WorldWideScience

Sample records for solar emergy evaluation

  1. Solar emergy evaluation for Chinese economy

    International Nuclear Information System (INIS)

    Yang, Z.F.; Jiang, M.M.; Chen, B.; Zhou, J.B.; Chen, G.Q.; Li, S.C.

    2010-01-01

    A unified evaluation integrating various forms of energy sources and natural resources, products and services, and imports and exports is carried out systematically at the national scale for the booming Chinese economy 1978-2005, based on the ecological measure of solar emergy. The development of the economy is shown heavily dependent on the consumption of nonrenewable natural resources. Of the total resources use, the indigenous resources contribute the most, along with the increasing imports of nonrenewable resources. The development of the Chinese economy is characterized with the recovery stage during 1978-1981, transformation stage during 1981-1991, steady growth stage during 1991-2000, and accelerated increase stage after 2000, with specific distinctive systems indications.

  2. Evaluation of Earth's Geobiosphere Emergy Baseline and the Emergy of Crustal Cycling

    Science.gov (United States)

    De Vilbiss, Chris

    This dissertation quantitatively analyzed the exergy supporting the nucleosynthesis of the heavy isotopes, Earth's geobiosphere, and its crustal cycling. Exergy is that portion of energy that is available to drive work. The exergy sources that drive the geobiosphere are sunlight, Earth's rotational kinetic energy and relic heat, and radionuclides in Earth's interior. These four exergy sources were used to compute the Earth's geobiosphere emergy baseline (GEB), expressed as a single unit, solar equivalent joules (seJ). The seJ of radionuclides were computed by determining the quantity of gravitational exergy that dissipated in the production of both sunlight and heavy isotopes. This is a new method of computing solar equivalences also was applied to Earth's relic heat and rotational energy. The equivalent quantities of these four exergy sources were then added to express the GEB. This new baseline was compared with several other contemporary GEB methods. The new GEB is modeled as the support to Earth's crustal cycle and ultimately to the economical mineral deposits used in the US economy. Given the average annual cycling of crustal material and its average composition, specific emergies were calculated to express the average emergy per mass of particular crustal minerals. Chemical exergies of the minerals were used to develop transformities and specific emergies of minerals at heightened concentrations, i.e. minable concentrations. The effect of these new mineral emergy values were examined using the US economy as an example. The final result is an 83% reduction in the emergy of limestone, a 91% reduction in the aggregated emergy of all other minerals, and a 23% reduction in the emergy of the US economy. This dissertation explored three unique and innovative methods to compute the emergy of Earth's exergy sources and resources. First was a method for computing the emergy of radionuclides. Second was a method to evaluate the Earth's relic heat and dissipation of

  3. Emergy Evaluation of a Swedish Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kindberg, Anna

    2007-03-01

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems

  4. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  5. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  6. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  7. Embodied energy and emergy analyses of a concentrating solar power (CSP) system

    International Nuclear Information System (INIS)

    Zhang Meimei; Wang Zhifeng; Xu Chao; Jiang Hui

    2012-01-01

    Although concentrating solar power (CSP) technology has been projected as one of the most promising candidates to replace conventional power plants burning fossil fuels, the potential advantages and disadvantages of the CSP technology have not been thoroughly evaluated. To better understand the performance of the CSP technology, this paper presents an ecological accounting framework based on embodied energy and emergy analyses methods. The analyses are performed for the 1.5 MW Dahan solar tower power plant in Beijing, China and different evaluation indices used in the embodied energy and emergy analyses are employed to evaluate the plant performance. Our analysis of the CSP plant are compared with six Italian power plants with different energy sources and an American PV plant, which demonstrates the CSP is the superior technology. - Highlights: ► Embodied energy and emergy analyses are employed to evaluate the first solar tower power plant in China. ► Different evaluation indices are quantitatively analyzed to show the advantages of CSP technology. ► This analysis provides insights for making energy policy and investment decisions about CSP technology.

  8. Integrated Emergy and Economic Evaluation of Lotus-Root ...

    Science.gov (United States)

    Lotus (Neumbo nucifera, Gaertn) is the most important aquatic vegetable in China, with a cultivation history of over 3000 years. The emergy, energy, material, and money flows of three lotus root cultivation modes in Wanqingsha, Nansha District, Guangzhou, China were examined using Energy Systems Language models and emergy evaluation to better understand their ecological and economic characteristics on multiple spatial and temporal scales. The natural resource foundations, economic characteristics and sustainability of these modes were evaluated and compared. The results showed that although all three modes were highly dependent on purchased emergy inputs, their potential impacts as measured by the local (ELRL) and global (ELRW) environmental loading ratios were less than 1.2 and 0.7, respectively. The lotus-fish mode was the most sustainable with its emergy index of sustainable development (EISD) 2.09 and 2.13 times that of the pure lotus and lotus-shrimp modes, respectively. All three lotus-root production modes had superior economic viability, since their Output/Input ratio ranged from 2.56 to 4.95. The results indicated that agricultural systems may have different environmental impacts and sustainability characteristics at different spatial and temporal scales, and that these impacts and characteristics can be simultaneously explored using integrated emergy and economic evaluations. This study provides some major new insights about agriculture and its potenti

  9. Emergy Evaluations of Denmark and Danish Agriculture. Assessing the Limits of Agricultural Systems to Power Society

    Energy Technology Data Exchange (ETDEWEB)

    Haden, Andrew C [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Rural Development Studies

    2003-03-01

    As the process of industrialization has run its course over the twentieth century, the relative importance of agriculture as an economic activity and a means of cultural sustenance for nations has declined dramatically. In this thesis, a historical ecological-economic perspective offers insights into both the causes and effects of Danish agriculture's decline in economic importance relative to the economy of Denmark as a whole. Emergy evaluations were made of the national economy and agricultural subsystem of Denmark for the years 1936, 1970 and 1999. Emergy is defined as all the available energy that was used in the work of making a product and expressed in units of one type of energy. In total, six separate emergy analyses were performed. By quantifying the emergy requirements of both a national agricultural system and the economy within which this system is nested, the analysis highlights the changing relationship of these two systems over a temporal scale of 63 years. The ecological sustainability of the studied systems is assessed through the calculation of emergy-based indices and ratios. In accordance with emergy theory, ecological sustainability is considered to be a function of the dependence of a system on renewable emergy, the degree to which the system depends on imported emergy, and the overall load that the system places on the environment. The analysis indicates that as the national economy of Denmark evolved to rely more on the use of nonrenewable emergy and on emergy appropriated through trade to stimulate economic activity and to generate wealth, its sustainability declined, and the importance of the Danish agricultural system to the national economy subsided. While the total amount of emergy supporting the economy of Denmark over the period studied increased substantially, the total emergy supporting agriculture remained relatively constant. Furthermore, though the emergy signature and thermodynamic efficiencies of Danish agricultural production

  10. Emergy Evaluations of Denmark and Danish Agriculture. Assessing the Limits of Agricultural Systems to Power Society

    Energy Technology Data Exchange (ETDEWEB)

    Haden, Andrew C. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Rural Development Studies

    2003-03-01

    As the process of industrialization has run its course over the twentieth century, the relative importance of agriculture as an economic activity and a means of cultural sustenance for nations has declined dramatically. In this thesis, a historical ecological-economic perspective offers insights into both the causes and effects of Danish agriculture's decline in economic importance relative to the economy of Denmark as a whole. Emergy evaluations were made of the national economy and agricultural subsystem of Denmark for the years 1936, 1970 and 1999. Emergy is defined as all the available energy that was used in the work of making a product and expressed in units of one type of energy. In total, six separate emergy analyses were performed. By quantifying the emergy requirements of both a national agricultural system and the economy within which this system is nested, the analysis highlights the changing relationship of these two systems over a temporal scale of 63 years. The ecological sustainability of the studied systems is assessed through the calculation of emergy-based indices and ratios. In accordance with emergy theory, ecological sustainability is considered to be a function of the dependence of a system on renewable emergy, the degree to which the system depends on imported emergy, and the overall load that the system places on the environment. The analysis indicates that as the national economy of Denmark evolved to rely more on the use of nonrenewable emergy and on emergy appropriated through trade to stimulate economic activity and to generate wealth, its sustainability declined, and the importance of the Danish agricultural system to the national economy subsided. While the total amount of emergy supporting the economy of Denmark over the period studied increased substantially, the total emergy supporting agriculture remained relatively constant. Furthermore, though the emergy signature and thermodynamic efficiencies of Danish agricultural

  11. Ecological Economic Evaluation Based on Emergy as Embodied Cosmic Exergy: A Historical Study for the Beijing Urban Ecosystem 1978–2004

    Directory of Open Access Journals (Sweden)

    Jiang Mei Ming

    2010-06-01

    Full Text Available For ecological economic evaluation based on the unified biophysical matrix this research illustrates an updated emergy synthesis in terms of embodied cosmic exergy instead of embodied solar energy, which successes the foundation of systems ecological theory but changes the starting point for the estimation from simply the sun to the cosmos. According to the modified definition implicating explicit scarcity and strict additivity based on the fundamental thermodynamics laws, the updated emergy approach overcomes the confusable and intractable deficiencies of traditional one and shows firmer theoretical basis as well as better applicability. As a case study for the regional socio-economic ecosystem, a cosmic emergy based ecological economic evaluation of the Beijing urban ecosystem during the period 1978-2004 is presented. The local and external resources supporting the concerned ecosystem are accounted and analyzed in a common unit, i.e., cosmic Joule, according to which a series of indicators are applied to reveal its evolutional characteristics through five aspects as emergy structure, emergy intensity, emergy welfare, environmental impacts, and degree of exploitation and economic efficiency. During the analyzed period, the major emergy source sustaining the operation of the ecosystem had changed from the renewable resources exploited locally to the nonrenewable resources purchased from outside. Emergy intensity for the Beijing urban ecosystem kept rising owing to the continuous investment of resources, which not only improved the living standard but also intensified the environmental pressure. Moreover, the increase of exploitation degree was accompanied with the decline of economic efficiency, while the rising emergy investment ratio implicates that Beijing was at the risks of resources shortage and high dependence on external resources

  12. Using the Language of Sets to Describe Nested Systems in Emergy Evaluations

    Science.gov (United States)

    The language of set theory has been recently used to describe the emergy evaluation of a process. In this paper this mathematical language is used as a guide to evaluate the emergy of nested systems. We analyze a territorial system on multiple scales as an example of hierarchical...

  13. Emergy Evaluation of Formal Education in the United States: 1870 to 2011

    Science.gov (United States)

    We evaluated the education system of the United States from 1870 to 2011 using emergy methods. The system was partitioned into three subsystems (elementary, secondary and college education) and the emergy inputs required to support each subsystem were determined for every year ov...

  14. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    Science.gov (United States)

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  15. Emergy and Eco-exergy Evaluation of Four Forest Restoration Modes

    Science.gov (United States)

    Four different forest restoration modes (Acacia mangium plantation, mixed-native species plantation, conifer plantation and Eucalyptus plantation) were evaluated using Energy System Theory and the emergy synthesis method. In addition, the eco-exergies of the four forest restorati...

  16. Sustainability evaluation of different systems for sea cucumber ( Apostichopus japonicus) farming based on emergy theory

    Science.gov (United States)

    Wang, Guodong; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang

    2015-06-01

    Emergy analysis is effective for analyzing ecological economic systems. However, the accuracy of the approach is affected by the diversity of economic level, meteorological and hydrological parameters in different regions. The present study evaluated the economic benefits, environmental impact, and sustainability of indoor, semi-intensive and extensive farming systems of sea cucumber ( Apostichopus japonicus) in the same region. The results showed that A. japonicus indoor farming system was high in input and output (yield) whereas pond extensive farming system was low in input and output. The output/input ratio of indoor farming system was lower than that of pond extensive farming system, and the output/input ratio of semi-intensive farming system fell in between them. The environmental loading ratio of A. japonicus extensive farming system was lower than that of indoor farming system. In addition, the emergy yield and emergy exchange ratios, and emergy sustainability and emergy indexes for sustainable development were higher in extensive farming system than those in indoor farming system. These results indicated that the current extensive farming system exerted fewer negative influences on the environment, made more efficient use of available resources, and met more sustainable development requirements than the indoor farming system. A. japonicus farming systems showed more emergy benefits than fish farming systems. The pond farming systems of A. japonicus exploited more free local environmental resources for production, caused less potential pressure on the local environment, and achieved higher sustainability than indoor farming system.

  17. Emergy Evaluation of the Natural Value of Water Resources in Chinese Rivers

    Science.gov (United States)

    Chen, Dan; Chen, Jing; Luo, Zhaohui; Lv, Zhuwu

    2009-08-01

    Emergy theory and method were used to evaluate the economy of China and the contributions of water resources in Chinese rivers to the real wealth of the Chinese economy. The water cycle and energy conversion were reviewed, and an emergy method for evaluating the natural value of water resources in a river watershed was developed. The indices for China calculated from the emergy evaluation were close to those of developing countries. Despite a small surplus in its balance of payments, China had a net emergy loss from its trade in 2002. The efficiency of Chinese natural resource use was still not high and did not match its economic growth rate. Furthermore, the Chinese economy placed a stress on its ecological environment and natural resources. Several indices of Chinese rivers from the emergy evaluation were close to those of average global river water. The main average indices of Chinese rivers were transformity (4.17 × 104 sej/J), emergy per volume (2.05 × 1011 sej/m3), and emdollar per volume (0.06 /m3). The total value of all the rivers’ water made up 13.0% of the GDP of China in 2002, and that of water consumption accounted for 2.1%. The value of the water resources in the Haihe-luanhe River (11.39 × 104 sej/J) was the highest, followed by the Yellow River (10.27 × 104 sej/J), while the rivers in Southwest China had the lowest values (2.92 × 104 sej/J).

  18. [Evaluation of ecosystem service and emergy of Wanshan Waters in Zhuhai, Guangdong Province, China].

    Science.gov (United States)

    Qin, Chuan-xin; Chen, Pi-mao; Zhang, An-kai; Yuan, Hua; Li, Guo-ying; Shu, Li-ming; Zhou, Yan-bo; Li, Xiao-guo

    2015-06-01

    The method for monetary value and emergy value analysis of ecosystem service was used in this paper to analyze the change in value of marine ecosystem service of Wanshan District, Zhuhai from 2007 to 2012. The result showed that the monetary value and emergy value of marine ecosystem service of Wanshan District, Zhuhai rose to 11512840000 yuan and 1.97 x 10(22) sej from 7721630000 yuan and 1.04 x 10(22) sej, respectively. Both monetary value and emergy value could forecast the change in the value of marine ecosystem service, but they reflected different value structures and ecological energy, which could be used to more objectively evaluate the ecosystem service. Ecological civilization development, as an inherent driving force to impel the development of marine ecosystem service structure, was important for rational exploitation of marine resources and optimization of marine ecosystem service.

  19. Integrated Emergy and Economic Evaluation of Tea Production Chains in Anxi, China

    Science.gov (United States)

    Emergy and economic methods were used to evaluate and compare tea production systems in Anxi, China. Tea production was classified into three phases, i.e., the nursery, the plantation and tea processing, and each phase was evaluated. The results showed that the nursery subsystems...

  20. Emergy Evaluation of Different Straw Reuse Technologies in Northeast China

    Directory of Open Access Journals (Sweden)

    Xiaoxian Zhang

    2015-08-01

    Full Text Available Open burning of straw in China has degraded agricultural environments and has become a contributor to air pollution. Development of efficient straw-reuse technologies not only can yield economic benefits but also can protect the environment and can provide greater benefit to society. Thus, the overall benefits of straw-reuse technologies must be considered when making regional development planning and enterprise technology decisions. In addition, agricultural areas in China cross several climatic zones and have different weather characteristics and cultural conditions. In the present study, we assessed five types of straw-reuse technologies (straw-biogas production, -briquetting, -based power generation, -gasification, and -bioethanol production, using emergy analysis, in northeast China. Within each type, five individual cases were investigated, and the highest-performing cases were used for comparison across technologies. Emergy indices for comprehensive benefits for each category, namely, EYR, ELR, and ESI were calculated. Calculated indices suggest that straw-briquetting and -biogas production are the most beneficial technologies in terms of economy, environmental impact, and sustainability compared to straw-based power generation, -gasification, and -bioethanol production technologies. These two technologies can thus be considered the most suitable for straw reuse in China.

  1. Emergy-based sustainability evaluation of wind power generation systems

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2016-01-01

    Highlights: • Emergy is used to quantify the sustainability level of wind farms. • A GHG-based indicator is incorporated into emergetic accounting. • Possible pathways to achieve sustainable wind farm management are analyzed. - Abstract: With large-scale commercialization of wind technology, one must investigate economical and sustainable wind resource utilization. In this paper, emergy analysis is used to quantify the environmental pressure, renewability, economic efficiency, and sustainability of a typical wind power system, considering the lifetime stages from extraction and processing of raw materials and resources to the final product (electricity) via material transportation, construction and operation. Possible pathways to achieve sustainable management of wind energy supply chain were also analyzed based on scenario analysis. Results show that wind power is a promising means of substituting traditional fossil fuel-based power generation systems, with the lowest transformity of 4.49 × 10"4 sej/J, smaller environmental loading ratio of 5.84, and lower greenhouse gas emission intensity of 0.56 kg/kWh. To shed light on potential pathways to achieve sustainable and low-carbon wind energy supply chain management and make informed choices, a sensitivity analysis was done by establishing scenarios from the perspectives of material recycling and technical development. Results suggest that using new materials of lower energy intensity or recycled materials in upstream wind turbine manufacturing and construction materials are the most effective measures.

  2. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment

    DEFF Research Database (Denmark)

    Coppola, F.; Bastianoni, S.; Østergård, Hanne

    2009-01-01

    , were considered. Material and energy flows were assessed to evaluate the bioethanol yield, the production efficiency in terms of Emergy used compared to energy produced (transformity), and the environmental load (ELR) in terms of use of non-renewable resources. These three indicators varied among......An Emergy assessment study of 24 bioethanol production scenarios was carried out for the comparison of bioethanol production using winter wheat grains and/or straw as feedstock and conversion technologies based on starch (1st generation) and/or lignocellulose (2nd generation). An integrated biomass...... utilization system (IBUS) was used for combining the two kinds of feedstock. The crop was cultivated under four combinations of Danish soil conditions (sand or sandy loam) and crop managements (organic or conventional). For each of the production processes, two scenarios, with or without recycling of residues...

  3. Emergy Evaluation of Dwelling Operation in Five Housing Units of Montreal Island, Canada

    Directory of Open Access Journals (Sweden)

    Ricardo Enrique Vega-Azamar

    2017-04-01

    Full Text Available Sustainability of cities and the environmental implications of high resource utilization by the domestic sector are growing concerns related to urban regions. Well-informed urban planning decision-making is an essential tool to help in the task and, for that, an important point to consider is the influence of parameters like residential density and housing typology on the intensity of resource utilization. Emergy synthesis, a life-cycle energy analysis methodological approach that considers the interaction of natural and human-made flows, was used to evaluate the environmental support for dwelling operational stage in five typical present-day housing units on the island of Montreal. As expected, resource utilization, measured as total emergy used, was positively correlated to housing unit size both with respect to number of occupants and dwelling size. Results suggest that variables affecting notably the intensity of resource utilization are per household income and per dweller habitable space and, while a higher income increased per capita emergy in all cases, increasing space availability per resident did not result in a decrease of empower density after 50 m2/person. Future work should consider lower and higher densities and analyses at the scale of blocks, neighborhoods and urban planning zones.

  4. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy

    International Nuclear Information System (INIS)

    Buonocore, Elvira; Vanoli, Laura; Carotenuto, Alberto; Ulgiati, Sergio

    2015-01-01

    Greenhouse gas emissions, climate change and the rising energy demand are currently seen as most crucial environmental concerns. With the exploration of renewable energy sources to meet the challenges of energy security and climate change, geothermal energy is expected to play an important role. In this study a LCA (Life Cycle Assessment) and an EMA (Emergy Assessment) of a 20 MW dry steam geothermal power plant located in the Tuscany Region (Italy) are performed and discussed. The plant is able to produce electricity by utilizing locally available renewable resources together with a moderate support by non-renewable resources. This makes the geothermal source eligible to produce renewable electricity. However, the direct utilization of the geothermal fluid generates the release into the atmosphere of carbon dioxide, hydrogen sulfide, mercury, arsenic and other chemicals that highly contribute to climate change, acidification potential, eutrophication potential, human toxicity and photochemical oxidation. The study aims to understand to what extent the geothermal power plant is environmentally sound, in spite of claims by local populations, and if there are steps and/or components that require further attention. The application of the Emergy Synthesis method provides a complementary perspective to LCA, by highlighting the direct and indirect contribution in terms of natural capital and ecosystem services to the power plant construction and operation. The environmental impacts of the geothermal power plant are also compared to those of renewable and fossil-based power plants. The release of CO 2 -eq calculated for the investigated geothermal plant (248 g kWh −1 ) is lower than fossil fuel based power plants but still higher than renewable technologies like solar photovoltaic and hydropower plant. Moreover, the SO 2- eq release associated to the geothermal power plant (3.37 g kWh −1 ) is comparable with fossil fuel based power plants. Results suggest the

  5. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China

    Science.gov (United States)

    Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The evaluations...

  6. Solar Equivalences of the Earth’s Primary Exergy inflows and the Theoretical Basis for Secondary and Tertiary Emergy Flows of the Geobiosphere: New Calculations of Transformities

    Science.gov (United States)

    Brown et al. (2016) published a synthesis paper in which evidence was presented supporting a new value of the Earth’s geobiosphere baseline, 12.0E+24 seJ/y (solar equivalent joules per year) from which the emergy of all the Earth’s products and processes can be calcul...

  7. Bamboo vs. crops: An integrated emergy and economic evaluation of using bamboo to replace crops in south Sichuan Province, China

    Science.gov (United States)

    Based on long-term monitoring conducted in Chang-ning county, a pilot site of the ‘Grain for Green Program’ (GFGP), an integrated emergy and economic method was applied to evaluate the dynamic ecological-economic performance of 3 kinds of bamboo systems planted on slo...

  8. Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: Contributions of the ecosystems to the regional economy

    Science.gov (United States)

    Emergy evaluations of three benthic ecosystem networks found in Mejillones, Antofagasta and Tongoy Bays, located on the coast of northern Chile, were carried out with the intent of documenting the contributions of these coastal ecosystems to the economy. The productivity of these...

  9. Emergy Accounting: A Unified, Comprehensive Triple Bottom Line

    Science.gov (United States)

    Development of the concept of emergy established a medium for accounting that made it possible to express environmental, economic, and social work of all kinds on a common basis as solar emjoules. Emergy accounting can be used to combine both emergy and money accounts on a single...

  10. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China

    International Nuclear Information System (INIS)

    Zhang, L.X.; Yang, Z.F.; Chen, G.Q.

    2007-01-01

    An ecological energetic evaluation is presented in this paper as a complement to economic account for the cropping-grazing system in the Inner Mongolia Autonomous Region in China in the year 2000. Based on Odum's well-known concept of emergy in terms of embodied solar energy as a unified measure for environmental resources, human or animal labors and industrial products, a systems diagram is developed for the crop and livestock productions with arms and sub-arms for free renewable natural resource input, purchased economic investment, yields of and interactive fluxes between the cropping and grazing sub-industries. In addition to conventional systems indices of the emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR) and environmental sustainability index (ESI) introduced for congregated systems ecological assessment with essential implication for sustainability, new indicators of soil emergy cost (SEC), self-support intensity (SSI) and self-support orientation (SSO) are defined to characterize the desertification and internal recycling associated with the special agricultural system. Extensive emergy accounting is made for the cropping-grazing system as a whole as well as for the cropping and grazing subsystems. The overall cropping-grazing system is shown with outstanding production competence compared with agricultural systems in some other provinces and the national average in China, though confronted with severe desertification associated with soil loss. The production of crops has higher emergy density and yield rate per unit area as well as higher rate of soil loss than grazing system. The soil emergy cost defined as the soil loss emergy divided by the yield emergy is estimated to be of the same value for both of the subsystems, but the grazing activity is with less extraction intensity, leaving rangeland to rest and rehabilitate. Suggestions with regard to the local sustainability and national ecological security in

  11. Emergy Evaluation of the Urban Solid Waste Handling in Liaoning Province, China

    Directory of Open Access Journals (Sweden)

    Lixiao Zhang

    2013-10-01

    Full Text Available Waste management is a distinct practice aimed at reducing its effects on health and the environment and increasing energy and material recovery. The urban waste management industry has been slow to adopt new technologies, such as sanitary landfills and incineration, which enable better treatment results. The aim of a thorough ecological-economic evaluation of different treatment technologies is to extract the maximum practical benefits from investments and to ensure the minimum environmental impacts of wastes. This paper compares four garbage treatment systems, including sanitary landfills systems, fluidized bed incineration system, grate type incineration system and the current landfills system in Liaoning Province, China. By considering the economic and environmental impacts of waste treatment and disposal, impact of emissions, and contribution of wastes input, this paper constructed an emergy-based urban solid waste model for evaluating the sustainability of the holistic systems. The results in Liaoning indicate that the human health losses caused by the harmful air emissions are ranked in this order: fluidized bed incineration > grate type incineration > current landfills > sanitary landfills, while the ecosystem losses are ranked: grate type incineration > fluidized bed incineration > sanitary landfills > current landfills. The electricity yield ratios are ranked: grate type incineration > fluidized bed incineration > sanitary landfills > current landfills. Taken together this suggests that in considering the incineration option, decision makers must weigh the benefits of incineration against the significant operating costs, potential environmental impacts, and technical difficulties of operating. Emergy analysis of the urban solid treatment systems can provide a set of useful tools which can be used to compare the comprehensive performances of different waste treatment processes for decision-making and optimizing the whole process.

  12. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  13. Emergy Algebra: Improving Matrix Methods for Calculating Tranformities

    Science.gov (United States)

    Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy method...

  14. Wind resource assessment in Europe using emergy

    NARCIS (Netherlands)

    Paudel, S.; Santarelli, M.; Martin, V.; Lacarriere, B.; Corre, le O.

    2014-01-01

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess

  15. Sustainability and Chinese Urban Settlements: Extending the Metabolism Model of Emergy Evaluation

    Directory of Open Access Journals (Sweden)

    Lijie Gao

    2016-05-01

    Full Text Available Anthropogenic activity interacts with urban form and inner metabolic processes, ultimately impacting urban sustainability. China’s cities have experienced many environmental issues and metabolic disturbances since the nation-wide market-oriented “reform and opening-up” policy was adopted in the 1980s. To analyze urban reform policy impacts and metabolism sustainability at a settlement scale, this study provides an integrated analysis to evaluate settlement metabolism and sustainability using a combination of emergy analysis and sustainability indicators based on scrutiny of two typical settlements (one pre- and one post-reform. The results reveal that housing reform policy stimulated better planning and construction, thereby improving built environmental quality, mixed functional land use, and residential livability. The pre-reform work-unit settlements are comparatively denser in per capita area but have less mixed land use. Housing reform has spatially changed the work–housing balance and increased commuting travel demand. However, short commuting distances in pre-reform settlements will not always decrease overall motor vehicle usage. Integrating non-commuting transport with local mixed land-use functional planning is a necessary foundation for sustainable urban design. Functional planning should provide convenient facilities and infrastructure, green space, and a suitable household density, and allow for short travel distances; these characteristics are all present in the post-reform settlement.

  16. Renewability emergy index calculation in the evaluation of the sustainability of a national economy; Calculo do indice de renovabillidade emergetica na avaliacao da sustentabilidade de uma economia nacional

    Energy Technology Data Exchange (ETDEWEB)

    Siche Jara, Raul Benito [Universidad Nacional de Trujillo, La Libertad (Peru). Fac. de Ciencias Agropecuarias. Escuela de Ingenieria Agroindustrial], e-mail: Siche.J.R@gmail.com; Ortega Rodriguez, Enrique [Universidade Estadual de Campinas (DEA/FEA/UNICAMP), SP (Brazil). Lab. de Engenharia Ecologica e Informatica Aplicada], e-mail: ortega@fea.unicamp.br

    2006-07-01

    In this study, the emergy methodology was used to analyze the sustainability of the Peruvian economic system. The resources (natural and not natural) and importations had been accounting in units of solar emergy using data of the Peruvian economy for the year 2004. Emergy is an energy measure based in the contribution of the resources and its influence, defined as the energy of a type required producing a flow or storage of another type. The focus of this study is the calculation of the emergy index call 'renewability' (REN), considered as a general measure of the ecological sustainability. In a long period, only systems or processes with high REN are sustainable. This index is calculated by the accounting of the resources renewed used in the economy in emergy units (2.17E+23 seJ) and divided by emergy total that enters to the economic system (6.93E+23 seJ), resulting a REN of 0.31. The renewable resources that use Peru almost represent 20% of the total of renewable resources available in the system. The great amount of renewable resources that Peru can potentially use was calculated in 11.44E+23 seJ, meaning that the system can be more sustainable if the economy is based on increasing the use of renewable resources and to diminish the use of non-renewable resources and imported resources. These data show that Peru has a relatively sustainable economy that can improve or get worse, depending of its politics in the use of resources. (author)

  17. [An emergy-ecological footprint model based evaluation of ecological security at the old industrial area in Northeast China: A case study of Liaoning Province.

    Science.gov (United States)

    Yang, Qing; Lu, Cheng Peng; Zhou, Feng; Geng, Yong; Jing, Hong Shuang; Ren, Wan Xia; Xue, Bing

    2016-05-01

    Based on the integrated model of emergy-ecological footprint approaches, the ecological security of Liaoning Province, a typical case for the old industrial area, was quantitatively evaluated from 2003 to 2012, followed by a scenario analysis on the development trend of the ecological secu-rity by employing the gray kinetic model. The results showed that, from 2003 to 2012, the value of emergy ecological-capacity per capita in Liaoning Province decreased from 3.13 hm 2 to 3.07 hm 2 , while the emergy-ecological footprint increased from 13.88 hm 2 to 21.96 hm 2 , which indicated that the ecological deficit existed in Liaoning Province and the situation was getting worse. The ecological pressure index increased from 4.43 to 7.16 during the studied period, and the alert level of ecological security changed from light to middle level. According to the development trend, the emergy ecological capacity per capita during 2013-2022 would correspondingly decrease from 3.04 hm 2 to 2.98 hm 2 , while the emergy ecological footprint would increase from 22.72 hm 2 to 35.87 hm 2 , the ecological pressure index would increase from 7.46 to 12.04, and the ecological deficit would keep increasing and the ecological security level would slide into slightly unsafe condition. The alert level of ecological security would turn to be middle or serious, suggesting the problems in ecological safety needed to be solved urgently.

  18. Comparison of typical mega cities in China using emergy synthesis

    Science.gov (United States)

    Zhang, L. X.; Chen, B.; Yang, Z. F.; Chen, G. Q.; Jiang, M. M.; Liu, G. Y.

    2009-06-01

    An emergy-based comparison analysis is conducted for three typical mega cities in China, i.e., Beijing, Shanghai and Guangzhou, from 1990 to 2005 in four perspectives including emergy intensity, resource structure, environmental pressure and resource use efficiency. A new index of non-renewable emergy/money ratio is established to indicate the utilization efficiency of the non-renewable resources. The results show that for the three mega urban systems, Beijing, Shanghai and Guangzhou, the total emergy inputs were 3.76E+23, 3.54E+23, 2.52E+23 sej in 2005, of which 64.88%, 91.45% and 72.28% were imported from the outsides, respectively. As to the indicators of emergy intensity involving the total emergy use, emergy density and emergy use per cap, three cities exhibited similar overall increase trends with annual fluctuations from 1990 to 2005. Shanghai achieved the highest level of economic development and non-renewable resource use efficiency, and meanwhile, lower proportion of renewable resource use and higher environmental pressure compared to those of Beijing and Guangzhou. Guangzhou has long term sustainability considering an amount of local renewable resources used, per capita emergy used, energy consumption per unit GDP and the ratio of waste to renewable emergy. It can be concluded that different emergy-based evaluation results arise from different geographical locations, resources endowments, industrial structures and urban orientations of the concerned mega cities.

  19. CHAPTER 14: FINANCIAL ACCOUNTING METHODS TO FURTHER DEVELOP AND COMMUNICATE ENVIRONMENTAL ACCOUNTING USING EMERGY

    Science.gov (United States)

    Development of the concepts of emergy and transformity established a medium (emergy) for accounting that made it possible to express economic and environmental work of all kinds on a common basis as solar emjoules. Environmental accounting using emdollars, a combined emergy-monet...

  20. The worth of land use: a GIS-emergy evaluation of natural and human-made capital.

    Science.gov (United States)

    Mellino, Salvatore; Buonocore, Elvira; Ulgiati, Sergio

    2015-02-15

    Natural systems make their natural capital and ecosystem services available to human economy. A careful analysis of the interplay between natural and human-made capital is needed to prevent natural capital being overexploited for present economic benefits, affecting lifestyles and wellbeing of future generations. In this study, the emergy synthesis is used to evaluate the natural and the human-made capital of Campania region (southern Italy) by accounting for the environmental support directly and indirectly provided by nature to resource generation. Furthermore, geographic information system (GIS) models are integrated with the emergy accounting procedure to generate maps of the spatial patterns of both natural and human-made capital distribution. Regional storages of natural and human-made capital are identified and evaluated in emergy units (seJ). The human-made capital of the Campania region (6.29E+24seJ) results to be about 11 times higher than the natural capital (5.69E+23seJ) due to the past and present exploitation of the natural resources needed to generate it over time. Moreover, by overlaying the total natural capital map and the total human-made capital map with a map of the protected areas within the region, only the 19% of the regional natural capital appears to be concentrated within protected areas, while most of it (81%) is concentrated outside. These findings suggest that the conservation of natural resources is also necessary outside protected areas by means of suitable policies, directives and investments. The human-made capital is mainly concentrated (88%) inside non-protected areas and interacts with the local natural capital. A management of the interactions between the two categories of wealth is crucial to prevent that the growth of human-made storages degrades the natural ecosystems and the environment. The proposed emergy-GIS framework reveals to be a useful tool for environmental planning and resource management aimed to conserve and

  1. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    Science.gov (United States)

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  2. Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint.

    Science.gov (United States)

    Chen, Han-Shen

    2017-01-30

    In this paper, the overall ecological and environmental sustainability in the Cing-Jing region in Taiwan is examined. As land use and cover change has been found to be an important analysis method, an emergy ecological footprint model was applied and the eco-security assessed to ensure authorities maintain a balance between ecological preservation and tourism development. While the ecological environment in the Cing-Jing region from 2008 to 2014 was found to be within safe levels, all related indices had increased considerably. A Grey model was used to predict the 2015-2024 ecological carrying capacities, from which it was found that there is expected to be a large increase in per capita ecological footprints (EFs), meaning that in the future there is going to be a larger ecological deficit and a higher ecological pressure index (EFI), with the eco-security predicted to reach a Grade 2 intermediate level in 2022. As the Cing-Jing region is predicted to become ecologically unsustainable, local, regional, and national governments need to implement regulations to strictly control the land use in the Cing-Jing region. This study demonstrated that emergy EF (EEF) theory application can give objective guidance to decision-makers to ensure that recreational non-urban eco-security can be maintained at a safe level.

  3. Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint

    Directory of Open Access Journals (Sweden)

    Han-Shen Chen

    2017-01-01

    Full Text Available In this paper, the overall ecological and environmental sustainability in the Cing-Jing region in Taiwan is examined. As land use and cover change has been found to be an important analysis method, an emergy ecological footprint model was applied and the eco-security assessed to ensure authorities maintain a balance between ecological preservation and tourism development. While the ecological environment in the Cing-Jing region from 2008 to 2014 was found to be within safe levels, all related indices had increased considerably. A Grey model was used to predict the 2015–2024 ecological carrying capacities, from which it was found that there is expected to be a large increase in per capita ecological footprints (EFs, meaning that in the future there is going to be a larger ecological deficit and a higher ecological pressure index (EFI, with the eco-security predicted to reach a Grade 2 intermediate level in 2022. As the Cing-Jing region is predicted to become ecologically unsustainable, local, regional, and national governments need to implement regulations to strictly control the land use in the Cing-Jing region. This study demonstrated that emergy EF (EEF theory application can give objective guidance to decision-makers to ensure that recreational non-urban eco-security can be maintained at a safe level.

  4. Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint

    Science.gov (United States)

    Chen, Han-Shen

    2017-01-01

    In this paper, the overall ecological and environmental sustainability in the Cing-Jing region in Taiwan is examined. As land use and cover change has been found to be an important analysis method, an emergy ecological footprint model was applied and the eco-security assessed to ensure authorities maintain a balance between ecological preservation and tourism development. While the ecological environment in the Cing-Jing region from 2008 to 2014 was found to be within safe levels, all related indices had increased considerably. A Grey model was used to predict the 2015–2024 ecological carrying capacities, from which it was found that there is expected to be a large increase in per capita ecological footprints (EFs), meaning that in the future there is going to be a larger ecological deficit and a higher ecological pressure index (EFI), with the eco-security predicted to reach a Grade 2 intermediate level in 2022. As the Cing-Jing region is predicted to become ecologically unsustainable, local, regional, and national governments need to implement regulations to strictly control the land use in the Cing-Jing region. This study demonstrated that emergy EF (EEF) theory application can give objective guidance to decision-makers to ensure that recreational non-urban eco-security can be maintained at a safe level. PMID:28146086

  5. The Emergy Basis for Formal Education in the United States

    Science.gov (United States)

    The education system of the United States from 1870 to 2006 was evaluated using emergy methods. The system was partitioned into three subsystems, elementary, secondary, and college education and the emergy inputs required to support each subsystem were determined for each year o...

  6. Water quality and emergy evaluation of two freshwater aquacultural systems for eutrophic water in the Controlling by Biological Chains

    Science.gov (United States)

    Xi, L. M.; Liu, C. Q.; Liu, D. F.; Huang, W. L.; Sun, Y.

    2017-08-01

    According to the ecological restoration theory, this experiment establishes aquaculture systems controlled by biological chains in both Xiaoxidian area and Dujiadian area of Baiyangdian Lake separately in order to improve the environment and bring economic benefits. The appearance of Emergy Theory provides a new method for the quantitative analysis of ecological economic system. Based on the analysis of Emergy Theory, this thesis compares the eco-economic systems under different polyculture models between Xiaoxidian area and Dujiadian area. The result demonstrates that Xiaoxidian ecological system is of high Emergy Transformity with higher emergy output and economic income per unit area compared with Dujiadian area. While Dujiadian area has higher Emergy Yield Rate and lower Environment Load Rate. So Dujiadian area is more sustainable due to the overload non-renewable energy of Xiaoxidian area devoted by human. Therefore, it will be better if we adjust and optimize the management of aquaculture system in Xiaoxidian area in order to find a stable equilibrium point between environmental sustainability and economic benefits.

  7. How to manage co-product inputs in emergy accounting exemplified by willow production for bioenergy

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne

    2013-01-01

    Assessments of environmental performance are challenged by multifunctionality of production systems where impacts cannot be assigned to any one specific output. In the assessment method emergy accounting, all available energy used up for a process is summed up after being converted to solar...... equivalent Joules. In emergy accounting each output carries the resource use burden of all co-produced outputs. When comparing emergy indicators on a product-to-product basis (reference approach), products from single-output processes tend to be favoured. This constitutes a method bias. Building on emergy...

  8. Integrated Emergy and Economic Evaluation of Lotus-Root Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China

    Science.gov (United States)

    Lotus (Neumbo nucifera, Gaertn) is the most important aquatic vegetable in China, with a cultivation history of over 3000 years. The emergy, energy, material, and money flows of three lotus root cultivation modes in Wanqingsha, Nansha District, Guangzhou, China were examined usin...

  9. Keeping the Books for the Environment and Society: the Unification of Emergy and Financial Accounting Methods

    Science.gov (United States)

    Development of the concept of emergy established a medium for accounting that made it possible to express economic and environmental work of all kinds on a common basis as solar emjoules. Environmental accounting using emdollars, a combined emergy-monetary unit, can be used to pr...

  10. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China.

    Science.gov (United States)

    Lu, Hongfang; Bai, Yu; Ren, Hai; Campbell, Daniel E

    2010-12-01

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation. Important questions that must be answered to determine what strategy is best for society are, "What is the reason behind this conversion?"; "Which system is more productive and which is more sustainable?"; and "How can economic policy be used to adjust the pattern of farmland use to attain sustainable development?" To answer these questions, a combined evaluation of these agricultural production systems was done using emergy, energy and economic methods. An economic analysis clearly showed that the reason for this conversion was simply that the economic output/input ratio and the benefit density of the vegetable production system were greater than that of rice. However, both energy and emergy evaluations showed that long-term rice was the best choice for sustainable development, followed by rotation systems. The current price of rice is lower than the em-value of rice produced from the long-term rice system, but higher than that of rice produced from the rotation system. Scenario analysis showed that if the government increases the price of rice to the em-value of rice produced from the long-term rice system, US$0.4/kg, and takes the value of soil organic matter into account, the economic output/input ratios of both the rice and rotation systems will be higher than that of the vegetable system. The three methods, energy, emergy and economics, are different but complementary, each revealing a different aspect of the same system. Their combined use shows not only the reasons behind a system's current state or condition, but also the way to adjust these systems to move toward more sustainable states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. [Emergy analysis on different planting patterns of typical watersheds in Loess Plateau.

