WorldWideScience

Sample records for solar coronal reconnection

  1. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  2. ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME

    International Nuclear Information System (INIS)

    Pontin, D. I.; Priest, E. R.; Galsgaard, K.

    2013-01-01

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection

  3. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  4. TETHER-CUTTING RECONNECTION BETWEEN TWO SOLAR FILAMENTS TRIGGERING OUTFLOWS AND A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2016-02-20

    Triggering mechanisms of solar eruptions have long been a challenge. A few previous case studies have indicated that preceding gentle filament merging via magnetic reconnection may launch following intense eruption, according to the tether-cutting (TC) model. However, the detailed process of TC reconnection between filaments has not been exhibited yet. In this work, we report the high-resolution observations from the Interface Region Imaging Spectrometer (IRIS) of TC reconnection between two sheared filaments in NOAA active region 12146. The TC reconnection commenced on ∼15:35 UT on 2014 August 29 and triggered an eruptive GOES C4.3-class flare ∼8 minutes later. An associated coronal mass ejection appeared in the field of view of the Solar and Heliospheric Observatory/LASCO C2 about 40 minutes later. Thanks to the high spatial resolution of IRIS data, bright plasma outflows generated by the TC reconnection are clearly observed, which moved along the subarcsecond fine-scale flux tube structures in the erupting filament. Based on the imaging and spectral observations, the mean plane-of-sky and line-of-sight velocities of the TC reconnection outflows are separately measured to be ∼79 and 86 km s{sup −1}, which derives an average real speed of ∼120 km s{sup −1}. In addition, it is found that spectral features, such as peak intensities, Doppler shifts, and line widths in the TC reconnection region are evidently enhanced compared to those in the nearby region just before the flare.

  5. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    Science.gov (United States)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  6. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  7. Internal and External Reconnection Series Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  8. THREE-DIMENSIONAL GEOMETRY OF A CURRENT SHEET IN THE HIGH SOLAR CORONA: EVIDENCE FOR RECONNECTION IN THE LATE STAGE OF THE CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Webb, David, E-mail: rkwon@gmu.edu [ISR, Boston College, Chestnut Hill, MA (United States)

    2016-07-20

    Motivated by the standard flare model, ray-like structures in the wake of coronal mass ejections (CMEs) have been often interpreted as proxies of the reconnecting current sheet connecting the CME with the postflare arcade. We present the three-dimensional properties of a post-CME ray derived from white light images taken from three different viewing perspectives on 2013 September 21. By using a forward modeling method, the direction, cross section, and electron density are determined within the heliocentric distance range of 5–9 R {sub ⊙}. The width and depth of the ray are 0.42 ± 0.08 R {sub ⊙} and 1.24 ± 0.35 R {sub ⊙}, respectively, and the electron density is (2.0 ± 0.5) × 10{sup 4} cm{sup 3}, which seems to be constant with height. Successive blobs moving outward along the ray are observed around 13 hr after the parent CME onset. We model the three-dimensional geometry of the parent CME with the Gradual Cylindrical Shell model and find that the CME and ray are coaxial. We suggest that coaxial post-CME rays, seen in coronagraph images, with successive formation of blobs could be associated with current sheets undergoing magnetic reconnection in the late stage of CMEs.

  9. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický

    2004-01-01

    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  10. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  11. Constraining reconnection region conditions using imaging and spectroscopic analysis of a coronal jet

    Science.gov (United States)

    Brannon, Sean; Kankelborg, Charles

    2017-08-01

    Coronal jets typically appear as thin, collimated structures in EUV and X-ray wavelengths, and are understood to be initiated by magnetic reconnection in the lower corona or upper chromosphere. Plasma that is heated and accelerated upward into coronal jets may therefore carry indirect information on conditions in the reconnection region and current sheet located at the jet base. On 2017 October 14, the Interface Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) observed a series of jet eruptions originating from NOAA AR 12599. The jet structure has a length-to-width ratio that exceeds 50, and remains remarkably straight throughout its evolution. Several times during the observation bright blobs of plasma are seen to erupt upward, ascending and subsequently descending along the structure. These blobs are cotemporal with footpoint and arcade brightenings, which we believe indicates multiple episodes of reconnection at the structure base. Through imaging and spectroscopic analysis of jet and footpoint plasma we determine a number of properties, including the line-of-sight inclination, the temperature and density structure, and lift-off velocities and accelerations of jet eruptions. We use these properties to constrain the geometry of the jet structure and conditions in reconnection region.

  12. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  13. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  14. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  15. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  16. Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet

    Energy Technology Data Exchange (ETDEWEB)

    Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-03-10

    Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.

  17. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2017-10-20

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  18. Observations of Reconnection Flows in a Flare on the Solar Disk

    International Nuclear Information System (INIS)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G.

    2017-01-01

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.

  19. Observations of Reconnection Flows in a Flare on the Solar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G., E-mail: j.wang.4@research.gla.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-09-20

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.

  20. Magnetic Reconnection in the Solar Chromosphere

    Science.gov (United States)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  1. Internal and External reconnection in a Series of Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  2. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  3. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  4. Formation of Large-scale Coronal Loops Interconnecting Two Active Regions through Gradual Magnetic Reconnection and an Associated Heating Process

    Science.gov (United States)

    Du, Guohui; Chen, Yao; Zhu, Chunming; Liu, Chang; Ge, Lili; Wang, Bing; Li, Chuanyang; Wang, Haimin

    2018-06-01

    Coronal loops interconnecting two active regions (ARs), called interconnecting loops (ILs), are prominent large-scale structures in the solar atmosphere. They carry a significant amount of magnetic flux and therefore are considered to be an important element of the solar dynamo process. Earlier observations showed that eruptions of ILs are an important source of CMEs. It is generally believed that ILs are formed through magnetic reconnection in the high corona (>150″–200″), and several scenarios have been proposed to explain their brightening in soft X-rays (SXRs). However, the detailed IL formation process has not been fully explored, and the associated energy release in the corona still remains unresolved. Here, we report the complete formation process of a set of ILs connecting two nearby ARs, with successive observations by STEREO-A on the far side of the Sun and by SDO and Hinode on the Earth side. We conclude that ILs are formed by gradual reconnection high in the corona, in line with earlier postulations. In addition, we show evidence that ILs brighten in SXRs and EUVs through heating at or close to the reconnection site in the corona (i.e., through the direct heating process of reconnection), a process that has been largely overlooked in earlier studies of ILs.

  5. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  6. INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION

    International Nuclear Information System (INIS)

    Yang Liping; He Jiansen; Tu Chuanyi; Chen Wenlei; Zhang Lei; Wang Linghua; Yan Limei; Peter, Hardi; Marsch, Eckart; Feng, Xueshang

    2013-01-01

    To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.

  7. Plasmoids everywhere: ideal tearing, the transition to fast reconnection, and solar activity.

    Science.gov (United States)

    Velli, M. C. M.; Pucci, F.; Tenerani, A.; Shi, C.; Del Sarto, D.; Rappazzo, A. F.

    2017-12-01

    We discuss the role of generalized ``ideal" tearing (IT) as a possible trigger mechanism for magnetic reconnection to understand energetic phenomena in the solar atmosphere. We begin with a pedagogical introduction to the IT concept, how it stems from the classical analysis of the tearing instability, what is meant by plasmoids, and the connections of IT to the plasmoid instability and Sweet Parker current sheets. We then proceed to analyze how the IT concept extends to equilibria with flows, small scale kinetic effects, different current structures and different magnetic field topology configurations. Finally we discuss the relationship of reconnection triggering to nonlinear cascades and turbulent evolution, and how different situations may arise depending on scale, boundary conditions, and time-history, from coronal heating via nanoflares, to solar flares and coronal mass ejections. Issues of local topology, dimensionality, anisotropy will also be discussed.

  8. Reconnection in Solar Flares: Outstanding Questions Hiroaki Isobe ...

    Indian Academy of Sciences (India)

    Although the idea of magnetic reconnection for explaining the energy release in solar flares had been proposed many decades ago (Parker 1957; Sweet. 1958) it was after Yohkoh (Ogawara et al. 1991) observations that the reality of mag- netic reconnection occurring during solar flares was established. Examples of evi-.

  9. SLIPPING MAGNETIC RECONNECTION, CHROMOSPHERIC EVAPORATION, IMPLOSION, AND PRECURSORS IN THE 2014 SEPTEMBER 10 X1.6-CLASS SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav; Karlický, Marian; Dzifčáková, Elena [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Polito, Vanessa; Mulay, Sargam M.; Zanna, Giulio Del; Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Janvier, Miho [Institut d’Astrophysique Spatiale, Centre Universitaire d’Orsay, Bt 120121, F-91405 Orsay Cedex (France); Aulanier, Guillaume; Schmieder, Brigitte, E-mail: dudik@asu.cas.cz [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-05-20

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s{sup −1} are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.

  10. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  11. Simulation of small-scale coronal explosives due to magnetic reconnections

    International Nuclear Information System (INIS)

    Fan Quanlin; Feng Xueshang; Xiang Changqing; Zhong Dingkun

    2003-01-01

    The dynamics of small-scale explosive phenomena in the lower corona have been simulated by solving the compressible magnetohydrodynamic equations. Numerical results show that the magnetic reconnections in a long coronal current sheet consist of a series of discrete small reconnection events, coalescence of magnetic islands, and plasmoid ejections, corresponding to the explosive events occurring intermittently and as bursts in a mentioned observational case. The generation of magnetic islands via multiple-X-point reconnection and their coalescence processes, to some extent, are qualitatively similar to the sequence of brightenings in the active region NOAA 8668. The strong ejections are possibly related to the recorded extreme ultraviolet (EUV) emitting structures. Morphological comparison and quantitative check of the plasma parameters support this candidate mechanism, and the idea that explosive events that appear to last long may not be single events, but a succession of explosive events either resolved or unresolved. The temporal energy conversion process is also examined

  12. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  13. Comparison of reconnection in magnetosphere and solar corona

    Science.gov (United States)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  14. Magnetic Reconnection at a Three-dimensional Solar Null Point

    DEFF Research Database (Denmark)

    Frederiksen, Jacob Trier; Baumann, Gisela; Galsgaard, Klaus

    2012-01-01

    Using a specific solar null point reconnection case studied by Masson et al (2009; ApJ 700, 559) we investigate the dependence of the reconnection rate on boundary driving speed, numerical resolution, type of resistivity (constant or numerical), and assumed stratification (constant density or sol...

