journals Online (AJOL)

    The aim of this research is to determine the possible solar energy storage in the norbornadiene (1) / quadricyclane (2) system, through involving steric effects on various position of carbon C1, C2 or C7 for 1 and 2; calculating the corresponding energies at B3LYP/6-311G** level of theory. The extent of the solar energy ...

  8. Energy management using solar and fuel cell based appliances in ...

    African Journals Online (AJOL)

    The purpose of doing this diffusion models has been to forecast the demand of electricity and look for the measures that could be implemented to meet their energy demand. The demand of the energy could be met by using non conventional energy sources especially solar photovoltaic and solar thermal technologies.

  9. Policy, Institutional and Programme Readiness for Solar Energy ...

    African Journals Online (AJOL)

    In response, policies and institutions have emerged to promote solar energy. This study investigates policy, institutional and programme readiness to embrace solar energy uptake in the country. The study reveals that South Africa has put in place numerous initiatives, like the Renewable Energy Independent Power ...

  10. Optimized concentrating/passive tracking solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, K E; Johnson, A L; Grotheer, R H

    1979-01-01

    A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.

  11. Final Report to t he Department of Energy Renewable Energy and Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gaughen, Shasta

    2018-03-30

    The Pala Band of Mission Indians was awarded a DOE-EERE Solar Energy Grant for FY 2016 and 2017. The project involved installing a 94.8 kW DC photovoltaic (PC) solar system on the Pala Fire Station to offset up to 95% of grid-derived energy and reduce overall CO2 generation from the facility. Pala successfully installed rooftop and carport-mounted solar panels at the fire station, and to date has generated of 219,227 kWh of energy and offset 274,034 pounds of CO2. The project was successfully executed, and we recommend other tribes to undertake similar projects if they are located in areas with sufficient solar exposure. DOE should continue to make these funds available to tribes.

  12. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  13. Solar Forecasting Challenges and Opportunities for Enabling High Penetration of Solar Energy

    Science.gov (United States)

    Mishra, S.

    2015-12-01

    In 2011, DOE launched the SunShot Initiative to reduce the total cost of solar energy systems by about 75% to make them cost competitive with other forms of energy (without subsidies) by 2020. This translates to a total cost of installed solar energy at 1/Watt or 0.06/kWh, incentivizing high penetration of solar on the utility grid. In the past four years, the SunShot Initiative has catalyzed revolutionary advancements in solar technologies, stimulating significant growth and accelerating deployment of solar energy systems. However, as solar deployment increases, integrating solar energy into the utility grid poses difficult challenges due to the variability in solar resource and the impact of clouds and aerosols on surface irradiance. Accurate forecasting of solar resource and its variability at high temporal and spatial resolution at least a day ahead is crucial to large scale integration of solar energy into the utility grid. However, this is limited by current errors in forecasting that are as high as 25% for clear sky forecasts of Global Horizontal Irradiance (GHI), and as large as 40-80% for cloudy conditions. Forecasting errors are even higher for the direct normal irradiance (DNI). For solar energy to be seamlessly integrated into the utility grid under the scenarios of high penetration of solar, significant improvements in surface solar irradiance modeling and observations of both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) are essential to accurately predict power outputs from photovoltaic (PV) and concentrating solar power (CSP) systems. Furthermore, forecasting improvements have to be closely tied to utility needs and operation timelines. Details about the ongoing research efforts supported through the SunShot initiative and the challenges and needs for solar forecasting improvements in regards to the SunShot Initiative will be presented at the conference.

  14. A Review of Solar Energy and the Built Environment

    Directory of Open Access Journals (Sweden)

    Raha Sulaiman

    2005-12-01

    Full Text Available Solar Energy has been acknowledged as a free and infinite source of energy. In Built Environment (BE, solar energy has been used since pre-historic time. Many improvements and technologies .have been developed with respect to their potential. As solar supplies free energy, the issues with regard to their development in the BE will be examined. The solar energy is used in building either in Passive Solar Design (PSD or Active Solar Design (ASD. Rapid development in BE has caused global warming effect where the heating and cooling of the building contribute to half the total energy consumption of the nation and the construction industry leading to CO2 emission level at 300 million tonnes. It is found that solar energy produces different energy performances which result from different building technique that affected the environment in various ways. Whether or not the energy performances depend on the materials used, the equipment installed in the building or the energy sources supplied to the building , the improvement and development of solar energy still continues and grows.

  15. Analysis of Energy Efficiency in Dynamic Optical Networks Employing Solar Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    The paper presents energy efficient routing in dynamic optical networks, where solar energy sources are employed for the network nodes. Different parameters are evaluated, including the number of nodes that have access to solar energy sources, the different maximum solar output power, traffic type...... and the locations of solar powered nodes. Results show a maximum 39% savings in energy consumption with different increases in connection blocking probability....

  16. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  17. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar...

  18. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  19. Electrifying Greece with solar and wind energy

    Directory of Open Access Journals (Sweden)

    Mentis Dimitris

    2014-01-01

    Full Text Available Ensuring energy security, reducing GHG emissions and boosting the competitiveness of a country’s economy by attracting investments and technical knowhow are of paramount importance considering the targets of “20-20-20” set by the European community. Being the cradle of civilization, Greece appears today as a country caught in a prolonged hard economic and social crisis, the way out of which its citizens are looking forward as well as the entire European Union. Establishment of the leading renewable energy sources like solar and wind in Greece will not only increase the independence of its own electrification but will also provide with a foundation for developing the market of international trade of “green” energy. This paper initially highlights the current status of photovoltaics and wind turbines in Greece. Furthermore, this study evaluates whether a higher penetration of the above mentioned green energy sources would have positive impact in the economy of the country or not and in what extent they could decline the CO2 emissions until 2020, comparing to the corresponding levels in 2010.

  20. Final Report for NIREC Renewable Energy Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Walt [Nevada Institute for Renewable Energy Commercialization (NIREC), Las Vegas, NV (United States)

    2017-05-02

    This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption of renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.