    Science.gov (United States)

    Deng, Jian; Zhao, Fa Zhu; Han, Xin Hui; Feng, Yong Zhong; Yang, Gai He

    2016-05-01

    To objectively evaluate and compare the stability and sustainability of different planting patterns of typical watersheds in Loess Plateau of China after the Grain for Green Project, this paper used the emergy analysis method to quantify the emergy inputs and outputs of three watersheds with different planting patterns, i.e., both grains and fruit trees (Gaoxigou watershed), mainly grains (Wuliwan watershed) and mainly fruit trees (Miaozuigou watershed). In addition, an emergy analysis system was established to evaluate the suitability of the three patterns from the perspectives of natural resources pressure as well as social and economic development levels. More than 75% of the total emergy inputs of all the three watersheds were purchased, and nonrenewable emergy inputs had a much larger contribution than renewable emergy inputs, indicating the characteristic of low emergy self-sufficient ratio and considerable high environmental loading ratio. The pattern of planting grains had high emergy inputs but low emergy outputs, while the patterns of planting fruit trees and planting both had high emergy inputs and outputs. The energy densities of all three patterns reached two times of the average of agricultural systems in China. Especially, the net emergy of planting grains pattern was the lowest while that of planting both grains and fruit trees was the highest. The environmental sustainability index (ESI) of planting grains pattern was less than 1 and both emergy and ESI were much lower than national averages. The ESI of planting both grains and fruit trees pattern was the highest. In summary, comparison of the three patterns showed that planting both grains and fruit trees had better sustainability and high stability and the emergy production efficiency was high. Thus, it was suggested to change the agricultural development from watershed based units to multi-industry integrated mode.

  12. EMergy analysis perspectives of Thailand and Mekong River dam proposals

    International Nuclear Information System (INIS)

    Brown, M.T.; McClanahan, T.R.

    1996-01-01

    Methods of EMergy analysis (a scientifically based measure of wealth with units of solar emjoules (sej)) are explained and illustrated, using the economy of Thailand and two proposed dams on the Mekong River. Thailand's EMergy/$ ratio is near the world average (3.46 ·10 12 sej/$), its EMergy per capita ratio (2.98·10 15 sej/capita) is low compared to developed economies (that of the United States is 29.3·10 15 sej/capita), and its EMergy balance of payments is negative (the EMergy in exports is almost twice the EMergy in imports). The calculated net yield ratios of the proposed dams were sensitive to the treatment of sediments. The analysis yielded high net yield ratios (12.3/1 and 20.3/1) if sediments were not included, but yielded ratios of only 1.4/1 and 1.3/1 if sediments were included. If the two dams were constructed as a cascade, the combined net yield ratio was 2.5/1 (sediments included). If compared to conventional fossil fuels as a primary source of energy to the economy, the net yield ratio of the electricity generated from the two-dam cascade expressed as fossil fuels was 7.4/1

  13. Emergy assessment method for wheat cultivar efficiency and environmental sustainability

    Directory of Open Access Journals (Sweden)

    Janusz Jankowiak

    2009-01-01

    Full Text Available The method based on emergy was applied to quantify the fluxes of the energy, matter and monetary investment use (water, seeds, work, fertilizer and plant protecting agents, fuel, goods and services, productivity, environmental services and sustainability in typical wheat cultivar conducted in Wielkopolska. In order to convert all the flows mentioned into common base (seJ a conversion factors (solar transformities were used. In this way it was possible to consider also such flows that are free and generally neglected in the traditional balances. Generally only 52% emergy inflow is delivered by financial investment, while the remaining part, delivered in the form of the environmental services, is free. The Emergy Yield Ratio EYR = 1.14 indicate a low level of output per emergy investment unit. The values of Environmental Loading Ratio ELR = 11 and Emergy Sustainability Index ESI = 0.1 indicate an environmental stress and low level of cultivar sustainability, respectively. The final cultivar product (wheat has the emergy density 4.35 E12 seJ/kg and transformity 26.3 E4 seJ/J.

  14. Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy

    International Nuclear Information System (INIS)

    Wang, Xiuhong; Shen, Jianxiu; Zhang, Wei

    2014-01-01

    China’s grain-for-green policy (GFGP) was implemented with the goal of improving ecological security. Consequently, agricultural energy and agrochemical inputs have been significantly increased to improve food security and to increase the income of farmers in the regions where the GFGP was implemented. In analysis of the sustainability of the agricultural system affected by the GFGP, it is essential to consider both economic profitability and environmental sustainability. Using Yanchi County as a case study area, this study used an emergy synthesis to examine the sustainability of the agricultural system before and after the GFGP in Northwest China. We found that the total emergy input and energy output of the agricultural system in the study area increased from 1991 to 2008; however, the sustainability of the system declined, and this decline was especially evident after the GFGP was launched in 2001. Increasing inputs of non-renewable purchased resources will not only reduce the effectiveness of the GFGP in Northwest China, but also hinder the implementation of the energy-saving and emission-reduction policy that China launched in 2005. We suggest that sustainable agricultural development in Northwest China should be based on effective use of renewable resources and development of a low-carbon agricultural economy. - Highlights: • The total emergy input and energy output of the study system increased from 1991 to 2008. • The change of each emergy index was more evident after the GFGP launched in 2001. • The increase in input of non-renewable purchased resources will gradually reduce the function of the GFGP in West China. • Agricultural development in West China should be based on organic agriculture

  15. Analysis of Resource and Emission Impacts: An Emergy-Based Multiple Spatial Scale Framework for Urban Ecological and Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Lixiao Zhang

    2011-03-01

    Full Text Available The development of the complex and multi-dimensional urban socio-economic system creates impacts on natural capital and human capital, which range from a local to a global scale. An emergy-based multiple spatial scale analysis framework and a rigorous accounting method that can quantify the values of human-made and natural capital losses were proposed in this study. With the intent of comparing the trajectory of Beijing over time, the characteristics of the interface between different scales are considered to explain the resource trade and the impacts of emissions. In addition, our improved determination of emergy analysis and acceptable management options that are in agreement with Beijing’s overall sustainability strategy were examined. The results showed that Beijing’s economy was closely correlated with the consumption of nonrenewable resources and exerted rising pressure on the environment. Of the total emergy use by the economic system, the imported nonrenewable resources from other provinces contribute the most, and the multi‑scale environmental impacts of waterborne and airborne pollution continued to increase from 1999 to 2006. Given the inputs structure, Beijing was chiefly making greater profits by shifting resources from other provinces in China and transferring the emissions outside. The results of our study should enable urban policy planners to better understand the multi-scale policy planning and development design of an urban ecological economic system.

  16. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  17. Emergy Synthesis and Regional Sustainability Assessment: Case Study of Pan-Pearl River Delta in China

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2014-08-01

    Full Text Available In this paper, emergy analysis is used in association with the ternary diagrams and geographic information system (GIS tools to improve the evaluation of sustainability for the Pan-Pearl River Delta (PPRD region. Emergy accounting of PPRD is estimated, and various emergy-based indicators are reported. Ternary diagrams are drawn to provide a graphical representation of the emergy accounting data. Finally, the GIS tools are employed to assist in the emergy-based spatial analysis, and emergy density based on flat land area is mapped to reflect the intensity of emergy use in human activity areas. Results show the following: (1 the current development path of the PPRD region, with the value of emergy sustainability index (ESI = 0.227 significantly lower than one, is unsustainable in the long run; (2 Guangdong has the lowest ESI value (0.071, and the ESI values of Fujian, Guangxi, Hunan and Jiangxi are lower than 0.5, indicating that the economy in these provinces overly relies on non-renewable and imported resources; (3 Guizhou has a high emergy yield rate and is thus the main energy supplier in PPRD; and (4 among the nine provinces in PPRD, only Hainan has an ESI value (2.145 higher than one.

  18. Environmental impact assessment of land use systems using emergy in Teresópolis-Brazil

    Directory of Open Access Journals (Sweden)

    Juan Carlos Torrico Albino

    2012-05-01

    Full Text Available This paper provides a set of indices based on emergy analysis for the Côrrego Sujo basin, Teresópolis-Brazil. Encompassing natural and agricultural systems, the Côrrego Sujo basin has been affected by destruction and fragmentation of natural habitats and unsustainable land use practices. The main objective is to evaluate the environmental impact of the land use systems, the load capacity and the use of natural and economic resources. The studied land use systems were: i agriculture, ii grassland and cattle, iii rainforest and iv forest in regeneration stage (fallow: 1, 2 and 3 years old. Emergy analysis integrates all flows within a system of coupled economic and environmental work in common biophysical units (solar emjoules – seJ. The main conclusions of the study are: the basin does not have dependence of purchased resources and the environmental impact is moderate; the efficiency of the basin as a system is highly positive and it represents a positive contribution to the economy; the emergy exchange ratio is moderate and; the biggest contributions to the system come from natural sources showing that the ecological sustainability is moderate to good.

  19. Advances in life cycle assessment and emergy evaluation with case studies in gold mining and pineapple production

    Science.gov (United States)

    Ingwersen, Wesley W.

    Life cycle assessment (LCA) is an internationally standardized framework for assessing the environmental impacts of products that is rapidly evolving to improve understanding and quantification of how complex product systems depend upon and affect the environment. This dissertation contributes to that evolution through the development of new methods for measuring impacts, estimating the uncertainty of impacts, and measuring ranges of environmental performance, with a focus on product systems in non-OECD countries that have not been well characterized. The integration of a measure of total energy use, emergy, is demonstrated in an LCA of gold from the Yanacocha mine in Peru in the second chapter. A model for estimating the accuracy of emergy results is proposed in the following chapter. The fourth chapter presents a template for LCA-based quantification of the range of environmental performance for tropical agricultural products using the example of fresh pineapple production for export in Costa Rica that can be used to create product labels with environmental information. The final chapter synthesizes how each methodological contribution will together improve the science of measuring product environmental performance.

  20. Emergy baseline for the Earth: A historical review of the science and a new calculation

    Science.gov (United States)

    Quantifying the emergy baseline of the Earth is a practical necessity for emergy evaluations, because it serves as a unified basis for determining transformities of the available energy storages and flows of the geobiosphere. The current debate over the value and significance of ...

  1. Set Theory Applied to Uniquely Define the Inputs to Territorial Systems in Emergy Analyses

    Science.gov (United States)

    The language of set theory can be utilized to represent the emergy involved in all processes. In this paper we use set theory in an emergy evaluation to ensure an accurate representation of the inputs to territorial systems. We consider a generic territorial system and we describ...

  2. The Emergy of Money Ratio of the United States from 1990 to 2007

    Science.gov (United States)

    The emergy to money ratio of a system is a key index used in emergy evaluations, because it represents the buying power of money and it can be used as an estimator of the average value of human service. Since both the material and energy inputs to societies and the money circulat...

  3. A key review on emergy analysis and assessment of biomass resources for a sustainable future

    International Nuclear Information System (INIS)

    Zhang Gaijing; Long Weiding

    2010-01-01

    The present study comprehensively reviews emergy analysis and performance evaluation of biomass energy. Biomass resources utilization technologies include (a) bioethanol production, (b) biomass for bio-oil, (c) biodiesel production, (d) straw as fuel in district heating plants, (e) electricity from Municipal Solid Waste (MSW) incineration power plant, (f) electricity from waste landfill gas. Systems diagrams of biomass, which are to conduct a critical inventory of processes, storage, and flows that are important to the system under consideration and are therefore necessary to evaluate, for biomasses are given. Emergy indicators, such as percent renewable (PR), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are shown to evaluate the environmental load and local sustainability of the biomass energy. The emergy indicators show that bio-fuels from crop are not sustainable and waste management for fuels provides an emergy recovery even lower than mining fossil fuel.

  4. Emergy diagnosis and reflections towards Brazilian sustainable development

    International Nuclear Information System (INIS)

    Giannetti, B.F.; Demétrio, J.F.C.; Bonilla, S.H.; Agostinho, F.; Almeida, C.M.V.B.

    2013-01-01

    This paper presents an environmental emergy-based diagnosis of Brazil compared with Russia, India, China, South Africa and United States. Reflections on the Brazilian sustainable development are presented and discussed based on the evaluations published since 1979. The variation of the emergy per capita for Brazil from 1979 to 2007 indicates that the country's growth is tied to the exploitation of non renewable natural resources which do not directly reflect in the welfare of the population. The total emergy exported per unit of gross domestic product increased in the period, suggesting that the country exports more emergy than that contained in the money received for the exportation. With the help of the emergy indices, the future development of Brazil is explored and discussed. The comparison among the BRICS (Brazil, Russia, India, China and South Africa) countries and United States indicates that what may be appropriate and usable within one country may not be within another and that to achieve the global sustainability two concomitant actions may occur: (i) the reduction of the total emergy use in developed economies, and (ii) the reduction of indigenous resources exportation in developing economies. - Highlights: • Future Brazilian development is explored from the energy perspective. • Solution is to increase exports of raw resources and the creation of a national market. • Brazilian development path is limited by the demand for money provided by exportation. • The need to increase the economic performance along with a decrease in emergy requirements. • It is essential to understand that there are limits for economic growth

  5. Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)

    International Nuclear Information System (INIS)

    Yu, Xiaoman; Geng, Yong; Dong, Huijuan; Ulgiati, Sergio; Liu, Zhe; Liu, Zuoxi; Ma, Zhixiao; Tian, Xu; Sun, Lu

    2016-01-01

    Resource over-exploitation and resource depletion have received increasing attentions, especially for industrial regions. In this paper an innovative method that combines emergy analysis and an IPAT (Human Impact Population Affluence Technology) equation is developed in order to create an integrated framework for uncovering the driving forces on resource consumption in one industrial region. Liaoning province, one of the old heavy industrial bases in China, is selected as the case study region. The main results show that total emergy of Liaoning province increased from 9.25E + 23 sej in 2002 to 1.92E + 24 sej in 2012, with 165% growth on non-renewable emergy and 250% growth on imported emergy. Regional emergy/RMB ratio was higher than other developed regions and the average value of China, indicating that this province consumed more local free non-renewable resources to support its own development. The lower ESI (emergy sustainability index) indicates that Liaoning province's sustainability is still weak and far away from sustainable development. IPAT analysis further identifies that rapid economic growth was the main driving force to increase its total emergy use, while technology innovation offset the increase of total emergy use. Policy insights suggest that industrial regions should improve their energy efficiency and optimize their economic and energy structure by applying economic instruments and capacity building efforts. - Highlights: • Emergy analysis and IPAT are combined to evaluate the sustainability of Liaoning. • Total emergy of Liaoning increased from 2002 to 2011 and then decreased in 2012. • Economic scale is the key driving force to induce higher emergy consumption. • Valuable policy insights are proposed in order to promote sustainable development.

  6. Emergy Evaluation of the United States, U.S. Education, Educational Attainment and the National Financial System from 1950 through 2016

    Science.gov (United States)

    Past work quantifying the emergy basis for the U.S. economy, the U.S. education system and the educational attainment of the population through 2011 is brought up to date with the most recent data available from the U.S. Statistical Abstracts as well as other critical information...

  7. Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP

    International Nuclear Information System (INIS)

    Peng, T.; Lu, H.F.; Wu, W.L.; Campbell, D.E.; Zhao, G.S.; Zou, J.H.; Chen, J.

    2008-01-01

    The development of industrial ecology has led company managers to increasingly consider their company's niche in the regional system, and to develop optimization plans. We used emergy-based, ecological-economic synthesis to evaluate two optimization plans for the Jiufa Combined Heat and Power (CHP) Plant, Shandong China. In addition, we performed economic input-output analysis and energy analysis on the system. The results showed that appropriately incorporating a firm with temporary extra productivity into its regional system will help maximize the total productivity and improve ecological-economic efficiency and benefits to society, even without technical optimization of the firm itself. In addition, developing a closer relationship between a company and its regional system will facilitate the development of new optimization opportunities. Small coal-based CHP plants have lower-energy efficiency, higher environmental loading, and lower sustainability than large fossil fuel and renewable energy-based systems. The emergy exchange ratio (EER) proved to be an important index for evaluating the vitality of highly developed ecological-economic systems

  8. EMERGY ANALYSIS OF THE PREHISTORIC NITROGEN CYCLE

    Science.gov (United States)

    Several relationships between the specific emergy or the emergy per unit mass and the mass concentration of nitrogen were shown to exist through an analysis of the global nitrogen cycle. These observed relationships were interpreted by examining the nature of the underlying ener...

  9. The geobiosphere emergy baseline: A synthesis.

    Science.gov (United States)

    The concept of emergy defined as the available energy (or exergy) of one form used up directly and indirectly to produce an item or action (Odum, Environmental Accounting Emergy and Environmental Decision Making, John Wiley & Sons, Inc., 1996) requires the specification of a unif...

  10. Energy and resource basis of an Italian coastal resort region integrated using emergy synthesis.

    Science.gov (United States)

    Vassallo, Paolo; Paoli, Chiara; Tilley, David R; Fabiano, Mauro

    2009-10-01

    Sustainable development of coastal zones must balance economic development that encourages human visitation from a larger population with desires that differ from the local residents with the need to maintain opportunities for the local resident society and conserve ecological capital, which may serve as the basis for residents. We present a case study in which the sustainability level of a coastal zone (Riviera del Beigua), located along the Ligurian coast of north-western Italy, was assessed through the lens of systems ecology using emergy synthesis to integrate across economic, social and environmental sub-systems. Our purposes were (1) to quantify the environmental sustainability level of this coastal zone, (2) to evaluate the role of tourism in affecting the economy, society and environment, and (3) to compare emergy synthesis to Butler's Tourism Area Life Cycle model (TALC). Results showed that 81% of the total emergy consumption in the coastal zone was derived from external sources, indicating that this tourist-heavy community was not sustainable. Tourism, as the dominant economic sub-system, consumed 42% of the total emergy budget, while local residents used the remaining 58%. The progressive stages of the TALC model were found to parallel the dynamic changes in the ratio of external emergy inputs to local emergy inputs, suggesting that emergy synthesis could be a useful tool for detecting a tourist region's TALC stage. Use of such a quantitative tool could expedite sustainability assessment to allow administrative managers to understand the complex relationship between a region's economy, environment and resident society so sound policies can be developed to improve overall sustainability.

  11. Emergy analysis of a farm biogas project in China: A biophysical perspective of agricultural ecological engineering

    Science.gov (United States)

    Zhou, S. Y.; Zhang, B.; Cai, Z. F.

    2010-05-01

    This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.

  12. Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island

    Directory of Open Access Journals (Sweden)

    Chanhoon Jung

    2018-05-01

    Full Text Available Jeju Island experienced an approximately 42% increase in energy consumption from 2006 to 2015 and the demand for energy consumption is expected to continue to increase. Thus, Jeju Island is planning a project entitled “Carbon Free Island by 2030” to promote sustainable development and is required to estimate the environmental carrying capacity for future energy demand changes. The purpose of this study was to calculate the emergy inherent in Jeju Island’s energy, materials, and information in 2015 using the emergy analysis method and local characteristics. In addition, this study aimed to estimate the emergy indices to evaluate the environmental carrying capacity for sustainable development in 2005, 2015, and 2030 considering the future energy demand. This study’s outputs provide the environmental carrying capacity with emergy indices, such as the percent renewable (%Renew, emergy yield ratio (EYR, environmental loading ratio (ELR, sustainability index (SI, and carrying capacity of the population (CCP for social and economic activities on Jeju Island, which are expected to be saturated. These findings show regions with heavy tourism require development strategies, including the concept of environmental carrying capacity.

  13. Progress, influence and perspectives of emergy theories in China, in support of environmentally sound economic development and equitable trade

    International Nuclear Information System (INIS)

    Dong, Xiaobin; Ulgiati, Sergio; Yan, Maochao; Gao, Wangsheng

    2008-01-01

    Emergy Accounting and Synthesis, developed by Howard Odum in the 1980s, accounts for both the work of nature and that of humans as part of it in generating products and services. Since the 1990s, when Odum's system theories and emergy approach were introduced to China, a great attention was paid to them, since they appeared to Chinese scholars very important, comprehensive, and rich with application opportunities to China's economic development and environmental management. Until now more than 150 papers related to emergy theories were published in Chinese scientific journals, more than 20 dissertations presented in all Chinese Universities, and a large number of emergy-based papers were authored by Chinese scholars in international journals. Also, several reports dealing with emergy evaluation of different provinces of China were presented to local governments for decision-making. Emergy theories were applied to valuation of ecosystems and eco-industrial parks, as well as to studies of benefits/cost analysis and feasibility of ecological engineering. Meanwhile, a series of monographs and translated books related to emergy theories were published in China, some of which are used as text books in Chinese universities and institutes. Compared with the great potential of emergy application, there are many new fields that should be addressed in China, including: assessing the environmental impact of processes based on matching of high-quality and low-quality resources, establishing new frameworks and systems for environmental accounting, evaluating natural capital and services and applying research results to the process of decision-making, and finally studying the patterns and the available development options of China regional eco-economic systems. (author)

  14. Development of concepts for human labour accounting in Emergy Assessment and other Environmental Sustainability Assessment methods

    DEFF Research Database (Denmark)

    Kamp, Andreas; Morandi, Fabiana; Østergård, Hanne

    2016-01-01

    of labour intensive processes and a systematic underestimation of environmental impacts has implications for decision-making. A brief review of the evaluation of human labour in ESAs reveals that only Emergy Assessment (EmA) accounts for labour as standard. Focussing on EmA, we find, however......Human labour is central to the functioning of any human-influenced process. Nevertheless, Environmental Sustainability Assessments (ESAs) do not systematically include human labour as an input. Systematic omission of labour inputs in ESAs may constitute an unfortunate, significant bias in favour......, that there is no agreement on the calculation method for labour. We formalise the calculation of human labour unit emergy values (UEVs) as being the ratio between the emergy resource basis of the labour system and a proxy for labour, with or without allocation to account for different qualities of labour. The formalised...

  15. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...

  16. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  17. Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant

    International Nuclear Information System (INIS)

    Pang, Mingyue; Zhang, Lixiao; Ulgiati, Sergio; Wang, Changbo

    2015-01-01

    The belief that small hydropower (SHP) systems are sources of clean energy with few or no ecological problems has been driving the rapid expansion of SHP plants in China and elsewhere. This paper presents an evaluation of the ecological impacts of SHP based on an emergy analysis of a plant located in Guizhou Province in southwest China. The results suggest that periodic downstream drying-up of the river is the largest contributor to the induced ecological impacts in terms of emergy cost. In 2010, the ecosystem service losses caused by downstream ecosystem degradation totaled 2.35E+18 seJ, which accounts for 38% of the total emergy utilized in the annual operation of this plant. If such losses could be avoided, i.e., if the SHP operated as designed, SHP projects would produce relatively modest impacts on the environment. When the reaches downstream of the SHP plant are not affected, the environmental loading ratio (ELR) is 2.20 and the emergy sustainability index (ESI) is 0.93; however, the ELR increases to 3.82 and ESI decreases to 0.38 when river drying-up occurs. These results indicate that China should rigorously investigate potential ecological problems of SHP development and proceed with caution rather than readily believing unjustified assumptions. - Highlights: • Ecological impacts of a SHP plant in China are analyzed using emergy synthesis. • The ecosystem degradation due to periodic drying-up was the largest emergy cost. • The eco-friendliness of SHP is questionable when it is intensively developed. • China should proceed with caution regarding the potential ecological impact of SHP

  18. Emergy signature as a basis for sustainability valuation of agro-ecosystems

    DEFF Research Database (Denmark)

    Ghaley, Bhim Bahadur; Montesino San Martin, Manuel; Porter, John Roy

    sustainability of the agricultural practice. The emergy analysis is an accounting tool which takes into account both the environment and the economic costs of the production system, based on principles of thermodynamics. Here the objective of the study is the evaluation of a novel organically based, food...

  19. Relationships among the Energy, Emergy, and Money Flows of the United States from 1900 to 2011

    International Nuclear Information System (INIS)

    Campbell, Daniel Elliott; Lu, Hongfang; Walker, Henry Allen

    2014-01-01

    Energy Systems Language models of the resource base for the U.S. economy and of economic exchange were used, respectively, (1) to show how energy consumption and emergy use contribute to real and nominal gross domestic product (GDP) and (2) to propose a model of coupled flows that explains high correlations of these inputs with measures of market-based economic activity. We examined a third power law model of growth supported by excess resources and found evidence that it has governed U.S. economic growth since 1900, i.e., nominal GDP was best explained by a power function of total emergy use with exponent 2.8. We used a weight of evidence approach to identify relationships among emergy, energy, and money flows in the U.S. from 1900 to 2011. All measures of quality adjusted energy consumption had a relationship with nominal GDP that was best described by a hyperbolic function plus a constant and the relationship between all measures of energy consumption and real GDP was best described by a second order polynomial. The fact that energy consumption per unit of real GDP declined after 1996 as real GDP continued to increase indicates that energy conservation or a shift toward less energy intensive industries has resulted in lower fossil fuel use and reduced CO 2 emissions while maintaining growth in real GDP. Since all energy consumption measures versus real GDP deviated from a power law relationship after 1996; whereas, total emergy use did not, we concluded that total emergy use captured more of the factors responsible for the increase in real GDP than did energy measures alone, and as a result, total emergy use may be the best measure to quantify the biophysical basis for social and economic activity in the information age. The emergy to money ratio measured as solar emjoules per nominal followed a decreasing trend from a high of 1.01E+14 semj/$ in 1902 to 1.56E+12 semj/$ in 2011 with fluctuations in its value corresponding to major periods of inflation and

  20. Relationships among the Energy, Emergy and Money Flows of the United States from 1900 to 2011

    Directory of Open Access Journals (Sweden)

    Daniel Elliott Campbell

    2014-10-01

    Full Text Available Energy Systems Language models of the resource base for the U.S. economy and of economic exchange were used, respectively, (1 to show how energy consumption and emergy use contribute to real and nominal GDP and (2 to propose a model of coupled flows that explains high correlations of these inputs with measures of market-based economic activity. We examined a 3rd power law model of growth supported by excess resources and found evidence that it has governed U.S. economic growth since 1900, i.e., nominal GDP was best explained by a power function of total emergy use with exponent 2.8. We used a weight of evidence approach to identify relationships among emergy, energy, and money flows in the U.S. from 1900 to 2011. All measures of quality adjusted energy consumption had a relationship with nominal GDP that was best described by a hyperbolic function plus a constant and the relationship between all measures of energy consumption and real GDP was best described by a 2nd order polynomial. The fact that energy consumption per unit of real GDP declined after 1996 as real GDP continued to increase indicates that energy conservation or a shift toward less energy intensive industries has resulted in lower fossil fuel use and reduced CO2 emissions, while maintaining growth in real GDP. Since all energy consumption measures vs. real GDP deviated from a power law relationship after 1996; whereas, total emergy use did not, we concluded that total emergy use captured more of the factors responsible for the increase in real GDP than did energy measures alone, and as a result, total emergy use may be the best measure to quantify the biophysical basis for social and economic activity in the information age. The Emergy to Money Ratio measured as solar emjoules per nominal $ followed a decreasing trend from a high of 1.01E+14 semj/$ in 1902 to 1.56E+12 semj/$ in 2011 with fluctuations in its value corresponding to major periods of inflation and deflation over this

  1. Relationships among the Energy, Emergy, and Money Flows of the United States from 1900 to 2011

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Daniel Elliott, E-mail: campbell.dan@epa.gov [Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Narragansett, RI (United States); Lu, Hongfang [South China Botanical Garden, Chinese Academy of Sciences, Guangzhou (China); Walker, Henry Allen [Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Narragansett, RI (United States)

    2014-10-17

    Energy Systems Language models of the resource base for the U.S. economy and of economic exchange were used, respectively, (1) to show how energy consumption and emergy use contribute to real and nominal gross domestic product (GDP) and (2) to propose a model of coupled flows that explains high correlations of these inputs with measures of market-based economic activity. We examined a third power law model of growth supported by excess resources and found evidence that it has governed U.S. economic growth since 1900, i.e., nominal GDP was best explained by a power function of total emergy use with exponent 2.8. We used a weight of evidence approach to identify relationships among emergy, energy, and money flows in the U.S. from 1900 to 2011. All measures of quality adjusted energy consumption had a relationship with nominal GDP that was best described by a hyperbolic function plus a constant and the relationship between all measures of energy consumption and real GDP was best described by a second order polynomial. The fact that energy consumption per unit of real GDP declined after 1996 as real GDP continued to increase indicates that energy conservation or a shift toward less energy intensive industries has resulted in lower fossil fuel use and reduced CO{sub 2} emissions while maintaining growth in real GDP. Since all energy consumption measures versus real GDP deviated from a power law relationship after 1996; whereas, total emergy use did not, we concluded that total emergy use captured more of the factors responsible for the increase in real GDP than did energy measures alone, and as a result, total emergy use may be the best measure to quantify the biophysical basis for social and economic activity in the information age. The emergy to money ratio measured as solar emjoules per nominal followed a decreasing trend from a high of 1.01E+14 semj/$ in 1902 to 1.56E+12 semj/$ in 2011 with fluctuations in its value corresponding to major periods of inflation and

  2. Accounting emergy flows to determine the best production model of a coffee plantation

    International Nuclear Information System (INIS)

    Giannetti, B.F.; Ogura, Y.; Bonilla, S.H.; Almeida, C.M.V.B.

    2011-01-01

    Cerrado, a savannah region, is Brazil's second largest ecosystem after the Amazon rainforest and is also threatened with imminent destruction. In the present study emergy synthesis was applied to assess the environmental performance of a coffee farm located in Coromandel, Minas Gerais, in the Brazilian Cerrado. The effects of land use on sustainability were evaluated by comparing the emergy indices along ten years in order to assess the energy flows driving the production process, and to determine the best production model combining productivity and environmental performance. The emergy indices are presented as a function of the annual crop. Results show that Santo Inacio farm should produce approximately 20 bags of green coffee per hectare to accomplish its best performance regarding both the production efficiency and the environment. The evaluation of coffee trade complements those obtained by contrasting productivity and environmental performance, and despite of the market prices variation, the optimum interval for Santo Inacio's farm is between 10 and 25 coffee bags/ha. - Highlights: → Emergy synthesis is used to assess the environmental performance of a coffee farm in Brazil. → The effects of land use on sustainability were evaluated along ten years. → The energy flows driving the production process were assessed. → The best production model combining productivity and environmental performance was determined.

  3. Accounting emergy flows to determine the best production model of a coffee plantation

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, B.F.; Ogura, Y.; Bonilla, S.H. [Universidade Paulista, Programa de Pos Graduacao em Engenharia de Producao, R. Dr. Bacelar, 1212 Sao Paulo SP (Brazil); Almeida, C.M.V.B., E-mail: cmvbag@terra.com.br [Universidade Paulista, Programa de Pos Graduacao em Engenharia de Producao, R. Dr. Bacelar, 1212 Sao Paulo SP (Brazil)

    2011-11-15

    Cerrado, a savannah region, is Brazil's second largest ecosystem after the Amazon rainforest and is also threatened with imminent destruction. In the present study emergy synthesis was applied to assess the environmental performance of a coffee farm located in Coromandel, Minas Gerais, in the Brazilian Cerrado. The effects of land use on sustainability were evaluated by comparing the emergy indices along ten years in order to assess the energy flows driving the production process, and to determine the best production model combining productivity and environmental performance. The emergy indices are presented as a function of the annual crop. Results show that Santo Inacio farm should produce approximately 20 bags of green coffee per hectare to accomplish its best performance regarding both the production efficiency and the environment. The evaluation of coffee trade complements those obtained by contrasting productivity and environmental performance, and despite of the market prices variation, the optimum interval for Santo Inacio's farm is between 10 and 25 coffee bags/ha. - Highlights: > Emergy synthesis is used to assess the environmental performance of a coffee farm in Brazil. > The effects of land use on sustainability were evaluated along ten years. > The energy flows driving the production process were assessed. > The best production model combining productivity and environmental performance was determined.

  4. [Scenario analysis on sustainable development of Sino-Singapore Tianjin Eco-city based on emergy and system dynamics].

    Science.gov (United States)

    Li, Chun-fa; Cao, Ying-ying; Yang, Jian-cho; Yang, Qi-qi

    2015-08-01

    Dynamic evaluation of sustainable development is one of the key fundamental parts of the success of Sino-Singapore Tianjin Eco-city, which is the first eco-city in China constructed by international cooperation. Based on the analysis of nature and economy, function and structure, planning control indices and so on, we constructed a sustainable development evaluation index system and a system dynamics model of Sino-Singapore Tianjin Eco-city to explore dynamic trends of its population, material and currency by comprehensive utilization of emergy analysis and system dynamics method. Five scenarios were set up and simulated, including inertial scenario, scientific and technological scenario, economic scenario, environmental scenario and harmonious development scenario. Then, the sustainability of the 5 scenarios was evaluated and compared. The results showed that in the economy and environment sustainable development scenario, there was a steady growth trend of GDP, accumulation of both emergy and currency, and relatively lower values in emergy waste ratio, emergy ratio of waste, and emergy loading ratio. Although both sustainable evaluation indices, such as ESI and UEI, were relatively low, the economy and environment sustainable development scenario was still the best development scenario which was more active than others.

  5. Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method

    International Nuclear Information System (INIS)

    Lou, Bo; Ulgiati, Sergio

    2013-01-01

    The economy of China keeps increasing at high rate, although a bit slower recently than in the past due to the international economic turmoil. The Chinese economic performance affects the world economy in many ways (from increased primary resource and commodity imports to a more active financial role of China worldwide). Not unexpectedly, several and diverse environmental problems are coupled with economic growth, linked to resource availability, competition for energy resources and the overall carrying capacity of the environment as a source and a sink. Monodimensional assessments of either economic growth or environmental aspects are unlikely to provide the needed understanding of development opportunities and potential environmental loading. We suggest in this paper an assessment of the evolution of Chinese Economy based on the Emergy Accounting method, developed by H.T. Odum in the Eighties and further refined more recently. The emergy approach is being increasingly applied worldwide, and in China as well, to study individual production processes, sectors and whole economies and provides a comprehensive picture of the interaction of economic growth and the environment, much useful for economic and environmental policy making. A set of emergy-based performance indicators was calculated with reference to the year 2009 and compared with previous studies from literature, by means of a standardization procedure to ensure consistency. The 2009 national Emergy/GDP ratio, an indicator of the emergy investment per unit of economic product generated, has been calculated respectively as 8.61E+11 solar equivalent joules/Yuan RMB (equivalent to 5.88E+12 sej/US$), showing a decreasing trend from 1975 up-to-date, similar to other countries over their development path. The Emergy Sustainability Index (ESI), an aggregate measure of economic performance and environmental load, also shows a decreasing trend signaling that the Chinese economic development is strictly coupled to

  6. Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur

    International Nuclear Information System (INIS)

    Giannetti, B.F.; Almeida, C.M.V.B.; Bonilla, S.H.

    2010-01-01

    The quality and the power of human activities affect the external environment in different ways that can be measured and evaluated by means of several approaches and indicators. While the scientific community has been publishing several proposals for sustainable development indicators, there is still no consensus regarding the best approach to the use of these indicators and their reliability to measure sustainability. It is important, therefore, to question the effectiveness of sustainable development indicators in an effort to continue in the search for sustainability. This paper compares the results obtained with emergy accounting with five global Sustainability Metrics (SMs) proposed in the literature to verify if metrics are communicating coherent and similar information to guide decision makers towards sustainable development. Results obtained using emergy indices are discussed with the aid of emergy ternary diagrams. Metrics are confronted with emergy results, and the degree of variability among them is analyzed using a correlation matrix created for the Mercosur nations. The contrast of results clearly shows that metrics arrive at different interpretations about the sustainability of the nations studied, but also that some metrics may be grouped and used more prudently. Mercosur is presented as a case study to highlight and explain the discrepancies and similarities among Sustainability Metrics, and to expose the extent of emergy accounting.

  7. Emergy-based sustainability assessment of different energy options for green buildings

    International Nuclear Information System (INIS)

    Luo, Zhiwen; Zhao, Jianing; Yao, Runming; Shu, Zhan

    2015-01-01

    Highlights: • We apply Emergy to assess environmental impact of different energy options. • We develop a new index to assess the anthropogenic heat emission. • The way of electricity produced is crucial to the total environmental load. • The direct-fired lithium-bromide absorption type shows highest environmental load. - Abstract: It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulfur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially

  8. Emergy synthesis and simulation for Macao

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Kampeng [Faculty of Science and Technology, University of Macau, Avn Do Ouvidor Arriaga, 46/48, Edf. Nga Lim, 13 And. (D), Macao (China); Macao Science Center Ltd., Macao (China); Wang, Zhishi [Faculty of Science and Technology, University of Macau, Avn Do Ouvidor Arriaga, 46/48, Edf. Nga Lim, 13 And. (D), Macao (China)

    2008-04-15

    Macao is a tourist city with a dense population and has a shortage of natural resources. Almost all of the city's life-support systems thus depend on imports of external resources. During the past 20 years, Macao has experienced an economic boom accompanied by rapid social development, in which the gambling industry and related tourism services have become the main economic activity. This paper employs emergy flow analysis to investigate and characterize the evolution and development of Macao from 1983 to 2003. In addition, Macao has experienced six periods of land reclamation since 1866, supported by large-scale importation of sand and rocks from China. By simulating the emergy trends using the STELLA dynamic modeling software, we predicted the evolution of Macao's development and trends in the coming 20 years. In 2025, the city's economy is estimated to be 15 times its current size as a result of Macao's territorial expansion. The exported emergy will increase slowly and then stabilize, the population will reach 593 185, and the area covered by Macao will expand to 38.91 km{sup 2}. (author)

  9. Emergy-based comparative analysis on industrial clusters: economic and technological development zone of Shenyang area, China.

    Science.gov (United States)

    Liu, Zhe; Geng, Yong; Zhang, Pan; Dong, Huijuan; Liu, Zuoxi

    2014-09-01

    In China, local governments of many areas prefer to give priority to the development of heavy industrial clusters in pursuit of high value of gross domestic production (GDP) growth to get political achievements, which usually results in higher costs from ecological degradation and environmental pollution. Therefore, effective methods and reasonable evaluation system are urgently needed to evaluate the overall efficiency of industrial clusters. Emergy methods links economic and ecological systems together, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. This method has been successfully applied in many case studies of ecosystem but seldom in industrial clusters. This study applied the methodology of emergy analysis to perform the efficiency of industrial clusters through a series of emergy-based indices as well as the proposed indicators. A case study of Shenyang Economic Technological Development Area (SETDA) was investigated to show the emergy method's practical potential to evaluate industrial clusters to inform environmental policy making. The results of our study showed that the industrial cluster of electric equipment and electronic manufacturing produced the most economic value and had the highest efficiency of energy utilization among the four industrial clusters. However, the sustainability index of the industrial cluster of food and beverage processing was better than the other industrial clusters.

  10. Energy-, exergy- and emergy analysis of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Hovelius, K.

    1997-11-01

    In this report, results from analyzing salix-, winter wheat-, and winter rape cultivations from energy, exergy, and EMERGY perspectives are presented. The exchange in terms of energy for this Salix cultivation is 28 times , but if instead an exergy analysis is done the exchange for exactly the same process is 36 times. The energy analysis gives an energy exchange of 8.1 for winter wheat cultivation, and 5.7 for winter rape cultivation. Corresponding exchanges for the exergy analysis are 9.3 for winter wheat and 6.6 for winter rape. The EMERGY analysis gives a transformity for salix of 1.04E+11 sej/kg DM, for winter wheat 3.85E+11 sej/kg DM, and for winter rape 1.03E+12 sej/kg DM. Thus, the EMERGY need is bigger for rape cultivation than for winter wheat and salix cultivations. The NEYR is the ratio between the EMERGY yield and the EMERGY invested from society (economy, services and other resources), and it is 1.10 for this salix cultivation, and 0.66 for both the winter wheat and the winter rape cultivations. The EIR is the ratio between the EMERGY invested from society and the EMERGY invested from the environment, and it is 2.23 for this salix cultivation, 11.5 for the winter wheat cultivation , and 11.8 for the winter rape cultivation. 26 refs, 11 figs, 25 tabs

  11. Resource Dynamism of the Rwandan Economy: An Emergy Approach

    Directory of Open Access Journals (Sweden)

    Evariste Rutebuka

    2018-05-01

    Full Text Available Africa is experiencing unprecedented economic growth that requires planners to understand the interactions between the social, economic, and ecological systems to ensure its sustainable development. The present paper uses the emergy method to analyse the Rwandan economy from 1975 to 2016. Emergy-based sustainability indicators were used to analyse and compare two distinct periods of economic growth: the pre- and post-Tutsi genocide periods. The results revealed that, by 2016, the total emergy use had increased by approximately 74% of the emergy recorded in 1975. The increase in total emergy use was associated with an increase in imports with contributions from 6.5 to 46.2% and the renewable resource contribution decrease from 93.5 to 53.8%. The emergy analysis, which covered 41 years, categorises Rwanda as a non-renewable resource-poor country. The total emergy use of the pre-genocide period was significantly lower than the post-genocide period. Based on the 2016 emergy self-support of 54% and the emergy sustainability index of 2.52, Rwanda has the highest import dependence compared to other developing countries listed in this paper and tends toward a developed country like Canada, Portugal, and so on. An imperative decision needs to be made in terms of the management of the economic system of Rwanda, as imports are becoming the highest impetus of the Rwandan economy but are also the top major cause of a long-run sustainability downfall. Thus, the present study recommends a scrutinised selection system of imports by increasing raw materials, particularly non-renewable resources, and by subsequently increasing the internal transformation to be exported. This recommendation is also applicable to other developing countries with similar non-renewable resource statuses.