  15. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L., E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China)

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  16. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    Science.gov (United States)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  17. ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, NO. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Fang, Fang [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States); McIntosh, Scott W.; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  18. On the Observation and Simulation of Solar Coronal Twin Jets

    Science.gov (United States)

    Liu, Jiajia; Fang, Fang; Wang, Yuming; McIntosh, Scott W.; Fan, Yuhong; Zhang, Quanhao

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  19. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  20. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... coronal hole and solar wind. For both the wavelength bands, we also com- pute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength. 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and ...

  1. Magnetic reconnection physics in the solar wind with Voyager 2

    Science.gov (United States)

    Stevens, Michael L.

    2009-08-01

    Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found

  2. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  3. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  4. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  5. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  6. ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R. J.R.; Grappin, R.; Robbrecht, E.

    2012-01-01

    Coronal pseudostreamers, which separate like-polarity coronal holes, do not have current sheet extensions, unlike the familiar helmet streamers that separate opposite-polarity holes. Both types of streamers taper into narrow plasma sheets that are maintained by continual interchange reconnection with the adjacent open magnetic field lines. White-light observations show that pseudostreamers do not emit plasma blobs; this important difference from helmet streamers is due to the convergence of like-polarity field lines above the X-point, which prevents the underlying loops from expanding outward and pinching off. The main component of the pseudostreamer wind has the form of steady outflow along the open field lines rooted just inside the boundaries of the adjacent coronal holes. These flux tubes are characterized by very rapid expansion below the X-point, followed by reconvergence at greater heights. Analysis of an idealized pseudostreamer configuration shows that, as the separation between the underlying holes increases, the X-point rises and the expansion factor f ss at the source surface increases. In situ observations of pseudostreamer crossings indicate wind speeds v ranging from ∼350 to ∼550 km s –1 , with O 7+ /O 6+ ratios that are enhanced compared with those in high-speed streams but substantially lower than in the slow solar wind. Hydrodynamic energy-balance models show that the empirical v-f ss relation overestimates the wind speeds from nonmonotonically expanding flux tubes, particularly when the X-point is located at low heights and f ss is small. We conclude that pseudostreamers produce a 'hybrid' type of outflow that is intermediate between classical slow and fast solar wind.

  7. Magnetic reconnection in magnetotail and solar plasmas

    International Nuclear Information System (INIS)

    Wang Xiaogang.

    1991-01-01

    The formation of current sheets which dominates the heating of the solar corona and the onset of substorms due to collisionless tearing instability in the magnetotail are investigated in the context of magnetic field line reconnection in space plasmas. In Chapters 2 and 3 of this thesis, the collisionless tearing instability and current disruption of the magnetotail are considered. The linear collisionless tearing instability, with wavelengths of the order of 10 R E , and with a growth rate γ ∼ 10 -2 /sec, is identified as a possible mechanism for the growth phase of a substorm. The linear analysis is carried out in the presence of an equilibrium B y -field, neglected in other theories. The nonlinear theory of collisionless tearing mode is dominated by mode coupling effects. From the evolution equations for electro-magnetic field perturbations, the author derived a nonlinear growth rate by generalizing the boundary layer techniques of linear theory. He finds that the nonlinear growth is of the order of 1 sec, much faster than the linear growth. It is proposed that collisionless tearing modes provide a mechanism for current disruption observed by spacecrafts. The electrical field generated during the nonlinear evolution can cause particle acceleration in the earth-tail direction. His estimates indicate ion energies up to 0.7 MeV and electron energies up to 8.1 MeV, which is not inconsistent with the observations. In the Chapter 4 it is shown that current sheets can be formed in Parker's model of the solar corona in the presence of smooth photospheric flows, despite van Ballegooijen and Field's proof that in an ideal plasma current sheets doe not occur unless the boundary velocity field is discontinuous

  8. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  9. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  10. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    Science.gov (United States)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  11. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    2016-01-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

  12. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  13. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    Science.gov (United States)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  14. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Chakrapani, Prithi, E-mail: navdeep.k.panesar@nasa.gov [Hunter College High School, New York, NY (United States)

    2016-11-20

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  15. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  16. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  17. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    Science.gov (United States)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  18. Kinetic modeling of particle acceleration in a solar null point reconnection region

    DEFF Research Database (Denmark)

    Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke

    2013-01-01

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO...... particles and 3.5 billion grid cells of size 17.5\\,km --- these simulations offer a new opportunity to study particle acceleration in solar-like settings....... applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan-plane of the null-point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub...

  19. Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Ju; Lee, Jeongwoo; Xu, Yan; Liu, Chang; Wang, Haimin [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Zhu, Chunming, E-mail: ju.jing@njit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-06-20

    We report the intriguing large-scale dynamic phenomena associated with the M6.5 flare (SOL2015-06-22T18:23) in NOAA active region 12371, observed by RHESSI , Fermi , and the Atmospheric Image Assembly (AIA) and Magnetic Imager (HMI) on the Solar Dynamics Observatory ( SDO ). The most interesting feature of this event is a third ribbon (R3) arising in the decay phase, propagating along a dimming channel (seen in EUV passbands) toward a neighboring sunspot. The propagation of R3 occurs in the presence of hard X-ray footpoint emission and is broadly visible at temperatures from 0.6 MK to over 10 MK through the differential emission measure analysis. The coronal loops then undergo an apparent slipping motion following the same path of R3, after a ∼80 minute delay. To understand the underlying physics, we investigate the magnetic configuration and the thermal structure of the flaring region. Our results are in favor of a slipping-type reconnection followed by the thermodynamic evolution of coronal loops. In comparison with those previously reported slipping reconnection events, this one proceeds across a particularly long distance (∼60 Mm) over a long period of time (∼50 minutes) and shows two clearly distinguished phases: the propagation of the footpoint brightening driven by nonthermal particle injection and the apparent slippage of loops governed by plasma heating and subsequent cooling.

  20. Formation of fast shocks by magnetic reconnection in the solar corona

    International Nuclear Information System (INIS)

    Hsieh, M. H.; Tsai, C. L.; Ma, Z. W.; Lee, L. C.

    2009-01-01

    Reconnections of magnetic fields over the solar surface are expected to generate abundant magnetohydrodynamic (MHD) discontinuities and shocks, including slow shocks and rotational discontinuities. However, the generation of fast shocks by magnetic reconnection process is relatively not well studied. In this paper, magnetic reconnection in a current sheet is studied based on two-dimensional resistive MHD numerical simulations. Magnetic reconnections in the current sheet lead to the formation of plasma jets and plasma bulges. It is further found that the plasma bulges, the leading part of plasma jets, in turn lead to the generation of fast shocks on flanks of the bulges. The simulation results show that during the magnetic reconnection process, the plasma forms a series of structures: plasma jets, plasma bulges, and fast shocks. As time increases, the bulges spread out along the current sheet (±z direction) and the fast shocks move just ahead of the bulges. The effects of initial parameters ρ s /ρ m , β ∞ , and t rec on the fast shock generation are also examined, where ρ s /ρ m is the ratio of plasma densities on two sides of the initial current sheet, β ∞ =P ∞ /(B ∞ 2 /2μ 0 ), P ∞ is the plasma pressure and B ∞ is the magnetic field magnitude far from the current sheet, and t rec is the reconnection duration. In the asymmetric case with ρ s /ρ m =2, β ∞ =0.01 and t rec =1000, the maximum Alfven Mach number of fast shocks (M A1max ) is M A1max congruent with 1.1, where M A1 =V n1 /V A1 , and V n1 and V A1 are, respectively, the normal upstream fluid velocity and the upstream Alfven speed in the fast shocks frame. As the density ratio ρ s /ρ m (=1-8) and plasma beta β ∞ (=0.0001-1) increase, M A1max varies slightly. For the case with a large plasma beta β ∞ (=5), the fast shock is very weak. As the reconnection duration t rec increases, the bulges lead to generation of fast shocks with a higher M A1max . The present results can be

  1. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  2. External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ra.v Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approx.10 km/s prior to eruption and then accelerate to approx.100 km/s during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx.10(exp 14)-10(exp 15) and approx.10(exp 15)-10(exp 16) g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the "tether cutting" and the "breakout" models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether- cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of

  3. External and Internal Reconnection in Two Filament-Carrying Magnetic Cavity Solar Eruptions

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions. one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI). both of which are on the Solar and Heliospheric Observatory. (SOHO). For the earlier event we also use soft X-ray telescope (SXT). hard X-ray telescope (HXT). and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite. and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observatory. (CGRO). Both events occur in quadrupolar magnetic regions. and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases. the cavity and filament first rise slowly at approx. 10 km/s prior to eruption and then accelerate to approx. 100 km/s during the eruption. although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx. 10(exp14) - 1 0(exp 15) and approx. l0(exp 15) - l0(exp 16) g. respectively. We consider whether two specific magnetic reconnection-based models for eruption onset. the "tether cutting" and the "breakout" models. are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins. which is consistent with tether- cutting-model predictions. Substantial hard X-ray. however. do not occur until after fast eruption is underway. and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption. and this is consistent with breakout predictions. In both eruptions. the state of the overlying loops at the time of onset of the fast

  4. ASSOCIATION OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLES WITH LARGE-SCALE CORONAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Innes, Davina E. [Max-Planck-Institut für Sonnensystemforschung, D-37077, Göttingen (Germany); Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, Mark E., E-mail: bucik@mps.mpg.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-12-10

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory ( STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.

  5. Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sterling, Alphonse C.; Moore, Ronald L., E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-10

    Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.

  6. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, J.; Del Zanna, G.; Mason, H. E. [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Janvier, M. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Aulanier, G.; Schmieder, B. [LESIA, Observatoire de Paris, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); Karlický, M., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: mjanvier@maths.dundee.ac.uk [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic)

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.

  7. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  8. Particle acceleration and reconnection in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama, Huntsville, AL 35805 (United States); Department of Space Science, University of Alabama, Huntsville, AL 35899 (United States); Khabarova, O. [Heliophysical Laboratory, IZMIRAN, Troitsk, Moscow 142190 (Russian Federation); Cummings, A. C.; Stone, E. C. [California Institute of Technology, Mail Code 290-17, Pasadena, CA 91125 (United States); Decker, R. B. [Johns Hopkins University/Applied Physics Lab., Laurel, MD 20723-6099 (United States)

    2016-03-25

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a “sea of magnetic islands” in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed.