  1. The solar energy in Israel; L'energie solaire en Israel

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, L

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  2. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  3. Climate impacts on the cost of solar energy

    International Nuclear Information System (INIS)

    Flowers, Mallory E.; Smith, Matthew K.; Parsekian, Ara W.; Boyuk, Dmitriy S.; McGrath, Jenna K.; Yates, Luke

    2016-01-01

    Photovoltaic (PV) Levelized Cost of Energy (LCOE) estimates are widely utilized by decision makers to predict the long-term cost and benefits of solar PV installations, but fail to consider local climate, which impacts PV panel lifetime and performance. Specific types of solar PV panels are known to respond to climate factors differently. Mono-, poly-, and amorphous-silicon (Si) PV technologies are known to exhibit varying degradation rates and instantaneous power losses as a function of operating temperature, humidity, thermal cycling, and panel soiling. We formulate an extended LCOE calculation, which considers PV module performance and lifespan as a function of local climate. The LCOE is then calculated for crystalline and amorphous Si PV technologies across several climates. Finally, we assess the impact of various policy incentives on reducing the firm's cost of solar deployment when controlling for climate. This assessment is the first to quantify tradeoffs between technologies, geographies, and policies in a unified manner. Results suggest crystalline Si solar panels as the most promising candidate for commercial-scale PV systems due to their low degradation rates compared to amorphous technologies. Across technologies, we note the strong ability of investment subsidies in removing uncertainty and reducing the LCOE, compared to production incentives. - Highlights: •We integrate local climate into the Levelized Cost of photovoltaic technology. •Climate dictates panel degradation rates and the impact of temperature on efficiency. •We compare LCOE under policy scenarios for three technologies in four U. S. states. •Degradation is highly variable, increasing costs by shortening panel life in many regions. •Incentives targeting investment are most effective at reducing solar deployment costs.

  4. Schools Going Solar: A Guide to Schools Enjoying the Power of Solar Energy. Volume 2.

    Science.gov (United States)

    Hitchcock, Susan Tyler

    This companion document updates an April 1998 volume on designing schools to use solar energy as a power source. Volume 2 presents numerous case studies of solar installations in new and existing schools across the United States and Europe, updates and presents new examples of solar education programs, and offers an updated resource listing of…

  5. Prediction of energy balance and utilization for solar electric cars

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  6. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  7. Griffith energy project final environmental impact statement

    International Nuclear Information System (INIS)

    1999-03-01

    Griffith Energy Limited Liability Corporation (Griffith) proposes to construct and operate the Griffith Energy Project (Project), a natural gas-fired, combined cycle power plant, on private lands south of Kingman, Arizona. The Project would be a merchant plant which means that it is not owned by a utility and there is currently no long-term commitment or obligation by any utility to purchase the capacity and energy generated by the power plant. Griffith applied to interconnect its proposed power plant with the Western Area Power Administration's (Western) Pacific Northwest-Pacific Southwest Intertie and Parker-Davis transmission systems. Western, as a major transmission system owner, needs to provide access to its transmission system when it is requested by an eligible organization per existing policies, regulations and laws. The proposed interconnection would integrate the power generated by the Project into the regional transmission grid and would allow Griffith to supply its power to the competitive electric wholesale market. Based on the application, Western's proposed action is to enter into an interconnection and construction agreement with Griffith for the requested interconnections. The proposed action includes the power plant, water wells and transmission line, natural gas pipelines, new electrical transmission lines and a substation, upgrade of an existing transmission line, and access road to the power plant. Construction of segments of the transmission lines and a proposed natural gas pipeline also require a grant of right-of-way across Federal lands administered by the Bureau of Land Management. Public comments on the Draft EIS are addressed in the Final EIS, including addenda and modifications made as a result of the comments and/or new information

  8. Griffith Energy Project Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-04-02

    Griffith Energy Limited Liability Corporation (Griffith) proposes to construct and operate the Griffith Energy Project (Project), a natural gas-fuel, combined cycle power plant, on private lands south of Kingman, Ariz. The Project would be a ''merchant plant'' which means that it is not owned by a utility and there is currently no long-term commitment or obligation by any utility to purchase the capacity and energy generated by the power plant. Griffith applied to interconnect its proposed power plant with the Western Area Power Administration's (Western) Pacific Northwest-Pacific Southwest Intertie and Parker-Davis transmission systems. Western, as a major transmission system owner, needs to provide access to its transmission system when it is requested by an eligible organization per existing policies, regulations and laws. The proposed interconnection would integrate the power generated by the Project into the regional transmission grid and would allow Griffith to supply its power to the competitive electric wholesale market. Based on the application, Western's proposed action is to enter into an interconnection and construction agreement with Griffith for the requested interconnections. The proposed action includes the power plant, water wells and transmission line, natural gas pipelines, new electrical transmission lines and a substation, upgrade of an existing transmission line, and access road to the power plant. Construction of segments of the transmission lines and a proposed natural gas pipeline also require a grant of right-of-way across Federal lands administered by the Bureau of Land Management. Public comments on the Draft EIS are addressed in the Final EIS, including addenda and modifications made as a result of the comments and/or new information.

  9. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  10. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Robles-Gil, S.

    1997-01-01

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  11. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  12. Solar thermal repowering utility value analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.; Day, J.; Reed, B.; Malone, M.

    1979-12-01

    The retrofit of solar central receiver energy supply systems to existing steam-electric generating stations (repowering) is being considered as a major programmatic thrust by DOE. The determination of a government response appropriate to the opportunities of repowering is an important policy question, and is the major reason for the analysis. The study objective is to define a government role in repowering that constitutes an efficient program investment in pursuit of viable private markets for heliostat-based energy systems. In support of that objective, the study is designed to identify the scope and nature of the repowering opportunity within the larger context of its contributions to central receiver technology development and commercialization. The Supply and Integration Tasks are documented elsewhere. This report documents the Demand Task, determining and quantifying the sources of the value of repowering and of central receiver technology in general to electric utilities. The modeling tools and assumptions used in the Demand Task are described and the results are presented and interpreted. (MCW)

  13. Application of solar energy in desalting seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Asghar [Darwish Al Gobaisi, Ali M El-Nashar, International Centre for Water and Energy Systems (ICWES), ABU DHABI (United Arab Emirates)

    2008-07-01

    Several regions on the Earth are now in the grip of freshwater scarcity with less than 1000 cu.m. available per year per capita. To overcome this situation, desalting seawater and/or brackish water has become a necessity. In the AGCC countries, almost the entire supply of freshwater depends upon desalting seawater. However, desalination as currently practiced on large scale depends entirely on the combustion of fossil fuels which, in turn, results into pollution of air and affects the global climate adversely. Hence, sustainability of the desalination industry very much depends upon the application of renewable energy such as solar to minimize the environmental impact. This can be applied in several ways. (orig.)