  12. Analysis of Land-Use Emergy Indicators Based on Urban Metabolism: A Case Study for Beijing

    Directory of Open Access Journals (Sweden)

    Qing Huang

    2015-06-01

    Full Text Available The correlation of urban metabolism and changes in land use is an important issue in urban ecology, but recent research lacks consideration of the mechanisms and interactions between them. In this research, we did an emergy analysis of the flows of materials, energy, and capital within the socioeconomic system of Beijing. We calculated emergy-based evaluation indices of urban metabolism and land use change, to analyze the relationship between urban metabolism and land use by correlation analysis and regression analysis. Results indicate that the socio-economic activities on built-up land depend on local, non-renewable resource exploitation and external resource inputs. The emergy utilization efficiency of farmland has consistently decreased, but there remains significant utilization potential there. Urban development in Beijing relies on production activities on built-up land, which is subjected to great environmental pressure during extraction of material resources. To keep the economy developing effectively, we suggest that Beijing should commit to development of a circular economy, and change the land-use concept to “Smart Growth”. In this paper, we efficaciously solve the problem of conflicting measurement units, and avoid the disadvantages of subjective assignment. Consequently, this work provides not only a more scientific way to study land problems, but also provides a reliable reference for ecological construction and economic development in Beijing.

  13. Emergy-based comparative analysis of energy intensity in different industrial systems.

    Science.gov (United States)

    Liu, Zhe; Geng, Yong; Wang, Hui; Sun, Lu; Ma, Zhixiao; Tian, Xu; Yu, Xiaoman

    2015-12-01

    With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although

  14. Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making

    International Nuclear Information System (INIS)

    Lugaric, Luka; Krajcar, Slavko

    2016-01-01

    Recognized as implementation actors of operative measures for transition towards a low carbon economy, cities must establish a development roadmap integrating local resources with local energy development plans. A systematic approach does not exist yet and cities develop their plans individually, which is difficult for small and medium sized cities due to limited development capacities. Conventional city planning approaches do not integrate considerations on energy, economy and environment in transition plans in an easily comparable way, yet making decisions with regards to these parameters is vital to determine outcomes of planned developments on future sustainability of the city. The paper presents a framework model based on emergy synthesis which integrates energy, economic and environmental city systems in the decision making process, examining associated theoretical challenges and application limitations. The method is applied on the city of Sisak in Croatia which has developed plans to implement several initiatives geared towards creating a smart energy city. The model enables simulation and assessment of impacts of individual projects targeting the development of a smart energy city on city sustainability expressed through emergy performance, used as a tool for evaluating local development alternatives within the boundary of local resources. - Highlights: • Key concepts of present city development trends towards sustainability are examined. • Emergy synthesis is examined and applied as a tool for policy and decision makers. • Emergy model of a small city is developed, along with submodels for renewable energy sources and buildings. • Simulation of 5 different projects shows impacts on overall city sustainability in a comparable manner. • Increase in emergy sustainability index is confirmed after presumed implementation of simulated projects.

  15. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  16. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov (United States)

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  17. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    OpenAIRE

    M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid

    2015-01-01

    Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...

  18. Emergy and exergy analyses: Complementary methods or irreducible ideological options?

    International Nuclear Information System (INIS)

    Sciubba, Enrico; Ulgiati, Sergio

    2005-01-01

    The paper discusses the similarities and the incompatibilities between two forms of Energy Analysis (exergy and emergy, 'EXA' and 'EMA' in the following), both of which try to represent the behavior of physical systems by means of cumulative energy input/output methods that result in a double integration over space and time domains. Theoretical background, definitions and balance algebra are discussed first, in a 'statement-counterstatement' format that helps pinpointing differences and similarities. A significant, albeit simplified, benchmark case (ethanol production from corn) is used to compare the results and analytically assess the merits of each approach as well as possible synergic aspects. Corn production, transport and industrial conversion to ethanol are included in the analysis. First, mass balance and energy accounting are performed in each step of the process, then, exergy and emergy evaluations are carried out separately to lead to a set of performance indicators, the meaning of which is discussed with reference to their proper scale of application. The Authors underline that each method has its own preferred field of application and conclude that the two approaches appear to be characterized not much as different (and therefore competing) tools, but as different paradigms, whose meta-levels (their 'philosophies') substantially differ. In particular, EXA is found to provide the most correct and insightful assessment of thermodynamic features of any process and to offer a clear quantitative indication of both the irreversibilities and the degree of matching between the used resources and the end-use material or energy flows. EXA combined with costing considerations results in Thermo-Economics (TE), presently the best engineering method for System optimization. One of EXA recent extensions, Extended Exergy Accounting (EEA) includes all externalities in the exergy resource accounting, thus providing a more complete picture of how a process is interacting

  19. Dairy cattle sustainability using the emergy methodology: Environmental loading ratio

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2012-12-01

    Full Text Available The dairy cattle activity in São Paulo State has been depressed in recent years, evidenced by the reduction of 35.47% of dairy herd between 1996 and 2008 (LUPA and 29.73% in milk production between the census of the IBGE (1995 and 2006. Activity remains in the Agricultural Production Units (UPA that have adopted more intensive systems of milk production, using animals of high genetic potential, management-intensive rotational grazing or agricultural inputs, and with the objective of profit maximization. In face of environmental pressures, the problem is to know the degree of sustainability of milk production. The objective in this work was to analyze the production of milk from a farm in the municipality of Guzolândia, São Paulo State, during the period 2005/2011, using the emergy methodology to assess the sustainability of system, calculated by Environmental Loading Ratio (ELR. The UPA Alto da Araúna is dedicated to dairy cattle adopting the system of milk production semi-intensive type B; it produces on average 650 liters of milk per day with 45 lactating cows, using 30 ha of pasture with supplemental feed and silage. It has sandy soil, classified as latossol red, yellow, ortho phase, with gently rolling slopes. The UPA is administered with business structure, aiming to profit maximization and minimization of environmental impacts, seeking to maintain economically viable activity and preserving the environment. Currently, administrative decisions have the support of operational control that collects and records information necessary to generate animal and agricultural indexes that evaluate the performance of the UPA, in addition to managerial accounting records that generate cash flow information used to evaluate the economic efficiency of the UPA. The Environmental Loading Ratio (ELR=N+F/R is obtained by the ratio of natural non-renewable resources (N plus economic resources (F by total renewable emergy (R. It is an indicator of the

  20. Emergy sustainability index of a milk producing unit

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2013-12-01

    Full Text Available Although small, the impacts caused by agriculture and livestock productive activities change the environment, which in turn reflects the stress conditions it is under. Some authors these environmental changes occur for countless reasons, many so-called natural while others are due to anthropogenic interventions. This study aims to assess milk production sustainability using the emergy analysis of indicators, considering the annual cycles of production to help decision making. A conceptual model of the milk production system using the Emergy flow chart was built at the Livestock and Agricultural Production Unit (UPA of the Alto da Arauna Farm, located in Guzolândia, SP. After data processing, the emergy calculation table was elaborated. Several emergy sustainability indices were calculated and analyzed (indicators Renewability of Emergy Used Total, Index of Environmental Load Ratio of Investment Ratio Emergia beyond the calculations Tranformidades among others including the Emergy Sustainability Index (ESI. The results showed that the UPA has a high impact per unit of energy source used to produce milk for the general public. The agricultural production systems with ESI value less than one (1 can be considered unsustainable in the long term. The studied UPA has good working conditions and soil conservation, but has a highly disproportionate use of economy inputs in relation to natural resources, which results in low ESI value. The analysis of this ratio indicated low system efficiency. Several management practices and interventions were proposed aiming at improving sustainability indicators of the production system.  Furthermore, strategies were formulated for more sustainable management of this UPA, thus reducing the impacts of the production system in use. The adoption of methods similar to organic production, agroecological systems, integration between farming and livestock, and/or adoption of silvopastoral system are recommended to improve

  1. A spatial emergy model for Alachua County, Florida

    Science.gov (United States)

    Lambert, James David

    A spatial model of the distribution of energy flows and storages in Alachua County, Florida, was created and used to analyze spatial patterns of energy transformation hierarchy in relation to spatial patterns of human settlement. Emergy, the available energy of one kind previously required directly or indirectly to make a product or service, was used as a measure of the quality of the different forms of energy flows and storages. Emergy provides a common unit of measure for comparing the productive contributions of natural processes with those of economic and social processes---it is an alternative to using money for measuring value. A geographic information system was used to create a spatial model and make maps that show the distribution and magnitude of different types of energy and emergy flows and storages occurring in one-hectare land units. Energy transformities were used to convert individual energy flows and storages into emergy units. Maps of transformities were created that reveal a clear spatial pattern of energy transformation hierarchy. The maps display patterns of widely-dispersed areas with lower transformity energy flows and storages, and smaller, centrally-located areas with higher transformities. Energy signature graphs and spatial unit transformities were used to characterize and compare the types and amounts of energy being consumed and stored according to land use classification, planning unit, and neighborhood categories. Emergy ratio maps and spatial unit ratios were created by dividing the values for specific emergy flows or storages by the values for other emergy flows or storages. Spatial context analysis was used to analyze the spatial distribution patterns of mean and maximum values for emergy flows and storages. The modeling method developed for this study is general and applicable to all types of landscapes and could be applied at any scale. An advantage of this general approach is that the results of other studies using this method

  2. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  3. Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management

    International Nuclear Information System (INIS)

    Su, Meirong; Fath, Brian D.; Yang, Zhifeng; Chen, Bin; Liu, Gengyuan

    2013-01-01

    The evaluation of ecosystem health in urban clusters will help establish effective management that promotes sustainable regional development. To standardize the application of emergy synthesis and set pair analysis (EM–SPA) in ecosystem health assessment, a procedure for using EM–SPA models was established in this paper by combining the ability of emergy synthesis to reflect health status from a biophysical perspective with the ability of set pair analysis to describe extensive relationships among different variables. Based on the EM–SPA model, the relative health levels of selected urban clusters and their related ecosystem health patterns were characterized. The health states of three typical Chinese urban clusters – Jing-Jin-Tang, Yangtze River Delta, and Pearl River Delta – were investigated using the model. The results showed that the health status of the Pearl River Delta was relatively good; the health for the Yangtze River Delta was poor. As for the specific health characteristics, the Pearl River Delta and Yangtze River Delta urban clusters were relatively strong in Vigor, Resilience, and Urban ecosystem service function maintenance, while the Jing-Jin-Tang was relatively strong in organizational structure and environmental impact. Guidelines for managing these different urban clusters were put forward based on the analysis of the results of this study. - Highlights: • The use of integrated emergy synthesis and set pair analysis model was standardized. • The integrated model was applied on the scale of an urban cluster. • Health patterns of different urban clusters were compared. • Policy suggestions were provided based on the health pattern analysis

  4. Solar Absorptance of Cermet Coatings Evaluated

    Science.gov (United States)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  5. Energy and emergy analysis of mixed crop-livestock farming

    Science.gov (United States)

    Kuczuk, Anna; Pospolita, Janusz; Wacław, Stefan

    2017-10-01

    This paper contains substance and energy balances of mixed crop-livestock farming. The analysis involves the period between 2012 and 2015. The structure of the presentation in the paper includes: crops and their structure, details of the use of plants with a beneficial effect on soil and stocking density per 1ha of agricultural land. Cumulative energy intensity of agricultural animal and plant production was determined, which is coupled the discussion of the energy input in the production of a grain unit obtained from plant and animal production. This data was compared with the data from the literature containing examples derived from intensive and organic production systems. The environmental impact of a farm was performed on the basis of emergy analysis. Emergy fluxes were determined on the basis of renewable and non-renewable sources. As a consequence, several performance indicators were established: Emergy Yield Ratio EYR, Environmental Loading Ratio ELR and ratio of emergy from renewable sources R! . Their values were compared with the parameters characterizing other production patterns followed in agricultural production. As a consequence, conclusions were derived, in particular the ones concerning environmental sustainability of production systems in the analyzed farm.

  6. AN EMERGY AUDIT OF WEST VIRGINIA: STRENGTHS AND VULNERABILITIES

    Science.gov (United States)

    Emergy provides a general accounting mechanism that allows us to view the economy of humanity and the economy of nature on the same income and balance sheets. In this manner we can verify the financial picture given by economic analysis by checking it against a similar represen...

  7. Emergy analysis of the recycling options for construction and demolition waste.

    Science.gov (United States)

    Yuan, Fang; Shen, Li-yin; Li, Qi-ming

    2011-12-01

    Construction and demolition (C&D) waste is becoming a major contributor to environmental pollution. In Shanghai, China, the quantity of C&D waste is 2.11E+07 t/yr, which accounts for 45% of the total quantity of solid waste. There has been a growing promotion of recycling C&D waste as an effective way to solve this waste problem. However, the evaluation of the efficiency of recycling C&D waste as a potential source of resources is largely based on traditional economic analysis. The economic analysis emphasizes money instead of the harmony between economic benefit and environmental effects. There is a need for a new strategic approach to investigate the efficiency of recycling C&D waste to achieve the integration between economic, social and environmental effects. Emergy theory can be employed to analyze different recycling options for C&D waste. With reference to the Chinese construction industry, this paper demonstrates that the close-loop recycling option is better than the open-loop recycling option for C&D waste in terms of the integration of social, environmental and sustainable aspects. To evaluate different technology solutions for C&D waste recycling, the emergy theory and method is not limited to a cost-benefit balance but can include economic, social, environmental and sustainable effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  10. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  11. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    Science.gov (United States)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  12. Optimization of emergy sustainability index for biodiesel supply network design

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le

    2015-01-01

    sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution...... centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains....

  13. A Reexamination of the Emergy Input to a System from the Wind.

    Science.gov (United States)

    The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a ra...

  14. Emergy synthesis of tourism-based urban ecosystem.

    Science.gov (United States)

    Lei, Kampeng; Wang, Zhishi

    2008-09-01

    Macao is a tourist city with a dense population, but is short on natural resources. Almost all of the life-support resources of the city depend on imports from outside. During the past 20 years, Macao has experienced an economic boom accompanied by rapid social development. The tourism industry (including gambling, hotel accommodation, restaurant dining, and shows) have become the city's main economic activity since 1991. This paper uses emergy flow analysis to investigate and characterize the urban evolution and city development that have occurred in Macao from 1983 to 2003. Macao's tourism industry has existed almost from the establishment of the city, with the legalization of gambling in Macao occurring in 1850. Tourism has become the biggest industry in Macao, contributing more than half of the city's revenues since 1995. The emergy flow related to tourism was tracked and analyzed to measure its contribution to Macao. In addition, we used statistical analysis to divide the various emergy-based indicators into three categories: positive, negative, and insensitive indicators.

  15. Magnetic evaluation of a solar panel using HTS-SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Kiwa, Toshihiko, E-mail: kiwa@okayama-u.ac.jp; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-11-15

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized.

  16. Magnetic evaluation of a solar panel using HTS-SQUID

    International Nuclear Information System (INIS)

    Kiwa, Toshihiko; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-01-01

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized

  17. Resource use efficiency and renewability. Assessment of low-input agricultural production using eMergy

    DEFF Research Database (Denmark)

    Wright, Christina; Østergård, Hanne

    2014-01-01

    by reducing dependency on external input. We apply the emergy approach to evaluate resource use efficiency of twolow-input innovative farms while distinguishing between use of renewable and non-renewable resources aswell as local and global origin of resources. This study is a part of the SOLIBAM (www.......solibam.eu) projectfunded by the European commission under the Seventh Framework Programme.We apply an approach where we include efficiency in resource use to produce food energy joules soldwhile distinguishing between use of renewable and non-renewable resources as well as on-site, local andnon-local resources. Result...... shows that the large farm (75 ha) had an input of renewable resources of 32%while the small (6 ha) had a renewable fraction of 26%. The latter is based on assuming that the firewoodused is 50% renewable. If this percentage is increased to 100% then both farms have a renewable fractionof resource use...

  18. Evaluation of solar energy over three dimensional objects

    International Nuclear Information System (INIS)

    Serposhan, S.; Yaghoubi, M.

    2002-01-01

    The knowledge of solar irradiation is important in heating and cooling of buildings architectural engineering, various solar energy utilizations, and for any system design exposed to sun radiation. In the present article, simulation is made to predict solar irradiation over any three-dimensional objects. Special consideration is made to evaluate solar radiation intensity distribution over semi-circular roof and domed roofs. For practical applications, hourly and average daily solar radiation distribution for a series of three Heller type huge cooling towers of Fars Power Plant is also determined

  19. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  20. An economic evaluation of solar radiation management

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan [CICERO — Center for International Climate and Environmental Research Oslo (Norway); Kristjánsson, Jón Egill; Muri, Helene [Department of Geosciences, University of Oslo (Norway); Niemeier, Ulrike; Schmidt, Hauke [Max Planck Institute for Meteorology, Hamburg (Germany)

    2015-11-01

    Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative.

  1. An economic evaluation of solar radiation management

    International Nuclear Information System (INIS)

    Aaheim, Asbjørn; Romstad, Bård; Wei, Taoyuan; Kristjánsson, Jón Egill; Muri, Helene; Niemeier, Ulrike; Schmidt, Hauke

    2015-01-01

    Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative

  2. An Emergy Systems View of Sustainability: Emergy Evaluation of the San Luis Basin, Colorado

    Science.gov (United States)

    Energy Systems Theory (EST) was used to provide a context for understanding and interpreting sustainability. We propose that “what is sustainable” for a system at any given level of organization is determined by the cycles of change originating in the next larger system. Furtherm...

  3. Renewability and emergy footprint at different spatial scales for innovative food systems in Europe

    DEFF Research Database (Denmark)

    Wright, Christina; Østergård, Hanne

    2016-01-01

    Food production is increasingly being challenged by limited resources of energy and land as well as bygrowing demand for food. In a future with less availability of fossil fuels, land area will become veryimportant for capturing the flow-limited renewable resources. Emergy assessment has been...... applied tocalculate scale dependent indicators, which account for the land area needed, if agricultural systems wereto be supported solely on renewable sources. These indicators are designated emergy footprints (EmFs)and expand the concept of support area defined previously in emergy accounting. The Em......-specific renewableempower density. A new indicator applying the EmF is the emergy overshoot factor, which estimatesthe ratio between EmF and the geographical system boundary (in ha). We apply this approach on threeinnovative food supply systems in Europe located at farms characterised by combining high diversity...

  4. Research and development for evaluation system of solar cell

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    In order to evaluate the performance and capability of solar cell properly and impartially, the evaluation systems for the performance and reliability have been assured. The results are as follows. 1. Development for performance evaluation method; (1) The international comparisons of standard solar cell calibration methods and our method has been assured to be mostly near to the average value. (2) Experimental solar cell has been made and the indoors and outdoors evaluation of solar cell module have become to be possible with same accuracy. (3) As the spectro-radiometer of high performance have been developed, the measurements of the output of the solar cell module have become possible, monitering spectrum of wide range of natural solar beam. (4) With use of several kinds of standard solar cell, measurement errors have been assured. (5) As for nominal operating cell temperature of module, experimental researches have been done indoors and outdoors and the diffeneces have been assured. 2. Development of reliability evaluation method; (1) In outdoor exposure test, the basic data of the accelerating degradation test have been accumulated and it has been assured that the degradation of crystal type is few. (2) By the acceleration degradation test with use of weathermeter, and temperature and humidity cycling test device, the proceses of degradation have been assured. (3) In the processes of enviromental tests and mechanical strength tests, remarkable degradation has not been recognized.(1 tab)

  5. Optimization of emergy sustainability index for biodiesel supply network design

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le; Goodsite, Michael Evan; Pang, Chengfang; Dong, Lichun

    2015-01-01

    Highlights: • A MINLP model for designing sustainable biodiesel supply network is developed. • Emergy sustainability index is used as the objective to be maximized. • Multiple alternatives in each stage of biodiesel supply network are considered. • Life cycle perspective is incorporated in the design of biodiesel supply network. - Abstract: Sustainability is an important and difficult consideration for the stakeholders/decision-makers when planning a biofuel supply network. In this paper, a Mixed-Integer Non-linear Programming (MINLP) model was developed with the aim to help the stakeholders/decision-maker to select the most sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains

  6. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  7. Design, Construction and Evaluation of a Dry Solar Sterilizer

    International Nuclear Information System (INIS)

    Hernández Fereira, Arcelio A.

    2017-01-01

    The objective of the work was the search of an alternative for sterilization using solar energy. For such purposes, a dry solar sterilizer of 4276 cm3 capacity was designed, constructed and evaluated. Potential users would be rural medical posts in areas without electricity, health posts in military units under field conditions, and experimental microbiology stations. The evaluation included the determination of the energy efficiency of the sterilizer, the economic evaluation against other variants and the biological safety assessment. The developed equipment reached the sterilization temperature for levels of the direct component of the solar radiation higher than 300 W/m2 in 14 minutes, corresponding to an average heating rate of 13 0C/minute, higher than that of an electric furnace. Its energy efficiency with direct solar radiation of 310.5 W/m2 was 53.79%. The equipment is of easy construction, simple operation and very low cost. (author)

  8. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Mustamin [Department of Architecture, Khairun University, Ternate (Indonesia); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Yoshino, Jun; Yasuda, Takashi [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan)

    2012-07-01

    This study was undertaken to analyze solar radiation abundance to ascertain the potential of solar energy as an electrical energy resource. Local weather forecasting for predicting solar radiation is performed using a meteorological model MM5. The prediction results are compared with observed results obtained from the Japan Meteorological Agency for verification of the data accuracy. Results show that local weather forecasting has high accuracy. Prediction of solar radiation is similar with observation results. Monthly average values of solar radiation are sufficiently good during March–September. Electrical energy generated by photovoltaic cells is almost proportional to the solar radiation amount. Effects of clouds on solar radiation can be removed by monthly averaging. The balance between supply and demand of electricity can be estimated using a standard curve obtained from the temporal average. When the amount of solar radiation every hour with average of more than 100 km radius area does not yield the standard curve, we can estimate the system of storage and auxiliary power necessary based on the evaluated results of imbalance between supply and demand.

  9. Solar parabolic dish technology evaluation report

    Science.gov (United States)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  10. Dairy cattle sustainability using the emergy methodology: Renewability

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2012-12-01

    Full Text Available The adoption of differents management practices is a way to remain in the dairy business. The reduction of the dairy cattle in São Paulo was 35.47% between 1996 and 2008 (LUPA. In São Paulo State the milk production was reduced by 29.7% IBGE (1995 and 2006. In milk production systems the adoption of the rotational grazing and the use of more inputs, causes a great impact on the environment. The objective of this paper is to assess these impacts in farms with the semi-intensive system of milk production. The emergy methodology was used to calculated the renewability of milk production system. The Renewability or degree of sustainability (%R = (R/Y  100 is the percentage of renewable emergy (R used by the system and Y is the sum of all the resources used by the system. In long periods of time, only production systems with a high percentage of renewable emergy will prevail to the stress of today's market, while those using a high percentage of non-renewable resources will certainly go into decline. The farm studied is located in the municipality of Guzolândia and yields 650 liters of milk per day with 45 lactating cows, 30 ha of pasture with supplemental feed and silage. The farm is administered with the objective of profit maximization and minimization of environmental impacts, seeking to maintain economically viable activity and preserve the environment. Management decisions are defined with the support of operational control that collects and stores information necessary to manage pastures and animals. The results showed that the renewability mean of six years (2005 at 2011 is 14.83% (Table 1, indicating a high use of non-renewable resources, which places the environment in risk under these productive conditions. The recommendation is to use of natural resources in a best way, reducing market input costs, thus reducing the value of Y, and improving the Renewability of the milk production.

  11. Experimental evaluation of solar still performance

    Energy Technology Data Exchange (ETDEWEB)

    Saif-ur-Rehman, M

    1973-01-01

    A method is described to measure various temperatures, insolation, and the distillate outputs from various stills simultaneously. The experimental results are used to study the thermodynamic behavior of solar still performance with the help of temperature profiles of saline water, underneath soil and glass. Effects of ageing on material deterioration and still output are discussed and in the light of the experimental evidence, recommendations are made for better still performance.

  12. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Treese II, J. Van [Southwest Florida Research and Education Center, Immokalee, FL (United States); Hanlon, Edward A. [Southwest Florida Research and Education Center, Immokalee, FL (United States); Amponsah, Nana [Intelligentsia International, LaBelle, FL (United States); Izursa, Jose -Luis [Intelligentsia International, LaBelle, FL (United States); Capece, John C. [Univ. of Florida, Gainesville, FL (United States)

    2013-03-01

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic) and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability

  13. Solar energy system economic evaluation: Contemporary Newman, Georgia

    Science.gov (United States)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  14. [Ecological compensation standard in Dongting Lake region of returning cropland to lake based on emergy analysis].

    Science.gov (United States)

    Mao, De-Hua; Hu, Guang-Wei; Liu, Hui-Jie; Li, Zheng-Zui; Li, Zhi-Long; Tan, Zi-Fang

    2014-02-01

    The annual emergy and currency value of the main ecological service value of returning cropland to lake in Dongting Lake region from 1999 to 2010 was calculated based on emergy analysis. The calculation method of ecological compensation standard was established by calculating annual total emergy of ecological service function increment since the starting year of returning cropland to lake, and the annual ecological compensation standard and compensation area were analyzed from 1999 to 2010. The results indicated that ecological compensation standard from 1999 to 2010 was 40.31-86.48 yuan x m(-2) with the mean of 57.33 yuan x m(-2). The ecological compensation standard presented an increase trend year by year due to the effect of eco-recovery of returning cropland to lake. The ecological compensation standard in the research area presented a swift and steady growth trend after 2005 mainly due to the intensive economy development of Hunan Province, suggesting the value of natural ecological resources would increase along with the development of society and economy. Appling the emergy analysis to research the ecological compensation standard could reveal the dynamics of annual ecological compensation standard, solve the abutment problem of matter flow, energy flow and economic flow, and overcome the subjective and arbitrary of environment economic methods. The empirical research of ecological compensation standard in Dongting Lake region showed that the emergy analysis was feasible and advanced.

  15. Large scale solar district heating. Evaluation, modelling and designing

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application

  16. Summary of the Solar Two Test and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    PACHECO,JAMES E.; REILLY,HUGH E.; KOLB,GREGORY J.; TYNER,CRAIG E.

    2000-02-08

    Solar Two was a collaborative, cost-shared project between eleven US industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, was comprised of 1926 heliostats, a receiver, a thermal storage system and a steam generation system. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10 MWe, conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This paper describes the significant results from the test and evaluation activities.

  17. Performance evaluation for solar collectors in Taiwan

    International Nuclear Information System (INIS)

    Chang, T.P.

    2009-01-01

    In this paper, the global irradiation observed in Taiwan from 1990 to 1999 was used to estimate the optimal tilt angle for solar collectors. The observed data are resolved into diffusion and beam components, and transformed into instantaneous time frames using mathematical models. The energy gain on installing a single-axis tracked panel as compared to a traditional fixed panel is originally analyzed theoretically. In addition to the observation data, both types of radiation will be taken into account for comparison, i.e. both extraterrestrial radiation and global radiation predicted using empirical models. The results show that the yearly optimal angles for six selected stations are about 0.95 and 0.88 times their latitudes for extraterrestrial and predicted radiation, respectively. All of the observed irradiations are less than the predicted values for all times and stations, consequently resulting in a flatter tilt angle, with a few exceptions in summer. Since Taipei has the lowest clearness index, its yearly optimal angle calculated from observed data shows the greatest discrepancy when compared to its latitude. By employing a tracked panel, the yearly gains calculated from the observed data lie between 14.3% and 25.3%, which is significantly less than those from the extraterrestrial and predicted radiations

  18. The roles of countries in the international fossil fuel trade: An emergy and network analysis

    International Nuclear Information System (INIS)

    Zhong, Weiqiong; An, Haizhong; Shen, Lei; Fang, Wei; Gao, Xiangyun; Dong, Di

    2017-01-01

    A better understanding of the roles of countries in the international fossil fuel trade is crucial for trade security and policy optimization. This study aims to provide a new way to quantitatively analyze the roles of countries in the international fossil fuel trade by complex network analysis and Emergy theory. We transform the trade quantity of coal, crude oil and natural gas into emergy and the sum of the three emergies is the emergy of fossil fuel. We build up network models of fossil fuel based on the value of fossil fuel emergy. Then, the top relationships, the central position, the intermediary ability of the countries, and the roles of countries in the trade groups were used to analyze the roles of countries in the international fossil fuel trade network. We choose four countries, the USA, China, Russia and Saudi Arabia, as examples to show the analysis of roles and policy implications. We suggest that the USA and Russia should try to improve their intermediary abilities by diversifying their trade orientations and pay more attention to building up relationships with countries in different communities. China should seek for more tight relationships with other countries to improve its central position, and more pipelines connecting China, Russia, and other Middle Asia countries are needed. As for Saudi Arabia, expanding its industrial chain of crude oil is a better way to deal with the more fierce competition in the market. - Highlights: • Trade amounts of coal, crude oil and natural gas are transformed into Emergy. • Integrated complex network model of international fossil fuel trade is constructed. • Geographical factor is reinforced due to the restriction of transportation cost. • The old pattern is breaking and the new pattern is forming. • Different countries play different roles in international fossil fuel trade network.

  19. Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis

    International Nuclear Information System (INIS)

    Liu, Jin’e; Lin, Bin-Le; Sagisaka, Masayuki

    2012-01-01

    To promote the reduction of greenhouse gas emissions, research and development of bioethanol technologies are encouraged in Japan and a plan to utilize untilled fields to develop rice for bioethanol production as a substitute for petroleum fuel is being devised. This study applies emergy methods to compare the sustainability of petroleum fuel production and two Japanese rice-to-ethanol production scenarios: (a) ethanol from rice grain, while straw and chaff are burned as energy and (b) ethanol from rice+straw+chaff. The major emergy indices, Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), Emergy Investment Ratio (EIR), Emergy Sustainability Index (ESI), Environmental Impacts Ratio (EVR) and system transformity (Tr), are analyzed to assess the production processes. The results show that (1) petroleum fuel production presents higher ELR, EIR, EVR and lower EYR, ESI, Tr than rice-to-ethanol production, indicating rice-to-ethanol production makes sense for reduction of greenhouse gases (GHG); (2) scenario (a) performs similarly on major indicators (EYR, ESI, ELR, EIR and EVR) to scenario (b), yet the system efficiency indicator (Tr) of scenario (a, 7.572×10 5 semj/J) is much higher than (b, 4.573×10 5 semj/J), and therefore (b) is a better alternative for policy decisions; (3) both petroleum fuel production and rice-to-ethanol processes are mainly driven by purchased resources and are unsustainable and nonrenewable in the long run. - Highlights: ► We compare petrol fuel and rice-to-ethanol production using emergy indices. ► Rice-to-ethanol reduces green house gas emissions as a substitute for petrol fuel. ► Rice-to-ethanol production has better sustainability than that of petrol fuel. ► Neither petrol fuel nor biofuel production are sustainable in the long term. ► Bioethanol is not a renewable fuel.

  20. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.

  1. Emergy analysis of biogas systems based on different raw materials.

    Science.gov (United States)

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.

  2. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2013-01-01

    Full Text Available Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants’ materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system, and the other is the one whose degraded material is corn straw (BPC system. As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.

  3. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    Science.gov (United States)

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  4. Impact Evaluation of the U.S. Department of Energy's Solar Decathlon Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Harley [Lockheed Martin Energy Services Energy Solutions Group, Rockville, MD (United States)

    2012-12-01

    This report includes the methodology and findings in evaluating DOE’s Solar Decathlon event. The primary purpose of this evaluation is to learn how effectively the Solar Decathlon event is in meeting its objectives.

  5. Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.

    Science.gov (United States)

    Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper

    2017-08-10

    Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design for deconstruction : emergy approach to evaluate deconstruction effectiveness

    OpenAIRE

    Amoêda, R.

    2010-01-01

    Tese de doutoramento em Arquitectura - Projecto e Tecnologias da Construção Recovery of materials is a crucial concern to avoid depletion of natural resources nowadays. Industrial Ecology recognised the role of industrial activities in order to minimise waste flows and to maximise materials and components recovery, by means of reuse and recycling. Construction industries, however, is slowly becoming aware of building materials recovery and at present new approaches are seriousl...

  7. Is the hydrogen production from biomass technology really sustainable? Answer by Life Cycle Emergy Analysis

    DEFF Research Database (Denmark)

    Liang, Hanwei; Ren, Jingzheng; Dong, Liang

    2016-01-01

    The Sustainability performance of biomass-based hydrogen is in debate. This study aims at using Emergy Theory to investigate the sustainability hydrogen production from corn stalks by supercritical water gasification, all the inputs including renewable resources, non-renewable resources, purchased...

  8. A Brief History of the Emergy Society and its Mission in the World

    Science.gov (United States)

    In 2002, H.T. Odum authorized the formation of a society dedicated to research, communication, and education focused on the new ideas of emergy and transformity and their basis in Energy Systems Theory. From this initial concept and after a 5 period of incubation, the Internation...

  9. KEEPING THE BOOKS FOR ENVIRONMENTAL SYSTEMS: AN EMERGY ANALYSIS OF WEST VIRGINIA

    Science.gov (United States)

    Emergy provides a general accounting mechanism that allows us to view the economy and the environment on the same income statement and balance sheet. This allows an auditor to verify the economic picture by checking it against a more complete representation of the flows and stora...

  10. USING FINANCIAL ACCOUNTING METHODS TO FURTHER DEVELOP AND COMMUNICATE ENVIRONMENTAL ACCOUNTING USING EMERGY

    Science.gov (United States)

    The idea that the methods and models of accounting and bookkeeping might be useful in describing, understanding, and managing environmental systems is implicit in the title of H.T. Odum's book, Environmental Accounting: Emergy and Environmental Decision Making. In this paper, I ...

  11. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna

    2013-01-01

    kinds of crop-based biodiesel including soybean-, rapeseed-, sunflower-, jatropha- and palm-based biodiesel production options are studied by emergy analysis; soybean-based scenario is recognized as the most sustainable scenario that should be chosen for further study in China. DEA method is used...

  12. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  13. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  14. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  15. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    Science.gov (United States)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  16. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  17. Standard Practice for Evaluating Solar Absorptive Materials for Thermal Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers a testing methodology for evaluating absorptive materials used in flat plate or concentrating collectors, with concentrating ratios not to exceed five, for solar thermal applications. This practice is not intended to be used for the evaluation of absorptive surfaces that are (1) used in direct contact with, or suspended in, a heat-transfer liquid, (that is, trickle collectors, direct absorption fluids, etc.); (2) used in evacuated collectors; or (3) used in collectors without cover plate(s). 1.2 Test methods included in this practice are property measurement tests and aging tests. Property measurement tests provide for the determination of various properties of absorptive materials, for example, absorptance, emittance, and appearance. Aging tests provide for exposure of absorptive materials to environments that may induce changes in the properties of test specimens. Measuring properties before and after an aging test provides a means of determining the effect of the exposure. 1.3 Th...

  18. [Integrative study of Guangdong ecological-economic system based on emergy analysis].

    Science.gov (United States)

    Sui, Chunhua; Lu, Hongfang; Zheng, Fengying

    2006-11-01

    Based on the theories and methodologies of emergy, a quantitative analysis on the development sustainability of Guangdong Province in 1990-2003 was made from the aspects of environment, society, and economy at system and subsystem levels. The results showed that Guangdong Province was of developed provinces in China, and highly depended on the input of feedback emergy. Though the pollution control was fruitful, the increasing environmental loading was still not relieved on the whole, and the development sustainability was relatively low. This Province was increasingly relied on international market, and actually, under the status to the bad in exporting primary products and importing high-tech products. To improve the development sustainability of this Province, more concerns should be paid on improving the added values of products, making full use of the natural and labor resources in its underdeveloped area, and further bringing the economic superiority of its developed area into play.

  19. Performance evaluation of the Solar Building Test Facility

    Science.gov (United States)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  20. Evaluation of the cooking power in three different solar cookers box-type

    International Nuclear Information System (INIS)

    Terres, H; Lizardi, A; Chávez, S; López, R; Vaca, M

    2017-01-01

    In the present work calculations for the cooking power in three different solar cookers are shown. The designs considered for the solar cookers are square, rectangular and octagonal. Agree to the results, a solar cooker with larger area for the solar radiation inlet has the biggest cooking power. The cooking powers obtained for the solar cookers are 4.04 W (0.49 m 2 ), 2.06 W (0.15 m 2 ) and 0.88 W (0.19 m 2 ) which correspond to square, rectangular and octagonal designs respectively. For the evaluation, the standard ASAE S580 JAN03 was considered to evaluate the cooking power in the solar cookers. Following the method established in this standard was possible to calculate the cooking power and evaluate the solar cookers at the same time. This activity except for what has been done in the standard, have not been done in other works. (paper)

  1. Emergy-based ecological account for the Chinese economy in 2004

    Science.gov (United States)

    Jiang, M. M.; Zhou, J. B.; Chen, B.; Chen, G. Q.

    2008-12-01

    This paper provides an integrated study on the ecological account for the Chinese economy in 2004 based on emergy synthesis theory. The detailed flows of the Chinese economy is diagramed, accounted and analyzed in categories using the biophysically based ecological accounting. Through calculating environmental and economic inputs within and outside the Chinese economy, this paper discusses the Chinese international exchange, describes the resource structure, and assesses its sustainability as a whole. Also, the comparison of systematic indicators, such as emergy/dollar ratio, environmental load ratio, and emergy self-support ratio, with those of the other countries is tabled and explored to illustrate the general status of the Chinese economy in the world. Take, for example, the environmental load ratio, which was 9.29 in China 2004, it reveals that the Chinese economy put high pressure on the local environment compared with those of the environment-benign countries, such as Brazil (0.75), Australia (0.86) and New Zealand (0.81). In addition, in this paper, the accounting method of tourism is adjusted based on the previous researches.

  2. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  3. Evaluation of Solar Photosensitised River Water Treatment in the Caribbean

    Directory of Open Access Journals (Sweden)

    K. Tota-Maharaj

    2013-01-01

    Full Text Available An economical supply of hygienic potable water is one of the most pressing public health issues facing developing countries in the Caribbean region today. This project investigates the performance of a novel solar photochemical reactor for disinfecting river water. The prototype photochemical reactor was designed, constructed, and tested for the microbiological degradation of faecal coliform present in River Water. The experiments evaluated the efficacy of two photosensitive dyes (malachite green and methylene blue as agents for detoxification with concentrations ranging from 0.5 to 3.0 mg/L. The photochemical reactor operated in a single-pass mode and compared the disinfection rates with direct photolysis. The photosensitizers showed a high efficacy rate using natural sunlight with microbial reduction ranging from 97 to 99% for concentrations as low as 0.5 mg/L of dye. The sensitizers were found to be photobleaching and were very effective at lower concentrations (0.01. Post-solar disinfection included the use of a coconut fiber filter which polished the water removing residual dye concentrations and bacterial contaminants.

  4. Performance Evaluation of a Small Scale Modular Solar Trigeneration System

    Directory of Open Access Journals (Sweden)

    Handong Wang

    2014-01-01

    Full Text Available In order to improve the efficiency of solar thermal power (STP system, a novel modular system combining cooling, heating, and power generation (CCHP is proposed and introduced in this work. This modular CCHP system can simultaneously provide 10 kW electricity, −15~5°C coolant, and 60°C hot water to meet the requirements of cooling, heating, and electricity in a general family or other fields. The flow chart and working process of the modular system are introduced, based on which the energy and exergy efficiencies at the CCHP and STP operation modes are primarily evaluated and discussed. The results show that when the output electricity is constant, the overall efficiencies of energy and exergy of the system operating at the CCHP mode are 9.37 times and 2.62 times as big as those of the system operating at the STP mode, respectively. Thus, the modular solar thermal CCHP system can improve the energy and exergy efficiencies. Furthermore, calculation shows that both the overall energy and exergy efficiencies decrease with increase of inlet vapor temperature at given inlet vapor pressure, but both the efficiencies increase with increase of inlet vapor pressure at given inlet temperature.

  5. Performance evaluation for solar liquid desiccant air dehumidification system

    Directory of Open Access Journals (Sweden)

    Mohamed Elhelw

    2016-06-01

    In addition, the maximum solar thermal energy was determined to meet the regeneration demand according to the hourly average solar radiation data. For 220 m2 evacuated tube collector area, the maximum required heat energy is obtained as 38,286 kW h on December, while using solar energy, will save energy by 30.28% annual value.

  6. Performance Evaluation of a Pebble Bed Solar Crop Dryer ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The solar crop dryer consists of an imbedded pebble bed solar heat storage unit/solar collector ... The crop-drying chamber is made of drying trays of wire gauze while the roof is made of transparent glazing.

  7. performance evaluation of a pebble bed solar crop dryer abstract

    African Journals Online (AJOL)

    Dr Obe

    The open-air sun drying is prevalent and very common in the rural areas. Farmers spread their agricultural produce such as maize, cassava, pepper, tomatoes etc. ... drying system. The abundance of solar radiation in. Nigeria could make crop drying with solar dryers very easy and simple. Economic appraisal of solar drying ...