  9. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  10. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-05-10

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  11. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  12. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  13. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Chen Qingrong; Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.

  14. Electron acceleration in the Solar corona - 3D PiC code simulations of guide field reconnection

    Science.gov (United States)

    Alejandro Munoz Sepulveda, Patricio

    2017-04-01

    The efficient electron acceleration in the solar corona detected by means of hard X-ray emission is still not well understood. Magnetic reconnection through current sheets is one of the proposed production mechanisms of non-thermal electrons in solar flares. Previous works in this direction were based mostly on test particle calculations or 2D fully-kinetic PiC simulations. We have now studied the consequences of self-generated current-aligned instabilities on the electron acceleration mechanisms by 3D magnetic reconnection. For this sake, we carried out 3D Particle-in-Cell (PiC) code numerical simulations of force free reconnecting current sheets, appropriate for the description of the solar coronal plasmas. We find an efficient electron energization, evidenced by the formation of a non-thermal power-law tail with a hard spectral index smaller than -2 in the electron energy distribution function. We discuss and compare the influence of the parallel electric field versus the curvature and gradient drifts in the guiding-center approximation on the overall acceleration, and their dependence on different plasma parameters.

  15. Simulation study of solar plasma eruptions caused by interactions between emerging flux and coronal arcade fields

    International Nuclear Information System (INIS)

    Kaneko, Takafumi; Yokoyama, Takaaki

    2014-01-01

    We investigate the triggering mechanisms of plasma eruptions in the solar atmosphere due to interactions between emerging flux and coronal arcade fields by using two-dimensional MHD simulations. We perform parameter surveys with respect to arcade field height, magnetic field strength, and emerging flux location. Our results show that two possible mechanisms exist, and which mechanism is dominant depends mostly on emerging flux location. One mechanism appears when the location of emerging flux is close to the polarity inversion line (PIL) of an arcade field. This mechanism requires reconnection between the emerging flux and the arcade field, as pointed out by previous studies. The other mechanism appears when the location of emerging flux is around the edge of an arcade field. This mechanism does not require reconnection between the emerging flux and the arcade field but does demand reconnection in the arcade field above the PIL. Furthermore, we found that the eruptive condition for this mechanism can be represented by a simple formula.

  16. Particle acceleration via reconnection processes in the supersonic solar wind

    International Nuclear Information System (INIS)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-01-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler

  17. ENERGY RELEASE AND TRANSFER IN SOLAR FLARES: SIMULATIONS OF THREE-DIMENSIONAL RECONNECTION

    International Nuclear Information System (INIS)

    Birn, J.; Fletcher, L.; Hesse, M.; Neukirch, T.

    2009-01-01

    Using three-dimensional magnetohydrodynamic simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario, reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta), where beta represents the ratio between gas (plasma) and magnetic pressure. The energy conversion process from reconnection consists of incoming Poynting flux turned into up- and downgoing Poynting flux, enthalpy flux, and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher and Hudson, whereas the enthalpy flux may act as an alternative transport mechanism. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release timescales and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares. Significant enthalpy flux and heating are found even in the initially force-free case with very small background beta, resulting mostly from adiabatic compression rather than Ohmic dissipation. The energy conversion mechanism is most easily understood as a two-step process (although the two steps may occur essentially simultaneously): the first step is the acceleration of the plasma by Lorentz forces in layers akin to the slow shocks in the Petschek reconnection model, involving the conversion of magnetic energy to bulk kinetic

  18. RESOLVING THE FAN-SPINE RECONNECTION GEOMETRY OF A SMALL-SCALE CHROMOSPHERIC JET EVENT WITH THE NEW SOLAR TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Ji, Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-03-01

    Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.

  19. RESOLVING THE FAN-SPINE RECONNECTION GEOMETRY OF A SMALL-SCALE CHROMOSPHERIC JET EVENT WITH THE NEW SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda; Ji, Haisheng

    2016-01-01

    Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al

  20. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.

    Science.gov (United States)

    Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander

    2015-07-10

    In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.

  1. Magnetic Reconnection at the Earliest Stage of Solar Flux Emergence

    Science.gov (United States)

    Tian, Hui; Zhu, Xiaoshuai; Peter, Hardi; Zhao, Jie; Samanta, Tanmoy; Chen, Yajie

    2018-02-01

    On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hr. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼1016 Mx s‑1. The emergence of magnetic fluxes and interactions between different polarities lead to the frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 Å images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to the enhancement of the magnetic fields and thus the formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue- and redshifts of ∼100 km s‑1 at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼1015 Mx s‑1. We also investigate the three-dimensional magnetic field topology through a magnetohydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.

  2. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  3. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  4. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  5. LONG-TERM TREND OF SOLAR CORONAL HOLE DISTRIBUTION FROM 1975 TO 2014

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, K.; Tokumaru, M.; Hayashi, K.; Satonaka, D. [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa, Nagoya Aichi 464-8601 (Japan); Hakamada, K., E-mail: fujiki@isee.nagoya-u.ac.jp [Department of Natural Science and Mathematics, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2016-08-20

    We developed an automated prediction technique for coronal holes using potential magnetic field extrapolation in the solar corona to construct a database of coronal holes appearing from 1975 February to 2015 July (Carrington rotations from 1625 to 2165). Coronal holes are labeled with the location, size, and average magnetic field of each coronal hole on the photosphere and source surface. As a result, we identified 3335 coronal holes and found that the long-term distribution of coronal holes shows a similar pattern known as the magnetic butterfly diagram, and polar/low-latitude coronal holes tend to decrease/increase in the last solar minimum relative to the previous two minima.

  6. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  7. Thermal instabilities in magnetically confined plasmas: Solar coronal loops

    International Nuclear Information System (INIS)

    Habbal, S.R.; Rosner, R.

    1979-01-01

    The thermal stability of confined solar coronal structures (''loops'') is investigated, following both normal mode and a new, global instability analysis. We demonstrate that: (a) normal mode analysis shows modes with size scales comparable to that of loops to be unstable, but to be strongly affected by the loop boundary conditions; (b) a global analysis, based upon variation of the total loop energy losses and gains, yields loop stability conditions for global modes dependent upon the coronal loop heating process, with magnetically coupled heating processes giving marginal stability. The connection between the present analysis and the minimum flux corona of Hearn is also discussed

  8. Solar wind heavy ions from energetic coronal events

    International Nuclear Information System (INIS)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10 6 K while the state of Fe is frozen in at approx. 1.5 x 10 6 K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O 8+ , is depressed as are the Fe peaks ranging from Fe 12+ to Fe 7+ . A prominent peak in the usual Si 8+ position of IS spectra is self-consistently shown to be Fe 16+ . These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references

  9. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  10. 3D Solar Null Point Reconnection MHD Simulations

    Science.gov (United States)

    Baumann, G.; Galsgaard, K.; Nordlund, Å.

    2013-06-01

    Numerical MHD simulations of 3D reconnection events in the solar corona have improved enormously over the last few years, not only in resolution, but also in their complexity, enabling more and more realistic modeling. Various ways to obtain the initial magnetic field, different forms of solar atmospheric models as well as diverse driving speeds and patterns have been employed. This study considers differences between simulations with stratified and non-stratified solar atmospheres, addresses the influence of the driving speed on the plasma flow and energetics, and provides quantitative formulas for mapping electric fields and dissipation levels obtained in numerical simulations to the corresponding solar quantities. The simulations start out from a potential magnetic field containing a null-point, obtained from a Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) magnetogram magnetogram extrapolation approximately 8 hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to - although simpler than - horizontal motions observed by SOHO during the period preceding the flare. The general behavior is nearly independent of the driving speed, and is also very similar in stratified and non-stratified models, provided only that the boundary motions are slow enough. The boundary motions cause a build-up of current sheets, mainly in the fan-plane of the magnetic null-point, but do not result in a flare-like energy release. The additional free energy required for the flare could have been partly present in non-potential form at the initial state, with subsequent additions from magnetic flux emergence or from components of the boundary motion that were not represented by the idealized driving pattern.

  11. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  12. PRE-FLARE CORONAL JET AND EVOLUTIONARY PHASES OF A SOLAR ERUPTIVE PROMINENCE ASSOCIATED WITH THE M1.8 FLARE: SDO AND RHESSI OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Bhuwan; Kushwaha, Upendra [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001 (India); Veronig, Astrid M. [Kanzelhöhe Observatory/Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Cho, K.-S., E-mail: bhuwan@prl.res.in [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2016-12-01

    We investigate the triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory , the Reuven Ramaty High Energy Solar Spectroscopic Imager , and the Extreme Ultraviolet Imager/Sun Earth Connection Coronal and Heliospheric Investigation on board the Solar Terrestrial Relation Observatory . Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet, which is associated with the rapid eruption of a cool flux rope. Furthermore, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ∼12 km s{sup −1} while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare, suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power-law spectra with hard electron spectral index ( δ  ∼ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ∼177 km s{sup −1}. The temporal, spatial, and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.

  13. Solar coronal non-thermal processes (Solar Maximum Mission). Final report

    International Nuclear Information System (INIS)

    Hudson, H.S.