  14. National solar energy education directory. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Corcoleotes, G; Cronin, S; Kramer, K; O& #x27; Connor, K

    1980-01-01

    The information contained in this directory is derived from responses to a national survey of educational institutions and organizations involved in solar energy educational activities beyond the secondary school level. Phone calls and follow-up mail requests were used to gather additional information when necessary. Every survey instrument was read, coded, and edited before entry into the data base from which this directory was produced. The Directory is organized alphabetically by state. Institutions and organizations within each state are categorized according to type (Colleges and Universities, Junior/Community Colleges, Vocational/Technical Schools, and Other Educational Institutions and Organizations) and listed alphabetically within these categories. Within each institutional listing the amount of information provided will vary according to the completeness of the survey response received from that institution. (MHR)

  15. 75 FR 49515 - Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy...

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [CACA-49575 L51010000 FX0000 LVRWB09B3220 LLCAD08000] Notice of Availability of the Final Environmental Impact Statement for the Chevron Energy Solutions Lucerne Valley Solar Project, California and the Proposed Amendment to the California Desert...

  16. Solar freezing (-30 deg) by thermo-chemical process from a low temperature thermal source (-70 deg). Final report 2002/2004. Coordinated action ''ENERGY''. PRI 6.1: solar cold. GAT 6: accommodation; Congelation solaire (-30deg) par procede thermochimique a partir d'une source thermique solaire basse temperature (70deg). Rapport final d'activite 2002/2004. Action concertee ''ENERGIE''. PRI 6.1: Froid solaire. GAT 6: Habitat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In the framework of the valorization of the solar energy, this PRI proposes a project to develop a solar freezing process allowing a production of cold less than - 23 C, with a low temperature (less than 70 C) for the hot source of the process. The thermo-chemical process, the simulation of the operating and results are detailed. (A.L.B.)

  17. Improving the yield of fresh water in conventional solar still using low cost energy storage material

    International Nuclear Information System (INIS)

    Harris Samuel, D.G.; Nagarajan, P.K.; Sathyamurthy, Ravishankar; El-Agouz, S.A.; Kannan, E.

    2016-01-01

    Highlights: • Yield of fresh water from conventional solar still is improved by salt heat energy storage. • Experiments are conducted to analyze the performance. • Payback period of present model with salt heat energy storage is 4 months. - Abstract: As there is a larger need for drinking water, expensive methodologies are employed in order to get portable drinking water. This work aims at improving the yield of freshwater from a conventional solar still using the different low-cost energy storage material. Theoretical and experimental studies are carried out to analyze the performance of a single slope solar still. From this study, it is observed that the yield of freshwater from the solar still with spherical ball salt storage achieves the maximum yield of 3.7 kg/m 2 as compared to a conventional single slope solar still with sponge and without any storage material as 2.7 and 2.2 kg/m 2 respectively. The deviations between theoretical and experimental values for with spherical ball salt storage, with sponge and conventional solar still are found as 16.1%, 9.7% and 4.0% respectively. Payback period of the present solar still is found as 4.3 months as it is quicker than other conventional single slope solar still. Finally, single slope solar still with spherical ball heat storage gives low cost of water.

  18. Pasteurization of naturally contaminated water with solar energy.

    Science.gov (United States)

    Ciochetti, D A; Metcalf, R H

    1984-02-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested.

  19. PHOTOINDUCED PROCESSES IN SUPRAMOLECULAR SYSTRMS FOR SOLAR ENERGY CONVERSION

    OpenAIRE

    Orlandi, Michele

    2010-01-01

    Artificial photosynthesis, defined as the conversion of solar energy into fuels, could provide a solution to the problem of the intermittent avalaibility of sunlight, one of the key issues to overcome in order to implement widespread use of solar energy. Among the possible applications of artificial photosynthesis, particularly interesting are photochemical water splitting, since it represents a possible way to solar hydrogen generation, and the photocatalytic reduction of CO2 ...

  20. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  1. Solar energy applications in transportation facilities : a literature review.

    Science.gov (United States)

    1978-01-01

    This report presents the results of a survey of the literature and other sources to determine the types of application that have been made of solar energy in the transportation field. The use of solar energy for powering automatic traffic counters, v...

  2. Application of solar energy to air-conditioning

    Science.gov (United States)

    Harstad, A. J.; Nash, J. M.

    1978-01-01

    Results of survey of application of solar energy to air-conditioning systems are summarized in report. Survey reviewed air-conditioning techniques that are most likely to find residential applications and that are compatible with solar-energy systems being developed.

  3. Solar Power Plants: Dark Horse in the Energy Stable

    Science.gov (United States)

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  4. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  5. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  6. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  9. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  10. Beyond the EPBD: The low energy residential settlement Borgo Solare

    International Nuclear Information System (INIS)

    Aste, Niccolo; Adhikari, R.S.; Buzzetti, Michela

    2010-01-01

    The European Directive on Energy Performance of Buildings (EPBD) imposes the adoption of measures for improving the energy efficiency in buildings. These measures should take into account the local weather conditions as well as internal thermal environment and cost-effectiveness. In this respect, Italy is a very interesting benchmark. For Northern Italy, the climatic context is particularly difficult to deal with cold winters and hot summers. The legislations are changing very rapidly, but has not fully adapted to the local context. The considered methodology still involves winter heating while summer cooling is addressed in incomplete and inadequate ways. The energy issue is addressed only partially as final energy consumption, but with little attention to LCA. Moreover, the belief that the buildings with high energy savings are too expensive, and therefore not attractive from economic point of view. For these reasons, it is very important to develop case studies to demonstrate the effectiveness of sustainable energy in architecture, according to a holistic approach. This paper describes a detailed techno-economic analysis for Borgo Solare project, an extremely advanced and innovative residential settlement designed on sustainable architecture concepts. One of the most innovative aspects of the project is that it is not just an experimental operation but Borgo Solare is a real urban district, which will be built without public funds and should be inhabited by common people. Excellent energy performance, therefore, must be accompanied by affordable market prices. The energy and economical analysis is presented taking into account also the embodied energy of the building. The results on the performance of a sample building (case study) of this settlement are reported, according to different construction standards: prior to EPBD, present from the EPBD and more efficient developed specifically for the project. It has been shown that using the better design practices

  11. Spectral light management for solar energy conversion systems

    Science.gov (United States)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  12. Spectral light management for solar energy conversion systems

    Directory of Open Access Journals (Sweden)

    Stanley Cameron

    2016-06-01

    Full Text Available Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  13. Solar Energy Technologies Program Newsletter - July 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  14. Solar Energy Technologies Program Newsletter - September 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  15. Solar Thermal energy strategic road-map

    International Nuclear Information System (INIS)