  8. On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy

    International Nuclear Information System (INIS)

    Iribarren, Diego; Vázquez-Rowe, Ian; Rugani, Benedetto; Benetto, Enrico

    2014-01-01

    The definition of criteria for the benchmarking of similar entities is often a critical issue in analytical studies because of the multiplicity of criteria susceptible to be taken into account. This issue can be aggravated by the need to handle multiple data for multiple facilities. This article presents a methodological framework, named the Em + DEA method, which combines emergy analysis with Data Envelopment Analysis (DEA) for the ecocentric benchmarking of multiple resembling entities (i.e., multiple decision making units or DMUs). Provided that the life-cycle inventories of these DMUs are available, an emergy analysis is performed through the computation of seven different indicators, which refer to the use of fossil, metal, mineral, nuclear, renewable energy, water and land resources. These independent emergy values are then implemented as inputs for DEA computation, thus providing operational emergy-based efficiency scores and, for the inefficient DMUs, target emergy flows (i.e., feasible emergy benchmarks that would turn inefficient DMUs into efficient). The use of the Em + DEA method is exemplified through a case study of wind energy farms. The potential use of CED (cumulative energy demand) and CExD (cumulative exergy demand) indicators as alternative benchmarking criteria to emergy is discussed. The combined use of emergy analysis with DEA is proven to be a valid methodological approach to provide benchmarks oriented towards the optimisation of the life-cycle performance of a set of multiple similar facilities, not being limited to the operational traits of the assessed units. - Highlights: • Combined emergy and DEA method to benchmark multiple resembling entities. • Life-cycle inventory, emergy analysis and DEA as key steps of the Em + DEA method. • Valid ecocentric benchmarking approach proven through a case study of wind farms. • Comparison with life-cycle energy-based benchmarking criteria (CED/CExD + DEA). • Analysts and decision and policy

  9. Method of evaluation of solar collector cost under fuel price change

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Sadykova, N. S.; Saifiev, A. U.; Ismanzhanov, A. I.; Samiev, M.

    2013-01-01

    When we take into account the problems of large-scale use of solar energy, the matters of economic perspectives of solar plants in the future become vital. We present the method on whose basis evaluation of the cost of solar collectors is performed taking into account the change in the fuel prices. The method is based on the approach to evaluation of the cost of energy generated by the solar plants offered previously by the authors. Assuming that the components of expenditures for production are not changed, we obtained that the cost of solar collectors will grow, at approximately the same ratio as the growth of the prices for fuel (energy). Thus, the problem of creation of the economically effective solar collectors should be solved already today, at the existing prices for materials and fuel. At present, it is assumed that competitiveness of the solar plants will increase with the growth of the fuel prices. (authors)

  10. SOLAR SAIL PROPULSION SENSITIVITY TO MEMBRANE SHAPE AND OPTICAL PROPERTIES USING THE SOLAR VECTORING EVALUATION TOOL (SVET)

    Science.gov (United States)

    Ewing, Anthony

    2005-01-01

    Solar sail propulsive performance is dependent on sail membrane optical properties and on sail membrane shape. Assumptions of an ideal sail (flat, perfect reflector) can result in errors which can affect spacecraft control, trajectory analyses, and overall evaluation of solar sail performance. A MATLAB(R) program has been developed to generate sail shape point cloud files for two square-architecture solar sail designs. Simple parabolic profiles are assumed for sail shape under solar pressure loading. These files are then input into the Solar Vectoring Evaluation Tool (SVET) software to determine the propulsive force vector, center of pressure, and moments about the sail body axes as a function of sail shape and optical properties. Also, the impact of the center-line angle, due to non-perfect optical properties, is addressed since this constrains sail force vector cone angle and is often overlooked when assuming ideal-reflector membranes. Preliminary sensitivity analysis using these tools aids in determining the key geometric and optical parameters that drive solar sail propulsive performance.

  11. Emergía de tres sistemas agroforestales en el sur del municipio de Lempira, Honduras Emergy of tree agroforestry systems in southern Lempira, Honduras

    Directory of Open Access Journals (Sweden)

    óscar I. Ferreira C.

    2010-07-01

    Full Text Available Se evaluaron el uso de recursos y la sostenibilidad de tres sistemas agroforestales (bosque secundario- BS, tala y quema-TQ y sistema conservacionista Quesungual-SAQ. Se utilizaron datos de 15 parcelas de 200 m² ubicadas entre 14° 05' N y 88° 30' W y transformicidades reportadas en otros estudios. Los mayores valores de emergía se presentaron en la variable Lluvia (1.35E15 sej/ha por año y las mayores diferencias de emergía entre sistemas se observaron en suelo erosionado, especialmente en TQ, BS y SAQ tuvieron mayor Razón de Carga Ambiental que TQ (0.63, 0.14 y 0.02, respectivamente. El sistema TQ presenta el valor más alto del índice de Huella Ecológica seguido por SAQ y BS. El índice de Sostenibilidad de Emergía del sistema TQ fue 34.8, el de SAQ = 135.6 y el de BS = 4123.8, con mayores valores de sostenibilidad en el SAQ y el BS, lo cual indica que son sistemas que favorecen el uso de recursos renovables y locales.Resource use and sustainability of three agroforestry systems (Secondary Woods - BS; Fell and Burn - TQ; and Quesungal Conservation mode - SAQ were evaluated by analyzing data from fifteen 200 m² plots (14° 05' N; 88° 30' W, making use of transformity values reported in other related studies. The highest emergy values were observed for the variable rain (1.35E15 sej/ha per year; and the largest emergy differences were found in eroded soils, especially those of TQ. BS and SAQ exhibited a greater Environmental Load Ratio than TQ (0.63, 0.14 and 0.02, respectively. TQ showed the largest Ecological Footprint Index value, followed by SAQ and BS. Emergy Sustainability Index for TQ was 34.8, whereas SAQ and BS reached respective values of 135.6 and 4,123.8. The latter two data, as compared to the former, reveal how these systems (SAQ and BS favor the use of local renewable resources.

  12. Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL

    DEFF Research Database (Denmark)

    Luthra, Sunil; Govindan, Kannan; Kharb, Ravinder K.

    2016-01-01

    Determining solar power initiatives and developments for a country as large as India is difficult due to the involvement of different enablers. The decisions of these enablers will influence the formulation of strategies to encourage solar power development in India. The present research work...... critically analyzes Indian solar power developments to recognize and to evaluate key enablers that will encourage greater usage in Indias current scenario. A literature review that explores the Indian solar power sector is included, with a focus on need potential, and an examination of the key enablers....... This work identifies sixteen solar power enablers based on relevant literature and experts inputs. To evaluate and to categorize the recognized solar power development key enablers, a fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) based methodology is utilized. The fuzzy DEMATEL approach...

  13. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  14. Evaluation of solar thermal storages with quantitative flow visualisation

    Energy Technology Data Exchange (ETDEWEB)

    Logie, W.; Frank, E.; Luzzi, A.

    2008-07-15

    The non-intrusive Quantitative Flow Visualisation (QFV) Techniques of Particle Imaging Velocimetry (PIV) and Laser Induced Fluorescence (LIF) have been evaluated in the context of experimental investigations on solar Thermal Energy Storages (TES). Much competence and experience has been gained in the integration of these powerful yet complex and time consuming flow analysis methods into the realm of laboratory experimentation. In addition to gathering experience in the application of QFV techniques, a number of charging and discharging variations were considered in light of exergetic evaluation for the influence they have on the ability of a TES to stratify. The contemporary awareness that poorly chosen pitch to diameter ratios by the design of immersed coil heat exchangers leads to a reduction in heat exchange and an increase in mixing phenomenon has been confirmed. The observation of two combitank (combined domestic hot water and space heating) configurations has shown that free convective heat transfer forces in the form of mixing energy play a significant role in the stratification efficiency of thermal energy storages. (author)

  15. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximat...... and the sky temperature. Based on the investigations, recommendations for change of the test methods and test conditions are considered. The investigations are carried out within the NEGST (New Generation of Solar Thermal Systems) project financed by EU.......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  16. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  17. An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis

    International Nuclear Information System (INIS)

    Yue, Cheng-Dar; Huang, Guo-Rong

    2011-01-01

    Solar energy is widely regarded as a major renewable energy source, which in future energy systems will be able to contribute to the security of energy supply and the reduction of CO 2 emissions. This study combined an evaluation of solar energy resources in Taiwan with land use analysis, which allows the potentials and restrictions of solar energy exploitation resulting from local land use conditions to be considered. The findings unveiled in this study indicate that photovoltaic electricity generation and solar water heating have the potential of producing 36.1 and 10.2 TWh of electricity and thermal energy annually in Taiwan, accounting for 16.3% and 127.5% of the total domestic consumption of electricity and energy for household water heating in 2009, respectively. However, the exploited solar photovoltaic power generation in 2009 accounted for only 0.02% of total potential in Taiwan, while the exploited solar water heating accounted for 11.6% of total potential. Market price and investment incentive are the dominant factors that affect market acceptance of solar energy installation in Taiwan. The administrative barriers to the purchase and transmission of electricity generated from renewable energy sources have to be removed before the potential contribution of solar energy can be realized. - Highlights: ► Solar PV and solar water heating have a vital energy potential. ► Solar PV has an essential potential in CO 2 reduction. ► Investment incentives dominate market acceptance of solar energy. ► Appropriate urban building bulk facilitates energy autonomy using solar energy. ► Land use analysis is a viable tool to evaluate solar energy potential.

  18. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  19. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  20. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  1. Flat solar collector an approach to its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sonino, T [Israel Atomic Energy Commission, Yavne. Soreq Nuclear Research Center

    1977-01-01

    The flat solar collector is the most widely used device for the utilization of solar energy, but its energetic and economic values are still debated. A preliminary energy and economic analysis is presented. The energy analysis indicates that the energy needed to produce one solar collector is equivalent to the electricity consumed by an electric water heater in roughly three months. The economic analysis indicates that the pay-back time for a solar collector varies from 5.5 to 7.7 yr. according to the discount rate. The economic analysis from a national point of view indicates that the use of solar collectors for domestic purposes could only reduce electricity consumption in Israel by 10%.

  2. Economic evaluation of the industrial solar production of lime

    International Nuclear Information System (INIS)

    Meier, Anton; Gremaud, Nicolas; Steinfeld, Aldo

    2005-01-01

    The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO 3 → CaO + CO 2 at above 1300 K has the potential of reducing CO 2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant. An economic assessment for an industrial solar calcination plant with 25 MW th solar input indicates that the cost of solar produced lime ranges between 128 and 157 $/t, about twice the current selling price of conventional lime. The solar production of high purity lime for special sectors in the chemical and pharmaceutical industry might be competitive with conventional fossil fuel based calcination processes at current fuel prices

  3. Evaluation of Glare at the Ivanpah Solar Electric Generating System

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sims, Cianan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Christian, Joshua Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    The Ivanpah Solar Electric Generating System (ISEGS), located on I - 15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. Reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground - based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impact s of the glare . Results showed that the intense glare viewed from the airspace above ISEGS was caused by he liostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (pot ential for after - image) up to a distance of %7E6 miles (10 km), but the values were below the threshold for permanent eye damage . Glare from the receivers had a low potential for after - image at all ground - based monitoring locations outside of the site bound aries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed. This page intentionally left blank

  4. Experimental evaluation of flat plate solar collector using nanofluids

    International Nuclear Information System (INIS)

    Verma, Sujit Kumar; Tiwari, Arun Kumar; Chauhan, Durg Singh

    2017-01-01

    Highlights: • Solar collectors are special kind of heat exchangers. • Particle concentration is important parameter for thermal conductivity of nanofluid. • Rise of Bejan number indicates systems qualitative response. • Multi walled carbon nanotube is best performing. - Abstract: The present analysis focuses on a wide variety of nanofluids for evaluating performance of flat plate solar collector in terms of various parameters as well as in respect of energy and exergy efficiency. Also, based on our experimental findings on varying mass flow rate, the present investigation has been conducted with optimum particle volume concentration. Experiments indicate that for ∼0.75% particle volume concentration at a mass flow rate of 0.025 kg/s, exergy efficiency for Multi walled carbon nanotube/water nanofluid is enhanced by 29.32% followed by 21.46%, 16.67%, 10.86%, 6.97% and 5.74%, respectively for Graphene/water, Copper Oxide water, Aluminum Oxide/water, Titanium oxide/water, and Silicon Oxide/water respectively instead of water as the base fluid. Entropy generation, which is a drawback, is also minimum in Multiwalled carbon nanotube/water nanofluids. Under the same thermophysical parameters, the maximum drop in entropy generation can be observed in Multiwalled carbon nanotube/water, which is 65.55%, followed by 57.89%, 48.32%, 36.84%, 24.49% and 10.04%, respectively for graphene/water, copper oxide/water, Aluminum/water, Titanium Oxide /water, and Silicon oxide /water instead of water as the base fluid. Rise of Bejan number towards unity emphasizes improved system performance in terms of efficient conversion of the available energy into useful functions. The highest rise in energy efficiency of a collector has been recorded in Multiwalled carbon nanotube/water, which is 23.47%, followed by 16.97%, 12.64%, 8.28%, 5.09% and 4.08%, respectively for graphene/water, Copper oxide/water, Aluminum oxide/water, Titanium oxide /water, and Silicon oxide/water instead of

  5. Emergy assessment of ecological compensation of groundwater overexploitation in Xuchang city

    Science.gov (United States)

    Lv, C.; Ling, M.; Cao, Q.; Guo, X.

    2017-12-01

    In recent 30 years, the amount of groundwater extraction in China is increasing at a rate of 2.5 billion m3 per year. And the growing amount led to form a predatory exploitation in many parts, and caused serious exploitation problems, such as land subsidence, sea water intrusion, surface runoff reduction, vegetation decline, groundwater pollution, and so on. Ecological compensation of overexploitation has become an important mean to adjust the environmental benefits distribution relationship related to the groundwater system and to alleviate the problem of groundwater overexploitation. Based on the ecological economics emergy value theory and analysis method, the emergy loss value calculation method of eco-environmental problems caused by groundwater overexploitation, such as environmental land subsidence (collapse), salt (sea) water intrusion, surface runoff reduction, vegetation deterioration and groundwater pollution, is established, and the assessment method, which takes emergy loss value as the quantity of ecological compensation of groundwater overexploitation, is put forward. This method can reflect the disaster loss degree of groundwater overexploitation more intuitively, and it helps to improve, manage and restore a series of problems caused by groundwater overexploitation, construct a scientific and reasonable groundwater ecological compensation mechanism, and provide good ecological security for the sustainable and healthy development of national economy in our country. Taking Xuchang city as an application example, the results showed that the ecological economic loss of groundwater overexploitation was 109 million in 2015, accounting for 0.3% of the total GDP. Among them, the ecological economic loss of land subsidence is the largest, which was 77 million, accounting for 70.3% of the total loss, the second one is surface runoff reducing loss, which was 27 million, accounting for 24.7% of the total loss, and underground water pollution loss is the

  6. Ohm's Law and Solar Energy. Courseware Evaluation for Vocational and Technical Education.

    Science.gov (United States)

    Gates, Earl; And Others

    This courseware evaluation rates the Ohm's Law and Solar Energy program developed by the Iowa Department of Public Instruction. (The program--not contained in this document--covers Ohm's law and resistance problems, passive solar energy, and project ideas and sources.) Part A describes the program in terms of subject area (construction and…

  7. Evaluating the Impact of the 2017 Solar Eclipse on U.S. Western Interconnection Operations

    Energy Technology Data Exchange (ETDEWEB)

    Veda, Santosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tan, Jin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chartan, Erol Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gilroy, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hettinger, Dylan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ericson, Sean J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ausmus, Jason [Peak Reliability; Kincic, Slaven [Peak Reliability; Zhang, Xiaping [Peak Reliability; Yuan, Guohui [U.S. Department of Energy, Solar Energy Technologies Office; Duckworth, Jonathan [NREL former employee

    2018-04-25

    With support from the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), the National Renewable Energy Laboratory (NREL) partnered with Peak Reliability to evaluate the impact of the August 21, 2017 total solar eclipse on the reliability and grid operations in the Western Electricity Coordinating Council (WECC) territory.

  8. Evaluation of usage and fuel savings of solar ovens in Nicaragua

    International Nuclear Information System (INIS)

    Bauer, Gordon

    2016-01-01

    Solar cooking technology has been promoted as a solution to both global poverty and environmental degradation, but relatively little research exists on the impact of solar oven usage on biomass fuel consumption. This study evaluates solar oven usage and wood consumption in northern Nicaragua during both the rainy and dry seasons, using surveys, temperature dataloggers, and direct measurements of fuelwood use. Solar oven owners reported usage on 79% of days during the dry season, and 41% of days during the rainy season. Comparison with oven temperature records confirmed usage on 50% of days during the dry season, and 16% of days during the rainy season. However, wood consumption measurements showed no statistically significant difference between days with solar oven usage and days without, suggesting that frequency of usage alone is not an appropriate proxy for fuel savings. Survey results suggest that a large part of solar oven usage came in addition to biomass cooking, as opposed to replacing it. These results suggest a need for further study of wood consumption in situ and more focus on the specific kinds of foods prepared in solar cookers, as well as local cultural and climatic conditions. - Highlights: • Solar oven usage reported on most days during dry season. • No statistically significant fuelwood savings can be attributed to solar oven use. • Usage reported on surveys differs substantially from solar oven temperature data. • Possible causes of lack of wood savings range from weather to diet and gender norms.

  9. Performance evaluation of a flow-down collecting solar system; Ryuka shunetsushiki solar system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Li, X; Baba, H; Endo, N [Kitami Institute of Technology, (Japan)

    1997-11-25

    The paper evaluated performance of a flow-down collecting solar system. The solar heat pump PV system is composed of a solar system, heat pump and PV, of which the heat collecting portion is a water-use horizontal evacuated double glass tube solar collector. As a result of the performance measurement, the necessity of fundamental improvement arose. Under an idea of disproving common sense of the original forced circulation solar system, a system was designed in which heat is collected by making the heat media reversely circulate and flow down in accordance with gravity. When the flow rate was 2m{sup 3}/h, the collecting rate reached a maximum, approximately 54% (36.9% before improvement). When the flow rate was 1.3-1.5m{sup 3}/h, the system can realize the maximum merit, and the collecting efficiency became approximately 50%. Helped by reduction in consumed power, the average system performance coefficient reached more than 85% (28.9% before improvement). The obtainable energy rate rapidly increased to 2.9 times more than before improvement. Further, the consumed power of pump was decreased 65% from before improvement when the flow rate was 2.4m{sup 3}/h. 2 refs., 5 figs.

  10. Thermal evaluation of a sun tracking solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    El-Tous, Yousif; Al-Mofleh, Anwar [Department of Electrical Engineering, Faculty of Engineering Technology, Al-Balqa' Applied University, P.O. Box 15008, Amman (Jordan); Badran, Omar. O. [Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Appllied University, P.O. Box 15008, Amman (Jordan)

    2012-07-01

    Solar energy is one of many important types of renewable energy. Jordan is of great needs for renewable energy systems applications since it depends totally in generation of its required energy on imported oil. This study is an experimental work of tracking system developed for enhancing the solar heating using solar cooker. An electronic sun tracking device was used for rotating the solar heater with the movement of the sun. A comparison between fixed and sun tracked cooker showed that the use of sun tracking increased the heating temperature by 36% due to the increase in radiation concentration and using internal mirror reflectors. The programming method used for tracking control works efficiently in all weather conditions regardless of the presence of clouds. It can be used as backup control circuit in which relays are the essential control devices.

  11. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... of hybrid PVT solar air heater had been proposed in the past. ...... president of Bag Energy Research Society (BERS:www.bers.in) which is responsible for energy education in ...

  12. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  13. Solar water-heating performance evaluation-San Diego, California

    Science.gov (United States)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  14. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  15. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  16. Development and performance evaluation of forced convection potato solar dryer

    International Nuclear Information System (INIS)

    Khan, M.A.; Sabir, M.S.; Iqbal, M.

    2011-01-01

    This research paper deals with the design development and testing of a forced convection solar dryer, for drying and converting to flour of high moisture content vegetables like potatoes. The angle of solar collector was made adjustable for the absorption of maximum solar radiation by the absorber plate. The air flow rate was controlled by adjustable gate valve to find the optimum flow rate for dehydration of the product. The penetration of solar radiation raised the temperature of the absorber plate of the dryer to 110 deg. C during the operation under stagnation or no load conditions. The maximum air temperature attained in the solar air heater, under this condition was 80 deg. C. The dryer was loaded with 12 Kg of blanched potato chips having an initial moisture content of 89.75%, and the final desired moisture content of 6.95% was achieved within five hours without losing the color of potato chips, while the moisture contents reduction was from 89.75% to 33.75% for five hours in open sun drying under shade. The drying cost for 1 Kg of potatoes was calculated as Rs. 245 and it was Rs. 329 in the case of an electric dryer. The life span of the solar dryer was assumed to be 20 years. The cumulative present worth of annual savings over the life of the solar dryer was calculated for blanched potato chips drying, and it turned out be Rs.163177.67/- which was much higher than the capital cost of the dryer (Rs. 25000). The payback period was calculated as 0.89 years, which was also very small considering the life of the system (20 years). (author)

  17. Evaluation of hybrid solar – biomass dryer with no load

    Directory of Open Access Journals (Sweden)

    Yassen Tadahmun Ahmed

    2014-07-01

    Full Text Available Experimental study was carried out to investigate the performance of designed and fabricated hybrid solar-biomass dryer without load. The solar side was a natural convection mixed mode, while the biomass side was a hot air produced from a burner/gas to gas heat exchanger. The experiments have been conducted to test the dryer temperature, inlet and outlet relative humidity, outlet velocity, and biomass feeding rate. In the solar mode the maximum dryer temperature was 63°C. Behaviours of the velocity in the dryer was found to follow solar radiation available to the dryer. The velocity was in the range of 0.6 – 1.35 m/s through the 0.0176 m2 area of the outlet when the solar radiation was in the range of 150 – 880 W/m2. Two feeding rates of wood were used to investigate the dryer performance through the night. The results showed that at feeding rate 278 g/hr, the drying air mean temperature was 62 ºC. This temperature was more suitable than the measured drying air temperature at feeding rate 490 g/hr. Also the 62 °C drying environment is more stable and feasible for drying almost all types of products.

  18. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  19. Performance Evaluation of Radiation Sensors for the Solar Energy Sector

    Directory of Open Access Journals (Sweden)

    Laurent Vuilleumier

    2017-11-01

    Full Text Available Rotating Shadowband Irradiometers (RSI and SPN1 Sunshine Pyranometers allow determining the diffuse and direct components of solar radiation without sun trackers; they can be deployed in networks for continuous field operation with modest maintenance. Their performances are evaluated here by analyzing their errors with respect to well characterized references. The analysis is based on 1‑minute data recorded over a 15‑month period at the Payerne BSRN station in Switzerland. The analysis was applied both to the whole dataset and data subsets reflecting particular conditions to allow a better understanding of how instrument performance depends on such conditions.The overall performance for measuring global horizontal irradiance (GHI is satisfactory with deviations compatible with an expanded uncertainty of ±25 Wm−2 (±10 %. For diffuse horizontal irradiance (DfHI, RSIs exhibited errors on the order of ±20 Wm−2 (±13 % with some of them being affected by small systematic negative biases on the order of −5 Wm−2 (median. SPN1s underestimate DfHI by about −10 Wm−2 (median with a relatively large range of the expanded error distribution between −45 Wm−2 and 20 Wm−2 (−35 % to 13 %. For direct normal irradiance (DNI, the extended error range for RSIs is on the order of ±40 Wm−2 (±5–6 % with some instruments presenting no bias while others are affected by median biases up to −15 Wm−2. SPN1s exhibit a relatively large median bias of 40 Wm−2, and an extended range of the error distribution between −45 Wm−2 and 125 Wm−2 (−6 % to 19 %. Typical errors on the integrated yearly energy per unit surface area are on the order of a few percent or less (< 5 % for RSI with negligible errors on DNI for some RSI instruments. SPN1 integrated errors are negligible for GHI, but on the order of −8 % for DfHI, and between 9 % and 11 % for DNI.For RSIs, GHI and DfHI errors showed

  20. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  1. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  2. Development and Evaluation of Solar Tunnel Dryer for Commercial Fish Drying

    Science.gov (United States)

    Mohod, A. G.; Khandetod, Y. P.; Shrirame, H. Y.

    2014-01-01

    The local practice of drying fish in open sun drying poses problems such as high moisture content, uncontrolled drying and contamination. These problems can be avoided by proper use of improved methods such as the solar tunnel dryer, which results in faster drying of fish. The semi cylindrical walk-in type natural convection solar tunnel dryer, having drying area of 37.5 m2 was developed and evaluated for the drying of fish products in comparison with the conventional method of open sun drying. The experiments were conducted without fish and with fish to evaluate the performance of solar tunnel dryer. The average rise in temperature inside the solar tunnel dryer was found to be 11.24 °C and 18.29 °C over the ambient temperature during no load test in winter and summer respectively. The average 28 % saving in time was observed for selected fish drying using solar tunnel dryer over open sun drying method with average drying efficiency of 19 %. The economics was calculated for drying of prawns ( Parapaeneopsis stylifera) by solar tunnel dryer and open sun drying system on the basis of business as a whole. The economics of the solar tunnel dryer is presented in term of Net present worth, Benefit-Cost Ratio, Payback period, Profitability index and Internal rate of return. The pay back period for solar tunnel dryer was found to be 2.84 years.

  3. Solar energy system economic evaluation for Colt Pueblo, Pueblo, Colorado

    Science.gov (United States)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at Pueblo, Colorado; Yosemite, California; Albuquerque, New Mexico; Fort Worth, Texas; and Washington, D.C. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  4. High Performance Flat Plate Solar Thermal Collector Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  5. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  6. evaluation of a modified passive solar housing system for poultry

    African Journals Online (AJOL)

    User

    The hourly efficiency of the solar brick passive system was estimated at about 78.42% in a day of May and ... to high cost and unavailability of kerosene in most developing .... sulted in intermittent rainfall, cloud cover and sunshine. From the ...

  7. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  8. Evaluation of Sources of Uncertainties in Solar Resource Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of sources of uncertainties in solar resource measurement, demonstrating the impact of various sources of uncertainties -- such as cosine response, thermal offset, spectral response, and others -- on the accuracy of data from several radiometers. The study provides insight on how to reduce the impact of some of the sources of uncertainties.

  9. Evaluating the fisheries potential of solar salt works reservoirs at ...

    African Journals Online (AJOL)

    Artisanal fisheries are important livelihoods for coastal communities in many developing countries, where uncontrolled fishing can easily lead to depleted stocks in nearshore waters. Man-made reservoirs associated with solar salt works along the coast of Ungwana Bay provide alternative fishing grounds for local fishers ...

  10. Evaluation of Factors that Influence Residential Solar Panel Installations

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M. [ORNL; Omitaomu, Olufemi A. [ORNL; Kotikot, Susan M. [ORNL; Held, Elizabeth L. [ORNL; Bhaduri, Budhendra L. [ORNL

    2018-03-01

    Though rooftop photovoltaic (PV) systems are the fastest growing source of distributed generation, detailed information about where they are located and who their owners are is often known only to installers and utility companies. This lack of detailed information is a barrier to policy and financial assessment of solar energy generation and use. To bridge the described data gap, Oak Ridge National Laboratory (ORNL) was sponsored by the Department of Energy (DOE) Office of Energy Policy and Systems Analysis (EPSA) to create an automated approach for detecting and characterizing buildings with installed solar panels using high-resolution overhead imagery. Additionally, ORNL was tasked with using machine learning techniques to classify parcels on which solar panels were automatically detected in the Washington, DC, and Boston areas as commercial or residential, and then providing a list of recommended variables and modeling techniques that could be combined with these results to identify attributes that motivate the installation of residential solar panels. This technical report describes the methodology, results, and recommendations in greater detail, including lessons learned and future work.

  11. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  12. Prototype solar house. Study of the scientific evaluation and feasibility of a research and development project

    Science.gov (United States)

    Bundschuh, V.; Grueter, J. W.; Kleemann, M.; Melis, M.; Stein, H. J.; Wagner, H. J.; Dittrich, A.; Pohlmann, D.

    1982-08-01

    A preliminary study was undertaken before a large scale project for construction and survey of about a hundred solar houses was launched. The notion of solar house was defined and the use of solar energy (hot water preparation, heating of rooms, heating of swimming pool, or a combination of these possibilities) were examined. A coherent measuring program was set up. Advantages and inconveniences of the large scale project were reviewed. Production of hot water, evaluation of different concepts and different fabrications of solar systems, coverage of the different systems, conservation of energy, failure frequency and failures statistics, durability of the installation, investment maintenance and energy costs were retained as study parameters. Different solar hot water production systems and the heat counter used for measurements are described.

  13. Performance evaluation of a solar adsorption chiller under different climatic conditions

    International Nuclear Information System (INIS)

    Alahmer, Ali; Wang, Xiaolin; Al-Rbaihat, Raed; Amanul Alam, K.C.; Saha, B.B.

    2016-01-01

    Highlights: • A solar adsorption cooling system was studied at different climatic conditions. • Effect of hot water temperature and flow rate on system performance was evaluated. • Solar collector area and tilting angle largely affected the system performance. • Economics of the solar adsorption cooling was analysed at real weather conditions. • Adsorption cooling could be potentially applied in cities with good solar radiation. - Abstract: Performance of an adsorption cooling system driven by solar thermal energy was studied under different climatic conditions. The effects of solar collector area, collector slope, hot water temperature and flow rate on the system performance were investigated using the real-time weather data of two cities: Perth, Australia (a representative city in the southern hemisphere) and Amman, Jordan (a representative city in the northern hemisphere). The simulation results showed that the two cities had similar solar radiation during the summer period and that the solar adsorption chiller could reliably provide cooling at a reasonably high system COP. For residential cooling with a total CPC (Compound Parabolic Collector) solar collector area of 36.22 m"2, the average system COP was 0.491 for Perth weather conditions and 0.467 for Amman weather conditions, respectively while the cooling capacity was 10.3 kW for Perth and 8.46 kW for Amman, respectively at peak times. Optimum performance occurred when the system run with the CPC collector slope of around 30°, the solar water storage tank volume of 1.4 m"3, inlet hot water temperature of 80 °C, and a hot water flow rate of 0.33 kg/s. An economic analysis was further investigated and the results showed that the solar driven adsorption cooling system could reduce the electricity consumption for Perth and Amman cities by 34% and 28%, respectively in comparison to a conventional vapour compression cooling system.

  14. Evaluation of a fruit solar dryer; Avaliacao de um secador solar de frutas

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, L.J.; Bittencourt, J.; Queiroz, M.R.

    2000-07-01

    A study of the Nanica banana drying was carried out in a solar dryer with six trays operating with direct exposure of the product to the solar radiation and internal convection. The solar drying was performed College of Agricultural Engineering of the UNICAMP, Campinas, S.Paulo state, Brazil. The study aimed a 20 to 25 per cent final humidity of the dry product, result obtained in the different trays during a maximum drying period of 147 hours (6 days), in a batch system. During the drying period, the average temperature of the environment air at daylight was of 26 degree Celsius with a maximum of 32 degree Celsius, and 18 degrees Celsius during nocturnal period, with a minimum of 12,6 degree Celsius. In the inward of the dryer reached average values near to 50 degree Celsius, measured at noon. The 29,540 kg initial net weight of peeled banana was reduced to yield of 10,815 kg after the drying process, obtaining an income of 36,61 percent of the total production. With the values of the product weight loss, the curves of the drying in each tray had been built, observing that, in the upper trays reached the desired humidity in a lesser period.

  15. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  16. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  17. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  18. Solar energy system performance evaluation: Scattergood School Recreation Center, West Branch, Iowa, September 1977--May 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    An operational summary is provided of the solar energy system performance at Scattergood School, West Branch, Iowa. This analysis is made by evaluation of measured system performance and by comparison of measured climatic data with long term average climatic conditions. Performance of major subsystems is also presented to illustrate their operation. The solar energy system, utilizing 2496 square feet of flat plate, air collectors, supplies a portion of the space heating and domestic hot water requirements for the 6900 square foot gymnasium and 1966 square feet of locker rooms at the Scattergood School, West Branch, Iowa. The solar energy system was installed during building construction. A 6000 bushel grain dryer, installed later, may also use the solar system during its operation. Included are: a brief system description, review of actual system performance during the report period, analysis of performance based on evaluation of climatic, load and operational conditions, and an overall discussion of results. The Scattergood solar energy system availability was 65 percent for the ECSS subsystem, 95 percent for the space heating subsystem and 55 percent for the hot water heating subsystem. The ECSS availability was affected by a malfunction of the total solar system during April 1--8 and April 14 through May 11. The hot water availability was greatly affected by the failure of the subsystem and resultant repair interval. The space heating subsystem operated throughout the entire reporting period except when the solar system was down in April and May.

  19. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  20. Solar energy system performance evaluation. Seasonal report for Wormser, Columbia, South Carolina

    Science.gov (United States)

    1980-01-01

    The Wormser Solar Energy System's operational performance from April 1979 through March 1980 was evaluated. The space heating subsystem met 42 percent of the measured space heating load and the hot water subsystem met 23 percent of the measured hot water demand. Net electrical energy savings were 4.36 million Btu's or 1277 kwh. Fossil energy savings will increase considerably if the uncontrolled solar energy input to the building is considered.

  1. Evaluation of energy economics of solar resorts on the Red Sea in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Modet, Georgei

    2011-10-28

    This thesis investigates the energy performance of resorts in Egypt. The expansive tourism development results in higher demands of energy whilst increasing the burden on the country's economy. The objective is to evaluate solar resorts versus the conventional design in terms of energy, economic and environmental performances. An energy audit is conducted among five stars resorts in Sharm el Sheikh. A self developed evaluation model using environmental life cycle costing is used to evaluate the conventional resort versus the solar resort concept. The thesis concludes with the discussion of the results and recommendations for encouraging the use of renewable energy in the hotel sector in Egypt.

  2. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra for Applications in Solar Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jessen, Wilko [German Aerospace Center (DLR); Wilbert, Stefan [German Aerospace Center (DLR); Gueymard, Christian A. [Solar Consulting Services; Polo, Jesus [CIEMAT; Bian, Zeqiang [China Meteorological Administration; Driesse, Anton [Photovoltaic Performance Labs; Marzo, Aitor [University of Antofagasta; Armstrong, Peter [Masdar Institute of Science & Technology; Vignola, Frank [University of Oregon; Ramirez, Lourdes [CIEMAT

    2018-04-01

    Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of this ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches

  3. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  4. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  5. A Systematic Approach to Explorative Scenario Analysis in Emergy Assessment with Emphasis on Resilience

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne

    2016-01-01

    Fossil energy depletion (specifically peak oil) and climate change are imagined to profoundly affect human civilisation. This motivates assessment of resilience, a concept associated with the ability to persist and maintain function. Explorative scenarios may be used to cast light on what......-site renewable inputs, (3) slowly renewable inputs, (4) direct labour and (5) indirect labour. We consider the existing EmA indicators of biophysical efficiency (the unit emergy value, UEV), the degree of dependence on free, renewable, natural flows of energy (%R) and the degree of dependence on local inputs...... systems that rely primarily on on-site renewable resources appear less sensitive to societal changes. The significance of labour inputs varies among scenarios, and a higher percentage of labour inputs leads to increasing UEV in a Green Tech scenario but lower UEV in more radical energy decent scenarios...

  6. How to Manage Inputs from Co-production Processes in Emergy Accounting

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne

    2012-01-01

    In life cycle assessments it is a challenge to allocate resource use and environmental impact in processes with multiple outputs. This is especially the case when systems include agricultural products that in their production cannot be separated from each other. For emergy accounting, Bastianoni...... with systems that do not depend on joint production processes is still lacking. As a consequence, a product relying on inputs from joint production processes appears to compete poorly with a similar product that does not have to account for co-products appearing upstream. This is counter to perceived benefits...... and Marchettini (2000) suggested how to calculate transformities and other indices for joint production systems. Their proposals however, do not include how to manage inputs from joint production systems. Thus a practical method for making systems with inputs from joint production processes comparable...

  7. How to manage inputs from joint production processes in emergy accounting

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne

    In life-cycle assessments it is a challenge to allocate resource use and environmental impact in processes with multiple outputs. This is especially the case when systems include agricultural products that in their production cannot be separated from each other. For emergy accounting, Bastianoni...... with systems that do not depend on joint production processes is still lacking. As a consequence, a product relying on inputs from joint production processes appears to compete poorly with a similar product that does not have to account for by-products appearing upstream. This is counter to perceived benefits...... and Marchettini (2000) suggested how to calculate transformities and other indices for joint production systems. Their proposals however, do not include how to manage inputs from joint production systems. Thus a practical method for making systems with inputs from joint production processes comparable...

  8. Economic Evaluation of Dual-Level-Residence Solar-Energy System

    Science.gov (United States)

    1982-01-01

    105-page report is one in a series of economic evaluations of different solar-energy installations. Using study results, an optimal collector area is chosen that minimizes life-cycle costs. From this optimal size thermal and economic performance is evaluated.

  9. Solar-energy system performance evaluation. San Anselmo School, San Jose, California, July 1980-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Pakkala, P.A.

    1981-01-01

    The San Anselmo School is a one-story, brick elementary school building located in San Jose, California. The active solar energy system is designed to supply 70% of the heating load and 72% of the cooling load. It is equipped with 3.740 square feet of evacuated tube collectors, 2175-gallon tank for storage, four auxiliary gas-fired absorption chiller/heaters, and a solar-supplied absorption chiller. The measured heating and cooling solar fractions were 9% and 19%, respectively, for an overall solar fraction of 16%, the lowered performance being attributed to severe system control problems. Performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Performance data are presented for the overall system and for each subsystem. System operation and solar energy utilization data are included. Also included are a description of the system, performance evaluation techniques, sensor technology, and typical performance data for a month. Weather data are also tabulated. (LEW)

  10. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    OpenAIRE

    Hidouri Khaoula; Benhmidene Ali; Chaouachi Bechir; Ravishankar Sathyamurthy

    2017-01-01

    In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD) and a Simple Solar Distiller H...

  11. An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China.

    Science.gov (United States)

    Wang, Lei; Li, Lianqing; Cheng, Kun; Ji, Chunying; Yue, Qian; Bian, Rongjun; Pan, Genxing

    2018-04-01

    Biochar soil amendment had been increasingly advocated for improving crop productivity and reducing carbon footprint in agriculture worldwide. However, the long-term benefits of biochar application with farming systems had not been thoroughly understood. This study quantified and assessed emergy, energy, and economic benefits of rice and wheat production throughout 6 rotation years following a single biochar amendment in a rice paddy from Southeastern China. Using the data from farm inventory, the quantified emergy indices included grain outputs, unit emergy value, and relative percentage of free renewable resources, environmental loading ratio, emergy yield ratio, and emergy sustainability index (ESI). The results indicated contrasting differences in these emergy values between biochar-amended and unamended production systems over the 6 years. The overall emergy efficiency of rice and wheat productions in biochar-amended system were higher by 11-28 and 15-47%, respectively, than that of unamended one of which the production being highly resource intensive. Moreover, ESI on average was 0.46 for rice and 0.63 for wheat in amended system, compared to 0.35 for rice and 0.39 for wheat in unamended one. Furthermore, over the 6 years following a single application, the ESI values showed considerable variation in the unamended system but consistently increasing in the amended system. Again, the biochar-amended system exerted significantly higher energy and economic return than the unamended one. Nonetheless, there was a tradeoff between rice and wheat in grain yield and net economic gain. Overall, biochar amendment could be a viable measure to improve the resilience of grain production while to reduce resource intensity and environment impacts in paddy soil from China.

  12. Assessing sustainability of a low-input single-farm vegetable box-scheme using emergy and LCA methodology

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Kulak, M.; Østergård, Hanne

    2012-01-01

    for minimizing resource use are fuels and electricity. Substitution of these would require the use of renewable energy. However, an increase in inputs from society may imply a lower net-yield to society from the farm and would thus be less desirable. The LCA data are currently being analysed and these results......Sustainable development implies necessarily making use of renewable resources to a larger extent. Thus a sustainability assessment has to identify hotspots for reducing use of non-renewable resources and potentials for substitution of these with renewable resources. LCA as well as emergy assessment......, the emergy method lacks some of the standardization and robustness of LCA. In this study we apply both methods to the same case study. The case considered is an organic stockless vegetable farm of 7 ha in UK which distributes its products in weekly boxes to 250 local consumers. The farm has systematically...

  13. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  14. Solar photovoltaic. Competitiveness and economic evaluation. Comparative and models; Energia solar fotovoltaica. Competitividad y evaluacion economica. comparativa y modelos

    Energy Technology Data Exchange (ETDEWEB)

    Collado Fernandez, E.; Colmenar Santos, A.; Peire Arroba, J.; Carpio Ibanez, J.; Castro Gil, M. A.

    2010-07-01

    Limits have been evaluated in the medium and long term economic competitiveness of solar photovoltaic energy in general and Spain in particular, considering the level of evolution that must have this form of energy production, until it become cevitamin with the other traditional energy sources and other emerging growth. to conduct the study, has developed a scenario-based methodology photovoltaic, which has taken account of the Spanish state regulation because it is vital operation on the road to real competitiveness relative to other types of energy. (Author) 10 refs.