    1983-02-01

    The Solar Maximum Mission was used to study solar coronal phenomena in hard X-radiation, since its instrument complement included the first solar hard X-ray telescope. Phenomena related to those discovered from OSO-5 and OSO-7 observations were emphasized

  14. A Model of Solar Flares Based on Arcade Field Reconnection and Merging of Magnetic Islands

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2001-01-01

    Solar flares are intense, abrupt releases of energy in the solar corona. In the impulsive phase of a flare, the intensity of hard X-ray emission reaches a sharp peak indicating the highest reconnection rate. It is often observed that an X-ray emitting plasma ejecta (plasmoid) is launched before the impulsive phase and accelerated throughout the phase. Thus, the plasmoid ejection may not be an effect of fast magnetic reconnection as conventionally assumed, but a cause of fast reconnection. Based on resistive magnetohydrodynamic simulations, a solar flare model is presented, which can explain these observational characteristics of flares. In the model, merging of a newly generated magnetic island and a pre-existing island results in stretching and thinning of a current sheet, in which fast magnetic reconnection is induced. Recurrence of homologous flares naturally arises in this model. Mechanisms of magnetic island formation are also discussed

  15. EVIDENCE FOR NEWLY INITIATED RECONNECTION IN THE SOLAR WIND AT 1 AU

    International Nuclear Information System (INIS)

    Xu, Xiaojun; Ma, Yonghui; Wong, Hon-Cheng; Wang, Yi; Zuo, Pingbing; Wei, Fengsi; Feng, Xueshang; Zhou, Meng; Deng, Xiaohua

    2015-01-01

    We report the first evidence for a large-scale reconnection exhaust newly initiated in the solar wind using observations from three spacecraft: ACE, Wind, and ARTEMIS P2. We identified a well-structured X-line exhaust using measurements from ARTEMIS P2 in the downstream solar wind. However, in the upstream solar wind, ACE detected the same current sheet that corresponds to the exhaust identified by ARTEMIS P2 data without showing any reconnection signals. We cannot find any reconnection signals from Wind located between ACE and ARTEMIS P2. Within the exhaust, a magnetic island is identified, which is not consistent with the quasi-steady feature as previously reported and provides further evidence that the reconnection is newly initiated. Our observations show that the entering of energetic particles, probably from Earth's bow shock, makes the crucial difference between the non-reconnecting current sheet and the exhaust. Since no obvious driving factors are responsible for the reconnection initiation, we infer that these energetic particles probably play an important role in the reconnection initiation. Theoretical analysis also shows support for this potential mechanism

  16. Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms

    Science.gov (United States)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.

    2013-09-01

    This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.

  17. Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-07-20

    We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen as absorption in EUV at the beginning of its eruption. Later, the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the X-ray Telescope on board Hinode . We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then, we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.

  18. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  19. Activity associated with the solar origin of coronal mass ejections

    Science.gov (United States)

    Webb, D. F.; Hundhausen, A. J.

    1987-01-01

    Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences, and the proportions of association of all types of activity were similar. A high percentage of association between SMM CMEs and X-ray long duration events is also found, in agreement with Skylab results. It is concluded that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.

  20. Analysis of Solar Coronal Holes with Synoptic Magnetogram Data

    Science.gov (United States)

    Canner, A.; Kim, T. K.; Pogorelov, N.; Yalim, M. S.

    2017-12-01

    Coronal holes are regions in which the magnetic field of the Sun is open with high magnetic flux and low plasma density. Because of the low plasma beta in these regions, the open field lines transport plasma from the Sun throughout the heliosphere. Coronal hole area is closely related to the expansion factor of the magnetic flux tube, as demonstrated by Tokumaru et al. (2017). Following the approach of Tokumaru et al. (2017), we employ a potential field source surface model to identify the open field regions on the photosphere and estimate the area and expansion factor for each coronal hole. While Tokumaru et al. (2017) analyzed synoptic maps from Kitt Peak National Observatory for the period 1995-2011, we use different magnetograph observations with higher spatial resolution (e.g., SOHO-MDI) for the same time period. We compare the coronal hole area - expansion factor relationship with the original results of Tokumaru et al (2017). This work was supported by the NSF-funded Research Experience for Undergraduates program "Solar and Heliospheric Physics at UAH and MSFC" run by the University of Alabama in Huntsville in partnership with the Marshall Space Flight Center through grant AGS-1460767.

  1. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  2. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  3. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  4. Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere

    Science.gov (United States)

    Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun

    2018-01-01

    Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.

  5. Double-coronal X-Ray and Microwave Sources Associated with a Magnetic Breakout Solar Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yao; Wu, Zhao; Zhao, Di; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schwartz, Richard A., E-mail: yaochen@sdu.edu.cn [NASA Goddard Space Flight Center and American University, Greenbelt, MD 20771 (United States)

    2017-07-01

    Double-coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in large-scale current sheets in solar flares. Here, we present a study on double-coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (2014 April 25, starting at 00:17 UT) and a coronal mass ejection that were likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially occulted flare loops and the upper source co-incident with rapidly squeezing-in side lobes (at a speed of ∼250 km s{sup −1} on both sides). The upper source can be identified at energies as high as 70–100 keV. The X-ray upper source is characterized by flux curves that differ from those of the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration, and an HXR photon spectrum slightly harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double-source structure and the microwave spectra at both sources are in line with gyrosynchrotron emission given by non-thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (and possibly caused by) this fast motion of arcades. This sheds new light on the origin of the corona double-source structure observed in both HXRs and microwaves.

  6. New techniques for the characterisation of dynamical phenomena in solar coronal images

    Science.gov (United States)

    Robbrecht, E.

    2007-02-01

    And Coronal Explorer). Ten years of EUV observations made it clear that these disturbances are a widespread phenomenon in active region loops. The existence of these waves in the corona had been predicted by the theory of magnetohydrodynamics (MHD), which we revise briefly. Just like in helioseismology, coronal seismology uses observations of oscillations to derive physical parameters which are not directly measurable, such as the Alfvén speed or the magnetic field strength. The comparison with helioseismology does not fully hold in the sense that the dense photosphere does not allow any seeing inside. Instead, for the corona we do have direct observations, but because of its optical thinness these observations leave space for many interpretations. At the end of the forties, it was suggested that the corona could be heated by the dissipation of acoustic waves (sound waves) driven by the p-mode oscillations, generated by turbulence in the convection zone. While they travel upwards, these waves form shocks and heat the plasma by viscous dissipation. Nowadays, they are believed to be only important for lower chromospheric heating. By the time the upper chromosphere is reached, the acoustic waves are heavily damped and what rests is reflected by the steep temperature and density gradients in the transition zone. As such, they cannot deposit enough energy in the corona to sufficiently heat it to the observed temperatures. Dissipation of magnetic energy by Alfvén waves or directly by the reconnection process in current sheets are considered to be more likely to heat the corona. Part II addresses the question of detecting coronal mass ejections (CMEs) in coronagraphic white light data. The study of CMEs is a rather young (≲ 30 years) field of research. Coronal mass ejections are sudden expulsions of mass and magnetic field from the solar corona into the interplanetary medium. A classical CME carries away some 10^15 g of coronal mass and can liberate energies of 10

  7. Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

    Science.gov (United States)

    Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.

    2017-11-01

    Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

  8. FAST DIFFERENTIAL EMISSION MEASURE INVERSION OF SOLAR CORONAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, Joseph; Kankelborg, Charles; Martens, Petrus [Montana State University, Bozeman, MT 59717 (United States)

    2013-07-01

    We present a fast method for reconstructing differential emission measures (DEMs) using solar coronal data. The method consists of a fast, simple regularized inversion in conjunction with an iteration scheme for removal of residual negative emission measure. On average, it computes over 1000 DEMs s{sup -1} for a sample active region observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, and achieves reduced chi-squared of order unity with no negative emission in all but a few test cases. The high performance of this method is especially relevant in the context of AIA, which images of order one million solar pixels per second. This paper describes the method, analyzes its fidelity, compares its performance and results with other DEM methods, and applies it to an active region and loop observed by AIA and by the Extreme-ultraviolet Imaging Spectrometer on Hinode.

  9. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-01-01

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  10. A comparison of solar wind streams and coronal structure near solar minimum

    Science.gov (United States)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  11. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  12. SIMULTANEOUS OBSERVATION OF SOLAR OSCILLATIONS ASSOCIATED WITH CORONAL LOOPS FROM THE PHOTOSPHERE TO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Liu, S.; Zhang, Y. Z.; Zhao, H.; Xu, H. Q.; Xie, W. B. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China); Liu, Y. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-01-01

    The solar oscillations along one coronal loop in AR 11504 are observed simultaneously in white light emission and Doppler velocity by SDO/HMI, and in UV and EUV emissions by SDO/AIA. The technique of the time-distance diagram is used to detect the propagating oscillations of the emission intensities along the loop. We find that although all the oscillation signals were intercorrelated, the low chromospheric oscillation correlated more closely to the oscillations of the transition region and corona than to those of the photosphere. Situated above the sunspot, the oscillation periods were {approx}3 minutes in the UV/EUV emissions; however, moving away from the sunspot and into the quiet Sun, the periods became longer, e.g., up to {approx}5 minutes or more. In addition, along another loop we observe both the high-speed outflows and oscillations, which roughly had a one-to-one corresponding relationship. This indicates that the solar periodic oscillations may modulate the magnetic reconnections between the loops of the high and low altitudes that drive the high-speed outflows along the loop.

  13. Unambiguous Evidence of Coronal Implosions during Solar Eruptions and Flares

    Science.gov (United States)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.

    2018-05-01

    In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity.

  14. Magnetic reconnection in the low solar chromosphere with a more realistic radiative cooling model

    Science.gov (United States)

    Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun

    2018-04-01

    Magnetic reconnection is the most likely mechanism responsible for the high temperature events that are observed in strongly magnetized locations around the temperature minimum in the low solar chromosphere. This work improves upon our previous work [Ni et al., Astrophys. J. 852, 95 (2018)] by using a more realistic radiative cooling model computed from the OPACITY project and the CHIANTI database. We find that the rate of ionization of the neutral component of the plasma is still faster than recombination within the current sheet region. For low β plasmas, the ionized and neutral fluid flows are well-coupled throughout the reconnection region resembling the single-fluid Sweet-Parker model dynamics. Decoupling of the ion and neutral inflows appears in the higher β case with β0=1.46 , which leads to a reconnection rate about three times faster than the rate predicted by the Sweet-Parker model. In all cases, the plasma temperature increases with time inside the current sheet, and the maximum value is above 2 ×104 K when the reconnection magnetic field strength is greater than 500 G. While the more realistic radiative cooling model does not result in qualitative changes of the characteristics of magnetic reconnection, it is necessary for studying the variations of the plasma temperature and ionization fraction inside current sheets in strongly magnetized regions of the low solar atmosphere. It is also important for studying energy conversion during the magnetic reconnection process when the hydrogen-dominated plasma approaches full ionization.

  15. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2016-10-20

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  16. The application of coronal scattering measurements to solar radio bursts

    International Nuclear Information System (INIS)

    Bradford, H.M.

    1980-01-01

    The interpretation of ground based observations of solar 'plasma frequency' radio bursts has been hampered in the past by an insufficient knowledge of coronal scattering by density inhomogeneities close to the Sun. Calculations based on measuurements of the angular broadening of natural radio sources, and Woo's 1975 measurement of the angular broadening of the telemetry carrier by Helios I near occultation (Woo, 1978), indicate that plasma frequency solar bursts should undergo considerable scattering, at least near the maximum of the sunspot cycle. The calculated displacements of the apparent positions of the bursts are about equal to the observed displacements which have been attributed to the bursts occurring in dense streamers. In order to obtain more scattering data close to the Sun, interferometer measurements of the angular broadening of spacecraft signals are planned, and the important contribution which could be made with large dishes is discussed. (Auth.)