    Hafner, Bernd; Godin, Olivier; Villier, Dominique; Petit, J.F.; Demangeon, Elsa; Laplagne, Valerie; Loyen, Richard; Mugnier, Daniel; Filloux, Alain; Frichet, Jean-Claude; Aubert, Elisabeth; Cherepanova, Margarita; Guilmin, Audrey; Dicostanzo, Catherine; Papillon, Philippe; Caccavelli, Dominique; Cholin, Xavier; Leger, Emmanuel; Gevaudan, Alain; Coulaud, Celine; Morlot, Rodolphe; Khebchache, Bouzid; Parrouffe, Jean-Michel; Clement, Daniel; Tonnet, Nicolas

    2012-11-01

    The French Environment and Energy Management Agency (ADEME) manages a fund dedicated to new energy technologies. Since 2008 this fund has funded 'research demonstrators' to implement testing of technologies that are in an experimental stage, between research and industrial deployment. ADEME coordinates a group of experts who are charged with drawing up a strategic road-map prior to each Call for Expressions of Interest. The aims of the solar thermal road-map are: - to highlight the industrial, technological, environmental and societal issues at stake; - to elaborate coherent, consistent and shared visions of the technologies and/or socio-technical systems outlined in the road-map; - to underscore the technological, organisational and socioeconomic barriers and bottlenecks to be overcome in order to achieve these visions; - to link priority research topics to a timetable of goals for technology availability and deployment that is consistent with the stated objectives; - to give priority to research needs and research demonstrators that will serve as the basis for: 1 - calls for expression of interest issued by the Research Demonstrators Fund, 2 - the research programming process at ADEME and more broadly at the Agence nationale de la recherche (ANR) and the Comite strategique national sur la recherche sur l'energie. Research priorities and needs for demonstrators are determined by the intersection of visions and bottlenecks. They also take into account industrial and research capacity in France. The road-maps may also refer to exemplary research demonstrators abroad that are in the forefront of technological progress, and make recommendations regarding industrial policy. These road-maps are the result of collective work by a group of experts appointed by the Steering Committee (Comite de pilotage, COPIL) of the Research Demonstrators Fund for new energy technologies. The members of this group are actors in research, drawn from industry, research bodies and research

  16. Solar combisystems with forecast control to increase the solar fraction and lower the auxiliary energy cost

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2011-01-01

    Solar Combi systems still need quite a lot of auxiliary energy especially in small systems without seasonal storage possibilities. The control of the auxiliary energy input both in time and power is important to utilize as much as possible of the solar energy available from the collectors and also...... energy sources. It can be either direct electric heating elements or a heat pump upgrading ambient energy in the air, ground, solar collector or waste heat from the house. The paper describes system modeling and simulation results. Advanced laboratory experiments are also starting now with three...

  17. Solar/hydrogen systems technologies. Volume II (Part 2 of 2). Solar/hydrogen systems assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, W. J.D.; Foster, R. W.; Tison, R. R.; Hanson, J. A.

    1980-06-02

    Volume II of the Solar/Hydrogen Systems Assessment contract report (2 volumes) is basically a technological source book. Relying heavily on expert contributions, it comprehensively reviews constituent technologies from which can be assembled a wide range of specific solar/hydrogen systems. Covered here are both direct and indirect solar energy conversion technologies; respectively, those that utilize solar radiant energy input directly and immediately, and those that absorb energy from a physical intermediary, previously energized by the sun. Solar-operated hydrogen energy production technologies are also covered in the report. The single most prominent of these is water electrolysis. Utilization of solar-produced hydrogen is outside the scope of the volume. However, the important hydrogen delivery step is treated under the delivery sub-steps of hydrogen transmission, distribution and storage. An exemplary use of the presented information is in the synthesis and analysis of those solar/hydrogen system candidates documented in the report's Volume I. Moreover, it is intended that broad use be made of this technology information in the implementation of future solar/hydrogen systems. Such systems, configured on either a distributed or a central-plant basis, or both, may well be a major significance in effecting an ultimate transition to renewable energy systems.

  18. Solar/hydrogen systems technologies. Volume II (Part 1 of 2). Solar/hydrogen systems assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, W. J.D.; Foster, R. W.; Tison, R. R.; Hanson, J. A.

    1980-06-02

    Volume II of the Solar/Hydrogen Systems Assessment contract report (2 volumes) is basically a technological source book. Relying heavily on expert contributions, it comprehensively reviews constituent technologies from which can be assembled a wide range of specific solar/hydrogen systems. Covered here are both direct and indirect solar energy conversion technologies; respectively, those that utilize solar radiant energy input directly and immediately, and those that absorb energy from a physical intermediary, previously energized by the sun. Solar-operated hydrogen energy production technologies are also covered in the report. The single most prominent of these is water electrolysis. Utilization of solar-produced hydrogen is outside the scope of the volume. However, the important hydrogen delivery step is treated under the delivery sub-steps of hydrogen transmission, distribution and storage. An exemplary use of the presented information is in the synthesis and analysis of those solar/hydrogen system candidates documented in the report's Volume I. Morever, it is intended that broad use be made of this technology information in the implementation of future solar/hydrogen systems. Such systems, configured on either a distributed or a central-plant basis, or both, may well be of major significance in effecting an ultimate transition to renewable energy systems.

  19. Solar thermal production of zinc - Final steps toward scale-up - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meier, A.

    2008-05-15

    A 10 kW receiver-reactor prototype (called ZIRRUS) was further improved and tested for the solar thermal de-composition of ZnO, which is the 1{sup st} step of the two-step water-splitting thermochemical ZnO/Zn cycle. The rotating cylindrical cavity was made of either sintered ZnO or sintered Al{sub 2}O{sub 3} tiles placed on top of a multi-layer Al{sub 2}O{sub 3}-SiO{sub 2}-Y{sub 2}O{sub 3}-based ceramics for thermal shock resistance, mechanical stability, gas diffusion barrier, and thermal insulation. Pre-heated Ar gas was injected for aerodynamic window protection and for minimizing recombination of product gases in the cavity. Experimentation was carried out at PSI's High-Flux Solar Simulator with the direct heating 10 kW reactor prototype subjected to peak radiative fluxes exceeding 5,800 suns. The reactor operated without incident for a total of more than 40 h at maximum temperatures - measured behind the ZnO and Al{sub 2}O{sub 3} tiles - ranging from 1807-1907 K. Thermal dissociation of ZnO(s) near 2000 K was demonstrated for experimental runs over 4 h in transient ablation mode with up to nine semi-continuous feed cycles of ZnO particles. A working Zn/O{sub 2} separation device based on the rapid quenching of the Zn/O{sub 2} mixture is ready to be incorporated at the exit of the solar reactor. Zinc yields of up to 94% were obtained when using total Ar/Zn(g) dilution of 530 and a cooling rate of about 10{sup 5} K/s. The fully integrated solar reactor will be scaled up to the pilot scale of 100 kW. A newly developed reactor model that couples radiation, conduction, and convection heat transfer to the reaction kinetics will allow determining optimal operational conditions for matching the feeding rate to the reaction rate and for maximizing solar-to-chemical energy conversion efficiency. The 2{sup nd} step of the ZnO/Zn cycle has been experimentally demonstrated at ETH using an aerosol-flow reactor for in-situ formation and hydrolysis of Zn nanoparticles