  15. A numerical model to evaluate the flow distribution in a large solar collector field

    DEFF Research Database (Denmark)

    Bava, Federico; Dragsted, Janne; Furbo, Simon

    2017-01-01

    This study presents a numerical model to evaluate the flow distribution in a large solar collector field, with solar collectors connected both in series and in parallel. The boundary conditions of the systems, such as flow rate, temperature, fluid type and layout of the collector field can...... be easily changed in the model. The model was developed in Matlab and the calculated pressure drop and flow distribution were compared with measurements from a solar collector field. A good agreement between model and measurements was found. The model was then used to study the flow distribution...... in different conditions. Balancing valves proved to be an effective way to achieve uniform flow distribution also in conditions different from those for which the valves were regulated. For small solar collector fields with limited number of collector rows connected in parallel, balancing valves...

  16. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  17. A Low Cost Shading Analyzer and Site Evaluator Design to Determine Solar Power System Installation Area

    Directory of Open Access Journals (Sweden)

    Selami Kesler

    2015-01-01

    Full Text Available Shading analyzer systems are necessary for selecting the most suitable installation site to sustain enough solar power. Afterwards, changes in solar data throughout the year must be evaluated along with the identification of obstructions surrounding the installation site in order to analyze shading effects on productivity of the solar power system. In this study, the shading analysis tools are introduced briefly, and a new and different device is developed and explained to analyze shading effect of the environmental obstruction on the site on which the solar power system will be established. Thus, exposure duration of the PV panels to the sunlight can be measured effectively. The device is explained with an application on the installation area selected as a pilot site, Denizli, in Turkey.

  18. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  19. Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis

    OpenAIRE

    Zilong Zhang; Xingpeng Chen; Peter Heck

    2014-01-01

    Integrated analysis on socio-economic metabolism could provide a basis for understanding and optimizing regional sustainability. The paper conducted socio-economic metabolism analysis by means of the emergy accounting method coupled with data envelopment analysis and decomposition analysis techniques to assess the sustainability of Qingyang city and its eight sub-region system, as well as to identify the major driving factors of performance change during 2000–2007, to serve as the basis for f...

  20. Brushy Basin drilling project, Cedar Mountain, Emergy County, Utah

    International Nuclear Information System (INIS)

    Kiloh, K.D.; McNeil, M.; Vizcaino, H.

    1980-03-01

    A 12-hole drilling program was conducted on the northwestern flank of the San Rafael swell of eastern Utah to obtain subsurface geologic data to evaluate the uranium resource potential of the Brushy Basin Member of the Morrison Formation (Jurassic). In the Cedar Mountain-Castle Valley area, the Brushy Basin Member consists primarily of tuffaceous and carbonaceous mudstones. Known uranium mineralization is thin, spotty, very low grade, and occurs in small lenticular pods. Four of the 12 drill holes penetrated thin intervals of intermediate-grade uranium mineralization in the Brushy Basin. The study confirmed that the unit does not contain significant deposits of intermediate-grade uranium

  1. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  2. Evaluation and Error Analysis for a Solar Thermal Receiver

    International Nuclear Information System (INIS)

    Pfander, M.

    2001-01-01

    In the following study a complete balance over the REFOS receiver module, mounted on the tower power plant CESA-1 at the Plataforma Solar de Almeria (PSA), is carried out. Additionally an error inspection of the various measurement techniques used in the REFOS project is made. Especially the flux measurement system Pro hermes that is used to determine the total entry power of the receiver module and known as a major error source is analysed in detail. Simulations and experiments on the particular instruments are used to determine and quantify possible error sources. After discovering the origin of the errors they are reduced and included in the error calculation. The ultimate result is presented as an overall efficiency of the receiver module in dependence on the flux density at the receiver modules entry plane and the receiver operating temperature. (Author) 26 refs

  3. Solar Power System Evaluated for the Human Exploration of Mars

    Science.gov (United States)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  4. Evaluation and Error Analysis for a Solar thermal Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Pfander, M.

    2001-07-01

    In the following study a complete balance over the REFOS receiver module, mounted on the tower power plant CESA-1 at the Plataforma Solar de Almeria (PSA), is carried out. Additionally an error inspection of the various measurement techniques used in the REFOS project is made. Especially the flux measurement system Prohermes that is used to determine the total entry power of the receiver module and known as a major error source is analysed in detail. Simulations and experiments on the particular instruments are used to determine and quantify possible error sources. After discovering the origin of the errors they are reduced and included in the error calculation. the ultimate result is presented as an overall efficiency of the receiver module in dependence on the flux density at the receiver module's entry plane and the receiver operating temperature. (Author) 26 refs.

  5. Evaluation of photocatalytic treatment of industrial wastewater using solar energy

    International Nuclear Information System (INIS)

    Restrepo, Gloria Maria; Rios, Luis A; Marin, Juan Miguel; Montoya, Juan Felipe; Velasquez, Jorge Armando

    2008-01-01

    Wastewater of a chemical industry was treated in a photocatalytic process, using a solar photo-reactor made of glass corrugated flat plates that had been set in cascade and using Titanium Dioxide (Degussa p-25) as photocatalyst that is supported on each one of them in film form. the influence of three variables in the decontamination efficiency were studied: amount of H 2 O 2 , volume of water and amount of dispersed TiO 2 , by means of the accomplishment of fifteen experiments carried out in discontinuous operation mode by a period of 5 hours for each test. The obtained results allow establishing that the FH is a viable technology of treatment like previous stage to a biological treatment since percentage of reduction in the DQO varies between 6 and 46% and was managed to reach a biodegradable effluent in all tests

  6. PKI solar thermal plant evaluation at Capitol Concrete Products, Topeka, Kansas

    Science.gov (United States)

    Hauger, J. S.; Borton, D. N.

    1982-07-01

    A system feasibility test to determine the technical and operational feasibility of using a solar collector to provide industrial process heat is discussed. The test is of a solar collector system in an industrial test bed plant at Capitol Concrete Products in Topeka, Kansas, with an experiment control at Sandia National Laboratories, Albuquerque. Plant evaluation will occur during a year-long period of industrial utilization. It will include performance testing, operability testing, and system failure analysis. Performance data will be recorded by a data acquisition system. User, community, and environmental inputs will be recorded in logs, journals, and files. Plant installation, start-up, and evaluation, are anticipated for late November, 1981.

  7. General Electric Company proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The general requirements and methods for instrumenting, testing, and evaluating solar HVAC systems forming a part of ERDA's ''Commercial Demonstration Program'' commensurate with ERDA 23A and the Proposed Management Plan 75SDS4270 are defined. Design requirements are specified for the performance of components and subsystems comprising the instrumentation and data gathering system, as well as the support functions required to perform the diagnostic measurements, collection and processing of data, and documentation of reports on solar HVAC system performance, including economic and societal evaluations.

  8. Performance evaluation of a continuous flow inclined solar still desalination system

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; El-Samadony, Y.A.F.; Kabeel, A.E.

    2015-01-01

    Highlights: • A mathematical model was presented to analyze the performance of inclined still. • The effect of air speed, water masses, film thickness and velocity was studied. • Productivity for the Model 3 was higher than conventional still by 57.2%. • The performance was strongly affected by water film thickness and velocity. • Model 3 gave the highest performance while Model 1 gave the lowest performance. - Abstract: In the present work, theoretical study of the performance evaluation of a continuous water flow inclined solar still desalination system is performed. Three models are studied for inclined solar still desalination system with and without water close loop. The effects of the water mass, water film thickness, water film velocity and air wind velocity on the performance of the three models are studied. The results show that the inclined solar still with a makeup water is superior in productivity (57.2% improvement) compared with a conventional basin-type solar still. Also, the application of inclined solar still with open water loop is recommended when combined with other still desalination system due to high water temperature output. The inclined solar still with a makeup (Model 3) gives the highest performance while Model 1 gives the lowest performance. Finally, the water film thickness, and velocity as well as wind velocity plays important roles in improving the still productivity and efficiency

  9. Evaluating predictive models for solar energy growth in the US states and identifying the key drivers

    Science.gov (United States)

    Chakraborty, Joheen; Banerji, Sugata

    2018-03-01

    Driven by a desire to control climate change and reduce the dependence on fossil fuels, governments around the world are increasing the adoption of renewable energy sources. However, among the US states, we observe a wide disparity in renewable penetration. In this study, we have identified and cleaned over a dozen datasets representing solar energy penetration in each US state, and the potentially relevant socioeconomic and other factors that may be driving the growth in solar. We have applied a number of predictive modeling approaches - including machine learning and regression - on these datasets over a 17-year period and evaluated the relative performance of the models. Our goals were: (1) identify the most important factors that are driving the growth in solar, (2) choose the most effective predictive modeling technique for solar growth, and (3) develop a model for predicting next year’s solar growth using this year’s data. We obtained very promising results with random forests (about 90% efficacy) and varying degrees of success with support vector machines and regression techniques (linear, polynomial, ridge). We also identified states with solar growth slower than expected and representing a potential for stronger growth in future.

  10. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  11. Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi

    Science.gov (United States)

    1980-07-01

    The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.

  12. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilbert, Stefan [German Aerospace Center (DLR); Jessen, Wilko [German Aerospace Center (DLR); Gueymard, Chris [Solar Consulting Services; Polo, Jesus [CIEMAT; Bian, Zeqiang [China Meteorological Administration; Driesse, Anton [Photovoltaic Performance Labs; Marzo, Aitor [University of Antofagasta; Armstrong, Peter [Masdar Institute of Science & Technology; Vignola, Frank [University of Oregon; Ramirez, Lourdes [CIEMAT

    2018-04-12

    This paper introduces a concept for global tilted irradiance (GTI) subordinate standard spectra to supplement the current standard spectra used in solar photovoltaic applications as defined in ASTM G173 and IEC60904. The proposed subordinate standard spectra correspond to atmospheric conditions and tilt angles that depart significantly from the main standard spectrum, and they can be used to more accurately represent various local conditions. For the definition of subordinate standard spectra cases with an elevation 1.5 km above sea level, the question arises whether the air mass should be calculated including a pressure correction or not. This study focuses on the impact of air mass used in standard spectra, and it uses data from 29 locations to examine which air mass is most appropriate for GTI and direct normal irradiance (DNI) spectra. Overall, it is found that the pressure-corrected air mass of 1.5 is most appropriate for DNI spectra. For GTI, a non-pressure-corrected air mass of 1.5 was found to be more appropriate.

  13. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    Science.gov (United States)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  14. Solar membrane natural gas steam-reforming process: evaluation of reactor performance

    NARCIS (Netherlands)

    de Falco, M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  15. Solar membrane natural gas steam-reforming process : evaluation of reactor performance

    NARCIS (Netherlands)

    Falco, de M.; Basile, A.; Gallucci, F.

    2010-01-01

    In this work, the performance of an innovative plant for efficient hydrogen production using solar energy for the process heat duty requirements has been evaluated via a detailed 2D model. The steam-reforming reactor consists of a bundle of coaxial double tubes assembled in a shell. The annular

  16. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  17. Design, construction and evaluation of solarized airlift tubular photobioreactor

    International Nuclear Information System (INIS)

    Bahadur, A; Zubair, M; Khan, M B

    2013-01-01

    An innovative photobioreactor is developed for growing algae in simulated conditions. The proposed design comprises of a continuous tubular irradiance loop and air induced liquid circulation with gas separation through air lift device. The unique features of air lift system are to ensure the shear free circulation of sensitive algal culture and induce light/dark cycles to the photosynthetic micro-organisms. The design strategy employs to model and construct a 20-liter laboratory scale unit using Boro-silicate glass tubing. The material is selected to ensure maximum photon transmission. All components of the device are designed to have flexibility to be replaced with an alternative design, providing fair chance of modification for future investigators. The principles of fluid mechanics are applied to describe geometrical attributes of the air lift system. Combination of LEDs and Florescent tube lights (Warm white) were used to illuminate the photosynthesis reaction area providing a possibility to control both illumination duration and light intensity. 200 Watt Solar PV system is designed to power up the device which included air pump (100 Watt) and illumination system (100 Watt). Algal strain Chlorella sp was inoculated in photobioreactor which was sparged with air and carbon dioxide. The growth was sustained in the batch mode with daily monitoring of temperature, pH and biomass concentration. The novel photobioreactor recorded a maximum experimental average yield of 0.65 g/l.day (11.3 g/m 2 .day) as compared to theoretical modeled yield of 0.82 g/l.day (14.26 g/m 2 .day), suggesting the device can be efficiently and cost-effectively employed in the production of algal biomass for biofuels, concomitantly mitigating CO 2 .

  18. Solar-Powered Compaction Garbage Bins in Public Areas: A Preliminary Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Long Duc Nghiem

    2010-02-01

    Full Text Available An excel-based model was developed to evaluate economic and environmental benefits of the solar-powered compaction garbage bins in public areas in Australia. Input data were collected from Brisbane and Wollongong City councils, and Sydney Olympic Park. The results demonstrate that solar-powered compaction garbage bins would provide environmental benefits in all scenarios. However, results of the economic analysis of the three studied areas varied significantly. The unique situation of Sydney Olympic Park made implementation in that facility particularly appealing. A lower monthly rental cost is needed for the implementation of this novel waste management practice.

  19. Techno-economic evaluation of a solar powered water desalination plant

    International Nuclear Information System (INIS)

    Fiorenza, G.; Sharma, V.K.; Braccio, G.

    2003-01-01

    Water desalination technologies and their possible coupling with solar energy have been evaluated. The topic is of particular interest, especially for countries located within the Southern Mediterranean belt, generally characterized with vast arid and isolated areas having practically no access to electric power from the national grid. Economic factors being one of the main barriers to diffusion of solar devices so far, an attempt has been made to estimate the water production cost for two different seawater desalination systems: reverse osmosis and multiple effect, powered by a solar thermal and a photovoltaic field, respectively. The results obtained for plants of capacity varying between 500 and 5000 m 3 /d have been compared to results concerning a conventional desalination system. In addition, the influences of various parameters, such as depreciation factor, economic incentives, PV modules cost and oil price, have also been considered

  20. Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

    1987-03-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

  1. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  2. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  3. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  4. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  5. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    Science.gov (United States)

    1980-01-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  6. Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey

    Directory of Open Access Journals (Sweden)

    Raad Kadhim Al-Dualimi

    2016-08-01

    Full Text Available A prior study on the performance of high-efficient models for a heliostat field and solar receiver at various candidate locations (e.g., certain regions in the south of Turkey helped determine suitable locations for installing solar tower power plant units. This study considered the fact that solar tower power plants are affected by the working conditions of a particular site, which helps realize the highest performance of the solar power tower plant. An optimized heliostat field consisting of 2650 SENER heliostats and a model of a solar receiver based on the data obtained using Gemasolar in Seville, Spain, was used as a reference in this work. Each heliostat position is specified using an optimization algorithm that refines previously proposed models, and two parameters are added to this model to further optimize the heliostat layout. Then, a sample analytical thermal model is used for predicting the radiative and convective heat losses from the receiver system. Article History: Received March 13rd 2016; Received in revised form Jun 22nd 2016; Accepted July 3rd 2016; Available onlineHow to Cite This Article: Ra'ad, K, M, A. and Mehmet, S, S. (2016, Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey. Int. Journal of Renewable Energy Development, 5(2, 151-161, http://dx.doi.org/10.14710/ijred.5.2.151-161

  7. An ecological compensation standard based on emergy theory for the Xiao Honghe River Basin.

    Science.gov (United States)

    Guan, Xinjian; Chen, Moyu; Hu, Caihong

    2015-01-01

    The calculation of an ecological compensation standard is an important, but also difficult aspect of current ecological compensation research. In this paper, the factors affecting the ecological-economic system in the Xiao Honghe River Basin, China, including the flow of energy, materials, and money, were calculated using the emergy analysis method. A consideration of the relationships between the ecological-economic value of water resources and ecological compensation allowed the ecological-economic value to be calculated. On this basis, the amount of water needed for dilution was used to develop a calculation model for the ecological compensation standard of the basin. Using the Xiao Honghe River Basin as an example, the value of water resources and the ecological compensation standard were calculated using this model according to the emission levels of the main pollutant in the basin, chemical oxygen demand. The compensation standards calculated for the research areas in Xipin, Shangcai, Pingyu, and Xincai were 34.91 yuan/m3, 32.97 yuan/m3, 35.99 yuan/m3, and 34.70 yuan/m3, respectively, and such research output would help to generate and support new approaches to the long-term ecological protection of the basin and improvement of the ecological compensation system.

  8. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  9. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  10. Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project

    Science.gov (United States)

    Penn, M. J.; Haden, C.

    2017-12-01

    On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar

  11. A simplified method for evaluating thermal performance of unglazed transpired solar collectors under steady state

    International Nuclear Information System (INIS)

    Wang, Xiaoliang; Lei, Bo; Bi, Haiquan; Yu, Tao

    2017-01-01

    Highlights: • A simplified method for evaluating thermal performance of UTC is developed. • Experiments, numerical simulations, dimensional analysis and data fitting are used. • The correlation of absorber plate temperature for UTC is established. • The empirical correlation of heat exchange effectiveness for UTC is proposed. - Abstract: Due to the advantages of low investment and high energy efficiency, unglazed transpired solar collectors (UTC) have been widely used for heating in buildings. However, it is difficult for designers to quickly evaluate the thermal performance of UTC based on the conventional methods such as experiments and numerical simulations. Therefore, a simple and fast method to determine the thermal performance of UTC is indispensable. The objective of this work is to provide a simplified calculation method to easily evaluate the thermal performance of UTC under steady state. Different parameters are considered in the simplified method, including pitch, perforation diameter, solar radiation, solar absorptivity, approach velocity, ambient air temperature, absorber plate temperature, and so on. Based on existing design parameters and operating conditions, correlations for the absorber plate temperature and the heat exchange effectiveness are developed using dimensional analysis and data fitting, respectively. Results show that the proposed simplified method has a high accuracy and can be employed to evaluate the collector efficiency, the heat exchange effectiveness and the air temperature rise. The proposed method in this paper is beneficial to directly determine design parameters and operating status for UTC.

  12. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    Science.gov (United States)

    Wolf, M.

    1981-01-01

    The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.

  13. Evaluation and comparison of return of investment for proposed use of solar systems in the Czech and Slovak Republic

    Directory of Open Access Journals (Sweden)

    E. Weiss

    2012-07-01

    Full Text Available The aim of the paper is to evaluate return of investment (ROI and cost savings from proposed use of solar systems for residents funded by government grants. The paper deals with proposals for solar energy systems for various use, simple calculations of payback periods of solar systems financed with subsidy and without subsidy. Apart from climatic conditions, chemical composition the of the absorber and structural elements that are made of copper, respectively aluminum and Al-Mg alloy play an important role in assessing the payback period of the investment in solar panels.

  14. Multi-criteria evaluation of cooking energy alternatives for promoting parabolic solar cooker in India

    Energy Technology Data Exchange (ETDEWEB)

    Pohekar, S.D. [Birla Institute of Technology and Science, Pilani (India). CREED; Ramachandran, M. [Birla Institute of Technology and Science, Dubai (United Arab Emirates)

    2004-07-01

    The policy formulation for cooking energy substitution by renewables is addressed in multi-criteria context. A survey is conducted to know the perceptions of different decision making groups on present dissemination of various cooking energy alternatives in India. Nine cooking energy alternatives are evaluated on 30 different criteria comprising of technical, economic, environmental/social, behavioural and commercial issues. Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a multi-criteria decision making method of outranking nature is used to rank the alternatives. It is found that liquefied petroleum gas (LPG) stove is the most preferred device, followed by kerosene stove, solar box cooker and parabolic solar cooker (PSC) in that order. A sensitivity analysis is also carried out for identifying potential areas for improvement for PSC. On the basis of results, strategies for promoting wide spread use of PSC are formulated. (author)

  15. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  16. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  17. Solar energy system economic evaluation for IBM System 3, Glendo, Wyoming

    Science.gov (United States)

    1980-01-01

    This analysis was based on the technical and economic models in f-chart design procedures with inputs based on the characteristics of the parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings, and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated.

  18. A solar oven for intertropical zones: Evaluation of the cooking process

    International Nuclear Information System (INIS)

    Hernandez-Luna, G.; Huelsz, G.

    2008-01-01

    The construction and the evaluation of the cooking process of a solar oven prototype are presented, the optogeometrical design of this oven was optimized for the intertropical zone. The cooking tests demonstrated that the oven prototype, which needs only four simple movements throughout the year, is suitable to cook three basic Mexican meals: beans, nixtamal, and corncobs. The potential quantity of wood savings per year if this oven would be used to cook meals in a rural zone of Mexico is estimated

  19. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations

    International Nuclear Information System (INIS)

    Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E.

    2013-01-01

    Highlights: ► Life cycle was assessed for both concentrated solar power and photovoltaic systems. ► The PV plant has a higher environmental impact than the CSP plant. ► The Global Warming Potential is lower for the CSP than for the PV plant. ► The energy payback time is lower for the CSP than for the PV plant. -- Abstract: Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500 °C) and high temperatures (about 1000 °C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: •to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; •to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of

  20. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  1. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2012-06-01

    Full Text Available Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790 and with a dynamic tool (TRNSYS. After the analysis of the greenhouse alone, the behavior of an entire house was simulated; a flat equipped with a sunspace, recently built thanks to public contributions provided by the Umbria Region in Italy to widespread bio-climatic architecture, was used as case-study. Simulations were carried out for the examined flat, both with a steady-state tool and with a dynamic one; the contribution of the sunspace was estimated thanks to the various methods previously mentioned. Finally, the simulated data were satisfactorily compared with the real energy consumptions (natural gas for heating of the flat; the sunspace allows a reduction of winter energy demand of the flat of about 20%.

  2. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Nafey, A.S.; Sharaf, M.A. [Department of Engineering Science, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2010-11-15

    Organic Rankine cycles (ORC) have unique properties that are well suited to solar power generation. In this work design and performance calculations are performed using MatLab/SimuLink computational environment. The cycle consists of thermal solar collectors (Flat Plate Solar Collector (FPC), or Parabolic Trough Collector (PTC), or Compound Parabolic Concentrator (CPC)) for heat input, expansion turbine for work output, condenser unit for heat rejection, pump unit, and Reverse Osmosis (RO) unit. Reverse osmosis unit specifications used in this work is based on Sharm El-Shiekh RO desalination plant. Different working fluids such as: butane, isobutane, propane, R134a, R152a, R245ca, and R245fa are examined for FPC. R113, R123, hexane, and pentane are investigated for CPC. Dodecane, nonane, octane, and toluene are allocated for PTC. The proposed process units are modeled and show a good validity with literatures. Exergy and cost analysis are performed for saturation and superheated operating conditions. Exergy efficiency, total exergy destruction, thermal efficiency, and specific capital cost are evaluated for direct vapor generation (DVG) process. Toluene and Water achieved minimum results for total solar collector area, specific total cost and the rate of exergy destruction. (author)

  4. Evaluating Economic and Environmental Aspects of Using Solar Panels on Multi-Angled Facades of Office Buildings

    DEFF Research Database (Denmark)

    Hannoudi, Loay Akram; Lauring, Gert Michael; Christensen, Jørgen Erik

    2017-01-01

    This paper is concerned with using solar panels as high-tech cladding materials on multi-angled facades for office buildings. The energy produced by the solar panels will be consumed inside the office rooms by cooling compressors, ventilation, lighting and office equipment. Each multi-angled facade...... unit is directed into two different orientations on a vertical axis (right and left), but not tilted up and down. The different facade orientations will optimize the use of solar radiation to produce the needed energy from the solar panels when placing them on the parapets of these facades......, PVBAT to calculate the cost of the electricity produced by the solar panels and evaluate the total amount of energy produced from these panels along with the ratio to the energy bought directly from the electricity grid. There is also an environmental evaluation for the system by calculating the CO2...

  5. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  6. Evaluating performance from spiral polyethylene tubes as solar collectors for heating swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Anderson Thiago Pontes; Marchi Neto, Ismael de; Scalon, Vicente Luiz; Padilha, Alcides [UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP (Brazil). Dept. de Engenharia Mecanica], e-mails: scalon@feb.unesp.br, padilha@feb.unesp.br

    2010-07-01

    The solar energy is very common in the daily of citizens from different regions in world. Environmental questions and the consequent Development of renewable energy techniques were a decisive factor for expanding this market. Currently, the solar energy is present in many different devices: as direct conversion through photovoltaic panels as in solar domestic for hot water systems(SDHWS). Another common use is in the heating system for swimming pools, that could be utilized for therapeutic or comfort reasons. The main aspect that increments this use is the economy for operation of these systems. On the other hand, these systems need a high initial investment. Reducing this cost without reduction in collector efficiency using new materials and / or alternative projects is important target for new researches. Thus, this paper aims to analyze the efficiency of one of these alternative models for heating swimming pools. The conceptual device evaluated is a low cost model. It could be made from polyethylene tubes forming spiral heat exchangers. Analysis of the system is based on a dynamic model using differential equations system including solar collector and swimming pool. Experimental radiation and other environmental conditions in the region of Bauru-SP are used for analyse the dynamic behavior of the system. The simulations are based on analysis of three main parameters: number of collectors, the pump drive time and wall thickness of the collector of polyethylene. Based on these numerical tests one can conclude that this new model of solar collector for swimming pool has a better cost benefit ratio when superficial area is equal to 80% of pool area, pump operation is alternating with four minutes turned on and 28 turned off and the polyethylene wall thickness is 1.5 mm (author)

  7. Design investigation and evaluation of low cost line concentrated solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    Sarvoththama Jothi, T.J. [SASTRA Deemed Univ., Tirumalaisamudram, Thanjavur (India). School of Mechanical Engineering

    2004-07-01

    Enormous amount of energy is wasted in the form of heat for the purpose of cooking all around the world. Broad ranges of technologies are required around the world to incorporate the energy required for cooking. We have efficiently designed and developed a device named Line Concentrated Solar Cooker for the purpose of cooking and heating water or even pasteurization of drinking water. It is distinct from other type of cooker that is using the same old technologies. More over this device can be constructed by means of an inexpensive, commonly available material, thus providing a low-cost option suitable for household use in the developing world. This device was mainly designed from the input taken from the houses of four members each at various places. Its design and performance were evaluated at the laboratory including the efficiency tests. A model of such device was developed which gave the maximum efficiency of around 27 %. This Line Concentrated Solar Cooker has been mainly designed to prevent tracking mechanism, which is the main draw back for other concentrated type solar cooker. In order to prevent tracking mechanism, the design has been made in such a manner that the maximum sunrays are impinging on the reflecting surface of the Line Concentrated Solar Cooker all the time. Hence, minimum of at least 35 percent of the area of the Line Concentrated Solar Cooker is exposed to the sunlight at 8:00 AM and maximum of 100 percentage by noon and gradually decreases by evening as the sun sets. This model gave us a good results leading to excellent heating effect from morning to evening. Hence the heating effect gradually increased from morning to maximum at noon. (orig.)

  8. Experimental evaluation of noise spectral density to investigate structure defects and electrical behavior of solar cells

    International Nuclear Information System (INIS)

    Ashur, S. M.

    2007-01-01

    In this work current voltage characteristics and voltage spectral density, in both forward and reverse bias operations were evaluated for a group of mono- crystalline silicon solar cells. The cells were tested for the sake of device quality evaluation and identification of failure modes and mechanisms. Experimental results showed transport characteristics with varying slopes. In addition, electrical noise density versus frequency response, for the constant voltage mode, showed an extremum of noise voltage spectral density at zero D.C. frequency. It decreased with increasing frequency and revealed spikes of the noise voltage density at certain frequencies. (author)

  9. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States); Powell, R.; Sasala, R. [Solar Cells, Inc., Toledo, OH (United States)

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  10. Evaluating solar irradiance over facades in high building cities, based on LiDAR technology

    International Nuclear Information System (INIS)

    Martínez-Rubio, A.; Sanz-Adan, F.; Santamaría-Peña, J.; Martínez, Araceli

    2016-01-01

    Highlights: • A method for evaluating solar irradiance over façades in building cities with mutual shading. • It calculates irradiance curves in all building façades, using LiDAR and irradiance information. • Solar irradiation maps of the city buildings are really important for urban planning. • It allows to selection BIPV elements depending of the irradiation in each façade point. • The model can be extrapolated to all the building envelope. - Abstract: Arranging a solar irradiation map of the buildings of a city is a valuable tool for sustainable urban planning in regard to non-carbonized criteria in important applications. Such applications may include: selection of materials for the building envelope and insulation according to the irradiation received at each point; monitoring the installation of photovoltaic systems to ensure that they are located in the optimal irradiance zones; or building restoration to improve the energy efficiency and electric generation. The proposed method enables to estimate the incidence of the solar irradiance as well as to visualize the effect it produces in every region of the buildings that compose the urban area of a city. The process includes the use of Laser Imaging Detection and Ranging (LiDAR) information along with 5-min horizontal irradiance data. This developed algorithm has been verified through being applied to different building envelopes distributed in different geographical areas. The results demonstrate a satisfied performance which makes that the methodology can be extrapolated to any city where the LiDAR Data and irradiance information are available, permitting an accurate analysis of the solar irradiance over the building envelopes. The algorithm succeeds in obtaining a map of solar radiation captured by the envelope of any urban building that estimates the photovoltaic power generation depending on the geographic location and on the influence of shading caused by adjacent buildings. The provided

  11. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Malay K. [Boston Univ., MA (United States); Horenstein, Mark N. [Boston Univ., MA (United States); Joglekar, Nitin R. [Boston Univ., MA (United States)

    2015-03-31

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed that the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.

  12. Disinfection of effluent of wastewater treated using solar energy (SODIS): evaluation of a solar concentrator device; Desinfeccao de efluentes com tratamento terciario utilizando energia solar (SODIS): avaliacao do uso do dispositivo para concentracao dos raios solares

    Energy Technology Data Exchange (ETDEWEB)

    Paterniani, Jose Euclides Stipp; Silva, Marcelo Jacomini Moreira da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Saneamento e Ambiente]. E-mail: pater@agr.unicamp.br

    2005-01-15

    Besides being an available natural resource, the solar energy is very applicable in places with few recourses and low money resources, because there aren't either the need of chemical products neither a huge cost (commercial materials can be reused). To make this job we re-used PET bottles half painted black with the variables: 1, 2, 4 and 6 hours of heat exposition and we also used a concentrator of rays of sunshine. The affluent control parameters were turbidity, apparent color, temperature, total coliforms and E. coli. These last three were evaluated before and after the disinfection process (effluent parameters). To assess the bacteria reactivation we kept the water in bottles for 24 hours, pretending a very common situation in Brazilian rural houses. We conclude that the use of the concentrator of rays of sunshine can reduce the heat exposition from 6 to 4 hours, without harm the SODIS efficiency. Using the concentrator of rays of sunshine for 6 hours we can obtain, besides SODIS, the process of solar pasteurization (SOPAS), which stops the re-growth of bacteria with a 70 deg C water temperature. We also observed that when the sky is cloudy the incidence of solar radiation and, therefore, the SODIS efficiency decrease, even if the water temperature is higher during the disinfection. Although, this factor doesn't mean a significant influence statistically. (author)

  13. Monitoring and evaluation of Solar Home Systems. Experiences with applications of solar PV for households in developing countries

    International Nuclear Information System (INIS)

    Nieuwenhout, F.D.J.; Van Dijk, A.; Van Dijk, V.A.P.; Hirsch, D.; Lasschuit, P.E.; Van Roekel, G.; Arriaza, H.; Hankins, M.; Sharma, B.D.; Wade, H.

    2000-09-01

    Solar energy is a promising solution to meet demand for electricity services of rural households in remote locations in developing countries. After some early successes, more and more doubts have arisen about the effectiveness and suitability of small PV systems for rural development. Many organisational, financial and technical problems appear difficult to tackle. A literature survey has been conducted to make an inventory of experiences with solar photovoltaic applications for households in developing countries. The major conclusion from the extensive literature research performed during this study is that there is not enough information available about the performance of solar home systems and projects. This slows down further development and successful dissemination. refs

  14. Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh

    Directory of Open Access Journals (Sweden)

    Najmul Hoque

    2016-02-01

    Full Text Available In the summer season, irrigation sector in Bangladesh suffers a lot due to the country wide electricity crisis. Solar pump offers a clean and simple alternative to the conventional fuel fired engine or grid electricity driven pump in this regard to resolve the issue. In this paper, the techno-economic analyses of solar irrigation plants installed in Bangladesh are evaluated.  It was observed that systems were running around 70% to 80% of the rated power which was quite acceptable. A 10 hp pump was able to pump 600 liter of water per minute which was also satisfactory to irrigate the land. Average operating time was found to be 8 hour/day. It was found that the overall efficiency of the systems were in between 11.39% to 16.52% whereas the typical average value of lit/Wp/year was 9200. On the other hand, the cost of irrigation to cultivate paddy in 0.161 hectares’ land for one season was 1,750 BDT by solar irrigation which was found to be lower than that of other available modes. This charge for grid electricity based irrigation was about 3,000 to 3500 BDT per 0.161 hectares’ and 2,300 to 2,600 BDT per 0.161 hectares’ for diesel engine based irrigation. According to the current financial scheme (15% equity investment, 35% credit support and remaining 50% from government through IDCOL the average value of payback period was 5.43 years, NPV in the range from 7 to 15% and IRR was 18%. By considering 100% equity investment, however, these projects were not economically attractive. The payback period for this case was about 18 years. Study also revealed that each solar irrigation plant reduces 42.8 kg of CO2 emission per day compare to diesel engine operated pump and 2566.24 kg/day compared to grid electricity operated pump. A comprehensive effort from the Government as well as from all the stakeholders is required for further expansion of solar irrigation plants in Bangladesh. Article History: Received Sept 05, 2015; Received in revised form

  15. Evaluation of an earth heat storage system in a solar energy greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Langrell, J.; Boris, R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Greenhouses store solar energy in the walls and floors during the daytime and release the stored energy back to the greenhouse at night. In this study, an earth heat storage system was constructed and tested in a solar energy greenhouse in order to enhance energy storage. The system consisted of a network of perforated pipes buried in the soil at depths from 0.3 to 1 m. The warm air near the greenhouse ceiling was drawn to the buried pipes. Soil and air temperatures were recorded at various locations by a network of thermocouples. The energy balance was analyzed in order to evaluate the effectiveness of the earth heat storage system. The temperature profiles in the soil were used to determine the summer recharge and winter energy depletion behaviour of the system.

  16. 3D-Mössbauer spectroscopic microscope for mc-Si solar cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Y., E-mail: y-ino@ob.sist.ac.jp; Soejima, H.; Hayakawa, K.; Yukihira, K.; Tanaka, K.; Fujita, H.; Watanabe, T. [Shizuoka Institute of Science and Technology (Japan); Ogai, K.; Moriguchi, K.; Harada, Y. [APCO. Ltd. (Japan); Yoshida, Y. [Shizuoka Institute of Science and Technology (Japan)

    2016-12-15

    A 3D-Mössbauer Spectroscopic Microscope is developed to evaluate Fe impurities in multi-crystalline Si solar cells, which combines the Mössbauer spectroscopic microscope with a scanning electron microscope (SEM), an electron beam induced current (EBIC), an electron backscatter diffraction (EBSD), and an electron energy analyzer (HV-CSA). In addition, a new moving-coil-actuator with a liner encoder of 100 nm-resolution is incorporated for the operations with both a constant velocity and a constant acceleration mode successfully with the same precision as that obtained by the conventional transducers. Furthermore, a new multi-capillary X-ray lens is designed to achieve a γ-ray spot size less than 100 μm in diameter. The new microscope provides us to investigate the space correlation between Fe impurities and the lattice defects such as grain boundaries in multi-crystalline Si solar cells.

  17. CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio

    International Nuclear Information System (INIS)

    Du Huibin; Guo Jianghong; Mao Guozhu; Smith, Alexander M.; Wang Xuxu; Wang, Yuan

    2011-01-01

    To gain insight into changes in CO 2 emissions embodied in China-US trade, an input-output analysis based on the emergy/dollar ratio (EDR) is used to estimate embodied CO 2 emissions; a structural decomposition analysis (SDA) is employed to analyze the driving factors for changes in CO 2 emissions embodied in China's exports to the US during 2002-2007. The results of the input-output analysis show that net export of CO 2 emissions increased quickly from 2002 to 2005 but decreased from 2005 to 2007. These trends are due to a reduction in total CO 2 emission intensity, a decrease in the exchange rate, and small imports of embodied CO 2 emissions. The results of the SDA demonstrate that total export volume was the largest driving factor for the increase in embodied CO 2 emissions during 2002-2007, followed by intermediate input structure. Direct CO 2 emissions intensity had a negative effect on changes in embodied CO 2 emissions. The results suggest that China should establish a framework for allocating emission responsibilities, enhance energy efficiency, and improve intermediate input structure. - Highlights: → An input-output analysis based on the emergy/dollar ratio estimated embodied CO 2 . → A structural decomposition analysis analyzed the driving factors. → Net export of CO 2 increased from 2002 to 2005 but decreased from 2005 to 2007. → Total export volume was the largest driving factor. → A framework for allocating emission responsibilities.

  18. Emergy Perspectives on the Environmental Performance and Sustainability of Small-Scale Gold Production Systems in Ghana

    Directory of Open Access Journals (Sweden)

    Ernest Frimpong Asamoah

    2017-11-01

    Full Text Available Small-scale gold mining is an important component of the Ghanaian economy but it has also caused enormous damage to local ecosystems. In this paper, an emergy analysis was conducted in Ghana to assess the environmental performance and the relative sustainability of two artisanal and small-scale gold production systems: alluvial “dig and wash” and underground “ghetto” mines. Results show that both production systems have high environmental impacts, as indicated by an environmental loading ratio (ELR of 4.31 and environmental sustainability index (ESI of 0.33 for the alluvial system and 2.53 and 0.52 for the underground system, respectively. Concerning the international trade balance, the emergy exchange ratios of the two systems are both lower than one, at, 0.23 and 0.33 for the alluvial and underground systems, respectively, indicating a significant amount of resource loss to foreign regions. This study could assist in the regulation of the small-scale mining sector bearing in mind the unsustainable nature of their activities. In addition, supporting miners to consider land rehabilitation ethics is urgently needed.

  19. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China.

    Science.gov (United States)

    Wang, Yanqing; Zhang, Xiaohong; Liao, Wenjie; Wu, Jun; Yang, Xiangdong; Shui, Wei; Deng, Shihuai; Zhang, Yanzong; Lin, Lili; Xiao, Yinlong; Yu, Xiaoyu; Peng, Hong

    2018-04-25

    China has become the largest generator of municipal solid waste (MSW) in the world with its rapid urbanization, population growth and raising living standard. Among diverse solid waste disposal technologies, MSW incineration has been becoming an attractive choice. In terms of systematic point, an integrated MSW incineration system should include an incineration subsystem and a bottom ash (BA) disposal subsystem. This paper employed an extend emergy assessment method with several improved indicators, which considers the emissions' impact, to evaluate the comprehensive performances of an integrated MSW incineration system. One existing incineration plant in Yibin City, Sichuan Province, China, as a case study, is evaluated using the proposed method. Three alternative scenarios (scenario A: the incineration subsystem + the BA landfill subsystem; scenario B: the incineration subsystem + the concrete paving brick production subsystem using BA as raw material; scenario C: the incineration subsystem + the non-burnt wall brick production subsystem using BA as raw material) were compared. The study results reveal that the ratio of positive output is 1.225, 2.861 and 1.230, the improved environmental loading ratio is 2.715, 2.742 and 1.533, and the improved environmental sustainability index is 0.451, 1.043 and 0.803 for scenario A, B and C respectively. Therefore, reuse of BA can enhance the sustainability level of this integrated system greatly. Comparatively, scenario B has the best comprehensive performance among the three scenarios. Finally, some targeted recommendations are put forward for decision-making. Copyright © 2018. Published by Elsevier Ltd.

  20. Performance evaluation and simulation of a Compound Parabolic Concentrator (CPC) trough Solar Thermal Power Plant in Puerto Rico under solar transient conditions

    Science.gov (United States)

    Feliciano-Cruz, Luisa I.

    The increasing fossil fuel costs as well as the need to move in a somewhat sustainable future has led the world in a quest for exploiting the free and naturally available energy from the Sun to produce electric power, and Puerto Rico is no exception. This thesis proposes the design of a simulation model for the analysis and performance evaluation of a Solar Thermal Power Plant in Puerto Rico and suggests the use of the Compound Parabolic Concentrator as the solar collector of choice. Optical and thermal analysis of such collectors will be made using local solar radiation data for determining the viability of this proposed project in terms of the electric power produced and its cost.

  1. Roof-mounted solar collectors with reflectors. Evaluation; Takmonterade solfaangare med reflektorer i Aelta. Utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Monitoring Centre; Perers, B. [Vattenfall Utveckling AB, Stockholm (Sweden)

    1999-09-01

    During the spring of 1997 Solsam Sunergy AB built a solar energy plant in the Aelta residential area in Stockholm. The project was initiated in co-operation with Vattenfall Utveckling AB and the plant was built on commission from AB Nackahem. The plant was partly financed with a demonstration project support from the Swedish National Board for Industrial and Technical Development, NUTEK. The solar energy plant was built on the roofs of six 8-storey apartment buildings. On each roof there is 210 m{sup 2} conventional water-cooled solar collectors. In front of the collectors reflectors are mounted on frames formed to give optimum reflection towards the collector. The collectors are connected to a consumer substation in the basement of each building by an external culvert on the building facade. In a room adjacent to the substation there is a 12 m{sup 3} heat accumulator tank for short time storage of heat from the collectors. The plant is primarily constructed to produce domestic hot water to the apartment buildings and secondarily to feed heat to the external district distribution net to meet heat demands in other connected buildings as well as to compensate for heat losses. The Monitoring Centre at Chalmers University of Technology has studied the project during the building phase and during the solar season of 1997 in co-operation with Vattenfall Utveckling AB. This report summarises the experiences and results from the study. Several technical problems, where new solutions had to be found, caused a delay of the project by nearly a full solar season. In spite of these problems the plant was well built and it operates very well. The collected data from the monitoring were used as input to a simulation program where a parametric fitting was performed. Using the simulation program with these parameters then made it possible to predict the energy output of the plant during a normal year. The evaluation predicts that the solar heated plant of Aelta will produce about

  2. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.