  17. Solar radio bursts and their relation of coronal magnetic structures

    International Nuclear Information System (INIS)

    Kattenberg, A.

    1981-01-01

    Following a general introduction, chapters II and III describe a model for coronal flux tubes. The model tube is a cylindrically symmetric localized force free current, that is embedded in a potential field. In both chapters the growth rates and sizes of the kink mode instability are calculated by solving the linearized equation of motion. In chapters IV and V, observations of solar Type-I radio bursts are presented and analysed. The observations were gathered with the 60-channel radio spectrograph in Dwingeloo. Chapters VI, VII, VIII, IX and X are concerned with observations of solar microwave bursts. The observations, with high time resolution (0.1 s) and high one-dimensional angular resolution (max. 4'') were made with the Westerbork Synthesis Radio Telescope. (Auth.)

  18. THE TOPOLOGICAL CHANGES OF SOLAR CORONAL MAGNETIC FIELDS. II. THE RECLOSING OF AN OPENED FIELD

    International Nuclear Information System (INIS)

    Low, B. C.; Janse, A. M.

    2009-01-01

    This is a study of the spontaneous formation of current sheets responding to the closing of an opened magnetic field by resistive reconnection in an electrically, highly conducting atmosphere outside a unit sphere. Pairs of initial-final equilibrium states are calculated explicitly, taking the field to be composed of three systems of untwisted flux in both states. In the initial state, two of the three flux systems are closed potential fields whereas the third system contains an equilibrium current sheet that keeps the potential fields on its two sides globally open. The final state is an everywhere potential field, with all three flux systems closed, produced by the resistive dissipation of the current sheet in the initial state. The unit sphere is taken to be a rigid, perfectly conducting wall during reconnection, so that the normal flux distribution is unchanged on the unit sphere. Field solutions subject to this unchanging boundary condition are obtained with and without the assumption of axisymmetry. The mathematical model has been designed to show that the topological changes produced by the current-sheet dissipation are simple under axisymmetry but radically different in the absence of axisymmetry, a fundamental point established in the first paper of this series. In the general case, the topological changes imply that other current sheets must have formed. Some of these current sheets form on the separatrix flux surfaces of the multipolar field. Others form throughout the closed-flux systems induced by volumetric changes. The opening and reclosing of magnetic fields during a solar coronal mass ejection may produce a multitude of current sheets not previously anticipated in the current understanding of this phenomenon. Basic to this study is a general topological property of magnetic flux tubes treated separately in the Appendix.

  19. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  20. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    Science.gov (United States)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  1. Reconnection Mediated by Magnetic Fractures and the Solar Flare

    Science.gov (United States)

    Haerendel, Gerhard

    2018-03-01

    Reconnection of sheared magnetic fields is commonly treated by regarding the component perpendicular to the antiparallel components as a largely inert guide field. In this paper an alternative is proposed in which the free energy residing in the shear field is being converted prior to reconnection. This happens in high-density, dissipative current sheets bordering the reconnection site. A global scenario is presented in which low-intensity currents out of the photosphere are converging into the narrow, high-intensity currents at high altitude. This is enabled by the obliqueness of the latter. The very short timescale of the energy conversion causes a lateral propagation of the current sheets. In a quasi-stationary situation, it balances the reconnection rate, which turns out to be much lower than in guide-field approaches. Another important consequence of the obliqueness is the field-parallel emission of runaway electrons. Accelerated up to tens of keV, they are possibly important contributors to the production of hard X-rays during the impulsive phase of a flare, but only in areas of upward-directed currents. Quantitative evaluation of the model predicts various potentially observable properties, such as width and propagation speed of the generated flare ribbons, spatial dependences of the electron spectrum, size of the area of energy deposition, and successive decrease of the shear angle between conjugate footpoints. The presented theoretical model can account for the observed brightness asymmetry of flare ribbons with respect to the direction of the vertical currents.

  2. Transition region, coronal heating and the fast solar wind

    Science.gov (United States)

    Li, Xing

    2003-07-01

    It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  3. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  4. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  5. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15-2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  6. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  7. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  8. DIRECT OBSERVATIONS OF TETHER-CUTTING RECONNECTION DURING A MAJOR SOLAR EVENT FROM 2014 FEBRUARY 24 TO 25

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Ting [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Cheng, Xin [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ma, Suli, E-mail: hdchen@nao.cas.cn [College of Science, China University of Petroleum, Qingdao 266580 (China)

    2014-12-20

    Using multi-wavelength data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we investigated two successive solar flares, a C5.1 confined flare and an X4.9 ejective flare with a halo coronal mass ejection, in NOAA active region 11990 from 2014 February 24 to 25. Before the confined flare onset, EUV brightening beneath the filament was detected. As the flare began, a twisted helical flux rope (FR) wrapping around the filament moved upward and then stopped, and in the meantime an obvious X-ray source below it was observed. Prior to the ejective X4.9 flare, some pre-existing loop structures in the active region interacted with each other, which produced a brightening region beneath the filament. Meanwhile, a small flaring loop appeared below the interaction region and some new helical lines connecting the far ends of the loop structures were gradually formed and continually added into the former twisted FR. Then, due to the resulting imbalance between the magnetic pressure and tension, the new FR, together with the filament, erupted outward. Our observations coincide well with a tether-cutting model, suggesting that the two flares probably have the same triggering mechanism, i.e., tether-cutting reconnection. To our knowledge, this is the first direct observation of tether-cutting reconnection occurring between pre-existing loops in an active region. In the ejective flare case, the erupting filament exhibited an Ω-like kinked structure and underwent an exponential rise after a slow-rise phase, indicating that the kink instability might be also responsible for the eruption initiation.

  9. Reconnection on the Sun

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  10. Birth, life, and death of a solar coronal plume

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, AL 35812 (United States)

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  11. Why fast solar wind originates from slowly expanding coronal flux tubes

    International Nuclear Information System (INIS)

    Wang, Y.M.; Sheeley, N.R. Jr.

    1991-01-01

    Empirical studies indicate that the solar wind speed at earth is inversely correlated with the divergence rate of the coronal magnetic field. It is shown that this result is consistent with simple wind acceleration models involving Alfven waves, provided that the wave energy flux at the coronal base is taken to be roughly constant within open field regions. 9 refs

  12. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)

    2017-06-20

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  13. More than a solar cycle of synoptic solar and coronal data - a video presentation

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.; Herant, M.; Title, A.M.

    1988-01-01

    Color video movies of synoptic observations of the sun and corona can now be created. Individual analog frames on laser disks can be referenced digitally and played back at any speed. We have brought together photospheric magnetic field data from the Wilcox Solar Observatory at Stanford and the National Solar Observatory, model computations of the coronal magnetic field, and coronal data from the Sacramento Peak coronagraph and the Mauna Loa K-coronameter and made a series of movies presenting the data sets individually and in comparison with one another. This paper presents a description of each of the data sets and movies developed thus far and briefly outlines some of the more interesting and obvious features observed when viewing the movies

  14. The Relation between Coronal Holes and Coronal Mass Ejections during the Rise, Maximum, and Declining Phases of Solar Cycle 23

    Science.gov (United States)

    Mohamed, A. A.; Gopalswamy, N; Yashiro, S.; Akiyama, S.; Makela, P.; Xie, H.; Jung, H.

    2012-01-01

    We study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all the coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance =15deg) and resulting in magnetic clouds (MCs) and non-MCs in the solar wind. The CHIP is found to be the smallest during the rise phase for MCs and non-MCs. The maximum phase has the largest CHIP value (2.9 G) for non-MCs. The CHIP is the largest (5.8 G) for driverless (DL) shocks, which are shocks at 1 AU with no discernible MC or non-MC. These results suggest that the behavior of non-MCs is similar to that of the DL shocks and different from that of MCs. In other words, the CHs may deflect the CMEs away from the Sun-Earth line and force them to behave like limb CMEs with DL shocks. This finding supports the idea that all CMEs may be flux ropes if viewed from an appropriate vantage point.

  15. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2017-09-10

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  16. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhao, Lulu

    2017-01-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  17. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  18. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  19. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  20. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  1. MAGNETOHYDRODYNAMICS STUDY OF THREE-DIMENSIONAL FAST MAGNETIC RECONNECTION FOR INTERMITTENT SNAKE-LIKE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.

  2. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  3. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Roussev, Ilia I. [Division of Geosciences, National Science Foundation Arlington, Virginia (United States); Schmieder, Brigitte, E-mail: leini@ynao.ac.cn [Observatoire de Paris, LESIA, Meudon (France)

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.

  4. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  5. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere

    Science.gov (United States)

    Hannah, I. G.; Kontar, E. P.

    2013-05-01

    Aims: The aim of this work is to determine the multi-thermal characteristics and plasma energetics of an eruptive plasmoid and occulted flare observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). Methods: We study a 2010 Nov. 3 event (peaking at 12:20 UT in GOES soft X-rays) of a coronal mass ejection and occulted flare that demonstrates the morphology of a classic erupting flux rope. The high spatial and time resolution and six coronal channels of the SDO/AIA images allows the dynamics of the multi-thermal emission during the initial phases of eruption to be studied in detail. The differential emission measure is calculated, using an optimized version of a regularized inversion method, for each pixel across the six channels at different times, resulting in emission measure maps and movies in a variety of temperature ranges. Results: We find that the core of the erupting plasmoid is hot (8-11, 11-14 MK) with a similarly hot filamentary "stem" structure connecting it to the lower atmosphere, which could be interpreted as the current sheet in the flux rope model, though is wider than these models suggest. The velocity of the leading edge of the eruption is 597-664 km s-1 in the temperature range ≥3-4 MK and between 1029-1246 km s-1 for ≤2-3 MK. We estimate the density (in 11-14 MK) of the erupting core and stem during the impulsive phase to be about 3 × 109 cm-3, 6 × 109 cm-3, 9 × 108 cm-3 in the plasmoid core, stem, and surrounding envelope of material. This gives thermal energy estimates of 5 × 1029 erg, 1 × 1029 erg, and 2 × 1030 erg. The kinetic energy for the core and envelope is slightly lower. The thermal energy of the core and current sheet grows during the eruption, suggesting continuous influx of energy presumably via reconnection. Conclusions: The combination of the optimized regularized inversion method and SDO/AIA data allows the multi-thermal characteristics (i.e. velocity, density, and thermal energies) of the

  6. Do Solar Coronal Holes Affect the Properties of Solar Energetic Particle Events?

    Science.gov (United States)

    Kahler, S. W.; Arge, C. N.; Akiyama, S.; Gopalswamy, N.