  20. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  1. Flexible Assembly Solar Technology (FAST) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Toister, Elad [BrightSource Energy Inc., Jerusalem (Israel)

    2014-11-06

    The Flexible Assembly Solar Technology (FAST) project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  2. Solar energy research and development: program balance. Annex, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    Each of the seven solar energy technologies that have been assessed in the study are treated: photovoltaic devices, solar thermal power systems, wind energy systems, solar heating and cooling systems, agricultural and industrial heat processes, biomass conversion technologies, and ocean thermal energy conversion systems. A brief technical overview of storage for solar electric technologies is presented and some principles concerning how different levels of success on electrical storage can affect the commercial viability of solar electric options are discussed. A description is given of the solar penetration model that was developed and applied as an analytical tool in the study. This computer model has served the primary purpose of evaluating the competiveness of the solar energy systems in the markets in which they are expected to compete relative to that of the alternative energy sources. This is done under a variety of energy supply, demand, and price conditions. The seven sections treating the solar energy technologies contain discussions on each of six subject areas: description of the technology; economic projections; the potential contribution of the technology in different marketplaces; environmental considerations; international potential; and the present and possible future emphases within the RD and D program. The priority item for each of the technology sections has been the documentation of the economic projections.

  3. Nontechnical Barriers to Solar Energy Use: Review of Recent Literature

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, R.; Zuboy, J.

    2006-09-01

    This paper reviews the nontechnical barriers to solar energy use, drawing on recent literature to help identify key barriers that must be addressed as part of the Technology Acceptance efforts under the U.S. Department of Energy (DOE) Solar America Initiative. A broad literature search yielded more than 400 references, which were narrowed to 19 recent documents on nontechnical barriers to the use of solar energy and other energy efficiency and renewable energy (EE/RE) technologies. Some of the most frequently identified barriers included lack of government policy supporting EE/RE, lack of information dissemination and consumer awareness about energy and EE/RE, high cost of solar and other EE/RE technologies compared with conventional energy, and inadequate financing options for EE/RE projects.

  4. Energy efficiency analysis of a trapezoidal solar pond

    Science.gov (United States)

    Wu, Dan; Liu, HongSheng; Jiang, Linsong; Wang, Jiansheng

    2017-12-01

    In this paper we present an investigation of the energy performance of a mini trapezoidal solar pond (with surface of 2.4m×2.4m and depth of 1.5 m) which was built in Dalian, China. The pond was filled with salty water to form the upper convective zone (UCZ), the non-convective zone (UCZ), and the lower convective zone (LCZ). Energy efficiency, the ratio of available energy to the total energy, was defined basing on the first law of thermodynamics at each zone of the solar pond. The energy efficiency of the three layers were analyzed separately accounting to the simulation results of the temperature distribution in the trapezoidal solar pond. It shows that the energy efficiency of the solar pond is relatively high at the beginning of the operation, and the energy efficiency of the UCZ is the lowest while the LCZ is the highest.

  5. Conclusions and recommendations of the United States Solar Energy Panel

    Science.gov (United States)

    Cherry, W. R.; Morse, F. H.

    1973-01-01

    The United States Solar Energy Panel was charged with assessing the potential of solar energy as a national energy resource. Three areas evolved where solar energy could supply significant amounts of the U.S. future energy needs: (1) energy for heating and cooling of buildings, (2) the production of fuels, and (3) the generation of electrical power. It was concluded that with adequate R&D support over the next 30 years, solar energy could provide at least 35 percent of the heating and cooling of future buildings, greater than 30 percent of the methane and hydrogen needed in the U.S. for gaseous fuels, and greater than 20 percent of the electrical power needs of the U.S. All of this could be done with a minimal effect on the environment and a substantial savings of nonrenewable fuels.

  6. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  7. Evaluation of solar energy over three dimensional objects

    International Nuclear Information System (INIS)

    Serposhan, S.; Yaghoubi, M.

    2002-01-01

    The knowledge of solar irradiation is important in heating and cooling of buildings architectural engineering, various solar energy utilizations, and for any system design exposed to sun radiation. In the present article, simulation is made to predict solar irradiation over any three-dimensional objects. Special consideration is made to evaluate solar radiation intensity distribution over semi-circular roof and domed roofs. For practical applications, hourly and average daily solar radiation distribution for a series of three Heller type huge cooling towers of Fars Power Plant is also determined

  8. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  9. Phase-change thermal energy storage: Final subcontract report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

  10. estec2007 - 3rd European solar thermal energy conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-14

    The sessions of the 'estec2007 - 3{sup rd} European Solar Thermal Energy Conference held in Freiburg, Germany have the following titles: The solar thermal sector at a turning point; Cooling and Process Heat, Country reports Europe; Standards and Certification; Country reports outside Europe; Awareness raising and marketing; Domestic hot water and space heating; Domestic hot water and space heating; Quality Assurance and Solar Thermal Energy Service Companies; Collectors and other key technical issues; Policy - Financial incentives; Country Reports; Marketing and Awareness Raising; Quality Assurance Measures/Monistoring; Standards and Certification; Collectors; Domestic Hot Water and Space Heating; Industrial Process Heat; Storage; Solar Cooling. (AKF)

  11. Urban Options Solar Greenhouse Demonstration Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  12. Energy and the environment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-15

    Work on the `Energy and the Environment` project has been focused on completion of two interrelated efforts: (1) development, production, and installation of energy related exhibits in the Ecology and Environment gallery, and (2) creation and implementation of the `Energy Backpack` program. The Energy exhibits have been available to over 1.5 million visitors since the opening of the new St. Louis Science Center. The `Energy Backpack` program will be implemented with students, teachers, and family groups this fall.

  13. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  14. Simulation of Solar Energy Use in Livelihood of Buildings

    Science.gov (United States)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  15. 75 FR 78980 - Notice of Availability of the Draft Programmatic Environmental Impact Statement for Solar Energy...

    Science.gov (United States)

    2010-12-17

    ...] Notice of Availability of the Draft Programmatic Environmental Impact Statement for Solar Energy... Draft Programmatic Environmental Impact Statement (EIS) for Solar Energy Development in Six Southwestern... preferred method of commenting. Mail: Addressed to: Solar Energy Draft Programmatic EIS, Argonne National...