    2012-10-01

    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  3. Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Symeou, Christoforos; Antonopoulos, Kimon A.

    2017-01-01

    Highlights: • A solar cooling system with ETC and a single effect absorption chiller is analyzed. • The analysis is dynamic and it is made for the city of Athens, Greece. • The analysis is energetic, exergetic and financial for all the summer period. • Firstly the system is optimized exergetically and after it is analyzed financially. • The optimum case is 450 m"2 of solar collectors coupled with a storage tank of 14 m"3. - Abstract: In this study, a solar cooling system of 100 kW is analyzed parametrically in dynamic basis for the city of Athens, Greece. The objective of this study is the design of a sustainable system, using energetic, exergetic and financial criteria. The examined system includes evacuated tube collectors, storage tank and a single stage absorption chiller operating with LiBr-H_2O working pair. Different combinations of collecting areas and storage tank volumes are tested in order to determine the most suitable cases exergetically. These optimum cases are evaluated financially and finally the system with the higher financial indexes is selected as the most suitable. More specifically, the collecting area is analyzed from 150 m"2 to 600 m"2 and the storage tank from 6 m"3 to 16 m"3. Finally, 450 m"2 of evacuated tube collectors with a 14 m"3 storage tank was proved to be the optimum solution financially with 15 years payback period and 67 k€ net present value.

  4. Evaluation small scale, grid connected wind and solar distributed generation systems in Jordan

    International Nuclear Information System (INIS)

    Naji, G. J.; Tahboub, K. K.; Jalham, I. S.

    2011-01-01

    In this paper, the potential of utilizing wind and solar Private Distributed Generation (PDG) for utility interactive systems is investigated for 11 selected stations (sites) in Jordan. Six customer categories are considered: residential, office, commercial mall, school, hospital and hotel. The main goal of this study was to evaluate the potential of utilizing different grid connected PDG under different conditions such as their location, size, served building category, number of people who share and own the equipment and system type whether wind, solar or hybrid based. It was found that solar systems are still not attractive for all location due to their associated high cost, while wind systems would vary widely depending on the customer category, location and the size of the equipment. Based on the Benefit to Cost ratio criterion, the most attractive sites for installing wind PDGS for residential communities are Ras Muneef, Mafraq, Aqaba, Irbid and H5, while it doesn't seem attractive at Amman,Shoubak, Ghor Essafi, Deir Alla, Maan and H4. On the other hand, the wind on-grid PDGS is very attractive at Ras Muneef, mafraq and Aqaba for commercial buildings, less attractive at H5 and irbid, while it's not attractive at the other sites. The attraction for hybrid PDG systems is closer to those of wind systems alone. (authors).

  5. Program to monitor and evaluate a passive solar greenhouse/aquaculture system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A temperature monitoring program of Amity's solar greenhouse demonstrated that air, soil, and water temperatures can be maintained at optimal levels without supplemental heat. A foil reflector placed in front of the greenhouse glazing at an angle of between 0 and 5/sup 0/ above horizontal enhanced direct light entering the greenhouse by as much as 22%. Aquaculture in the water heat storage of a solar greenhouse has been a success. Fish reached harvest size in about seven months. The two species that were received the best by the public were African perch (Tilapia mossambica) and channel catfish (Ictalurus punctatus). Although carp (Cyprinus carpio) were the fastest growers they were not well received by the public. Linking hydroponics to greenhouse aquaculture shows a lot of promise. Different support medias were examined and tomatoes and European cucumbers were raised successfully. A savonius windmill was successfully linked to an aquaculture aeration system but because of the wind pattern in the Willamette valley the windmill system did not provide air in the evening when it was needed most. Alternate designs are discussed. Locally grown fish diets were evaluated for their ability to promote fish growth. Diets such as water hyacinth, duckweed, earthworms, beans, and comfrey were raised on the Amity site, pelleted with a hand grinder and solar dried. Duckweed and earthworms appear to hold promise for a nutritous, easy to grow and pelletize, food source. Amity's solar greenhouse, three coldframe designs and a PVC tunnel cloche were compared in a vegetable growing trial. Most impressive was the cloche design because it provided adequate protection, was inexpensive and very easy to build.

  6. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    Science.gov (United States)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  7. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  8. Agroecology and the Sustainable Production of Food and Fiber: Emergy Evaluation of Agriculture in the Montado

    Science.gov (United States)

    The silvopastoral, agricultural system of the montado in Southern Portugal is an example of the self-organization of an agroecological system adapted to the climate and soil conditions of the Mediterranean basin. This system with its consistent production of food, fiber, and ecos...

  9. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  10. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    Science.gov (United States)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  11. Performance evaluation and solar radiation capture of optimally inclined box type solar cooker with parallelepiped cooking vessel design

    International Nuclear Information System (INIS)

    Sethi, V.P.; Pal, D.S.; Sumathy, K.

    2014-01-01

    Highlights: • Optimally inclined solar cooker is presented for efficient cooking. • A new parallelepiped shaped cooking vessel for higher solar radiation capture is presented. • Optimum tilt angles of the boosted mirror are computed for maximization of reflected components. • Solar radiation capture ratios show the better cooking performance of inclined cooker. • Standard performance parameters establish the better cooking performance of inclined cooker. - Abstract: An optimally inclined box type solar cooker with single booster mirror is presented along with design and development of a novel parallelepiped shaped cooking vessel design for efficient cooking especially in winter conditions. The main feature of new parallelepiped shaped design is its longer inclined south wall (facing the sun) and a trapezoidal cavity on the vessel lid for greater heat transfer to the food material. The ends of the vessel towards east and west direction are minimized. The cooking performance parameters of proposed inclined cooker coupled with new vessel design were compared with horizontally placed identical cooker of same material and dimensions coupled with conventional cylindrical vessel design during winter month (January) of the year 2010 at Ludhiana climate (30°N 77°E), India. Results showed that the first and the second figures of merit (F 1 and F 2 ) for inclined cooker were 0.16 and 0.54 as compared to 0.14 and 0.43 for horizontally placed cooker. Time taken to boil the water τ boil and standard cooking power P n was 37% less and 40% more respectively in parallelepiped shaped cooking vessel of inclined cooker as compared to conventional cylindrical vessel of horizontally placed cooker. A mathematical model is developed to compute the total solar radiation availability on the absorber plate of inclined as well as horizontal cooker which establishes the better cooking performance of the inclined cooker due to greater width of sun rays intercepting the absorber

  12. Analysis and evaluation of various aspects of solar radiation in the Palestinian territories

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • We used genetic algorithm to optimize the tilt angles of the PV panels. • Different PV tracking systems were evaluated considering annual energy production. • Various models used to calculate hourly solar radiation from daily data were tested. • Coefficients of various regression models were calibrated to select the most accurate. • Linear, quadratic and linear–logarithmic models showed approximate similar results. - Abstract: This paper aims to evaluate the different models used to analyze different aspects of solar radiation in the Palestinian territories. Calculations of the optimized tilt and surface azimuth angles on monthly, seasonal and yearly basis were conducted, with the genetic algorithm being used for this purpose. Different PV tracking methods were also evaluated, taking into account the annual energy production. The different models used to calculate hourly global solar radiation from the daily data were tested in order to facilitate the selection of the most suitable model in the context of Palestine. The calibration of coefficients for the different regression models that were used for estimating the global solar radiation based on sunshine hours was also performed during the course of this work. These coefficients were calculated using both MATLAB’s fitting tool and genetic algorithm. Linear, quadratic and linear–algorithmic regression models displayed almost identical results. Each has a distinctive predominant feature, especially in the context of statistical indicators. They were calculated using both the monthly average daily data and the daily data sets. With regards to the PV panel angles’ optimization, it was found that the yearly optimum tilt angle (32.8°) is adjacent to the latitude of the location (31.8°), while the surface azimuth angle is 16°. It was also found that changing the tilt angle of the PV panels quarterly (optimized on seasonally basis) increases energy yield by 3.4% when compared with

  13. Solar collector performance evaluated outdoors at NASA-Lewis Research Center

    Science.gov (United States)

    Vernon, R. W.

    1974-01-01

    The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.

  14. Exergetic performance evaluation of a single pass baffled solar air heater

    International Nuclear Information System (INIS)

    Sabzpooshani, M.; Mohammadi, K.; Khorasanizadeh, H.

    2014-01-01

    In this study, the exergetic performance of a baffled type solar air heater has been evaluated theoretically. A detailed parametric study was done to investigate the effect of variation of fin and baffle parameters, number of glass covers, bottom insulation thickness and inlet air temperature at different mass flow rates on the exergy efficiency. The results indicated that attaching fins and baffles at low mass flow rates can lead to noticeable enhancement of the exergy efficiency. The results revealed that the trend of variation of the energy and exergy efficiencies are not the same and the exergy efficiency is the chief criterion for performance evaluation. Increasing the baffles width, reducing the distance between baffles and increasing the number of fins are effective at low mass flow rates, but at high mass flow rates the inverse trend is observable, such that exergy efficiency reduces sharply. The results showed that exergy efficiency increases with increasing the solar radiation intensity. By adding the second glass cover the exergy efficiency enhances at low mass flow rates. Increasing the insulation thickness over an optimum value doesn't improve the exergy efficiency. Increasing the inlet air temperature increases the exergy efficiency especially at high mass flow rates. - Highlights: • We study the exergetic performance of an upward type baffled solar air heater. • The effect of several design parameters on the performance is investigated. • Exergetic performance is very sensitive to the variation of baffles parameters. • Adding fins and baffles and increasing their parameters are efficient at low m . . • At high m . increment of baffles parameters causes decline of the exergy efficiency

  15. Diffusion of solar water heaters in regional China: Economic feasibility and policy effectiveness evaluation

    International Nuclear Information System (INIS)

    Ma, Ben; Song, Guojun; Smardon, Richard C.; Chen, Jing

    2014-01-01

    Whereas the technical feasibility of solar water heaters (SWHs) has long been established, the economic feasibility of SWHs in regional China remains to be examined. This paper constructs cost models to calculate costs per unit energy saving of SWHs in 27 Chinese provincial capital cities. The cost effectiveness of SWHs is examined at the national level. At a micro level, we analyze the financial attractiveness of consumers’ investment in SWHs. A panel data model is employed to evaluate the effectiveness of a subsidy program in rural China. The results show that SWH costs, ranging from 0.305 to 0.744 CNY/kW h, are much lower than those of other major renewable energies across China. This finding indicates that the diffusion of SWHs is a cost-effective way to reach China’s renewable energy target. For consumers, incentive programs for SWHs are needed to improve the financial attractiveness of the devices in China. Existing subsidy policies for rural China have failed to significantly enhance the deployment of SWHs. The causes of the failure are examined and a new incentive program is suggested for rural areas of the country. - Highlights: • We examine the economic feasibility of solar water heaters in 27 Chinese cities. • We evaluate policy effectiveness of solar water heaters (SWHs) using panel data. • Diffusion of SWHs is cost effective in fulfilling China’s renewable energy target. • Financial attractiveness of SWHs is limited without incentive programs. • The existing subsidy policy is proved to be a failure and a new program is suggested

  16. Performance Evaluation of a Solar-Powered Regenerative Organic Rankine Cycle in Different Climate Conditions

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2017-01-01

    Full Text Available A model to evaluate the performance of a solar powered regenerative Organic Rankine Cycle (R-ORC using five dry organic fluids: RC318, R227ea, R236ea, R236fa, and R218, is presented in this paper. The system is evaluated in two locations in the U.S.: Jackson, MS and Tucson, AZ. The weather data for each location is used to determine the heat available from the solar collector that could be used by the R-ORC to generate power. Results from the R-ORC performance are compared with a basic ORC using first and second law criteria as well as primary energy consumption (PEC and carbon dioxide emission (CDE savings for both locations. An economic analysis to determine the maximum capital cost for a desired payback period is presented in this paper. A parametric analysis is also performed to study the effect of the turbine efficiency as well as the open feed organic fluid heater intermediate pressure on the system performance. Results indicate that the R-ORC is able to generate more power than the basic ORC for some of the selected working fluids. For the R-ORC, R236ea is the working fluid that show the best performance among the evaluated fluids under the modeled conditions. On the other hand, the basic ORC with R236ea as the working fluid outperformed three of the fluids in the R-ORC. Also, the R-ORC evaluated in Tucson, AZ is able to generate more power, to provide more PEC and CDE savings, and had a higher available capital cost than the R-ORC evaluated in in Jackson, MS.

  17. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance.

    Science.gov (United States)

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013.

  18. Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)

    International Nuclear Information System (INIS)

    Sánchez-Braza, Antonio; Pablo-Romero, María del P.

    2014-01-01

    This paper evaluates the effects of a property tax bonus to promote the installation of solar–thermal energy systems in buildings in Andalusia (southern Spain). The propensity score matching methodology is used. The treatment group consists of municipalities of Andalusia that established property tax bonuses in their municipalities in 2010. The control group consists of municipalities that did not. The response variable measures the number of new square meters of solar thermal systems installed in 2010. The analysis leads to the conclusion that municipalities that established a property tax bonus had installed, on average, 102.245 to 122.389 square meters more. These results indicate that the percentage increase in squares meters installed in municipalities which adopted the tax bonus promotion ranged from 70.74% to 98.38%. These percentages were lower for rural municipalities (49.00% to 77.06%). - Highlights: • This paper evaluates the effects of a tax bonus to promote solar–thermal energy. • We analyse the effect of this measure for 585 Andalusia municipalities. • The propensity score-matching methodology is used. • The percentage increase of square meters installed ranged from 70.74% to 98.38%. • Tax bonus was an effective tool to promote solar thermal in Andalusia

  19. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance

    Science.gov (United States)

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303

  20. Testing and evaluation of large-area heliostats for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.W.; Houser, R.M.

    1993-02-01

    Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.

  1. Evaluating economic and environmental aspects of using solar panels on multi-angled facades of office buildings

    Science.gov (United States)

    Hannoudi, Loay Akram; Lauring, Michael; Christensen, Jørgen Erik

    2017-09-01

    This paper is concerned with using solar panels as high-tech cladding materials on multi-angled facades for office buildings. The energy produced by the solar panels will be consumed inside the office rooms by cooling compressors, ventilation, lighting and office equipment. Each multi-angled facade unit is directed into two different orientations on a vertical axis (right and left), but not tilted up and down. The different facade orientations will optimize the use of solar radiation to produce the needed energy from the solar panels when placing them on the parapets of these facades. In this regard, four scenarios with different facade configurations and orientations are evaluated and discussed. The method for the simulations and calculations depends on two main programs: first, IDA ICE program to calculate the energy consumption and evaluate the indoor climate of the building; and second, PVBAT to calculate the cost of the electricity produced by the solar panels and evaluate the total amount of energy produced from these panels along with the ratio to the energy bought directly from the electricity grid. There is also an environmental evaluation for the system by calculating the CO2 emissions in the different scenarios.

  2. Research and development of evaluation system for photovoltaic power generation system. Survey on research and development of solar cell evaluation system; Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu. Taiyo denchi hyoka system no kenkyu kaihatsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on R and D of solar cell evaluation systems in fiscal 1994. The performance/reliability evaluation subcommittee continuously analyzed technical issues and discussed solution measures from the last fiscal year. On development of performance evaluation methods, improvement of measurement accuracy for laminated solar cells is the study issue to be solved. Although laminated solar cells are measured by multiple light source solar simulator, difficult spectrum compensation causes measurement errors. Collection and analysis of data for determining atmospheric conditions, and outdoor measurement experiment under the atmospheric conditions for reference solar light were carried out. The study on incident angle characteristics of laminated solar cells clarified that the deviation from COS characteristics is 1.0% or less at an incident angle of 30{degree}. The study on generated energy in solar cell module level in field clarified that generated energy and generation efficiency are proportional to intensity of solar radiation. 1 tab.

  3. Solar Alpha Rotary Joint (SARJ) Lubrication Interval Test and Evaluation (LITE). Post-Test Grease Analysis

    Science.gov (United States)

    Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.

    2015-01-01

    The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.

  4. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  5. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  6. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    Directory of Open Access Journals (Sweden)

    Muhammad Umair

    2014-03-01

    Full Text Available Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evaluate the system behavior, the effect of wing length, and to compare the performance of the systems with wing type and linear CPCs. A detailed dynamic simulation model was developed based on mass and energy balance equations. The simulation results show that the system performance with wing type CPC increases by up to 6% in the summer and up to 2% in the winter, compared to the performance with a linear CPC having same collector length. The ice production also increases up to 13% in the summer with the wing type CPC. This shows that the wing type CPC is helpful to increase the performance of the system compared to the linear CPC with the same collector length and without the need for tracking.

  7. Experimental and theoretical evaluation of the performance of a tar solar water heater

    International Nuclear Information System (INIS)

    Ammari, H.D.; Nimir, Y.L.

    2003-01-01

    The paper presents an experimental and theoretical evaluation of the performance of a tar solar water heater and comparison with that of a conventional type collector. The performance of both collectors is assessed under the same conditions. Both of the collectors have the same surface area and are glazed. The conventional type has the water tubes welded to the absorber plate, whereas in the tar type, the tar acts as an absorber plate that covers the water tubes. The theoretical model for each collector type, with the transient effects taken into account, is based on a control volume and a time base in the related energy equations. By considering a small element of the collector in each case, three partial differential equations were developed for each collector and were solved numerically by the Runge-Kutta method of the fifth order. A good agreement was achieved between the numerical and experimental results for both the conventional and tar collectors, indicating the feasibility of employing the theoretical model in the design of flat plate solar collectors. The results also showed that the conventional collector is more efficient than the tar type during most of the daylight, but the tar collector had the added advantage of better conservation of energy in late afternoon and evening

  8. Energetic evaluation of the largest geomagnetic storms of solar cycle 24 on March 17, 2015 and September 8, 2017 during solar maximum and minimum, respectively

    International Nuclear Information System (INIS)

    Tomova, Dimitrinka; Velinov, Peter; Tassev, Yordan; Tomova, Dimitrinka

    2018-01-01

    Some of the most powerful Earth’s directed coronal mass ejections (CMEs) from the current 24 solar cycle have been investigated. These are CMEs on March 15, 2015 and on September 4 and 6, 2017. As a result of these impacts of Sun on Earth, the highest intensity of the geomagnetic storms for the 24th solar cycle is observed. These G4 – Severe geomagnetic storms are in the periods March 17÷19, 2015 and September 7÷10, 2017. We use the solar wind parameters (velocity V, density or concentration N , temperature T p and intensity of the magnetic field B) from measurements by WIND, ACE and SOHO space crafts in the Lagrange equilibrium point L1 between Sun and Earth. We make calculations for the kinetic (dynamic) energy density E k , thermal energy density E t and magnetic energy density E m during the investigated periods May 10÷24, 2015 and September 2÷16, 2017. Both the energy densities for the individual events and the cumulative energy for each of them are evaluated. The quantitative analysis shows that not always the size of the geomagnetic reaction is commensurate with the density of the energy flux reaching the magnetosphere. In both studied periods, the energy densities have different behaviour over time. But for both periods, we can talk about the prognostic effect – with varying degrees of increase of the dynamic and thermal energies. Such an effect is not observed in the density of magnetic energy. An inverse relationship between the magnitude of the density of energies and the effect of Forbush decrease of the galactic cosmic rays is established. Key words: solar activity, flares, coronal mass ejection (CME), G4 –Severe geomagnetic storms, energy density of the solar wind, space weather

  9. Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing

    International Nuclear Information System (INIS)

    Fang, Wei; An, Haizhong; Li, Huajiao; Gao, Xiangyun; Sun, Xiaoqi; Zhong, Weiqiong

    2017-01-01

    Due to high population densities and rapid economic development, great number of cities worldwide rely heavily on external resources, and many are experiencing serious environmental pollution. Municipal governments are facing the issue of balancing the relationship between economic growth and environmental preservation. An urban system is an open, complex, dynamic ecological-economic system with different types of materials and resources. This paper combines emergy theory and System Dynamics (SD) and establishes an emergy-flow SD model of an urban eco-economic system that includes economic, population, waste and emergy sub-models. Three scenarios with different economic growth rates and investments in environmental preservation are designed to analyze the sustainable development capacity of Beijing under different scenarios. The results of the analysis show that current economic development in Beijing highly depends on resources consumption, especially the consumption of imported resources. Based on the current growth rate, development in Beijing will heavily depend on external resources that may make the system being more fragile in the future. A lower economic growth rate and a small increase in environmental preservation investment are more suitable for in Beijing than area higher economic growth rate and a large increase in environmental preservation investment. - Highlights: • A Systems Dynamics model simulating urban emergy flows is set up. • Current economic development of Beijing depends on high consumption of resources. • Beijing has extreme and increasing dependence on external resources. • Beijing relies heavily on nonrenewable resources and its development is unsustainable. • Low GDP growth is better than high GDP growth with increased environmental investment.

  10. Procedures and practices for evaluating thin-film solar cell stability

    NARCIS (Netherlands)

    Roesch, R; Faber, T; von Hauff, E.L.; Brown, T. M.; Lira-Cantu, M.; Hoppe, H.

    2015-01-01

    During the last few decades, and in some cases only the last few years, novel thin-film photovoltaic (PV) technologies such as dye-sensitized solar cells (DSSC), organic solar cells (OPV), and, more recently, perovskite-based solar cells (PSC) have been growing in maturity with respect to device

  11. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  12. Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida floriculture crops

    Science.gov (United States)

    Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in two years of field trials on a commercial flower farm in Florida. The objective was to determine if pre-plant steam treatments in combination with solarization, or solarization alone effective...

  13. Evaluating a Small Structural Insulated Panel (SIP) Designed Solar Kiln in Southwestern New Mexico - Part 1

    Science.gov (United States)

    Richard D. Bergman; Ted E.M. Bilek

    2012-01-01

    With increasing energy costs, using small dry kilns for drying lumber for small-volume value-added wood products has become more of an option when compared with conventional drying. Small solar kilns are one such option, and a number of solar kiln designs exist and are in use. However, questions remain about the design and operation of solar kilns, particularly during...

  14. Solar energy system performance evaluation: Seasonal report for Contemporary-Manchester, Manchester, New Hampshire

    Science.gov (United States)

    1980-01-01

    The operational and thermal performance of the solar energy system, Contemporary-Manchester, is described. The system was designed by Contemporary Systems Incorporated to provide space heating and domestic hot water preheating for a three story dwelling located on the New Hampshire Vocational Technical College campus, Manchester, New Hampshire. The net fossil energy savings for the period from March, 1979 to February, 1980 was 14.52 million Btu. However, the performance of the system must be degraded due to the fact that the building was unoccupied throughout the data assessment and analysis period. The unoccupied status prevented the normal adjustment of heating and ventilating controls for maintenance of comfort levels within the building. This lack of occupancy also prevented the typical family hot water usage, which would have allowed for more realistic evaluation of the hot water subsystem.

  15. Thrust evaluation of magneto plasma sail that obtains an electromagnetic thrust from the solar wind

    International Nuclear Information System (INIS)

    Kajimura, Yoshihiro; Funaki, Ikkoh; Usui, Hideyuki; Yamakawa, Hiroshi

    2011-01-01

    Magneto Plasma Sail (MPS) is a propulsion system used in space, which generates its force by the interaction between the solar wind and an inflated magnetic field via a plasma injection. The quantitative evaluation of the thrust increment generated by injecting a plasma jet with a β in less than unity was conducted by three-dimensional hybrid particle-in-cell (PIC) simulations in an ion inertia scale. The injected plasma β in is 0.02 and the ratio of Larmor radius of injected ion to the representative length of the magnetic field is 0.5 at the injection point. In this situation, the obtained thrust of the MPS is 1.6 mN compared with the 0.2 mN of the thrust obtained by the pure magnetic sail since the induced current region on magnetosphere expanded by the magnetic inflation. (author)

  16. Radiation damage evaluation on AlGaAs/GaAs solar cells

    International Nuclear Information System (INIS)

    Moreno, E.G.; Alcubilla, R.; Prat, L.; Castaner, L.

    1988-01-01

    A piecewise model to evaluate radiation damage on AlGaAs based solar cells has been developed, which gives complete electrical parameters of the cells in the operating temperature range. Different structures, including graded band gap and double heteroface can be analyzed. The cell structure is sliced into layers of constant parameters, allowing the model to take into account nonuniform damage produced by low energy protons without excess computer time. Proton damage coefficients as well as proton damage ratios can be calculated for energies between 30 and 10/sup 4/ keV with only two adjustable parameters. In addition, coirradiation experiments with different energy protons can be simulated, by improving the conventional method of degradation computering

  17. Evaluation of solar PV-projects of housing corporations; Evaluatie zon PV-projecten bij woningcorporaties

    Energy Technology Data Exchange (ETDEWEB)

    Kurstjens, M.J.H. [W/E Adviseurs, Utrecht (Netherlands)

    2013-09-15

    A study has been carried out to determine the failure and success factors with regard to the use of solar panels in the housing sector. Lessons learned from this evaluation form the basis for targeted communication and development of a guide for corporations. In the spring of 2013, stakeholders in eight representative initiatives in the Netherlands were interviewed. The failure and success factors are translated into recommendations to further develop tools for corporations [Dutch] Er is gezocht naar de faal- en succesfactoren rondom de toepassing van zonnepanelen in de woningbouwsector. Leerpunten uit deze evaluatie vormen de basis voor gerichte communicatie en ontwikkeling van (een) handreiking(en) voor corporaties. In het voorjaar van 2013 zijn betrokkenen bij acht representatieve initiatieven in Nederland geinterviewd. De faal- en succesfactoren zijn omgezet in aanbevelingen voor nader uit te werken hulpmiddelen voor corporaties.

  18. Evaluation of the service quality of solar water-heaters; Evaluation de la qualite de service des chauffe-eau solaires

    Energy Technology Data Exchange (ETDEWEB)

    Buscarlet, C.; Filloux, A.

    1998-12-31

    This small booklet is the result of research studies carried out for the evaluation of solar water-heater performances, including service quality. Service quality is evaluated according to the capacity of production of `useful` hot water (hot water above a given temperature) and to the influence of the daily profile of drawing up on the performances of the water-heater. Procedures have been developed that allow to determine these indicators without the need of supplementary tests. A suggestion of information file for solar water-heaters without auxiliary heating is proposed which presents for each type of apparatus a synthetic information about its performances and service quality. (J.S.)

  19. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  20. Design, Development and Performance Evaluation of a Small Scale Solar Assisted Paddy Dryer for on Farm Processing

    Directory of Open Access Journals (Sweden)

    Sidrah Ashfaq

    2016-04-01

    Full Text Available With the continued escalation in population growth and the expansion of international food trade and demand of high quality product for food security at low cost has created considerable interest in the development of new post-harvest technologies. This is particularly important for developing countries where post-harvest losses of cereals are between 10-20% and of fruits and vegetables as high as 20- 100% A new solar assisted paddy dryer with central air distribution model (along the length of drying chamber has been developed. Due to this distinct feature of the dryer high drying rate was achieved during the drying processes .Other components of the dryer are perforated drying chamber, blower and flat plat solar air collector. Dryer was evaluated using 100kg of freshly harvested paddy at 23.78% moisture content (wb. Performance evaluation results showed that the mean drying rate of the solar assisted paddy dryer was 0.87kg/hr per for every 100kg, whereas 0.46kg/hr was the sun drying rate comparatively. The faster drying rate of the dryer reveals its suability to dry the paddy for its safe storage moisture content rapidly. By using the solar assisted paddy dryer, approximately 50% saving in time was also achieved as compared with the traditional sun drying method. Solar assisted paddy dryer took 10hr for drying the 100kg paddy up to 14%, while sun drying method dried paddy up to 13.89% in 19 hours. Cost analysis also showed that, by using solar assisted paddy dryer we candry good quality paddy at low cost as compared with the open sun drying method. For development of agriculture in the rural areas, commercial size of the solar assisted paddy dryer can be amplified and produced at community level.

  1. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  2. 2010 Solar Program Peer Review Report: An Independent Evaluation of Program Activities for FY2009 and FY2010

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Program

    2010-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the DOE Solar Energy Technologies Program's 2010 Program Review meeting, held on May 24?27, 2010, in Washington, D.C.

  3. Evaluation end-of-life power generation of a satellite solar array

    International Nuclear Information System (INIS)

    Taherbaneh, Mohsen; Ghafooifard, H.; Rezaie, A.H.; Rahimi, K.

    2011-01-01

    Research highlights: → We present detailed design description and necessary considerations for solar panels utilized in a specific space mission. → All sources of losses and degradation of the solar panels are fully taken into account. → We introduce a comprehensive novel approach to investigate the electrical behavior of the solar panels. → We use a simple model to calculate the operating temperature range of the solar panels. → We also calculate Mission End-of-Life electrone fluence using SPENVIS. -- Abstract: Knowing the power generated by of solar arrays in a space missions shall satisfy mission requirements; prediction of the power generated by a solar array used in a space mission is very important and necessary. In this research, a detailed design description and necessary considerations for solar panels utilized in a specific space mission is presented. All sources of losses and degradation of solar panels are fully taken into account. This research emphasizes on investigation, analysis and verification of a manufactured solar assembly for a satellite before launch. Solar panels' generated power should be estimated at the end of the mission. For this purpose, radiation values and temperature operating range are specified for the mission. Panels' temperature operating rate is determined through considering a simple model and different spins for the satellite. Mission end-of-life 1 MeV equivalent dose is calculated by SPENVIS suite software. Finally, a comprehensive novel approach is introduced to investigate the electrical behavior of the solar panels. This approach can be implemented in MATLAB environment to obtain output power characteristics of the solar panels for each specific mission. The results are in full accordance with the mission requirements either in beginning-of-life or end-of-life. Therefore, the power prediction of the designed solar array for the mentioned satellite completely satisfies its mission requirements.

  4. Evaluation of Various Methods for Estimating Global Solar Radiation in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Woli, Prem; Paz, Joel O.

    2012-05-01

    Global solar radiation Rg is an important input for crop models to simulate crop responses. Because the scarcity of long and continuous records of Rg is a serious limitation in many countries, Rg is estimated using models. For crop-model application, empirical Rg models that use commonly measured meteorological variables, such as temperature and precipitation, are generally preferred. Although a large number of models of this kind exist, few have been evaluated for conditions in the United States. This study evaluated the performances of 16 empirical, temperature- and/or precipitation-based Rg models for the southeastern United States. By taking into account spatial distribution and data availability, 30 locations in the region were selected and their daily weather data spanning eight years obtained. One-half of the data was used for calibrating the models, and the other half was used for evaluation. For each model, location-specific parameter values were estimated through regressions. Models were evaluated for each location using the root-mean-square error and the modeling efficiency as goodness-of-fit measures. Among the models that use temperature or precipitation as the input variable, the Mavromatis model showed the best performance. The piecewise linear regression based Wu et al. model (WP) performed best not only among the models that use both temperature and precipitation but also among the 16 models evaluated, mainly because it has separate relationships for low and high radiation levels. The modeling efficiency of WP was from ~5% to more than 100% greater than those of the other models, depending on models and locations.

  5. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  6. Evaluation of the solar water disinfection process (SODIS) against Cryptosporidium parvum using a 25-L static solar reactor fitted with a compound parabolic collector (CPC).

    Science.gov (United States)

    Fontán-Sainz, María; Gómez-Couso, Hipólito; Fernández-Ibáñez, Pilar; Ares-Mazás, Elvira

    2012-02-01

    Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower (P 10 times).

  7. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  8. Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for

  9. An Evaluation of Solar Air Heating at United States Air Force Installations

    Science.gov (United States)

    2009-03-01

    market . UTCs are only one of the numerous options that are available for energy managers to consider. The specific problem addressed by this research...Force 899,143,000 9% Biogas, Biomass, Geothermal, Solar, Wind 4 Wells Fargo and Company 550,000,000 42% Wind 5 Whole Foods Market 509,104,786...100% Biogas, Solar, Wind 6 The Pepsi Bottling Group, Inc. 470,216,838 100% Various 7 Johnson & Johnson 434,854,733 38% Biomass, Small hydro, Solar

  10. Solar heating, wood chips and pellets at Harpsund. An evaluation; Solvaerme, flis och pellets paa Harpsund. Utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Leif; Perers, Bengt

    2006-06-15

    be possible to improve this result slightly through some optimization measures, possibly to 10.72 SEK/kWh,year. This evaluation presents a thorough analysis of the performance of the solar heating system, together with data for the overall system coordination and details for the temperature dynamics of the heat accumulator. In all, the analysis shows a very attractive plant, well suited for demonstration purposes.

  11. Development of an Active Solar Crop Dryer: Design Analysis and Performance Evaluation

    International Nuclear Information System (INIS)

    Itodo, I. N.; Adewole, A.M.; Edemaku, S.K.

    2002-01-01

    A forced convection indirect solar dryer powered by a PVC module was designed and evaluated. The performance of the dryer was poor; its drying rate, collector and system drying efficiency were 0.74 kg/day, 12% and 10% respectively. The dryer was redesigned and modified into a direct forced convection type- Its design analysis and performance evaluation was undertaken by drying mashed cassava. The drying rate, system drying collector and pick-up efficiencies were 1,6 kg/day (14%/day), 9%, 46% and 29% respectively. Comparatively, the drying rate for sun drying was 0.9 kg/day. The collector efficiency compared very well to the designed value of 48% and may not need further improvement. The pick-up efficiency also compared well with typical averages for this dryer type. The drying rate and system drying efficiency Indicate the need for further development of this dryer. Prediction equations were developed from the results of measured differences in collector, dryer and ambient air temperatures plotted on graphs and applying regression. It is recommended that the volumetric air-flow rate across the drying unit should he improved by affecting the tan speed and air inlet area of the dryer. The improved dryer will subsequently be compared to a natural convection dryer so that an appropriate dryer technology can be recommended for the rural small-scale farmers

  12. Design and performance evaluation of a new hybrid solar dryer for banana

    International Nuclear Information System (INIS)

    Amer, B.M.A.; Hossain, M.A.; Gottschalk, K.

    2010-01-01

    A hybrid solar dryer was designed and constructed using direct solar energy and a heat exchanger. The dryer consists of solar collector, reflector, heat exchanger cum heat storage unit and drying chamber. The drying chamber was located under the collector. The dryer was operated during normal sunny days as a solar dryer, and during cloudy day as a hybrid solar dryer. Drying was also carried out at night with stored heat energy in water which was collected during the time of sun-shine and with electric heaters located at water tank. The efficiency of the solar dryer was raised by recycling about 65% of the drying air in the solar dryer and exhausting a small amount of it outside the dryer. Under Mid-European summer conditions it can raise up the air temperature from 30 to 40 deg. C above the ambient temperature. The solar dryer was tested for drying of ripe banana slices. The capacity of the dryer was to dry about 30 kg of banana slices in 8 h in sunny day from an initial moisture content of 82% to the final moisture content of 18% (wb). In the same time it reduced to only 62% (wb) moisture content in open sun drying method. The colour, aroma and texture of the solar dried products were better than the sun drying products.

  13. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    Science.gov (United States)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  14. Evaluation and comparing of natural and forced solar dryer for mint drying in Khuzestan province

    Directory of Open Access Journals (Sweden)

    J Habibi Asl

    2017-05-01

    Research Center during the years 2011-2013. Materials and Methods In this research an indirect cabinet solar dryer with three trays and grooved collector was constructed. To improve air convection, a chimney was mounted above the dryer. The dryer performance was evaluated by drying mint leaves in three levels of mass density of 2, 3, and 4 kg m-2 at two drying manners of natural and forced convection and compared with drying mint leaves in shade as the traditional method. Results and Discussion The results showed that total drying time required in different solar drier treatments was 3.5 to 15 h, while it was about 5 days in traditional method. Drying time in upper trays was more as the air flow decreased due to increase in mass density. Mean required drying time in forced convection was 29.7% less than that of natural convection. Maximum essences with 0.80% and 0.76% were belonged to "natural convection and 3kg m-2 mass density" and "forced convection and 4 kg m-2 mass density" treatments respectively, while minimum one with 0.30% was for "forced convection and 2 kg m-2 mass density" treatment. Also, the highest and lowest chlorophyll content with 8.51 and 4.18 mg ml-1 were measured in "natural convection and 3 kg m-2 mass density" and "forced convection and 4 kg m-2 mass density" treatments respectively. According to obtained results, 3 and 4 kg m-2 mass density can be suggested for natural and forced convection solar drying of mint leaves in Khuzestan condition respectively. Conclusions In order to reduce vegetable losses and increase Khuzestan vegetable producers income, indirect cabinet solar dryer for drying mint leaves in winter season, could be an appropriate option. For natural and forced convection drying methods, mass density of 3 and 4 kg m-2 is recommended respectively.

  15. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  16. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  17. The Job Creation Potential of Solar and Conservation: A Critical Evaluation.

    Science.gov (United States)

    Schachter, Mary

    Solar proponents claim that a solar- and conservation-oriented economy will create vastly larger numbers of jobs than the conventional and nuclear alternatives. Comparing energy alternatives in terms of job creation potential is tenuous at best due to the paucity of analysis in this area. Ideally, both the quantitative and qualitative aspects of…

  18. Findings from an Independent Evaluation of the AMNH's Online Seminars on Science Course: "The Solar System"

    Science.gov (United States)

    Inverness Research, 2009

    2009-01-01

    Inverness Research studied the American Museum of Natural History (AMNH) Seminars on Science program for eight years, from its inception in 1998 to 2006. In 2009, Inverness Research conducted additional studies of the AMNH's new online course, The Solar System. This paper presents teacher survey ratings for The Solar System, along with profiles of…

  19. An evaluation of solar energy for heating a highway maintenance headquarters building.

    Science.gov (United States)

    1985-01-01

    A highway maintenance area headquarters building having overall dimensions of 64 ft - 8 in by 42 ft - 0 in was equipped with an active solar heating system to assist in heating space and domestic hot water. The solar system was instrumented and its o...

  20. Economic Evaluation of a Solar Charged Thermal Energy Store for Space Heating

    OpenAIRE

    Melo, Manuel

    2013-01-01

    A thermal energy store corrects the misalignment of heating demand in the winter relative to solar thermal energy gathered in the summer. This thesis reviews the viability of a solar charged hot water tank thermal energy store for a school at latitude 56.25N, longitude -120.85W

  1. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, J.

    2010-07-01

    Evaluation of novel semiconductor materials potentially useful in solar cells. NREL will fabricate, test and analyze solar cells from EpiWorks' wafers produced in 2-3 separate growth campaigns. NREL will also characterize material from 2-3 separate EpiWorks material development campaigns. Finally, NREL will visit EpiWorks and help establish any necessary process, such as spectral CV measurements and III-V on Si metalization processes and help validate solar cell designs and performance.

  2. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    Science.gov (United States)

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  3. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    Science.gov (United States)

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  4. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  5. Performance evaluation of an integrated solar water heater as an option for building energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Dharuman, C.; Arakeri, J.H.; Srinivasan, K. [Indian Inst. of Science, Bangalaore (India). Dept. of Mechanical Engineering

    2006-03-15

    Since a majority of residential and industrial building hot water needs are around 50 {sup o}C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m{sup 2} and can hold 170 l of water, of which extractable volume per day is 100 l. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 100 l of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 {sup o}C, the next morning temperatures were lower at 45-50 {sup o}C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation. (author)

  6. Techno-economic evaluation of concentrating solar power generation in India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav

    2010-01-01

    The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m 2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. In this study, a preliminary attempt towards the technical and economic assessment of concentrating solar power (CSP) technologies in India has been made. To analyze the techno-economic feasibility of CSP technologies in Indian conditions two projects namely PS-10 (based on power tower technology) and ANDASOL-1 (based on parabolic trough collector technology) have been taken as reference cases for this study. These two systems have been simulated at several Indian locations. The preliminary results indicate that the use of CSP technologies in India make financial sense for the north-western part of the country (particularly in Rajasthan and Gujarat states). Moreover, internalization of secondary benefits of carbon trading under clean development mechanism of the Kyoto Protocol further improves the financial feasibility of CSP systems at other locations considered in this study. It may be noted that the locations blessed with annual direct solar radiation more than 1800 k

  7. Intra-/inter-laboratory validation study on reactive oxygen species assay for chemical photosafety evaluation using two different solar simulators.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Nakamura, Kazuichi; Ohno, Yasuo; Kojima, Hajime

    2014-06-01

    A previous multi-center validation study demonstrated high transferability and reliability of reactive oxygen species (ROS) assay for photosafety evaluation. The present validation study was undertaken to verify further the applicability of different solar simulators and assay performance. In 7 participating laboratories, 2 standards and 42 coded chemicals, including 23 phototoxins and 19 non-phototoxic drugs/chemicals, were assessed by the ROS assay using two different solar simulators (Atlas Suntest CPS series, 3 labs; and Seric SXL-2500V2, 4 labs). Irradiation conditions could be optimized using quinine and sulisobenzone as positive and negative standards to offer consistent assay outcomes. In both solar simulators, the intra- and inter-day precisions (coefficient of variation; CV) for quinine were found to be below 10%. The inter-laboratory CV for quinine averaged 15.4% (Atlas Suntest CPS) and 13.2% (Seric SXL-2500V2) for singlet oxygen and 17.0% (Atlas Suntest CPS) and 7.1% (Seric SXL-2500V2) for superoxide, suggesting high inter-laboratory reproducibility even though different solar simulators were employed for the ROS assay. In the ROS assay on 42 coded chemicals, some chemicals (ca. 19-29%) were unevaluable because of limited solubility and spectral interference. Although several false positives appeared with positive predictivity of ca. 76-92% (Atlas Suntest CPS) and ca. 75-84% (Seric SXL-2500V2), there were no false negative predictions in both solar simulators. A multi-center validation study on the ROS assay demonstrated satisfactory transferability, accuracy, precision, and predictivity, as well as the availability of other solar simulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Solar-energy-system performance evaluation. San Anselmo School, San Jose, California, April 1981-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Pakkala, P.A.