    2013-01-01

    The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E (is) approx. 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang-Sheeley-Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.

  7. Experimental study of ion heating and acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  8. Experimental study of ion heating and acceleration during magnetic reconnection

    International Nuclear Information System (INIS)

    Hsu, S.C.

    2000-01-01

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  9. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  10. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  11. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  12. Ulysses Observations of Tripolar Guide-Magnetic Field Perturbations Across Solar Wind Reconnection Exhausts

    Science.gov (United States)

    Eriksson, S.; Peng, B.; Markidis, S.; Gosling, J. T.; McComas, D. J.; Lapenta, G.; Newman, D. L.

    2014-12-01

    We report observations from 15 solar wind reconnection exhausts encountered along the Ulysses orbit beyond 4 AU in 1996-1999 and 2002-2005. The events, which lasted between 17 and 45 min, were found at heliospheric latitudes between -36o and 21o with one event detected as high as 58o. All events shared a common characteristic of a tripolar guide-magnetic field perturbation being detected across the observed exhausts. The signature consists of an enhanced guide field magnitude within the exhaust center and two regions of significantly depressed guide-fields adjacent to the center region. The events displayed magnetic field shear angles as low as 37o with a mean of 89o. This corresponds to a strong external guide field relative to the anti-parallel reconnecting component of the magnetic field with a mean ratio of 1.3 and a maximum ratio of 3.1. A 2-D kinetic reconnection simulation for realistic solar wind conditions reveals that tripolar guide fields form at current sheets in the presence of multiple X-lines as two magnetic islands interact with one another for such strong guide fields. The Ulysses observations are also compared with the results of a 3-D kinetic simulation of multiple flux ropes in a strong guide field.

  13. Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence

    Science.gov (United States)

    Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.

    2018-03-01

    The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.

  14. Non-Potential Magnetic Fields and Magnetic Reconnection In Low Collisional Plasmas-Discovery of Solar EUV Mini-Sigmoids and Development of Novel In-Space Propulsion Systems

    Science.gov (United States)

    Chesny, David

    Magnetic reconnection is the source of many of the most powerful explosions of astrophysical plasmas in the universe. Blazars, magnetars, stellar atmospheres, and planetary magnetic fields have all been shown to be primary sites of strong reconnection events. For studying the fundamental physics behind this process, the solar atmosphere is our most accessible laboratory setting. Magnetic reconnection resulting from non-potential fields leads to plasma heating and particle acceleration, often in the form of explosive activity, contributing to coronal heating and the solar wind. Large-scale non-potential (sigmoid) fields in the solar atmosphere are poorly understood due to their crowded neighborhoods. For the first time, small-scale, non-potential loop structures have been observed in quiet Sun EUV observations. Fourteen unique mini-sigmoid events and three diffuse non-potential loops have been discovered, suggesting a multi-scaled self-similarity in the sigmoid formation process. These events are on the order of 10 arcseconds in length and do not appear in X-ray emissions, where large-scale sigmoids are well documented. We have discovered the first evidence of sigmoidal structuring in EUV bright point phenomena, which are prolific events in the solar atmosphere. Observations of these mini-sigmoids suggest that they are being formed via tether-cutting reconnection, a process observed to occur at active region scales. Thus, tether-cutting is suggested to be ubiquitous throughout the solar atmosphere. These dynamics are shown to be a function of the free magnetic energy in the quiet Sun network. Recently, the reconnection process has been reproduced in Earth-based laboratory tokamaks. Easily achievable magnetic field configurations can induce reconnection and result in ion acceleration. Here, magnetic reconnection is utilized as the plasma acceleration mechanism for a theoretical propulsion system. The theory of torsional spine reconnection is shown to result in ion

  15. Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Kelly, M.; Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Zhu, X. S. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China)

    2017-10-20

    We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph ( IRIS ). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si iv 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s{sup −1} with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si iv 1402.77 Å, C ii 1335.71 Å, and Mg ii 2803.52 Å lines show evident redshifts up to a velocity of 80 km s{sup −1}, which are consistent with the scenario of chromospheric evaporation/condensation.

  16. OBSERVATION OF MAGNETIC RECONNECTION AT A 3D NULL POINT ASSOCIATED WITH A SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Sun, J. Q.; Yang, K.; Cheng, X.; Ding, M. D.; Zhang, J.

    2016-01-01

    Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The Geostationary Operational Environmental Satellites X-ray profile of the flare exhibited two peaks at ∼02:23 UT and ∼02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X-ray peak was originated from MR in the current sheet (CS) underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null point located above the pre-eruption MFR. The interaction of the null point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null point, resulting in a significant displacement of the magnetic field surrounding the null. During the second step, the displaced magnetic field started to move back, resulting in a converging inflow and subsequently the MR around the null. The null-point reconnection is a different process from the current sheet reconnection in this flare; the latter is the cause of the main peak of the flare, while the former is the cause of the secondary peak of the flare and the conspicuous high-lying cusp structure.

  17. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    Science.gov (United States)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  18. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  19. Reconstruction of a large-scale reconnection exhaust structure in the solar wind

    Directory of Open Access Journals (Sweden)

    W.-L. Teh

    2009-02-01

    Full Text Available We recover two-dimensional (2-D magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008 based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006 in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 RE X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walén regression line slope was positive (negative for the leading (trailing discontinuity. Our MHD reconstruction shows that: (1 the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2 the X-line moved earthward, dawnward, and southward; (3 the reconnection electric field was small (~0.02 mV/m on average and gradually decreased from the first crossing (ACE to the last (Wind. The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we

  20. Reconstruction of a large-scale reconnection exhaust structure in the solar wind

    International Nuclear Information System (INIS)

    Teh, W.L.; Sonnerup, B.U.Oe.; Hu, Q.; Farrugia, C.J.

    2009-01-01

    We recover two-dimensional (2-D) magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008) based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006) in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 R E ) X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walen regression line slope was positive (negative) for the leading (trailing) discontinuity. Our MHD reconstruction shows that: (1) the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2) the X-line moved earthward, dawnward, and southward; (3) the reconnection electric field was small (∝0.02 mV/m on average) and gradually decreased from the first crossing (ACE) to the last (Wind). The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we provide a description and

  1. Reconstruction of a large-scale reconnection exhaust structure in the solar wind

    Directory of Open Access Journals (Sweden)

    W.-L. Teh

    2009-02-01

    Full Text Available We recover two-dimensional (2-D magnetic field and flow field configurations from three spacecraft encounters with a single large-scale reconnection exhaust structure in the solar wind, using a new reconstruction method (Sonnerup and Teh, 2008 based on the ideal single-fluid MHD equations in a steady-state, 2-D geometry. The reconstruction is performed in the rest frame of the X-line, where the flow into, and the plasma jetting within, the exhaust region are clearly visible. The event was first identified by Phan et al. (2006 in the ACE, Cluster, and Wind data sets; they argued that quasi-steady reconnection persisted for over 2 h at a long (390 RE X-line. The reconnection exhaust is sandwiched between two discontinuities, both of which contain elements of intermediate- and slow-mode behavior; these elements are co-located rather than being spatially separated. These composite discontinuities do not satisfy the coplanarity condition or the standard MHD jump conditions. For all three spacecraft, the Walén regression line slope was positive (negative for the leading (trailing discontinuity. Our MHD reconstruction shows that: (1 the X-line orientation was close to the bisector of the overall magnetic shear angle and exhibited a slow rotating motion toward the Sun-Earth line; (2 the X-line moved earthward, dawnward, and southward; (3 the reconnection electric field was small (~0.02 mV/m on average and gradually decreased from the first crossing (ACE to the last (Wind. The magnetic field and flow field configurations recovered from ACE and Cluster are similar while those recovered from Wind also include a magnetic island and an associated vortex. Reconnection persisted for at least 2.4 h involving inflow into the exhaust region from its two sides. Time-dependence in the reconnection electric fields seen by ACE and Wind indicates local temporal variations in the field configuration. In addition to the reconstruction results, we provide a description

  2. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  3. Prediction of coronal structure of the solar eclipse of October 23, 1976

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1976-01-01

    Earlier work on the prediction of solar eclipse coronal structures is briefly summarised. A computer drawn plot made on October 18 1976 showed the field time structure predicted for the time of the solar eclipse on October 23. A very dipolar coronal field was indicated, and a very large equatorial streamer was predicted for both the east and west limbs of the Sun, due to the lack of very strong active regions near either limb. Nested coronal arches were seen within this equatorial streamer, and many small arches were also seen on both limbs. The main feature, however, is the prediction of the two large bright streamers marking the solar equator, with polar plumes in a characteristic dipole fashion. At the time of the eclipse it is hoped that a high resolution photograph will allow much of the structure to be discovered. (U.K.)

  4. Table-top solar flares produced with laser driven magnetic reconnections

    Directory of Open Access Journals (Sweden)

    Zhong J.Y.

    2013-11-01

    Full Text Available The American Nuclear Society (ANS has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his “pioneering scientific work in the fields of inertial confinement fusion (ICF, and especially developing an international effort in high energy density laboratory astrophysics” [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss –scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.

  5. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang [NASA/Goddard Space Flight Center, Oak Ridge Associated Universities, 8800 Greenbelt Road, Code 671, Greenbelt, MD 20771 (United States); Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 58, Cambridge, MA 02138 (United States); Seaton, Daniel B. [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); McKenzie, David E. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2012-07-20

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.

  6. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    International Nuclear Information System (INIS)

    Ni, Lei; Kliem, Bernhard; Lin, Jun; Wu, Ning

    2015-01-01

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10 6 -10 7 in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s –1 . Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10 4 K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets

  7. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Kliem, Bernhard; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wu, Ning, E-mail: leini@ynao.ac.cn [School of Tourism and Geography, Yunnan Normal University, Kunming 650031 (China)

    2015-01-20

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.

  8. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.