  16. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  17. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector

    International Nuclear Information System (INIS)

    Faizal, M.; Saidur, R.; Mekhilef, S.; Alim, M.A.

    2013-01-01

    Highlights: • By using nanofluid, smaller and compact solar collector can be produced. • The average value of 220 MJ embodied energy can be saved. • The payback period of using nanofluid solar collector is around 2.4 years. • Around 170 kg less CO 2 emissions in average for nanofluid solar collector. • Environmental damage cost is lower with the nanofluid based solar collector. - Abstract: For a solar thermal system, increasing the heat transfer area can increase the output temperature of the system. However, this approach leads to a bigger and bulkier collector. It will then increase the cost and energy needed to manufacture the solar collector. This study is carried out to estimate the potential to design a smaller solar collector that can produce the same desired output temperature. This is possible by using nanofluid as working fluid. By using numerical methods and data from literatures, efficiency, size reduction, cost and embodied energy savings are calculated for various nanofluids. From the study, it was estimated that 10,239 kg, 8625 kg, 8857 kg and 8618 kg total weight for 1000 units of solar collectors can be saved for CuO, SiO 2 , TiO 2 and Al 2 O 3 nanofluid respectively. The average value of 220 MJ embodied energy can be saved for each collector, 2.4 years payback period can be achieved and around 170 kg less CO 2 emissions in average can be offset for the nanofluid based solar collector compared to a conventional solar collector. Finally, the environmental damage cost can also be reduced with the nanofluid based solar collector

  18. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    Science.gov (United States)

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  19. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  20. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  1. Application Solar Energy for Charging Battery Mobile Phone

    OpenAIRE

    Elmahdi, Mohamed Abdulhadi; Suparman, Sudjito; Pramono, Sholeh Hadi

    2012-01-01

    Photovoltaic energy is the conversion of sunlight into electricity. A photovoltaic cell, commonly called a solar cell or PV, is the technology used to convert solar energy directly into electrical power. A battery charger is a device used to put energy into a secondary cell or recharge able battery by forcing an electric current through it. Digital devices, especially mobile phones, need electricity that can be obtained from local electricity station converted into direct current using propri...

  2. Solar Energy: A Necessary Investment in a Developing Economy ...

    African Journals Online (AJOL)

    Electrical Energy is the pivot of all developmental efforts in both the developed and the developing nations. Due to the fact that sources or conventional means of energy generation arc finite and fast depleting, most industrialized countries have started research on solar energy as a renewable sources or energy. This paper ...

  3. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated...

  4. Conservation and solar energy program: congressional budget request, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  5. Survey of state legislative programs that include passive solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S

    1979-06-01

    This report surveys and evaluates state-level solar-incentive programs, including passive solar energy. The range of programs examined focuses on financial and legal incentives designed to speed the implementation of solar heating, cooling, and hot water systems. They have been evaluated by probing the wording of the incentive legislation and by interviewing state program administrators in each state to determine: (1) the extent, if any, of passive inclusion in solar-incentive programs, and (2) the level of success that various implementation techniques have achieved for encouraging passive solar designs as opposed to the more-commonly-understood active systems. Because no states have initiated incentive legislation designed exclusively to encourage passive solar techniques, it has been essential to determine whether legislative programs explicitly or implicitly include passive solar or if they explicitly exclude it.

  6. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  7. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  8. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  9. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  10. A review on highlights and feasibility studies on solar energy utilization in Malaysia

    Science.gov (United States)

    Wahid, Siti Sufiah Abd; Ramli, Mohd Sufian; Noorden, Zulkarnain Ahmad; Hassan, Khairul Kamarudin; Azli, Shakira Azeehan

    2017-08-01

    Over the years, solar has been one of the main substitutes of electricity resources worldwide including Malaysia in effort to reduce the dependency on the conventional fossil fuel. In this paper, the status of solar energy in Malaysia Plans is investigated while the techniques used in various techno-economic and economic feasibility studies on the implementation of solar energy system are analyzed. The state of awareness and understanding on solar energy among Malaysians is also determined. It has been found that a mathematical formulation method as well as an iterative technique which both consider lots of uncertainties are capable in optimally designing a photovoltaic, PV system while minimizing the cost. Meanwhile, a financial model using probabilistic and sensitivity analysis is able to provide the potential investors with the profitability of a PV project. Finally, several surveys has proven that Malaysian people are lack of awareness, information thus interest on solar technology. Therefore, in evaluating the feasibilities of a PV system, it is suggested that considerations on all solar-related variables must be taken into account while at the same time the Government of Malaysia, GoM should play the main role by providing more aggressive programmes and schemes in order to educate and expose Malaysian citizens with knowledge and skills on solar energy.

  11. Seguidor Solar, optimizando el aprovechamiento de la energía solar ; Solar tracker, optimizing ofimprovementof the solar energy

    Directory of Open Access Journals (Sweden)

    Noel Machado Toranzo

    2015-06-01

    Full Text Available En este trabajo se realizó el diseño e implementación de un dispositivo encargado de obtener las coordenadas del Sol en cualquier momento del día, es decir, un seguidor solar a dos ejes por punto luminoso. Este seguidor consta de dos bloques principales: la tarjeta controladora y la parte mecánica. Su diseño se basó en el uso de fotorresistencias, microcontroladores y motores de pasos, el mismo posee altas prestaciones y bajo costo. El prototipo construido es utilizado en las investigaciones de aprovechamiento de la energía solar que se realizan en el Grupo de Energía Renovable Aplicadas (GERA de la Universidad de Oriente, particularmente en los paneles fotovoltaicos y los calentadores de agua. Se realizó una prueba experimental en los laboratorios y en el polígono de dicho grupo y se comprobó que el seguidor solar funciona adecuadamente, cumpliendo con las expectativas deseadas.The design and implementation of a device for obtaining the coordinates of the sun at any time during the day, it means, a solar tracker of type two axis by luminous point is developed in this paper. This tracker consists of two main blocks: the controller board and the mechanical part. The design is based on the use of photoresistences, microcontrollers and stepper motors. The prototype is used on investigations about solar energy developed at the GERA (Grupo de Energía Renovable Aplicada of Universidad de Oriente, particularly in photovoltaic panels and water heaters. An experimental test was conducted in the laboratories and at the site of the group and it was found that the solar tracker is functioning properly, meeting the desired expectations.