    1982-01-01

    The San Anselmo School is a one-story brick elementary school building in San Jose, California. The active solar energy system is designed to supply 70% of the space heating and 72% of the cooling load. It is equipped with 3740 square feet of evacuated tube collectors, a 2175-gallon tank for heat storage, a solar-supplied absorption chiller, and four auxiliary gas-fired absorption chillers/heaters. The measured solar fraction of 19% is far below the expected values and is attributed to severe system control and HVAC problems. Other performance data given for the year include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also tabulated are monthly performance data for the overall solar energy system, collector subsystem, space heating and cooling subsystems. Typical hourly operation data for a day are tabulated, including hourly isolation, collector array temperatures (inlet and outlet), and storage fluid temperatures. The solar energy use and percentage of losses are also graphed. (LEW)

  9. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies.

    Science.gov (United States)

    Modenese, Alberto; Bisegna, Fabio; Borra, Massimo; Grandi, Carlo; Gugliermetti, Franco; Militello, Andrea; Gobba, Fabriziomaria

    The health risk related to an excessive exposure to solar radiation (SR) is well known. The Sun represents the main exposure source for all the frequency bands of optical radiation, that is the part of the electromagnetic spectrum ranging between 100 nm and 1 mm, including infrared (IR), ultraviolet (UV) and visible radiation. According to recent studies, outdoor workers have a relevant exposure to SR but few studies available in scientific literature have attempted to retrace a detailed history of individual exposure. We propose a new method for the evaluation of SR cumulative exposure both during work and leisure time, integrating subjective and objective data. The former is collected by means of an interviewer administrated questionnaire. The latter is available through the Internet databases for many geographical regions and through individual exposure measurements. The data is integrated into a mathematical algorithm, in order to obtain an esteem of the individual total amount of SR the subjects have been exposed to during their lives. The questionnaire has been tested for 58 voluntary subjects. Environmental exposure data through online databases has been collected for 3 different places in Italy in 2012. Individual exposure by electronic UV dosimeter has been measured in 6 fishermen. A mathematical algorithm integrating subjective and objective data has been elaborated. The method proposed may be used in epidemiological studies to evaluate specific correlations with biological effects of SR and to weigh the role of the personal and environmental factors that may increase or reduce SR exposure. Med Pr 2016;67(5):577-587. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Thermal Performance Evaluation of the 200 kWth Sol Air Volumetric Solar Receiver

    International Nuclear Information System (INIS)

    Tellez Sufrategui, F. M.

    2003-01-01

    The goal of the Solair project is the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safely operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW HitRec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MW t h receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fluffy accomplished: Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 (±6)% for configuration 1 and 83 (±6) % for configuration 2 of the absorber. (Author) 20 refs

  11. Thermal Performance Evaluation of the 200kWth SolAir Volumetric Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Tellez Sufrategui, F. M.

    2003-07-01

    The goal of the Solair project the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safety operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW Hitrec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MWth receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fully accomplished. Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 ({+-}6)% for configuration 1 and 83({+-}6)% for configuration 2 of the absorber. (Author). 20 refs.

  12. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-05-01

    Full Text Available The level of arable land-use intensity has important impacts on food security and rural sustainable development. Using the emergy method, we investigate the spatial disparities and driving forces of arable land-use intensity in China from 1999 to 2008 at the national, regional and provincial levels. The empirical results show that chemical fertilizer was the largest component of agricultural inputs and that agricultural diesel oil recorded the highest growth rate. The degree of heterogeneities in arable land-use intensity in China showed a decreasing trend, which resulted mainly from the differences among the eastern, northeastern, central and western regions. The regional disparities in labor, pesticides and plastic sheeting decreased from 1999 to 2008. The per capita annual net incomes of household operations and the agricultural policies had a significant positive correlation with total inputs, fertilizer inputs, pesticide inputs and agricultural plastic sheeting. In addition, the nonagricultural population had a greater impact on agricultural plastic sheeting. Finally, we suggest that there is an urgent need to focus on the effects of chemical fertilizer and pesticide inputs on the ecological environment. Agricultural support policies should be introduced for the poor agricultural production provinces.

  13. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    Science.gov (United States)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  14. Evaluation of Franchising Business Model to Solar Energy Market in Vietnam

    OpenAIRE

    Nguyen, Thanh

    2009-01-01

    The shortage of energy, the running out of natural resources, the concern for environment pollution and the advantage of potential solar resource has become an opportunity for foreign investors who have intention to enter Vietnam‟s solar energy market. There are so many entry modes for the investors to choose rom but the application of franchising business model to solar energy industry is still a new concept not only in Vietnam but also all over the world. Therefore, this study works on the...

  15. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  16. Solar-energy-system performance evaluation update: San Anselmo School, San Jose, California, April 1982-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, P.W.

    1982-01-01

    The solar collector array at the San Anselmo School is located on the roof of the structure, and consists of 3740 square feet of General Electric evacuated tube solar collectors, Model TC-100. Performance of the array during the three-month period was very similar to the overall performance during the previous reporting periods. During the three-month period from April 1982 through June 1982, the solar system at the San Anselmo School performed below expectations despite continued attempts to alleviate several long-standing system problems. Space heating performance appears to be meeting design goals; however, this load was trivial during the three-month period. The retrofitted solar system was designed to provide 70% of the space heating load and 72% of the space cooling load at this 34,000-square-foot brick structure. In all of the previous months of evaluation, the design values of 70% and above have not been achieved for the system as a whole, although one subsystem did achieve high solar contributions during periods of lower building loads, specifically the space heating subsystem. Solar contribution during the three-month period of April 1982 through June 1982 averaged 19% of the total load of 117.4 million Btu, and was, at best, equal to previous performance. Space heating loads were small, and the space cooling load was relatively high over the test period. The solar savings ratio was 14%. The system performance factor is a measure of the equivalent fossil fuel consumption at the site (with operating energy multiplied by 3.33 times to simulate fossil fuel use at the power plant) relative to the actual load, and was 0.15. This value is 0.03 points less than the previous year's value of 0.18. Solar System Coefficient of Performance (COP) increased to 11.0 vs. the previous year's value of 7.6. Apparently, the efficiency of energy transfer in the system has improved, although performance was not really any better.

  17. Evaluation of solar-assisted, electric and gas golf carts, Bathurst Glen golf course, Richmond Hill, Ontario

    International Nuclear Information System (INIS)

    2010-08-01

    Municipalities try to limit air pollution resulting from the use of small gasoline engines. Indeed, these engines participate in the smog and greenhouse gas (GHG) emissions and they present operating costs more important than electric equivalents. The potential positive impacts of the use of electric or solar electric golf carts instead of gasoline carts are analyzed through a study that compares two solar-assisted electric golf carts, two standard electric golf carts and two gas-powered golf carts. The energy use and related Co2 emissions, the dependability, and the relative costs were evaluated and Golfer preference was also considered thanks to a feedback survey. The comparison between the solar-assisted and the standard electric carts was made on the basis of electricity measures at three points: alternating current (AC) electricity taken from the grid, direct current (DC) electricity flowing into and out of the batteries, and DC electricity generated by the solar panels. The data collected during this study suggested that other factors associated with cart condition or driver behaviours can be more important than the solar panels in determining overall energy consumption. Choosing an area with full sun exposure to install the solar panel and connecting directly to the grid would also maximize generation potential. The comparison of performance between electric carts and gas carts showed the most considerable positive findings. Indeed, fuel costs and emissions are significantly lower in the case of the electric carts, which also present a better fuel efficiency. Switching the 20 percent of gas-powered carts counted within a 100 km radius of Toronto with electric carts could be comparable to removing 155 mid-sized gasoline cars of the road. The electric golf carts present many important financial and environmental benefits when compared to gas carts. The performance is marginally enhanced with the use of solar panels on electric carts and the date collected from

  18. Design, construction and evaluation of solar flat-plate collector simulator based on the thermohydraulic coefficient

    Directory of Open Access Journals (Sweden)

    H Rahmati Aidinlou

    2017-05-01

    Full Text Available Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate solar air heaters. Evaluation of this requires the construction of separated solar air heater which is costly and time consuming. The constructed solar flat-plate collector simulator can be a sufficient solution for obtaining the heat transfer and thermodynamic parameters for evaluating the absorber plate. The inclined broken roughness was chosen as the optimum roughness which is surrounded by three aluminum smooth walls. Materials and Methods The duct for both smooth and roughened plate have been constructed based on the ASHRAE 93-2010 standard. In order to achieve a fully thermal and hydraulic developed flow, the plenum is constructed. The centrifugal fan is considered by applying the required air volume at the pressure drop obtained by the duct, plenum and the orifice meter. The TSI velocity-meter 8355 is used to measure the velocity of air crossing through the pipe connected to the centrifugal fan. The micro manometer Kimo CPE310-s with the resolution of 0.1 Pa is used to measure the pressure drop across the test section of the smooth and roughened duct. The LM35 sensors are used to measure the absorber plate and air temperature through the test section. Obtained parameters are used to calculate the Nusselt number and friction factor across the test section for smooth and roughened absorber plate. The Nusselt number and friction factor parameters which is obtained for smooth absorber plate based on experimental set-up, is compared with Dittus-Bolter and Blasius equations, respectively, for validating the simulator. By calculating the Nusselt number and friction factor, Stanton number is obtained based on the equation (6, and thermohydraulic

  19. Solar energy system economic evaluation for IBM system 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    The economic performance of an operational test site of a solar energy system is described. The viability of the system was tested over a broad range of environmental and economic conditions. Significant results are reported.

  20. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Directory of Open Access Journals (Sweden)

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  1. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  2. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  3. Calibration and Evaluation of Different Estimation Models of Daily Solar Radiation in Seasonally and Annual Time Steps in Shiraz Region

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fooladmand

    2017-06-01

    2006 to 2008 were used for calibrating fourteen estimated models of solar radiation in seasonally and annual time steps and the measured data of years 2009 and 2010 were used for evaluating the obtained results. The equations were used in this study divided into three groups contains: 1 The equations based on only sunshine hours. 2 The equations based on only air temperature. 3 The equations based on sunshine hours and air temperature together. On the other hand, statistical comparison must be done to select the best equation for estimating solar radiation in seasonally and annual time steps. For this purpose, in validation stage the combination of statistical equations and linear correlation was used, and then the value of mean square deviation (MSD was calculated to evaluate the different models for estimating solar radiation in mentioned time steps. Results and Discussion: The mean values of mean square deviation (MSD of fourteen models for estimating solar radiation were equal to 24.16, 20.42, 4.08 and 16.19 for spring to winter respectively, and 15.40 in annual time step. Therefore, the results showed that using the equations for autumn enjoyed high accuracy, however for other seasons had low accuracy. So, using the equations for annual time step were appropriate more than the equations for seasonally time steps. Also, the mean values of mean square deviation (MSD of the equations based on only sunshine hours, the equations based on only air temperature, and the equations based on the combination of sunshine hours and air temperature for estimating solar radiation were equal to 14.82, 17.40 and 14.88, respectively. Therefore, the results indicated that the models based on only air temperature were the worst conditions for estimating solar radiation in Shiraz region, and therefore, using the sunshine hours for estimating solar radiation is necessary. Conclusions: In this study for estimating solar radiation in seasonally and annual time steps in Shiraz region

  4. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    OpenAIRE

    Umair, Muhammad; Akisawa, Atsushi; Ueda, Yuki

    2014-01-01

    Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...

  5. Design and Evaluation of Solar Grain Dryer with a Back-up Heater

    OpenAIRE

    K.S. Tonui; E.B.K. Mutai; D.A. Mutuli; D.O. Mbuge; K.V. Too

    2014-01-01

    The aim of the study was to design and construct a solar grain dryer integrated with a simple biomass burner using locally available materials. This was to address the limitations of the natural sun drying for example drying exposure, liability to pests and rodents, over-dependence on sun and escalated cost of mechanical dryers. This became beneficial especially in reducing post-harvest losses as well as helping in the preservation of agricultural product. The dryer is composed of solar colle...

  6. Energetic and economic evaluation of solar thermal and photovoltaic cooling system in Cuban hotel

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Castellanos Molina, Luis Miguel; Torres del Toro, Migdalia; Monteagudo Llanes, José

    2015-01-01

    The present paper discusses the energetic and economic feasibility of using two configurations of solar cooling in a Cuban Hotel. The air conditioning hybrid system schemes are: conventional system (Chiller) interconnected in parallel with a solar- powered absorption cooling system (SACS); and a photovoltaic cooling system (PCS). There were analyzed by methodologies and thermodynamic principles governing these technologies. The results show that their uses are alternatives for reducing energy consumption and environmental impact. (full text)

  7. Performance evaluation of a natural-convection solar air-heater with a rectangular-finned absorber plate

    International Nuclear Information System (INIS)

    Fakoor Pakdaman, M.; Lashkari, A.; Basirat Tabrizi, H.; Hosseini, R.

    2011-01-01

    This paper deals with an experimental investigation to evaluate different thermal characteristics of a natural-convection flat-plate solar air-heater with longitudinal rectangular fins array. Having determined the thermal performance of the system a Nusselt number correlation is presented for such finned duct devices. In the presented empirical model which may have industrial applications, solar radiation and ambient temperature have been considered as independent parameters. Other characteristics of the system such as different dimensionless variables, plates and outflow temperatures, efficiency, and mass flow rate have been empirically modeled based on these variables. The particular difference in this study in comparison with the other similar studies is the presentation of an empirical model for rectangular-finned solar air-heaters. This model proposes design concepts and rules of thumb, and demonstrates the calculations of the design parameters. Based on the order of magnitude analysis, solar radiation has been found to be the main parameter which characterizes the thermal behavior of the system. Besides, exergy analysis has been carried out, and optimum conditions in which the system has the highest performance have been determined.

  8. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    Directory of Open Access Journals (Sweden)

    Hidouri Khaoula

    2017-07-01

    Full Text Available In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD and a Simple Solar Distiller Hybrid with a Heat Pump (SSDHP stills. Experimental results and those calculated by Lewis number correlation show good agreements. Results obtained by Dunkle, Kumar and Tiwari correlations are not satisfactory with the experimental ones. Theoretical results, as well as statistical analysis, are presented. The model with heat pump ( for two configurations (111 and (001 give more output compared with the model without heat pump ((000 and (110. This results where agree for the use of the statistic results, the error it less with Lewis number as compared with the different correlation.

  9. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    Science.gov (United States)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  10. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  11. Evaluation of Plastic Household Biosand Filter (BSF) In Combination with Solar Disinfection (SODIS) For Water Treatment

    International Nuclear Information System (INIS)

    Hussain, G.; Haydar, S.; Bari, A. J.; Anis, M.; Asif, Z.; Aziz, J. A.

    2015-01-01

    Efficiency of a household plastic biosand filter (BSF) for the removal of turbidity and fecal contamination was evaluated. Water of river Ravi was used as influent. Water filtered through BSF was further treated using Solar Disinfection (SODIS). The study was conducted for raw water with low pollution level (total coliforms <500 MPN/100 ml) and high pollution level (total coliforms between 500-20,000 MPN/100 ml). The average value of turbidity removal by BSF was 94.5 percentage with 0.9 NTU as average turbidity of effluent. For raw water with low pollution level, the BSF was able to achieve a maximum of 2.2 log10 unit reduction (99.4 percentage) for total coliforms (39 MPN/100 mL in effluent) and 1.95 log10 unit reduction (98.5 percentage) for fecal coliforms (9 MPN/100 mL in effluent). While for raw water with high pollution level, the maximum removal of 1.5 log10 unit (97.5 percentage) for total coliforms (1430 MPN/100 mL in effluent) and 1.8 log10 units (98.4 percentage) for fecal coliforms (387 MPN/100 mL in effluent) was achieved in BSF. To make the effluent fit for drinking it was further treated using SODIS, which rendered the BSF effluent fit for drinking with zero fecal coliforms count (for full sunny and partially cloudy conditions). Newly proposed plastic BSF could be a good replacement of already used concrete household BSF (used in more than 63 countries) being cheaper in cost and lighter in weight by 85 percentage and 80 percentage, respectively than the concrete BSF. (author)

  12. An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future

    International Nuclear Information System (INIS)

    Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Abu-Bakar, Siti Hawa; McMeekin, Scott G.; Stewart, Brian G.

    2011-01-01

    This paper examines solar energy development in Malaysia, particularly in relation to the installation of solar Photovoltaic (PV) in residential houses. It analyzes the past activities related to solar energy in Malaysia, in terms of research and developments (R and Ds), the implementations used as well as the national policies for the past 20 years which have pushed the installation of PV in the country. The Feed-In Tariff (FiT) scheme is discussed, showing comparative cost-benefit analysis between the PV installation in houses in the United Kingdom (UK) and Malaysia, and with other investment schemes available in Malaysia. To investigate the awareness of renewable energy policies and incentives, a preliminary survey of the public opinion in Malaysia has been carried out, and an evaluation of public willingness to invest in the FiT scheme by installing the PV on their houses is presented. The cost-benefit analysis shows that the proposed FiT programme is capable of generating good return on investment as compared to the one in the UK, but the return is lower than other investment tools. The survey suggests that most Malaysians are unaware of the government’s incentives and policies towards renewable energies, and are not willing to invest in the FiT scheme. - Highlights: ► Past activities related to solar energy is evaluated and FIT scheme is discussed. ► Financial analysis is presented; public perspective is evaluated. ► The FIT scheme generates higher return for PV installation in Malaysia than in the UK. ► The scheme, however, produces lower return than most investment schemes. ► Malaysians’ awareness levels are low and are not willing to invest in the FIT scheme.

  13. Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed Bilal Awan

    2018-04-01

    Full Text Available According to Vision 2030, the Kingdom of Saudi Arabia (K.S.A plans to harness 9.5 GW of energy from renewable energy sources, which includes a major part of solar PV generation. This massive implementation of solar projects requires an accurate assessment and analysis of solar resource data and PV site selection. This paper presents a detailed analysis of one-year solar radiation data and energy output of 100 kW PV systems at 44 different locations across the K.S.A. Coastal areas have a lower amount of global horizontal irradiance (GHI as compared to inland areas. Najran University station gives the highest annual electrical output of 172,083 kWh, yield factor of 1721, and capacity utilization factor of 19.6%. Sharurah and Timma TVTC are second and third best with respect to annual PV performance. Similarly, during high load summer season (April–October, Tabuk station is the best location for a PV power plant with an electrical output of 110,250 kWh, yield factor of 1102, and capacity utilization factor of 21.46%. Overall, the northern province of Tabuk is the most feasible region for a solar PV plant. The basic approach presented in this research study compares solar resource pattern and solar PV system output pattern with the load profile of the country. The site selected based on this criterion is recommended to be economically most feasible which can reduce the stress on electricity companies during high load seasons by clipping the peak load during daytime in the hot summer period.

  14. Thermal performance study of a box type solar cooker: evaluation of second figure of merit, F2

    International Nuclear Information System (INIS)

    Subudh Kumar

    2006-01-01

    The thermal performance of a box type solar cooker can be evaluated through the determination of two figures of merit-F 1 and F 2 . The F 1 is defined as the ratio of optical efficiency factor (η o ) the overall heat loss coefficient (U L ) and F 2 relates to the effectiveness of heat exchange between cooker interiors and contents of the pots. The values of F 1 and F 2 can be found experimentally from the stagnation (no-load) and load (water) tests respectively. The sensible heating curve (a plot between pot water temperature and time) from the load test is used for determination of F 2 . An accurate determination of F 2 is necessary for making the correct and reliable assessment of solar cooker performance. In the present work, the thermal analysis has been carried out to simulate the sensible heating curves for different loads of water in the commercially available, fibre body double-glazed box type solar cooker (size 0.245 m 2 ) by using the heat balance equation. The comparison between the simulated and experimental sensible heating curves is presented. The close agreement in the results shows that the simulated heating curve can be employed for predicting the thermal performance (or F 2 ) of the solar cooker. The F 2 for different loads of water in the solar cooker have been obtained using the computer simulation, while considering the variable overall heat loss coefficient U L (a function of pot water temperature). The results indicate that F 2 increases linearly up to a load of 1.5 kg. Thereafter, the increase in the value of F 2 decreases gradually with the load

  15. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    Science.gov (United States)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been

  16. Experimental Evaluation of a Flat Plate Solar Collector Under Hail City Climate

    Directory of Open Access Journals (Sweden)

    N. Ben Khedher

    2018-04-01

    Full Text Available Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude ‎41°69΄E was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.

  17. Campaigns for renewable energy - the evaluation of 'Solar-na klar.' and a framework concept for new campaigns; Kampagnen fuer erneuerbare Energien - Die Evaluation von 'Solar-na klar.' und Empfehlungen fuer neue Kampagnen

    Energy Technology Data Exchange (ETDEWEB)

    Duscha, M.; Schuele, R.; Gross, D.; Lambrecht, K.; Lucius, W.; Johansson, J.; Rieder, S.

    2002-04-01

    (a) Since 1999, the 'Solar - na klar.' campaign has supported the expansion of the market for solar collectors in Germany by providing public relations activities and consulting services. The evaluation revealed predominantly positive results regarding the external effects of the campaign. The campaign was successful in reaching its main target groups, especially private house owners and craftsmen and delivered useful information regarding the installation of solar collectors to both groups. More than 25% of private home owners who had installed a collector expressed the view that the campaign had a significant influence in their decision. However, many home owners that were interviewed in the evaluation study expressed the need for more and detailed information, e.g. regarding the economic efficiency of solar collectors. Interviews with owners of businesses that install solar collectors revaled the material provided by the campaign was rarely used although most of businesses expressed a high level of satisfaction with the campaign itself. The evaluation of the internal principles and processes of the campaign yielded an ambivalent picture. While the campaign was successful in involving a heterogeneous spectrum of stakeholders flexibly reacted to changes in the political and other conditions, problems emerged with the conflict management in the campaign itself. These problems were accelerated by the lack of both an integrated project planning and large structural differences between the actors involved. The main recommendation of the evaluators is that the campaign be continued in a modified manner. Among other issues, stronger emphasis should be placed to include activities on the regional level since these have the potential to further increase the external effects of the campaign. (b) In developing recommendations for other campaigns on renewable energies, the ifeu-Institute analysed existing evaluations of other marketing campaigns in the field

  18. Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling

    KAUST Repository

    Dabirian, Ali

    2017-02-15

    High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.

  19. Solar energy system performance evaluation: Seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    Science.gov (United States)

    1980-01-01

    The solar system, Elcam-Tempe, was designed by Elcam Incorporated, Santa Barbara, California, to supply commercial domestic hot water heating systems to the Agriculture Department residence at Arizona State University. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The energy system's four modes of operation are described. Electrical energy savings at the site was a net of 5.54 million Btu after the 0.17 million Btu of operating energy required to operate collector loop circulating pump were subtracted. The energy savings due to solar was less than the system's potential. On an average, twice as much hot water could have been used with significant solar energy contribution. The system corrosion and deposits caused by using dissimilar metals in the collector loop was the only problem noted with the Elcam-Tempe system.

  20. EVALUATION OF A SOLAR DESALINATION SYSTEM, TYPE CYLINDRICAL PARABOLIC CONCENTRATOR FOR SEA WATER

    Directory of Open Access Journals (Sweden)

    Carolina Mercado

    2015-12-01

    Full Text Available In this work, the methodology for the design, construction and commissioning of a solar desalinator, based on a parabolic trough collector and a solar still occurs, is presented. The energy is supplied through the solar collector, which is connected to the distiller. The equipment was set up on the premises of the Universidad Católica del Norte. It is compact, modular, low cost, easy maintenance and long life, with an average production capacity of distilled water of 2.37 l / d, however, it has to be considered that this rate is directly related with weather conditions and sea water flow entering the system, generating an average percentage of 34.04% efficiency. The results obtained with the respective findings, conclusions and recommendations for future projects associated to renewable energy equipment designed analyzed.

  1. Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices

    International Nuclear Information System (INIS)

    Yamaguchi, Yohei; Akai, Kenju; Shen, Junyi; Fujimura, Naoki; Shimoda, Yoshiyuki; Saijo, Tatsuyoshi

    2013-01-01

    Highlights: ► Consumers’ preference on PV and solar water heater were investigated. ► Diffusion of the technologies in Japan was modeled by using Bass diffusion model. ► Policy measures to diffuse the technologies were evaluated by using the framework. ► Subsidy is more cost effective than FIT to diffuse PV. ► Public perception is the bottleneck of diffusion of solar water heater. -- Abstract: This paper proposes an integrated analytical framework consisting of the following three steps: (1) investigation of consumers’ preferences, (2) prediction of technology diffusion by taking into account consumers’ preferences, and (3) estimation of CO 2 emission reduction caused by the diffusion of the examined technology. By using this framework, this paper evaluates the policy measures implemented for disseminating photovoltaics and solar water heaters in terms of the contribution to reducing CO 2 emissions from the residential sector. We investigated consumer preferences for these technologies as well as the effects of attributes such as installation cost, energy price, energy efficiency, and perception on consumers’ choices. Considering these effects, we developed a model that estimates the diffusion of these technologies into the residential sector of Japan through 2025 and the resulting CO 2 emission reduction. We found that the policy measures for the diffusion of photovoltaics that reduce initial cost (e.g., subsidy programs) are more cost effective for reducing CO 2 emission than those reducing users’ operating expenditure (e.g., feed-in tariff programs). For solar water heater to be able to reduce the CO 2 emissions considerably, the public perception must be improved.

  2. Telluride School, Telluride, Colorado solar-energy-system performance evaluation, February 1982-April 1982

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.M.

    1982-01-01

    The Telluride School solar site is an elementary/junior-senior high school in Colorado with a passive/active hybrid solar energy system designed to supply 40% of the heating load. It is equipped with a 1428 square foot, double glazed Trombe wall, a 1392 square foot greenhouse with collection tube, and an auxiliary oil-fired boiler. Monthly performance data are tabulated for the overall system and for the Trombe wall, greenhouse, and greenhouse storage. System operation is illustrated by graphs of typical Trombe wall insolation and temperatures and typical greenhouse insolation and temperatures. (LEW)

  3. Evaluation of a integral systems greenhouse - solar dryer for small growers; Evaluacion de un sistema integral invernadero - secadero solar para pequenos productores

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Victor O; Iriarte, Adolfo A [INENCO, Universidad Nacional de Catamarca, Catamarca (Argentina); Carabajal, Dante; Sabadzija, Gabriela; Tomalino, Luis [E.E.A. INTA, Catamarca, Catamarca (Argentina)

    2000-07-01

    Due to poor yielding capacity in the province of Catamarca, Argentina, it is necessary to improve solar drying systems in order to have a better quality final product. It is also essential to divide the costs of infrastructure with other complementary activities because of the need to make drying methods profitable. The system proposed in this work is a dryer-greenhouse with a double purposed macrotunnel greenhouse: during Winter it is used as a yielding system, and in Summer it is prepared to fulfill the functions of a solar dryer. The crops evaluated in winter were: small vegetable marrow (Curcubita maxima L), melon (Cucumis melo), ad cucumber (Cucuis sativus). Crop cycle, harvest time and tield in Kg/m were determined for each species. The assessment of the dryer was made using pepper for paprika observation of the thermal behavior of the product during drying and its final quality. The product obtained had a very good quality in color, taste and aroma with a classification of extra quality according to the Argentine Nutritional Code and the 7541 ISO Standard. Drying time decreased considerably compared to that observed in open air drying, 1995, 1996 and 1997 campaigns were economically assessed, and an evaluation of investments in five years was also conducted obtaining a positive VAN and a TIR above the cost of the best alternative for money expenditure. This integrated system is valid alternative in a sustainable production for small growers. [Spanish] Debido a las caracteristicas productivas de la Provincia de Catamarca Argentina, es necesario optimizar los procesos del secado solar teniendo en cuenta la calidad final del producto. Ademas, debido a la necesidad de rentabilizar los metodos de secado, imprescindible repartir los costos de infraestructura con otro tipo de actividad complementaria. El sistema propuesto en este trabajo es un invernadero secadero que utiliza un invernadero macrotunel que cumple una doble funcion, durante el invierno se usa como

  4. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  5. Exposure testing and evaluation of solar utilization materials. Semiannual report, May 1, 1975--October 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, J.E.; Brzuskiewicz, J.

    1975-01-01

    The initial efforts of a program of research and experimental testing is described in which the optical performance of materials for use in solar energy utilization devices will be determined before and after exposure to outdoor weathering tests. Materials which are currently in use and others which are being considered or developed for these applications will be characterized and exposed to natural solar radiation. Outdoor testing will be accomplished in Phoenix (Ariz.), Miami (Fla.), and Chicago (Ill.). The results of these tests, primarily the effects of outdoor exposure on optical and physical properties, will be compiled in a handbook, along with cost, availability and other pertinent information. These data are vital to the intelligent selection of solar utilization materials, since a knowledge of the cost performance and lifetime characteristics of candidate materials will greatly assist the design of efficient and reliable solar energy utilization devices. Primary accomplishments include the definition of sample requirements, specification of test samples and test configurations, formulation of acceptance/rejection criteria and contacts with numerous potential materials suppliers.

  6. Economic evaluation of the solar thermal co-production of zinc, synthesis gas, and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spiewak, I [EC Joint Research Centre (Spain)

    1999-08-01

    The use of concentrated solar energy for co-producing Zn and synthesis gas from Zn O and natural gas upgrades the calorific value of the initial reactants by 39% and, when compared to the traditional carbothermic reduction of Zn O, has the potential of reducing CO{sub 2} emissions by up to 78%. An economic assessment for an industrial thermochemical plant, 30 to 51 MW solar input, indicates that the cost of solar production of zinc ranges between 89-133 $/t (excluding the cost of Zn O feed and credit for pollution abatement), and thus might be competitive with conventional fossil-fuel-based processes at current fuel prices. The cost of solar H{sub 2}, produced by splitting water with zinc, is estimated to be in the range 0.10-0.14 $/kWh, and it is a favorable long term prospect once the cost of energy will account for the environmental externalities from fossil fuel burning such as the costs for CO{sub 2} mitigation and pollution abatement. (author) 1 fig., 2 tabs., 5 refs.

  7. Research, development and evaluation of measured data for the second stage in Hokuto solar project

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Hiroo; Iwato, Takeshi; Kudou, Mitsuru; Asano, Keiichiro [Solar Project Headquarters, NTT Facilities Inc., Granparktower, 3-4-1 Shibaura, Minato-ku, Tokyo 108-0023 (Japan)

    2011-01-15

    The first stage 600 kW system of Hokuto Mega-solar Project has been installed in Yamanashi Prefecture, Japan in 2008. The outline and the developing target of the project are introduced first and some results that have been provided so far are discussed in this paper. (author)

  8. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hranac, K.C.

    1998-01-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter

  9. Solar energy system performance evaluation: Honeywell OTS 41, Shenandoah (Newman), Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of the data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-are heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics.

  10. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia

    Science.gov (United States)

    Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.

    2017-11-01

    In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.

  11. Evaluating the potential of concentrating solar power generation in Northwestern India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav; Shekhar, Shashaank

    2013-01-01

    To accelerate the decarburization in the Indian power sector, concentrating solar power (CSP) needs to play an important role. CSP technologies have found significant space in the Jawaharlal Nehru National Solar Mission (JNNSM) of the Indian government in which 20,000 MW grid connected solar power projects have been targeted by 2022 with 50% capacity for CSP. In this study a preliminary attempt has been made to assess the potential of CSP generation in the Northwestern (NW) regions of India; which seems a high potential area as it has the highest annual solar radiation in India, favorable meteorological conditions for CSP and large amount of waste land. The potential of CSP systems in NW India is estimated on the basis of a detailed solar radiation and land resource assessment. The energy yield exercise has been carried out for the representative locations using System Advisor Model for four commercially available CSP technologies namely Parabolic Trough Collector (PTC), Central receiver system (CRS), Linear Fresnel Reflector (LFR) and Parabolic Dish System (PDS). The financial viability of CSP systems at different locations in NW India is also analyzed in this study. On the basis of a detailed solar radiation and land resource assessment, the maximum theoretical potential of CSP in NW India is estimated over 2000 GW taking into accounts the viability of different CSP technologies and land suitability criteria. The technical potential is estimated over 1700 GW at an annual direct normal incidence (DNI) over 1800 kW h/m 2 and finally, the economic potential is estimated over 700 GW at an annual DNI over 2000 kW h/m 2 in NW India. It is expected that in near future locations with lower DNI values could also become financially feasible with the development of new technologies, advancement of materials, economy of scale, manufacturing capability along with the enhanced policy measures etc. With an annual DNI over 1600 kW h/m 2 it is possible to exploit over 2000 GW CSP

  12. Daylight and solar control in buildings. General evaluation and optimization of a new angle selective glazing facade

    Energy Technology Data Exchange (ETDEWEB)

    Frontini, Francesco

    2011-07-01

    Buildings account for almost 40% of the overall energy consumption in Europe. For the future energy scenarios, the building envelope, especially the facades, becomes really important as it provides the necessary area for the installation of PV modules or solar collectors to produce energy, using renewable energy sources. A new multifunctional building integrated photovoltaic (BIPV) glazed facade for this application is presented here. The new angle-selective see through facade combines four important tasks in one element: solar control, glare protection, visual contact and electricity generation. Mathematical analysis and complex simulations with the software Radiance are performed to optimize the geometry and to assess the visual impact and optical properties of the new window. In order to evaluate the impact of the new facade in building spaces a new method for modelling the total solar energy transmittance, in building energy simulations software, for complex glazing facades is presented. The new black-box-model (BBM) is implemented into ESP-r software and is validated. The BBM is used to assess the impact of modelling accurately the g-value of complex facade within building simulation. It is shown that the new method can significantly increase the accuracy of heating/cooling loads and room temperatures. (orig.)

  13. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  14. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  15. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Bhatia, Hitasha Kaur; Bhatia, Charanjit Singh; Ng, K. C.

    2012-01-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  16. Design and Performance Evaluation of a Solar Assisted Heat Pump Dryer Integrated with Biomass Furnace for Red Chilli

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performance of a solar assisted heat pump dryer integrated with biomass furnace has been designed and evaluated for drying red chillies, and drying kinetics of red chillies were evaluated. The red chillies were dried from 22 kg with moisture content of 4.26 db to moisture content of 0.08 db which needed 11 hours, with the average drying chamber temperature, drying chamber relative humidity, and an air mass flow rate of 70.5°C, 10.1%, and 0.124 kg/s, respectively, while the open sun drying needed 62 hours. Compared to open sun drying, this dryer yielded 82% saving in drying time. The drying rate, the specific moisture extraction rate, and thermal efficiency of the dryer were estimated in average to be about 1.57 kg/h, 0.14 kg/kWh, and 9.03%, respectively. Three mathematical models, the Newton, Henderson-Pabis, and Page models, were fitted to the experimental data on red chillies dried by solar assisted heat pump dryer integrated with biomass furnace and open sun drying. The performance of these models was evaluated by comparing the coefficient of determination (R2, mean bias error (MBE, and root mean-square error (RMSE. The Page model gave the best results for representing drying kinetics of red chillies.

  17. Feasibility evaluation of two solar cooling systems applied to a cuban hotel. Comparative analysis

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Monteagudo Yanes, José Pedro; Miranda Torres, Yudit

    2016-01-01

    The article presents an analysis of technical and economic feasibility of using two configurations of solar cooling in a Cuban hotel. HVAC hybrid schemes are: a cooler of ice water vapor compression (chiller) interconnected in parallel with a smaller capacity chiller, first with a solar-powered absorption cooling system (SACS), and then with a photovoltaic cooling system(PSC). Both were simulated taking into account the weather conditions in the region, thermodynamic calculation methodologies and principles that govern these technologies. The results show that the use of these alternatives contributes to reducing energy consumption and the environmental impact of heating, ventilation and air conditioning systems (HVAC). Economic analysis highlights that PCS is more favorable than the SACS taking into account the cooling cost generation (CCG) but energy assessment indicates that SACS has higher thermal performance for the case study to which it is applied. (author)

  18. Karasek Home, Blackstone, Massachusetts solar-energy-system performance evaluation, Nov. 1981 - Mar. 1982

    Science.gov (United States)

    Raymond, M.

    1982-06-01

    The Karasek Home is a single family Massachusetts residence whose active-solar-energy system is equipped with 640 square feet of trickle-down liquid flat-plate collectors, storage in a 300-gallon tank and a 2000-gallon tank embedded in a rock bin in the basement, and an oil-fired glass-lined 40-gallon domestic hot water tank for auxiliary water and space heating. Monthly performance data are tabulated for the overall system and for the collector, storage, space heating, and domestic hot water subsystems. For each month a graph is presented of collector array efficiency versus the difference between the inlet water temperature and ambient temperature divided by insolation. Typical system operation is illustrated by graphs of insolation and temperatures at different parts of the system versus time for a typical day. The typical system operating sequence for a day is also graphed as well as solar energy utilization and heat losses.

  19. Solar energy system performance evaluation: Scattergood School, West Branch, Iowa, June 1979-April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Schatzberg, E.M.

    1980-01-01

    The Scattergood School solar energy system completed its third year. This site was turned off in the beginning of May 1980 to prevent overheating in the gymnasium. During the reporting period, the Scattergood School solar energy system supplied 93% of the space heating and 50% of the domestic hot water required for the school. The system operated from June 1979 to April 1980 with no mechanical failures. The grain drying subsystem was used during the last two weeks of October. Operation of the grain drying subsystem considerably improved overall system performance. Had the October data been available, it probably would have reflected this improved performance, particularly with respect to fossil fuel savings, collector array efficiency, and ECSS conversion efficiency.

  20. Solar energy system performance evaluation: Seasonal report for Colt Yosemite, Yosemite National Park, California

    Science.gov (United States)

    1980-01-01

    The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.

  1. Testing, Performance and Reliability Evaluation of Charge Controllers for Solar Photovoltaic Home Lighting System in India

    OpenAIRE

    Adarsh Kumar; ChandraShekhar Sharma; Dr. Rajesh Kumar; Avinashkumar haldkar

    2016-01-01

    :Charge controller is the most important part of a Solar Photovoltaic Home LightingSystem (SPVHLS) which controls the charging ofbattery from photovoltaic (PV) module and discharging of battery through load. This paper analyzes testresults of fourteen charge controllers (CC) available in Indiaaccording to the Ministry of New and RenewableEnergy (MNRE) specification. The different parameters of charge controllers to be tested arebattery high voltage disconnect (HVD), lo...

  2. Solar energy system performance evaluation: Seasonal report for Colt Yosemite, Yosemite National Park, California

    Science.gov (United States)

    1980-08-01

    The system's operational performance from May 1979 through April 1980 is described. Solar energy satisfied 23 percent of the total performance load, which was significantly below the design value of 56 percent. A fossil savings of 80.89 million Btu's or 578 gallons of fuel oil is estimated. If uncontrolled losses could have been reduced to an inconsequential level, the system's efficiency would have been improved considerably.

  3. Engineering, institutions, and the public interest: Evaluating product quality in the Kenyan solar photovoltaics industry

    International Nuclear Information System (INIS)

    Jacobson, Arne; Kammen, Daniel M.

    2007-01-01

    Solar sales in Kenya are among the highest per capita among developing countries. While this commercial success makes the Kenya market a global leader, product quality problems have been a persistent concern. In this paper, we report performance test results from 2004 to 2005 for five brands of amorphous silicon (a-Si) photovoltaic (PV) modules sold in the Kenya market. Three of the five brands performed well, but two performed well below their advertised levels. These results support previous work indicating that high-quality a-Si PV modules are a good economic value. The presence of the low performing brands, however, confirms a need for market institutions that ensure the quality of all products sold in the market. Prior work from 1999 indicated a similar quality pattern among brands. This confirms the persistent nature of the problem, and the need for vigilant, long-term approaches to quality assurance for solar markets in Kenya and elsewhere. Following the release of our 2004/2005 test results in Kenya, the Kenya Bureau of Standards moved to implement and enforce performance standards for both amorphous and crystalline silicon PV modules. This appears to represent a positive step towards the institutionalization of quality assurance for products in the Kenya solar market

  4. Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector

    Science.gov (United States)

    Ullah, Fahim; Min, Kang

    2018-01-01

    A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.

  5. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  6. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  7. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  8. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    Directory of Open Access Journals (Sweden)

    D. İpek Kurtböke

    2010-02-01

    Full Text Available South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product.