    2012-01-01

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion—an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ∼150 to 690 km s –1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfvén speeds, we estimate the Alfvénic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be ∼10 2 km s –1 with outflow speeds ranging from ∼10 2 to 10 3 km s –1 —indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops—presumably exiting the reconnection site.

  9. Blowout Surge due to Interaction between a Solar Filament and Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Bi, Yi; Hong, Junchao; Chen, Hechao [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Qu, Zhining, E-mail: lhd@ynao.ac.cn [Department of Physics, School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2017-06-20

    We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site of the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.

  10. A Bayesian Approach to Period Searching in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Bryan; McKenzie, David [Montana State University, P.O. Box 173840 Bozeman, MT 59717-3840 (United States)

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  11. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    Science.gov (United States)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  12. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    Energy Technology Data Exchange (ETDEWEB)

    Pontieu, B. De; Martinez-Sykora, J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Building 252, Palo Alto, CA 94304 (United States); Moortel, I. De [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); McIntosh, S. W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-08-20

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.

  13. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    Science.gov (United States)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  14. Solar wind and coronal structure near sunspot minimum: Pioneer and SMM observations from 1985-1987

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Barnes, A.; Hundhausen, A.J.; Smith, E.J.

    1990-01-01

    The solar wind speeds observed in the outer heliosphere (20 to 40 AU heliocentric distance, approximately) by Pioneers 10 an 11, and at a heliocentric distance of 0.7 AU by the Pioneer Venus spacecraft, reveal a complex set of changes in the years near the recent sunspot minimum, 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations made from the Solar Maximum Mission spacecraft during the same epoch show a systematic variation in coronal structure and (by implication) the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet (or with heliomagnetic latitude), and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum. The authors confirm here that this basic organization of the solar wind speed persists in the outer heliosphere with an orientation of the neutral sheet consistent with that inferred at a heliocentric distance of a few solar radii, from the coronal observations

  15. The solar eruption of 13 May 2005: EISCAT and MERLIN observations of a coronal radio burst

    Directory of Open Access Journals (Sweden)

    R. A. Jones

    2006-09-01

    Full Text Available We report results from EISCAT and MERLIN observations of radio scintillation during a solar eruptive event in May 2005. Anomalous increases in signal strength detected at sites more than 2000 km apart are shown to arise from the detection of a strong coronal radio burst in the distant off-axis response of the MERLIN and EISCAT antennas. These observations show that EISCAT is capable of detecting the signatures of explosive events in the solar atmosphere with a high degree of time resolution. We further suggest that the highly time-structured variation in signal strength caused by distant off-axis detection of a powerful coronal radio signal could provide an explanation for previously unexplained anomalies in EISCAT IPS observations, as well as being a potential source of errors in active observations using radar codes with a completion time longer than the time-variation of the coronal signal.

  16. Morphology and physical properties of solar coronal holes

    International Nuclear Information System (INIS)

    Rozelot, J.P.

    1983-01-01

    By their peculiar characteristics, coronal holes induce on Earth climatic variations and cyclic effects, not well known nowadays. Because of low electronical density and very low temperature, study of these holes was neglected. The author presents the results of the observations from discovery in the fifteens. He gives some new results, a theoretical model and not well resolved questions which can conduct to new methods of searching [fr

  17. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  18. Energy released by the interaction of coronal magnetic fields

    International Nuclear Information System (INIS)

    Sheeley, N.R. Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields in continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared to the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares. (Auth.)

  19. Diagnostics of Coronal Heating in Solar Active Regions

    Science.gov (United States)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery

    2015-04-01

    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  20. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  1. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    Science.gov (United States)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  2. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Xiang, Yongyuan, E-mail: ruishengzheng@sdu.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China)

    2017-05-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  3. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Li, Gang; Xiang, Yongyuan

    2017-01-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  4. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  5. Image-based reconstruction of the Newtonian dynamics of solar coronal ejecta

    Science.gov (United States)

    Uritsky, Vadim M.; Thompson, Barbara J.

    2016-10-01

    We present a new methodology for analyzing rising and falling dynamics of unstable coronal material as represented by high-cadence SDO AIA images. The technique involves an adaptive spatiotemporal tracking of propagating intensity gradients and their characterization in terms of time-evolving areas swept out by the position vector originated from the Sun disk center. The measured values of the areal velocity and acceleration are used to obtain quantitative information on the angular momentum and acceleration along the paths of the rising and falling coronal plasma. In the absence of other forces, solar gravitation results in purely ballistic motions consistent with the Kepler's second law; non-central forces such as the Lorentz force introduce non-zero torques resulting in more complex motions. The developed algorithms enable direct evaluation of the line-of-sight component of the net torque applied to a unit mass of the ejected coronal material which is proportional to the image-plane projection of the observed areal acceleration. The current implementation of the method cannot reliably distinguish torque modulations caused by the coronal force field from those imposed by abrupt changes of plasma mass density and nontrivial projection effects. However, it can provide valid observational constraints on the evolution of large-scale unstable magnetic topologies driving major solar-coronal eruptions as demonstrated in the related talk by B. Thompson et al.

  6. FAN-SHAPED JETS IN THREE-DIMENSIONAL RECONNECTION SIMULATION AS A MODEL OF UBIQUITOUS SOLAR JETS

    International Nuclear Information System (INIS)

    Jiang Ronglin; Fang Cheng; Shibata, Kazunari; Isobe, Hiroaki

    2011-01-01

    Magnetic reconnection is a fundamental process in space and astrophysical plasmas in which the oppositely directed magnetic field changes its connectivity and eventually converts its energy into kinetic and thermal energy of the plasma. Recently, ubiquitous jets (for example, chromospheric anemone jets, penumbral microjets, umbral light bridge jets) have been observed by the Solar Optical Telescope on board the satellite Hinode. These tiny and frequently occurring jets are considered to be a possible evidence of small-scale ubiquitous reconnection in the solar atmosphere. However, the details of three-dimensional (3D) magnetic configuration are still not very clear. Here, we propose a new model based on 3D simulations of magnetic reconnection using a typical current sheet magnetic configuration with a strong guide field. The most interesting feature is that the jets produced by the reconnection eventually move along the guide field lines. This model provides a fresh understanding of newly discovered ubiquitous jets and moreover a new observational basis for the theory of astrophysical magnetic reconnection.

  7. AN ANOMALOUS COMPOSITION IN SLOW SOLAR WIND AS A SIGNATURE OF MAGNETIC RECONNECTION IN ITS SOURCE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M., E-mail: lzh@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  8. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    Science.gov (United States)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  9. Paraboloidal X-ray telescope mirror for solar coronal spectroscopy

    Science.gov (United States)

    Brown, W. A.; Bruner, E. C., Jr.; Acton, L. W.; Franks, A.; Stedman, M.; Speer, R. J.

    1979-01-01

    The telescope mirror for the X-ray Spectrograph Spectrometer Telescope System is a sixty degree sector of an extreme off-axis paraboloid of revolution. It was designed to focus a coronal region 1 by 10 arc seconds in size on the entrance slit of the spectrometer after reflection from the gold surface. This paper discusses the design, manufacture, and metrology of the mirror, the methods of precision mechanical metrology used to focus the system, and the mounting system which locates the mirror and has proven itself through vibration tests. In addition, the results of reflection efficiency measurements, alignment tolerances, and ray trace analysis of the effects of misalignment are considered.

  10. Combined Ulysses Solar Wind and SOHO Coronal Observations of Several West Limb Coronal Mass Ejections. Appendix 8

    Science.gov (United States)

    Funsten, H. O.; Gosling, J. T.; Riley, P.; St.Cyr, O. C.; Forsyth, R. J.; Howard, R. A.; Schwenn, R.

    2001-01-01

    From October 1996 to January 1997, Ulysses was situated roughly above the west limb of the Sun as observed from Earth at a heliocentric distance of about 4.6 AU and a latitude of about 25 deg. This presents the first opportunity to compare Solar and Heliospheric Observatory (SOHO) limb observations of coronal mass ejections (CMEs) directly with their solar wind counterparts far from the Sun using the Ulysses data. During this interval, large eruptive events were observed above the west limb of the Sun by the Large Angle Spectrometric Coronagraph (LASCO) on SOHO on October 5, November 28, and December 21-25, 1996. Using the combined plasma and magnetic field data from Ulysses, the October 5 event was clearly identified by several distinguishing signatures as a CME. The November 28 event was also identified as a CME that trailed fast ambient solar wind, although it was identified only by an extended interval of counterstreaming suprathermal electrons. The December 21 event was apparently characterized by a six-day interval of nearly radial field and a plasma rarefaction. For the numerous eruptive events observed by the LASCO coronagraph during December 23-25, Ulysses showed no distinct, CMEs, perhaps because of intermingling of two or more of the eruptive events. By mapping the Ulysses observations back in time to the Sun assuming a constant flow speed, we have identified intervals of plasma that were accelerated or decelerated between the LASCO and Ulysses observations.

  11. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2015-08-20

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.

  12. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Zong, Weiguo; Dai, Yu

    2015-01-01

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s −1 and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures

  13. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    Science.gov (United States)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  14. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  15. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  16. Global Energetics in Solar Flares and Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-08-01

    We present a statistical study of the energetics of coronal mass ejections (CME) and compare it with the magnetic, thermal, and nonthermal energy dissipated in flares. The physical parameters of CME speeds, mass, and kinetic energies are determined with two different independent methods, i.e., the traditional white-light scattering method using LASCO/SOHO data, and the EUV dimming method using AIA/SDO data. We analyze all 860 GOES M- and X-class flare events observed during the first 7 years (2010-2016) of the SDO mission. The new ingredients of our CME modeling includes: (1) CME geometry in terms of a self-similar adiabatic expansion, (2) DEM analysis of CME mass over entire coronal temperature range, (3) deceleration of CME due to gravity force which controls the kinetic and potentail CME energy as a function of time, (4) the critical speed that controls eruptive and confined CMEs, (5) the relationship between the center-of-mass motion during EUV dimming and the leading edge motion observed in white-light coronagraphs. Novel results are: (1) Physical parameters obtained from both the EUV dimming and white-light method can be reconciled; (2) the equi-partition of CME kinetic and thermal flare energy; (3) the Rosner-Tucker-Vaiana scaling law. We find that the two methods in EUV and white-light wavelengths are highly complementary and yield more complete models than each method alone.