  12. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  13. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  14. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  15. Facilitating Deployment of Community Solar PV systems on Rooftops and Vacant Land in Northeast IL - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Deborah [Cook County, Chicago, IL (United States); Oakleaf, Laura [Cook County, Chicago, IL (United States)

    2017-12-31

    The Cook County Community Solar project set out to unlock the potential of community solar in the Chicago region with lessons that could be applied nationally. One of the first steps was to prove out the potential market. This was done through an opportunity assessment which showed there is over 9,000 megawatts worth of site capacity available for community solar projects in Cook County – nearly enough to offset all of Cook County’s residential electricity use. The assessment also showed that almost 75% of Cook County households are not able to invest directly in solar photovoltaic systems due to a variety of issues from physical barriers such as shading, or condition of the roof, to financial barriers such as lack of roof ownership, or the up-front costs of installation. Because of these barriers, community solar is an essential part of making the benefits of renewable energy available to all of the residents of Cook County. In addition to the opportunity assessment the project team also worked with the over 200 individuals who participated in the stakeholder advisory group to develop a number of other products including: 1) an Economic & Policy Barriers Resolutions and Work Plan document which laid out best practices to address the policy barriers that existed at the time (May of 2016) 2) Value Proposition Report I and Report II which summarize the value of community solar to potential developers and subscribers, 3) The Community Solar Business Case Tool, which provides a flexible financial model that projects the costs and befits to the system developer and subscriber for a project, 4) Bill Crediting Analysis and the 5) Final Report. The Final Report contains 15 case studies which prove that community solar projects are economically feasible in Cook County with a variety of sites, solar designs, ownership and subscriber models.

  16. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    Science.gov (United States)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  17. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  18. Enerplan, Professional association of solar energy - activity report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2006 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  19. Land use and energy utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.; Nathans, R.; Palmedo, P.F.

    1977-06-01

    Land use plays an important role in structuring the basic patterns in which energy is consumed in many areas of the U.S. Thus, in considering policies at a national or local level, which are aimed at either utilizing energy supplies in a more efficient manner, or in establishing the compatibility of new energy supply, conversion, and end use technologies with our existing social patterns of energy use, it is important to understand the interdependencies between land use and energy. The Land Use-Energy Utilization Project initiated in July 1974 was designed to explore the quantitative relationships between alternative regional land-use patterns and their resultant energy and fuel demands and the impacts of these demands on the regional and national energy supply-distribution systems. The project studies and analyses described briefly in this report provide a framework for delineating the energy system impacts of current and projected regional land-use development; a base of information dealing with the energy intensiveness of assorted land-use activities; models that enable Federal and regional planners to estimate the ranges of potential energy savings that could be derived from employing alternative land-use activity configurations; and a user manual for allowing local land use planners to carry out their own land use-energy impact evaluations. Much remains to be done to elucidate the complicated interdependencies between land use and energy utilization: what is accomplished here is an initial structuring of the problem. On the other hand, the recent increase in interest in establishing new ways for the U.S. to achieve energy conservation suggests that actions will be taken in the near future to tie land-use development to national and local targets for conservation.

  20. An absorption-diffusion refrigerator operated by solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, T.I.; Hanafy, A.E.; Klup, A.M.A. [Menoufla Univ. (Egypt)

    1993-12-31

    The design of a commercially available vapor absorption electrical refrigerator was changed to make it suitable for running on solar energy. The refrigerator was attached to a thermo-siphonic flat-plate solar oil heating system with small tank-collector volume ratio collector to supply heat to the generator of the refrigerator. The test results revealed that the minimum evaporator temperature was around 2 C. The designed solar heating system was suitable for the operation of the refrigerator by solar energy. From the analysis of the operation of the refrigerator by both electrical as well as solar energy, it was found that the ambient temperature is a dominant factor affecting the system performance. (Authors). 10 refs., 14 figs., 1 tab.

  1. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  2. Proceedings of the General Committee for solar thermal energy 2017

    International Nuclear Information System (INIS)

    Loyen, Richard; Gibert, Francois; Porcheyre, Edwige; Laplagne, Valerie; Lambertucci, Stefano; Hauser, Eva; Delmas, Pierre; Mozas, Kevin; Servier, Gerard; Girard, Jean-Paul; Haim, Philippe; Gendron, Marc; Haas, Benjamin; Leclech, Rodrigue; Eberhardt, Mathieu; Bettwy, Fabrice; Berthomieu, Nadine; Barais, Claire; Mingant, Sylvie; Daniel, Charles; GODIN, Olivier; PELe, Charles; Benabdelkarim, Mohamed; Brottier, Laetitia; Cholin, Xavier; Mugnier, Daniel; Marchal, David; Khebchache, Bouzid

    2017-10-01

    The contributions of this conference first proposed an overview of the status and perspectives of the solar thermal energy sector with a presentation of the present situation and perspectives for the French market, and an overview of situations and initiatives in neighbouring European countries. A second session addressed the possible new economical and marketing models able to face challenges of solar thermal energy in 2018 with focuses on heat kWh purchase, on supply portage through a global operator contract (design-realisation-exploitation-maintenance contracts or CREM contracts, energy performance contracts or CPE), and on issues related to building renovation (solar-gas synergy) and to new buildings (regulatory evolution, E+C label). The third session proposed examples of local good practices: development of solar thermal networks in Auvergne-Rhone-Alpes with the development of these networks and a support to commissioners, ADEME's support with patrimony-rehabilitation contracts, and the solar policy implemented by the Brest metropole. A technological focus was then proposed. It addressed communications about the SOCOL approach, concentration-based solar technology (technology, applications, realisations), and solar heating (assets in new and renovated buildings). Before a synthesis, two interventions addressed the production of solar electron and calories, and works performed on the increase of the solar coverage rate

  3. Multi-culture solar heated bio-shelter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A rooftop greenhouse (bio-shelter) that is heated with active and passive solar systems is presented. The intent of the greenhouse is to grow vegetables hydroponically the year-round using a nutrient flow technique; and to growth the giant tropical Malaysian prawn Macrobrachium rosenbergii in a recycling raceway water system heated with solar power. The produce grown was continuously monitored and the harvests weighed in order to estimate the year-round production potential of the bio-shelter greenhouse.