  9. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  10. Performance evaluation and parametric optimum design of a vacuum thermionic solar cell

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Chen, Jincan; Lin, Bihong

    2016-01-01

    A model of the vacuum thermionic solar cell (VTSC) consisting of a solar concentrator, an emitter, and a collector is proposed, in which the various heat losses including the far- and near-field thermal radiation are taken into account. Formula for the overall efficiency of the system is analytically derived. For given values of the ratio of the front surface area of the absorber to that of the emitter and the vacuum gap between the emitter and the collector, the operating temperatures of the emitter and collector are determined by solving the energy balance equations. The maximum efficiency of the VTSC are calculated for given values of the work functions of the emitter and collector materials, and some key parameters such as the net current density of the VTSC, operating temperatures of the emitter and collector, vacuum gap between the emitter and the collector, and area ratio of the absorber to the emitter are optimally determined. Furthermore, the effects of the work functions and the concentration ratio of the solar irradiation on the performance of the VTSC are discussed and several parametric selection criteria are obtained

  11. Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia

    Science.gov (United States)

    1980-07-01

    The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.

  12. Characterization and Performance Evaluation of Dye Sensitized Solar Cell Using Nanostructured TiO2 Electrode

    Directory of Open Access Journals (Sweden)

    Sule Erten-Ela

    2014-01-01

    Full Text Available Metal-free organic sensitizer consisting of donor, electron conducting, and anchoring anhydride groups was engineered at molecular level and synthesized. Dye sensitized solar cells based on conjugated naphthalene dye were fabricated using nanoporous electrode. Photoelectrodes with a 7 μm thick nanoporous layer and a 5 μm thick light-scattering layer were used to fabricate dye sensitized solar cells. DSSCs were fabricated in a FTO/nc-TiO2/organic dye/I-/I3-/Pt/FTO device geometry. Dye sensitized solar cell was characterized by current density-voltage (J-V measurement. All current-voltage (I-V measurements were done under 100 mW/cm2 light intensity and AM 1.5 conditions. The photovoltaic data revealed a short circuit photocurrent density of 1.86 mA/cm2, an open circuit voltage of 430 mV, and a fill factor of 0.63, corresponding to an overall conversion efficiency of 0.53%.

  13. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  14. Solar Design Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  15. Solar support of the cold supply of an office building. Operation analysis and energetic evaluation; Solare Unterstuetzung der Kaelteversorgung eines Buero- und Verwaltungsgebaeudes. Betriebsanalyse und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Klaus; Bollin, Elmar; Scheck, Eva [Hochschule Offenburg (HSO) (Germany); Wiemken, Edo; Wewior, Jakub [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Eicker, Ursula; Pietruschka, Dirk; Dalibard, Antoine [Hochschule fuer Technik (HFT), Stuttgart (Germany); Meissner, Rolf; Kettner, Christiane [Paradigma Deutschland GmbH, Karlsbad (Germany)

    2010-07-01

    Since July 2006 and in cooperation with the Fraunhofer Institute for Solar Energy (Freiburg) and the Stuttgart University of Applied Sciences, the University Offenburg accompanies the solar supported air conditioning of Festo AG and Co. KG in Esslingen (Federal Republic of Germany). The plant was promoted by the Federal Ministry of the Environment (Berlin, Federal Republic of Germany) in the context of the research project 'Solarthermie2000plus'. The already existing adsorption refrigerant plant which so far was operated with compressor warmth and gas-fuelled boilers, was supplemented by a solar plant as a third heat supplier.

  16. An evaluation of a solar radiation/delta-T method for estimating Pasquill-Gifford (P-G) stability categories

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, C.T. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1994-12-31

    There has been a continuing need to develop robust methods for determining Pasquill-Gifford (P-G) stability categories using solely on-site meteorological instrumentation. The Revised EPA Guideline on Air Quality Models recommends several such methods. Experience with these suggests that, since they rely on turbulence measurements, they can be unduly influenced by local effects such as mesoscale circulation (e.g., upslope/downslope flows, land/sea breeze), wakes from tree barriers or buildings, etc. to such an extent as to diminish their practical usefulness. In the following discussion, a methodology is proposed for estimating P-G stability categories that employs on-site meteorological measurements (10m wind speed coupled with solar radiation during the day and temperature difference, {Delta}T, at night) in lieu of cloud cover and ceiling height observations. The proposed method was adapted from Bowen and is herein referred to as the solar radiation/delta-T (SRDT) method. To evaluate the method, an attempt was made to acquire data bases from diverse geographical areas. Data bases with {Delta}T measurements from 2-10m above ground level were of primary interest for characterizing the boundary layer; other intervals were considered for evaluation, as available. To document the consequence of implementing the method in practical applications, an analysis was needed of the effect on design concentration ratios.

  17. Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji

    2016-11-15

    Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.

  18. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev

    2016-03-01

    Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  19. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Directory of Open Access Journals (Sweden)

    T. Schmidt

    2016-03-01

    Full Text Available Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1–2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  20. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  1. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Schimpf, Stefan; Span, Roland

    2015-01-01

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  2. Secondary Concentrator for a Commercial Solar Receiver System - Design and Evaluation

    International Nuclear Information System (INIS)

    Miron, G.; Weis, S.; Anteby, I.; Taragan, E.; Sagie, D.

    1998-01-01

    A 1 MWt Solar Electricity Generation Demonstration Plant test facility is scheduled for operation early next year. The plant includes a large compound parabolic secondary concentrator. Strict requirements led to a unique modular structural concentrator design. The design allows for close tolerances and ease of assembly and maintenance. Special attention was given to the thermo-mechanical design, and to the selection of reflecting surfaces and method of attachment. Calculations have shown that stresses within the glass mirrors can be controlled with proper design

  3. In-flight calibration and performance evaluation of the fixed head star trackers for the solar maximum mission

    Science.gov (United States)

    Thompson, R. H.; Gambardella, P. J.

    1980-01-01

    The Solar Maximum Mission (SMM) spacecraft provides an excellent opportunity for evaluating attitude determination accuracies achievable with tracking instruments such as fixed head star trackers (FHSTs). As a part of its payload, SMM carries a highly accurate fine pointing Sun sensor (FPSS). The EPSS provides an independent check of the pitch and yaw parameters computed from observations of stars in the FHST field of view. A method to determine the alignment of the FHSTs relative to the FPSS using spacecraft data is applied. Two methods that were used to determine distortions in the 8 degree by 8 degree field of view of the FHSTs using spacecraft data are also presented. The attitude determination accuracy performance of the in flight calibrated FHSTs is evaluated.

  4. Evaluation of the optical quality of compound parabolic concentrator solar collectors; Avaliacao da qualidade otica de coletores solares concentradores parabolicos compostos

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, P.O.; Krenzinger, A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica

    1990-12-31

    This work presents a simulation of solar compound parabolic concentrators using the ray tracing technique. The program can be used as a computer aided design and quality control applications for parabolic mirrors. (author). 4 refs., 8 figs.

  5. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  6. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  7. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  8. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  9. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. Evaluation and prediction of solar radiation for energy management based on neural networks

    Science.gov (United States)

    Aldoshina, O. V.; Van Tai, Dinh

    2017-08-01

    Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

  13. Solar energy system performance evaluation: Seasonal report for IBM system 1A, Huntsville, Alabama

    Science.gov (United States)

    1980-01-01

    The operational and thermal performance of the solar energy system, Sims Prototype System 1A, is described. The system was designed by IBM to provide 50 to 60 percent of the space heating and domestic hot water preheating load to a 2,000 square foot floor space single family residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. In general the disappointing operation of this system is attributed to the manner in which it was used. The system was designed for residential application and used to satisfy the demands of an office environment. The differences were: (1) inside temperature was not maintained at 70 F as expected; and (2) hot water usage was much lower than expected. The conclusion is that the solar energy system must be designed for the type of application in which it is used. Misapplication usually will have an adverse affect on system performance.

  14. Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent

    2017-04-01

    We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.

  15. Optical analysis and performance evaluation of a solar parabolic dish concentrator

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources i br. III45016: Fabrication and characterization of nanophotonic functional structures in biomedicine and informatics

  16. Evaluation of physics-based numerical modelling for diverse design architecture of perovskite solar cells

    Science.gov (United States)

    Mishra, A. K.; Catalan, Jorge; Camacho, Diana; Martinez, Miguel; Hodges, D.

    2017-08-01

    Solution processed organic-inorganic metal halide perovskite based solar cells are emerging as a new cost effective photovoltaic technology. In the context of increasing the power conversion efficiency (PCE) and sustainability of perovskite solar cells (PSC) devices, we comprehensively analyzed a physics-based numerical modelling for doped and un-doped PSC devices. Our analytics emphasized the role of different charge carrier layers from the view point of interfacial adhesion and its influence on charge extraction rate and charge recombination mechanism. Morphological and charge transport properties of perovskite thin film as a function of device architecture are also considered to investigate the photovoltaic properties of PSC. We observed that photocurrent is dominantly influenced by interfacial recombination process and photovoltage has functional relationship with defect density of perovskite absorption layer. A novel contour mapping method to understand the characteristics of current density-voltage (J-V) curves for each device as a function of perovskite layer thickness provide an important insight about the distribution spectrum of photovoltaic properties. Functional relationship of device efficiency and fill factor with absorption layer thickness are also discussed.

  17. Evaluation of thermal and photovoltaic solar systems in agricultural production units, Northern Huetar Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Tomás de Jesús Guzmán Hernández

    2017-09-01

    Full Text Available The dependence on fossil fuels urges society to seek for clean energy alternatives, in order to mitigate the effects of climate change. The objective of this study was to determine the potential of solar energy used for water heating and electricity generation. The study was conducted at the dairy of the Technology Institute of Costa Rica, San Carlos Headquarter, from May 15 to April 2016. The data related to the amount of the electricity produced and the temperature reached by water was obtained from the installed photovoltaic and thermal systems, the data was recorded by a computerized register. The obtained information about electricity production allowed researchers to calculate the amount of carbon dioxide equivalent that was not emitted into the atmosphere, and also the acquired economic saving on consumption. The use of these systems allowed the production unit have a self- sufficient source of electrical energy percentage, actually around 30 to 40% of the total electrical consumption. According to the energy production, the solar thermal system was capable to increase water temperature between 20 to 37 °C, temperature that represents more than 70% of the energy needed in order to reach the required water temperature (70 °C for cleaning and sanitizing the milking equipment, and also an economical saving around $90 per month was achieved. The results showed that these systems allow to improve the economical and productive efficiency of agricultural production units in the Northern Huetar Region of Costa Rica.

  18. Evaluation of the Delta-T SPN1 radiometer for the measurement of solar irradiance components

    Science.gov (United States)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick; Utrillas, Maria Pilar

    2016-04-01

    In this study we analyse the performance of an SPN1 radiometer built by Delta-T Devices Ltd. to retrieve global solar irradiance at ground and its components (diffuse, direct) in comparison with measurements from two Kipp&Zonen CMP21 radiometers and a Kipp&Zonen CHP1 pirheliometer, mounted on an active Solys-2 suntracker at the Burjassot site (Valencia, Spain) using data acquired every minute during years 2013 - 2015. The measurement site is close to sea level (60 m a.s.l.), near the Mediterranean coast (10 km) and within the metropolitan area of Valencia City (over 1.500.000 inhabitants). The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. The SPN1 pyranometer measures the irradiance between 400 and 2700 nm, and the nominal uncertainty for the individual readings is about 8% ± 10 W/m2 (5% for the daily averages). The pyranometer Kipp&Zonen CMP21 model is a secondary standard for the measurement of broadband solar global irradiance in horizontal planes. Two ventilated CMP21 are used for the measurement of the global and diffuse irradiances. The expected total daily uncertainty of the radiometer is estimated to be 2%. The pirheliometer Kipp&Zonen CHP1 is designed for the measurement of the direct irradiance. The principles are similar to the CMP21 pyranometer. The results of the comparison show that the global irradiance from the SPN1 compares very well with the CMP21, with absolute RMSD and MBD differences below the combined uncertainties (15 W/m2 and -5.4 W/m2, respectively; relative RMSD of 3.1%). Both datasets are very well correlated, with a correlation coefficient higher than 0.997 and a slope and intercept very close to 1 and 0

  19. Analytical evaluation and optimization of advanced oxidation process in a solar pilot power plant; Evaluacion analitica y optimizacion de procesos de oxidacion avanzada en planta piloto solar

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Vazquez, J.; Malato Rodriguez, S.; Rodriguez Fernandez-Alba, A.

    2003-07-01

    The technical feasibility mechanisms and performance of degradation of several pesticides (imidacloprid, methomyl and diuron) dissolved in water have been studies at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton.Equivalent pilot-scale (made up of Compound Parabolic Collectors (CPCs) specially designed for solar photocatalytic applications) and field conditions used for both systems and the three pesticides allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated en route to mineralization. Total disappearance of the parent compounds and 90% mineralisation have been attained with all pesticides tested, methomyl being the most difficult to be degraded with both treatments. First order rate constants, initial rate,time necessary for mineralizing 90% of the initial TOC and hydrogen peroxide consumption were calculated in all cases, enabling comparison both of treatments and of the selected pesticide reactivity. Complete mineralisation of TOC is not achieved even after quite a long time (more than 300 minutes). Three different bioassays (Vibrio fischeri, Daphnia magna and a Microalga) have been used for testing the progress of toxicity during treatments. All remained toxic down to very low pesticide disappearance of the pesticide. Only if treatment is maintained throughout enough mineralisation (i. e. TOC disappearance), the toxicity is reduced to below the threshold (EC 50%). Transformation products evaluated by GC-MS/AED (after two SPE procedures), LC-IT-MS and LC-IC were the same in both phototreatments. The main differences between the two processes are in the amount of transformation products (TPs) generated, not in the TPs detected which were always the same. (Author)

  20. Evaluation of the performance of a meso-scale NWP model to forecast solar irradiance on Reunion Island for photovoltaic power applications

    Science.gov (United States)

    Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe

    2013-04-01

    Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that

  1. Roof mounted solar collectors with reflectors. Evaluation; Takmonterade solfaangare med reflektorer i Markbacken. Utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Leif [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Maetcentralen; Perers, B. [Vattenfall Utveckling AB, Stockholm (Sweden)

    1999-09-01

    A solar heating plant designed for preheating of domestic hot water was built during the spring of 1998 at Markbacken, Oerebro. The collector panels were built with a very low profile, less than 1 m high, but they were quite wide in the east-west direction (6.6 m). The roof-placed collectors, 210 m{sup 2} in all, were thus very discreet and can not be seen from the main facades of the three-storey building on which they are placed. Also, the slim design meant that the entire collector box could be manufactured in a one-step process, bottom and sides being pressed from a single sheet of aluminium. Each collector and its reflector, also of aluminium, shared the same frame. The frame was attached to heavy bars of concrete which was placed on the flat roof. No further anchoring was needed. The tubing from the collectors was drawn to the cellar of the building through an obsolete refuse chute. The circulation pumps, heat exchangers and accumulator were placed in a cellar room. The accumulator consists of three cylindrical tanks with a maximum allowed pressure of 3 bar and a volume of 11 m{sup 3}. Heat from the accumulator is heat-exchanged to the cold water supplied to the system for producing domestic hot water. If the resulting temperature is less required extra heat is added from the district heating net. The solar heating plant has operated very well and has even produced more energy than was calculated in the pre-study. At a system temperature of 40 deg C the specific energy production is about 600 kWh/m{sup 2},year. The typical production is 126 MWh per annum, corresponding to 35% of the hot water consumption. The final cost of the system was some 20% higher than calculated. Some unforeseen additional costs resulted from the need for cellar floor reinforcement and also some roof improvement measures. Too high flow through the solar collectors and through the loading circuit for the accumulator has a destructive action on the temperature stratification in the heat

  2. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar.

    Science.gov (United States)

    Clack, Christopher T M; Qvist, Staffan A; Apt, Jay; Bazilian, Morgan; Brandt, Adam R; Caldeira, Ken; Davis, Steven J; Diakov, Victor; Handschy, Mark A; Hines, Paul D H; Jaramillo, Paulina; Kammen, Daniel M; Long, Jane C S; Morgan, M Granger; Reed, Adam; Sivaram, Varun; Sweeney, James; Tynan, George R; Victor, David G; Weyant, John P; Whitacre, Jay F

    2017-06-27

    A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide "low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055", with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.

  3. Inclusion of aggregation effect to evaluate the performance of organic dyes in dye-sensitized solar cells

    Science.gov (United States)

    Sun, Kenan; Zhang, Weiyi; Heng, Panpan; Wang, Li; Zhang, Jinglai

    2018-05-01

    Two new indoline-based D-A-π-A dyes, D3F and D3F2 (see Scheme 1), are developed on the basis of the reported D3 by insertion of one or two F atoms on benzothiadiazole group. Our central aim is to explore high-efficiency organic dyes applied in dye-sensitized solar cells by inclusion of a simple group rather than by employment of new complicated groups. The performance of two new designed organic dyes, D3F and D3F2, is compared with that of D3 from various aspects including absorption spectrum, light harvesting efficiency, driving force, and open-circuit voltage. Besides the isolated dye, the interfacial property between dye and TiO2 surface is studied. D3F and D3F2 do not show absolute superiority than D3 not only for the isolated dyes but also for the monomeric adsorption system. However, D3F and D3F2 would effectively reduce the influence of aggregation resulting in the much smaller intermolecular electronic coupling. Although the aggregation has attracted much attention recently, it is studied alone in most of studies. To comprehensively evaluate the performance of dye-sensitized solar cells, it is necessary to consider aggregation along with electron injection time from dye into TiO2 rather than only static items, such as, band gap and absorption region.

  4. Techno-economic evaluation of masonry type animal feed solar cooker in rural areas of an Indian state Rajasthan

    International Nuclear Information System (INIS)

    Panwar, N.L.; Kothari, Surendra; Kaushik, S.C.

    2013-01-01

    Utilisation of animal draft power in agricultural operation and milk production is highly dependent on the feed and fodder. Properly cooked feed is digestive in nature and enhance milk production. Solar energy is promising option for slow cooking. Keeping this in view a masonry animal feed solar cooker (AFSC) was developed. It helps in the number of ways to improve the living standard of rural farmers and also reduce the CO 2 emission by replacing conventional fossil fuel. The AFSC can replace the 100 per cent biomass and save about 424.80 kg of CO 2 on annual basis and save about 24 INR per day. Usually women prepare animal feed in rural areas, hence cooking with AFSC save time and this time can be spear to take care of her family or in agricultural operation. This paper presents fuel replacement and reduction of carbon dioxide on annual basis and economic evaluation of AFSC. - Highlights: ► Considerable amount of energy can be saved on annual basis. ► This also helps to save the time and money of rural farmer. ► AFSC helps to reduce the greenhouse gas.

  5. Round robins of solar cells to evaluate measurement systems of different european research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Van der Brog, N.J.C.M. [ECN Solar, Westerduinweg 3, 1755 LE Petten (Netherlands); Bliss, M.; Mihaylov, B.; Gottschlag, R. [CREST, Holywell Park MBG GJ/Gx, Loughborough Univeristy, Leicestershire, LE11 3TU (United Kingdom); Izzi, M.; Tucci, M. [ENEA CASACCIA, Via Anguillarese 301, 00123 Roma (Italy); Roca, F.; Pellegrino, M.; Romano, A.; Graditi, G. [ENEA PORTICI, P. le E. Fermi Localita Granatello, 80055 Portici Napoli (Italy); Hohl-Ebinger, J.; Warta, W. [Fraunhofer ISE, Berliner Allee 30, 79110 Freiburg (Germany); Debucquoy, M.; El Daif, O.; Gordon, I. [IMEC, Kapeldreef 75, B-3001 Heverlee (Belgium); Champliaud, J.; Jouini, A. [INES, 50 avenue du lac Leman, BP 332, 73377, Le Bourget-du-Lac (France); Glatz-Reichenbach, J. [ISC, Rudolf Diesel Str. 15, D-78467 Konstanz (Germany); Bothe, K. [ISFH, Am Ohrberg 1, 31860 Emmerthal (Germany); Herguth, A. [University of Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany)

    2013-10-15

    Determination of the solar cell efficiency and internal quantum efficiency are standard characterization methods used by the majority of research institutes. Random errors can be assessed by institutes themselves by repeated measurements, but systematic deviations cannot be assessed without comparisons with other institutes. The comparisons were performed for illuminated IV, spectral response and reflection measurements. The results were split into systematic differences between the partners and random differences within an institute for a single measurement session. The total differences are: J{sub sc}: 0.27 A, V{sub oc}: 8.5 mV, FF: 2.4 %, {eta}: 0.6%, spectral response: 0.14 A/W and reflection: 0.08. For all measurement methods, the systematic differences exceeded the random differences. The major component for the systematic differences is likely the reference device, but also temperature control, contacting scheme and setup differences play a part.

  6. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-11-21

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potential for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.

  7. COMPARATIVE EVALUATION OF THE INFLUENCING EFFECTS OF GEOMAGNETIC SOLAR STORMS ON EARTHQUAKES IN ANATOLIAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Yesugey Sadik Cengiz

    2009-07-01

    Full Text Available Earthquakes are tectonic events that take place within the fractures of the earth's crust, namely faults. Above certain scale, earthquakes can result in widespread fatalities and substantial financial loss. In addition to the movement of tectonic plates relative to each other, it is widely discussed that there are other external influences originate outside earth that can trigger earthquakes. These influences are called "triggering effects". The purpose of this article is to present a statistical view to elaborate if the solar geomagnetic storms trigger earthquakes.As a model, the research focuses on the Anatolian peninsula, presenting 41 years of historical data on magnetic storms and earthquakes collated from national and international resources. As a result of the comparative assessment of the data, it is concluded that the geomagnetic storms do not trigger earthquakes.

  8. Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system

    International Nuclear Information System (INIS)

    Wang, Sheng; Shi, Junxiang; Chen, Hsiu-Hung; Schafer, Steven R.; Munir, Moiz; Stecker, Greg; Pan, Wei; Lee, Jong-Jan; Chen, Chung-Lung

    2017-01-01

    Highlights: • A practical cooling solution is proposed for a novel CPV/CSP hybrid solar system. • Both passive and active cooling techniques were systematically investigated. • Comprehensive experimental and numerical studies were conducted for optimal design. • Active cooling is in great need for a high waste heat flux of 21.8 W/cm 2 . • Passive cooling becomes attractive for a waste heat flux less than 13.0 W/cm 2 . - Abstract: A hybrid solar energy system has been designed by combining the advantages of concentrated solar power (CSP) technology and high performance concentrated photovoltaic (CPV) cells which outperforms either single technology. Thermal management is crucial to CPV cells in this hybrid solar system, as concentrated solar radiation onto the PV cells leads to higher heat flux. If the heat is not dissipated effectively, it can cause obvious temperature rise and efficiency reduction in the cell. In addition, the constrained space available for PV cell cooling in such hybrid solar systems presents more challenges. In this study both passive cooling and active cooling techniques were systematically investigated in both numerical and experimental ways. For the passive cooling method, two different designs from off-the-shelf heat pipes with radial fins or annular fins were proposed and studied under various heat rejection requirements. Results shows that heat pipes with radial fins exhibited narrow capability of dumping the heat, while heat pipes with annular fins presented better performances under the same conditions. Numerical optimal designs of annular fin numbers and fin gaps were then carried out and experimentally validated, indicating a capability of dumping moderate waste heat (∼45 W). For active cooling technique, a comprehensive study of designing plate fin heatsinks were conducted corresponding to high Ingress Protection (IP) rated off-the-shelf fans. Results show that with a less than 2 W fan power consumption, this active

  9. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  10. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  11. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  12. New Sunshine Program for fiscal 2000. Development of photovoltaic power system commercialization technology (Research and development of solar cell evaluation system - Survey of research and development of solar cell evaluation system); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyodenchi hyoka system no kenkyu kaihatsu - Taiyodenchi hyoka system no kenkyu kaihatsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Surveys and studies were conducted for establishing methods for evaluating solar cell performance and reliability. In the effort to develop basic technologies for the comprehensive evaluation of the performance of various types of solar cells and modules, an ultrahigh matching solar simulator and a large area solar simulator were built. The long-term exposure tests of solar cell modules kept on at 5 sites in Japan, 3 sites in Australia, and 1 site in Oman, and the databasing of the test data was planned. In the long-term evaluation of solar cell durability, investigations centered about module deterioration, where abnormal heat generation was observed, cause of increased resistance was inspected, and separation between the cell and the filler was examined. In the development of an accelerated photodegradation test method, it was found that the result of a light-dark cycle test with the ambient temperature varied agreed excellently with the results of outdoor exposure tests. It was consequently proved that the light-dark cycle test was a very promising candidate for an accelerated photodegradation test for a-Si solar cells. (NEDO)

  13. RE-EVALUATION OF THE NEUTRON EMISSION FROM THE SOLAR FLARE OF 2005 SEPTEMBER 7, DETECTED BY THE SOLAR NEUTRON TELESCOPE AT SIERRA NEGRA

    Energy Technology Data Exchange (ETDEWEB)

    González, L. X. [SCiESMEX, Instituto de Geofísica Unidad Michoacán, Universidad Nacional Autónoma de México, 58190, Morelia, Michoacán (Mexico); Valdés-Galicia, J. F.; Musalem, O.; Hurtado, A. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, D. F. Mexico (Mexico); Sánchez, F. [Instituto de Tecnologías en Detección de Astropartículas, Comisión Nacional de Energía Atómica, 1429, Buenos Aires (Argentina); Muraki, Y.; Sako, T.; Matsubara, Y.; Nagai, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Watanabe, K. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai, chuo-ku, Sagamihara 252-5210 (Japan); Shibata, S. [College of Engineering, Chubu University, Kasugai, Aichi 487-8501 (Japan); Sakai, T. [College of Industrial Technologies, Nihon University, Narashino 275-0005 (Japan)

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  14. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    Science.gov (United States)

    Goldman, H.; Wolf, M.

    1979-01-01

    Analyses of slicing processes and junction formation processes are presented. A simple method for evaluation of the relative economic merits of competing process options with respect to the cost of energy produced by the system is described. An energy consumption analysis was developed and applied to determine the energy consumption in the solar module fabrication process sequence, from the mining of the SiO2 to shipping. The analysis shows that, in current technology practice, inordinate energy use in the purification step, and large wastage of the invested energy through losses, particularly poor conversion in slicing, as well as inadequate yields throughout. The cell process energy expenditures already show a downward trend based on increased throughput rates. The large improvement, however, depends on the introduction of a more efficient purification process and of acceptable ribbon growing techniques.

  15. Evaluation of heat transfer mathematical models and multiple linear regression to predict the inside variables in semi-solar greenhouse

    Directory of Open Access Journals (Sweden)

    M Taki

    2017-05-01

    Full Text Available Introduction Controlling greenhouse microclimate not only influences the growth of plants, but also is critical in the spread of diseases inside the greenhouse. The microclimate parameters were inside air, greenhouse roof and soil temperature, relative humidity and solar radiation intensity. Predicting the microclimate conditions inside a greenhouse and enabling the use of automatic control systems are the two main objectives of greenhouse climate model. The microclimate inside a greenhouse can be predicted by conducting experiments or by using simulation. Static and dynamic models are used for this purpose as a function of the metrological conditions and the parameters of the greenhouse components. Some works were done in past to 2015 year to simulation and predict the inside variables in different greenhouse structures. Usually simulation has a lot of problems to predict the inside climate of greenhouse and the error of simulation is higher in literature. The main objective of this paper is comparison between heat transfer and regression models to evaluate them to predict inside air and roof temperature in a semi-solar greenhouse in Tabriz University. Materials and Methods In this study, a semi-solar greenhouse was designed and constructed at the North-West of Iran in Azerbaijan Province (geographical location of 38°10′ N and 46°18′ E with elevation of 1364 m above the sea level. In this research, shape and orientation of the greenhouse, selected between some greenhouses common shapes and according to receive maximum solar radiation whole the year. Also internal thermal screen and cement north wall was used to store and prevent of heat lost during the cold period of year. So we called this structure, ‘semi-solar’ greenhouse. It was covered with glass (4 mm thickness. It occupies a surface of approximately 15.36 m2 and 26.4 m3. The orientation of this greenhouse was East–West and perpendicular to the direction of the wind prevailing

  16. Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Dede Tarwidi

    2016-11-01

    Full Text Available In this paper, thermal performance of various phase change materials (PCMs used as thermal energy storage in a solar cooker has been investigated numerically. Heat conduction equations in cylindrical domain are used to model heat transfer of the PCMs. Mathematical model of phase change problem in the PCM storage encompasses heat conduction equations in solid and liquid region separated by moving solid-liquid interface. The phase change problem is solved by reformulating heat conduction equations with emergence of moving boundary into an enthalpy equation. Numerical solution of the enthalpy equation is obtained by implementing Godunov method and verified by analytical solution of one-dimensional case. Stability condition of the numerical scheme is also discussed. Thermal performance of various PCMs is evaluated via the stored energy and temperature history. The simulation results show that phase change material with the best thermal performance during the first 2.5 hours of energy extraction is shown by erythritol. Moreover, magnesium chloride hexahydrate can maintain temperature of the PCM storage in the range of 110-116.7°C for more than 4 hours while magnesium nitrate hexahydrate is effective only for one hour with the PCM storage temperature around 121-128°C. Among the PCMs that have been tested, it is only erythritol that can cook 10 kg of the loaded water until it reaches 100°C for about 3.5 hours. Article History: Received June 22nd 2016; Received in revised form August 26th 2016; Accepted Sept 1st 2016; Available online How to Cite This Article: Tarwidi, D., Murdiansyah, D.T, Ginanja, N. (2016 Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation. Int. Journal of Renewable Energy Development, 5(3, 199-210. http://dx.doi.org/10.14710/ijred.5.3.199-210

  17. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  18. Desinfecção de efluentes com tratamento terciário utilizando energia solar (SODIS: avaliação do uso do dispositivo para concentração dos raios solares Disinfection of effluent of wastewater treated using solar energy (SODIS: evaluation of a solar concentrator device

    Directory of Open Access Journals (Sweden)

    José Euclides Stipp Paterniani

    2005-03-01

    concentrator of rays of sunshine. The affluent control parameters were turbidity, apparent color, temperature, total coliforms and E. coli. These last three were evaluated before and after the desinfection process (effluent parameters. To assess the bacteria reactivation we kept the water in bottles for 24 hours, pretending a very common situation in Brazilian rural houses. We conclude that the use of the concentrator of rays of sunshine can reduce the heat exposion from 6 to 4 hours, without harm the SODIS efficience. Using the concentrator of rays of sunshine for 6 hours we can obtain, besides SODIS, the process of solar pasteurization (SOPAS, which stops the re-growth of bacteria with a 70ºC water temperature. We also observed that when the sky is cloudy the incidention of solar radiation and, therefore, the SODIS efficience decrease, even if the water temperature is higher during the desinfection. Although, this factor doesn't mean a significative influence statistically.

  19. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  20. The performance evaluation of fabricated solar still in local environmental conditions

    International Nuclear Information System (INIS)

    Memon, A.H.; Akhund, M.A.; Leghari, A.N.

    2005-01-01

    To investigate the effectiveness and performance of the fabricated solar distill unit in local environmental conditions of Nawabshah within the temperature range of 23 deg. C to 28 deg. C in terms of quantity and quality of distilled water, an experimental based study was carried out during the month of March. Various samples of water with different degrees of hardness were collected from the different areas in the vicinity of Nawabshah University and supplied to the unit in order to desalinize the saline water. All samples after distillation were chemically analyzed at laboratory; the concentrations of salts were reduced at remarkable level and performance of unit was excellent especially in terms of quality. The chemical composition of analyzed samples shows that the TDS value is decreased from 2259 ppm to 378 ppm, EC (micro s/cm) value from 3.53 to 0.59, pH value from 8.4 to 7.7. The values of other parameters (i.e. Ca, Mg, Na, K, HCO/sub 3/, SO/sub 4/, Cl, SAR, and RSC) were also reduced at significant level. By comparing results, it is evident that the water is purified to the satisfactory level, which indicated that the fabricated unit has a good capability of desalination. The results indicate that the distilled water can be used for the drinking purposes as well as for the irrigation purposes also. All values of various parameters are within range of standard values. (author)

  1. Evaluation of performance for solar house with Trombe wall. Part 5; Trombe hekishiki solar house no hyoka kenkyu (nichisekisan Trombe heki kyuhonetsuryo yosoku senzu no teian)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, N [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Nakajima, Y [Kogakuin University, Tokyo (Japan); Watanabe, T [Tokyo Electric Power Service Co. Ltd., Tokyo (Japan); Abe, H [Ministry of Construction, Tokyo (Japan); Yamaga, K [Mitsubishi Estate Co. Ltd., Tokyo (Japan)

    1996-10-27

    A regression equation that can calculate the daily accumulated absorption heat of Trombe Wall was given, and the performance estimated chart of Trombe Wall in which the daily unit effect of Trombe Wall can be visually recognized was proposed. The absorption heat was multivariate-analyzed by two variables of solar radiation of that day and the previous day. The data obtained from simulation was used for analysis. The absorption heat was analyzed using the meteorological data at eight spots (Sapporo, Sendai, Niigata, Tokyo, Shizuoka, Kochi, Fukushima, and Kagoshima). In this case, the result of multivariate analysis almost coincided with the simulation result. A chart that predicts the absorption heat of Trombe Wall in eight cities from the daily accumulated global solar radiation of that day and the previous day was then created as the performance estimated chart of Trombe Wall. As a result, the solar radiation of that day little influences the absorption heat when the Trombe Wall increases in thickness. Conversely, the solar radiation of the previous day significantly influences the absorption heat. In future, an equivalent heat loss coefficient will be calculated from the performance estimated chart. 2 refs., 16 figs., 2 tabs.

  2. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  3. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  4. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  5. VIIRS Reflective Solar Band Radiometric and Stability Evaluation Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong; Mu, Qiaozhen

    2016-01-01

    This work takes advantage of the stable distribution of deep convective cloud (DCC) reflectance measurements to assess the calibration stability and detector difference in Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands. VIIRS Sensor Data Records (SDRs) from February 2012 to June 2015 are utilized to analyze the long-term trending, detector difference, and half angle mirror (HAM) side difference. VIIRS has two thermal emissive bands with coverage crossing 11 microns for DCC pixel identification. The comparison of the results of these two processing bands is one of the indicators of analysis reliability. The long-term stability analysis shows downward trends (up to approximately 0.4 per year) for the visible and near-infrared bands and upward trends (up to 0.5per year) for the short- and mid-wave infrared bands. The detector difference for each band is calculated as the difference relative to the average reflectance overall detectors. Except for the slightly greater than 1 difference in the two bands at 1610 nm, the detector difference is less than1 for other solar reflective bands. The detector differences show increasing trends for some short-wave bands with center wavelengths from 400 to 600 nm and remain unchanged for the bands with longer center wavelengths. The HAM side difference is insignificant and stable. Those short-wave bands from 400 to 600 nm also have relatively larger HAM side difference, up to 0.25.Comparing the striped images from SDR and the smooth images after the correction validates the analyses of detector difference and HAM side difference. These analyses are very helpful for VIIRS calibration improvement and thus enhance product quality

  6. Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Negrete, Daniela; Mahn, Andrea; Sepúlveda, Francisco

    2014-01-01

    Highlights: • Thermal conductivity of paraffin wax was improved with aluminum wool. • Aluminum wool surrounding the cans favored the energy recuperation from the wax. • The heat exchanger accumulated 3000 kJ energy. • The accumulated energy can be easily increased with larger units. • COMSOL simulated adequately the energy removal process from the cans. - Abstract: Soft drink cans filled with paraffin wax mixed with 5% w/w aluminum wool, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Thermal conductivity of the systems was determined by two ways: directly using a thermal conductivimeter, and indirectly based on temperature profiles and on the analytical solution of a cylinder. We designed, built and evaluated a heat exchanger for solar energy accumulation, composed by 48 disposable soft drink cans filled with a total of 9.5 kg of paraffin wax mixed with 5% w/w aluminum wool. In sunny days, the wax melted completely in 3 h. The accumulated energy of 3000 kJ, allowed increasing the temperature of 3.5 m 3 /h air flow rate from 20 to 40 °C during a period of 2 h. This application will allow extending the use of solar energy in drying processes or could be used as household calefaction system. The progress of the phase change front in time during the energy discharge period was simulated with COMSOL, whereas the effect of the number of cans and thermal conductivity of the paraffin wax on the air temperature increase was simulated with MATLAB

  7. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  8. Dimensioning and efficiency evaluation of hybrid solar systems for energy production

    Directory of Open Access Journals (Sweden)

    Elia Stefano

    2008-01-01

    Full Text Available Nowadays hybrid panels for joint production of thermal and electrical energy are available on the market. The main contribution of this work is to evaluate the performances of hybrid systems and to determine the field of application. Mathematical models of panels are considered to evaluate thermal and electrical behavior of the problem. A software produced by the authors is shown that calculates the energy production of these devices in several operating situations; a comparison to that of photovoltaic and thermal systems is performed. Moreover, the economic validity of a such investment is evaluated. Finally a simplified criterion has been developed to calculate the best subdivision of the available deployment surface among thermal, photovoltaic, and hybrid panels.

  9. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of solar cell evaluation system (Survey of research and development of solar cell evaluation system); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi hyoka system no kenkyu kaihatsu (taiyo denchi hyoka system no kenkyu kaihatsu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The fiscal 1999 results of survey and research conducted for the establishment of solar cell performance evaluation and reliability evaluation methods are reported. In the development of a super high fidelity (broad spectrum) solar simulator for cell evaluation, a prototype was tested for performance evaluation, and initially set values were achieved. In the development of a large-area module evaluation technology, the radiation area was increased to be 1.0m times 1.0m large. Outdoor exposure tests continued at 5 sites in Japan, 3 sites in Australia, and 1 site in Oman, and analyses and databasing were carried out for the outputs of various types of solar cell modules. As for the problem of coloring of fillers which are module constituents, coloring in the U.S. was attributed to high temperature and intensive insolation, and in Austria to an oxidation inhibitor. In the development of a photo-accelerated degradation testing method for Si-based solar cells, application of the cycled illumination test was found feasible. In this test method, an amorphous silicon solar cell retains 70% of the initial Pmax value even after the passage of a period equivalent to 30 years. (NEDO)

  10. Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India

    International Nuclear Information System (INIS)

    Sundaram, Sivasankari; Babu, Jakka Sarat Chandra

    2015-01-01

    Highlights: • A real time performance analysis with validation of the system is carried out for 5 MW p plant. • Dependence or interactions of input factors over performance responses are identified. • The topology of the PV system and the inverter technology is suggested for improved realization. • The average PV module, inverter and system efficiency are found to be 6.08%, 88.2% and 5.08%. • Average energy and exergy efficiency of the system is found to be 6.08% and 3.54%. - Abstract: The main objective of this paper is to present the validated annual performance analysis with the monitored results from a 5 MW p grid connected photovoltaic plant located in India at Sivagangai district in Tamilnadu. The total annual energy generated was 8495296.4 kW h which averages around 707941.4 kW h/month. In addition to the above, real time performance of the plant is validated through system software called RETscreen plus which employs regression analysis for validation. The measured annual average energy generated by the 5 MW p system is 24116.61 kW h/day which is appropriately close to the predicted annual average which was found to be 24055.25 kW h/day by RETscreen. The predicted responses are further justified by the value of statistical indicators such as mean bias error, root mean square error and mean percentage error. The annual average daily array yield, corrected reference yield, final yield, module efficiency, inverter efficiency and system efficiency were found to be 5.46 h/day, 5.128 h/day 4.810 h/day, 6.08%, 88.20% and 5.08% respectively. The overall absolute average daily capture loss and system loss of the particular system under study is 0.384 h/day and 0.65 h/day respectively. A comparison is also made between the performance indices of solar photovoltaic system situated at other locations from the literature’s published. Furthermore the effect of input factors over the output of the system is emphasized by regression coefficients obtained

  11. Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis

    International Nuclear Information System (INIS)

    Murayama, Masaki; Mori, Tatsuo

    2006-01-01

    Equivalent circuit analysis using a one-diode model was carried out as a simpler, more convenient method to evaluate the electric mechanism and to employ effective treatment of a dye-sensitized solar cell (DSC). Cells treated using acetic acid or 4,t-butylpyridine were measured under irradiation (0.1 W/m 2 , AM 1.5) to obtain current-voltage (I-V) curves. Cell performance and equivalent circuit parameters were calculated from the I-V curves. Evaluation based on residual factors was useful for better fitting of the equivalent circuit to the I-V curve. The diode factor value was often over two for high-performance DSCs. Acetic acid treatment was effective to increase the short-circuit current by decreasing the series resistance of cells. In contrast, 4,t-butylpyridine was effective to increase open-circuit voltage by increasing the cell shunt resistance. Previous explanations considered that acetic acid worked to decrease the internal resistance of the TiO 2 layer and butylpyridine worked to lower the back-electron-transfer from the TiO 2 to the electrolyte

  12. Error sources in the real-time NLDAS incident surface solar radiation and an evaluation against field observations and the NARR

    Science.gov (United States)

    Park, G.; Gao, X.; Sorooshian, S.

    2005-12-01

    The atmospheric model is sensitive to the land surface interactions and its coupling with Land surface Models (LSMs) leads to a better ability to forecast weather under extreme climate conditions, such as droughts and floods (Atlas et al. 1993; Beljaars et al. 1996). However, it is still questionable how accurately the surface exchanges can be simulated using LSMs, since terrestrial properties and processes have high variability and heterogeneity. Examinations with long-term and multi-site surface observations including both remotely sensed an