  4. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  5. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  6. Annual review of solar energy. Period of review: 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-10-01

    A general review of national solar energy programs is provided. An executive summary and a brief history of the Federal solar energy program are presented. The issues and implications of the National Energy Plan that relate to solar energy development ae discussed. An overview is provided of the present Federal solar energy program, including the activities of several Federal agencies outside the Department of Energy. Some of the non-Federal solar energy programs ae reviewed, including international programs in which the U.S. has some role, programs of state and local governments, college and university programs, the work of private industry, and individual and small scale activities. A synposis of the major categories of solar technology is provided. Each chapter discusses a particular technology area and includes a basic technological description; a summary of the goals and activities of the Federal R and D program for the technology; significant events and development of the past year; and a brief overview of problems, uncertainties, and dissenting views. Three appendices include a synopsis of major energy events of 1977; a glossary of technical terms, abbreviations, and acronyms, and a table of conversion factors. (MHR)

  7. Experimental Investigation on an Energy Efficient Solar Tunnel Dryer

    OpenAIRE

    M. R. Seshan Ram

    2012-01-01

    The research determines the effectiveness of the solar tunnel dryer developed and the product dried in the device is superior in quality and also it is compatible with branded products available in the market. The study also determines Acetamide as Phase Key words: Solar Tunnel Dryer, Acetamide as Phase Change Materials, Conversion into Thermal Energy, Thermocouple, and Pyranometer

  8. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    user

    method cost reduction, numerous solar energy based applications were .... domestic usage. The active multiple effect units are more suitable for large-scale applications. 3.2.2 Solar Pathogenic Organic Destruction. Pathogenic organic destruction otherwise known as ... achieved by filling about 0.3-2.0 litre plastic bottles.

  9. Small integrated solar energy systems for developing countries

    Science.gov (United States)

    Schreitmueller, K. R.

    1982-11-01

    Solar enegy applications in developing countries cover processing of food and other agricultural products, fresh water production, operation of cooling and freezing equipment, of water pumps and processing machinery. Evacuated tubular collectors turn out to be best suited for process heat generation; photovoltaic generators for electricity production. The Mexican fisher village of Las Barrancas gives a good example of an integrated solar energy system.

  10. Solar Energy Education Packet for Elementary & Secondary Students.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  11. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  12. Minutes: ANSI Steering Committee on Solar Energy Standards Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-29

    Minutes of the April 29, 1980, meeting of the American National Standards Institute steering committee on solar energy standards development are given. Attachments include correspondence from individuals and organizations which primarily describe the Solar Public Interest Coordination Committee (SPICC) and its recent activities. Also a report on the meeting of the ANSI subcommittee on international activity is attached. (WHK)

  13. Washoe Tribe Alternative Energy Feasibility Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and CA

    2014-10-01

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownership for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.

  14. Solar energy use in a construction project: The new old people's home at Muenchenbernsdorf. Final report; Solarenergienutzung im Rahmen eines Bauvorhabens Neubau bzw. Umbau eines Senioren- und Pflegeheimes in Muenchenbernsdorf. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Maschke, R.; Mueller; Grossmann

    2000-07-01

    Old people's homes have a high and largely constant water consumption in all seasons. They are therefore ideal objects for solar sytems. The new old people's home at Muenchenbernsdorf is presented which has a large thermal solar power system, which is also to induce private builder-owners to opt for solar power. [German] Aufgrund ihres hohen (und jahreszeitlich weitestgehend konstanten) Warmwasserverbrauches bieten Senioren- und Pflegeheime sehr gute Voraussetzungen fuer die Nutzung der thermischen Solarenergie zur Warmwasserbereitung. Der Ersatzneubau des Senioren- und Pflegeheims der Stadt Muenchenbernsdorf bietet sehr gute Ansatzpunkte fuer die Senkung des Energieverbrauches und der vom Objekt ausgehen Umweltbelastungen durch Nutzung regenerativer Energietraeger. Durch die Realisierung einer grossen thermischen Solaranlage auf einem oeffentlichen Gebaeude sollen private Bauherren der Region zu eigenen Energiesparinvestitionen angeregt werden. (orig.)

  15. Energy Analysis of a Student-Designed Solar House

    Directory of Open Access Journals (Sweden)

    Samantha Wermager

    2013-12-01

    Full Text Available This paper presents the findings from an undergraduate research project concerning the energy efficiency, consumption, and generation of a 1000 ft2 (92.9 m2 solar house. The results were compared to a home of similar size and layout, built using traditional construction methods. The solar house was modeled after the Chameleon House: Missouri University of Science and Technology’s 2013 entry in the U.S. Department of Energy Solar Decathlon. The efficiency of the design was analyzed using Energy-10 Version 1.8 software. For this comparison, a fictional American couple was created and a breakdown of their energy-use habits was recorded to accurately depict the magnitude of energy consumption. A 71% energy savings was forecasted using the Energy-10 software through the incorporation of various energy-conserving strategies in the home’s design. In addition, if a 9.1 kW photovoltaic array is also installed on a home of this size, it is possible to fully offset the energy consumption of the home. The forecasted energy usage and production detailed in this report shall be used for analyzing the integrity of the design of the Chameleon House as well as future solar houses constructed by the Missouri S&T Solar House Team.

  16. Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

  17. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  18. 78 FR 31997 - Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp...

    Science.gov (United States)

    2013-05-28

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp., Order of Suspension of Trading May 23, 2013. It appears... concerning the securities of Solar Energy Ltd. because it has not filed any periodic reports since the period...

  19. Proceedings of the Canadian Solar Industries Association Solar Forum 2005 : sunny days ahead : a forum on solar energy for government officials

    International Nuclear Information System (INIS)

    2006-01-01

    Solar energy is the fastest growing energy source in the world. Government involvement is critical in the deployment of solar energy. This forum focused on the application of solar energy in government facilities. The forum was divided into 3 sessions: (1) solar technologies and markets; (2) government initiatives that support solar energy; and (3) the use of solar energy on government facilities in Canada. The current state of solar technologies and products in Canada was reviewed. Solar thermal markets were discussed with reference to passive solar energy and photovoltaic applications. On-site solar generation for federal facilities was discussed, and various federal initiatives were reviewed. Issues concerning Ontario's standard offer contract program were discussed. Government users and buyers of solar products spoke of their experiences in using solar energy and the challenges that were faced. The role that solar energy can play in reducing government costs was discussed, as well as the impact of solar energy on the environment. Opportunities and barriers to the use of solar energy in Canada were explored. The conference featured 14 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. Materials for photothermal solar energy conversion

    Science.gov (United States)

    Bogaerts, W. F.; Lampert, C. M.

    1983-10-01

    Commercially or potentially available selective and non-selective absorber surfaces for solar heat collectors are reviewed and the state-of-the-art of solar collector corrosion processes is outlined. The review of available published literature has indicated that a lack of quantitative information exists, relative to corrosion of collector surfaces. Available information (mostly qualitative) on durability aspects and corrosion of solar receiver surfaces is described to indicate potential corrosion problem areas and corrosion prevention possibilities. An outline of appropriate durability tests is presented.