  17. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  18. Solar Coronal UV Spectroscopy for Solar Wind and SEP Acceleration Investigations

    Science.gov (United States)

    Moses, John Daniel; Ko, Yuan-Kuen; Laming, John Martin; Strachan, Leonard; Tun Beltran, Samuel

    2015-04-01

    Of all the new areas of solar physics opened by the landmark SOHO mission, the scientific discoveries of the Ultraviolet Coronagraph Spectrometer (UVCS) are unique in both the importance of the new questions raised by these observations and the lack of subsequent investigations to resolve these questions. For example, the first direct evidence of wave-particle coupling as an acceleration mechanism for the solar wind was obtained from UVCS spectro-coronagraphic observations, yet the real limits on the ratio of the parallel to perpendicular ion temperatures (with respect to the magnetic field) in coronal holes and streamers is still unresolved. Another unresolved issue is the role of suprathermal seed particles in rapid diffusive shock acceleration of SEPs. Although the theory has been placed on firmer theoretical ground by recent in situ investigations, observations of these suprathermal particles in the corona was never conclusively obtained with UVCS.Any follow-on UV Spectro-coronagraph must possess two improvements over UVCS in order to address the questions raised during the SOHO mission: 1) increased effective aperture and 2) improved spectrographic contrast (i.e. reduced scattered light). Technological developments in optics, optical design, UV detectors, composite structures, cleanliness control and electronics make it possible to achieve the requisite improvements in a next-generation UV spectro-coronagraph within the constraints of an affordable mission. We discuss specific instrument and mission approaches developed over the last 5 years and the feasibility of implementing them within the next 5 years.

  19. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  20. Self consistent MHD modeling of the solar wind from polar coronal holes

    International Nuclear Information System (INIS)

    Stewart, G. A.; Bravo, S.

    1996-01-01

    We have developed a 2D self consistent MHD model for solar wind flow from antisymmetric magnetic geometries. We present results in the case of a photospheric magnetic field which has a dipolar configuration, in order to investigate some of the general characteristics of the wind at solar minimum. As in previous studies, we find that the magnetic configuration is that of a closed field region (a coronal helmet belt) around the solar equator, extending up to about 1.6 R · , and two large open field regions centred over the poles (polar coronal holes), whose magnetic and plasma fluxes expand to fill both hemispheres in interplanetary space. In addition, we find that the different geometries of the magnetic field lines across each hole (from the almost radial central polar lines to the highly curved border equatorial lines) cause the solar wind to have greatly different properties depending on which region it flows from. We find that, even though our simplified model cannot produce realistic wind values, we can obtain a polar wind that is faster, less dense and hotter than equatorial wind, and found that, close to the Sun, there exists a sharp transition between the two wind types. As these characteristics coincide with observations we conclude that both fast and slow solar wind can originate from coronal holes, fast wind from the centre, slow wind from the border

  1. Solar flares, coronal mass ejections and solar energetic particle event characteristics

    Science.gov (United States)

    Papaioannou, Athanasios; Sandberg, Ingmar; Anastasiadis, Anastasios; Kouloumvakos, Athanasios; Georgoulis, Manolis K.; Tziotziou, Kostas; Tsiropoula, Georgia; Jiggens, Piers; Hilgers, Alain

    2016-12-01

    A new catalogue of 314 solar energetic particle (SEP) events extending over a large time span from 1984 to 2013 has been compiled. The properties as well as the associations of these SEP events with their parent solar sources have been thoroughly examined. The properties of the events include the proton peak integral flux and the fluence for energies above 10, 30, 60 and 100 MeV. The associated solar events were parametrized by solar flare (SF) and coronal mass ejection (CME) characteristics, as well as related radio emissions. In particular, for SFs: the soft X-ray (SXR) peak flux, the SXR fluence, the heliographic location, the rise time and the duration were exploited; for CMEs the plane-of-sky velocity as well as the angular width were utilized. For radio emissions, type III, II and IV radio bursts were identified. Furthermore, we utilized element abundances of Fe and O. We found evidence that most of the SEP events in our catalogue do not conform to a simple two-class paradigm, with the 73% of them exhibiting both type III and type II radio bursts, and that a continuum of event properties is present. Although, the so-called hybrid or mixed events are found to be present in our catalogue, it was not possible to attribute each SEP event to a mixed/hybrid sub-category. Moreover, it appears that the start of the type III burst most often precedes the maximum of the SF and thus falls within the impulsive phase of the associated SF. At the same time, type III bursts take place within ≈5.22 min, on average, in advance from the time of maximum of the derivative of the SXR flux (Neupert effect). We further performed a statistical analysis and a mapping of the logarithm of the proton peak flux at E > 10 MeV, on different pairs of the parent solar source characteristics. This revealed correlations in 3-D space and demonstrated that the gradual SEP events that stem from the central part of the visible solar disk constitute a significant radiation risk. The velocity of

  2. Study of coronal and interplanetary propagation of solar particles following the E450 solar flare on July 29, 1973

    International Nuclear Information System (INIS)

    Gombosi, T.; Somogyi, A.J.; Kolesov, G.Ya.; Kurt, V.G.; Kuzhevskii, B.M.; Logachev, Yu.I.; Savenko, I.A.; Shestopalov, I.P.

    1977-01-01

    Intensity profiles of protons and electrons of various energies measured onboard the high-apogee Prognos-3 satellite are analysed as well as the energy balance between the various flare produced phenomena. The general behaviour of the solar particle event following the 3B flare at E45 0 can be well described in terms of a simple model which takes into account coronal diffusion with a leakage time and a Krimigis' type interplanetary diffusion. The results suggest an inverse dependence of coronal diffusion coefficient on rigidity. (author)

  3. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  4. Solar wind energy and electric field transfer to the Earth's magnetosphere VIA magnetopause reconnection

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.

    1981-01-01

    Some general expressions for the convection and parallel electric fields as well as for the energy transfer, due to magnetopause reconnection, are derived using a nose-reconnection model that takes into account the presence of the clefts. For the case of equal geomagnetic and magnetosheath field amplitudes, the expression for the power dissipated by the convection electric field reduces to the substorm parameter e widely discussed in the recent literature. This result suggests that magnetopause reconnection is defined at the nose with a tilted reconnection line, but that the convection electric field is related only to the dawn-dusk component of the reconnection electric field, as defined at high latitudes

  5. MULTIFRACTAL SOLAR EUV INTENSITY FLUCTUATIONS AND THEIR IMPLICATIONS FOR CORONAL HEATING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Rivera, Y. J. [Department of Climate and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Jennings, P. J. [5174 S. Slauson Avenue, Culver City, CA 90230 (United States); Rappazzo, A. F., E-mail: ana.cadavid@csun.edu [Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-11-10

    We investigate the scaling properties of the long-range temporal evolution and intermittency of Atmospheric Imaging Assembly/ Solar Dynamics Observatory intensity observations in four solar environments: an active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Å waveband, which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range of 15–45 minutes is multifractal, and the time series are anti-persistent on average. The degree of anti-correlation in the TR time series is greater than that for coronal emission. The multifractality stems from long-term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Å waveband can be described in terms of a multifractal with added noise. The multiscaling of the extreme-ultraviolet data agrees qualitatively with the radiance from a phenomenological model of impulsive bursts plus noise, and also from ohmic dissipation in a reduced magnetohydrodynamic model for coronal loop heating. The parameter space must be further explored to seek quantitative agreement. Thus, the observational “signatures” obtained by the combined tests of the PDF of increments and the MF-DFA offer strong constraints that can systematically discriminate among models for coronal heating.

  6. EUV FLICKERING OF SOLAR CORONAL LOOPS: A NEW DIAGNOSTIC OF CORONAL HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Peres, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: reale@astropa.unipa.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-02-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 Å and 335 Å channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 Å channel and from the top to the bottom in the 335 Å channel. This prediction is confirmed by the observation of a set of aligned neighboring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nanoflaring regions.

  7. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); Odstrcil, Dusan [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO (United States)

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  8. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Temmer, Manuela; Rollett, Tanja; Möstl, Christian; Veronig, Astrid M.; Vršnak, Bojan; Odstrčil, Dusan

    2011-01-01

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉ , to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  9. Coronal Mass Ejections of Solar Cycle 23 Nat Gopalswamy

    Indian Academy of Sciences (India)

    Hanssen 1995)), slow-drifting radio bursts (Payne-Scott et al. 1947), and moving type. IV radio bursts (Boischot 1957). There were also other indications ..... ASA, 2, 57. Hirshberg, J., Bame, S. J., Robbins, D. E. 1972, Solar Phys., 23, 467. Howard, R. A., Michels, D. J., Sheeley, N. R. Jr., Koomen, M. J. 1982, ApJ, 263, L101.

  10. PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F., E-mail: fabio.reale@unipa.it [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (∼20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  11. Latitude dependence of the solar wind speed: Influence of the coronal magnetic field geometry

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1976-01-01

    The dependence of solar wind speed on latitude as influenced by the magnetic field configuration of the inner corona is studied. It is found that in general, a dipolelike field geometry characteristic of a minimum-type corona tends to produce a solar wind speed distribution which increases with heliographic latitude, in accordance with observations. At very high coronal base densities and temperatures, however, this effect is minimal or even inverted. Physically, the field affects the wind speed through its area divergence, a larger divergence resulting in correspondingly lower speeds. During solar minimum, eclipse photographs suggest that the field divergence increases from pole to equator, a characteristic not apparent during solar maximum. Hence we expect the latitudinal increase in speed to be most pronounced at the minimum phase of solar activity

  12. The effects of coronal holes on the propagation of solar energetic protons

    International Nuclear Information System (INIS)

    Kunches, Joseph M.; Zwickl, Ronald D.

    1999-01-01

    The accurate prediction of the start of a Solar Energetic Particle Event (SEP) is a high priority for space weather forecasters. The Space Environment Center (SEC) has recorded parameters related to SEPs since 1976, and that list includes a total of 134 events for the period 1976-1997. The onset times of individual events are variable, especially SEPs originating from the solar eastern hemisphere. An examination of the data shows the full set can be divided into two families -- those that begin at the geosynchronous satellite at a time consistent with what would be expected for activity from a given heliolongitude, and those whose onset is later than what accepted forecast techniques would predict. There are 21 'long onset' events in this historical record. Seeking to understand what factors distinguished the slow-to-arrive events, Helium I 1083.0 nm observations were examined for the presence of coronal holes at the times of the SEPs. It was found that all SEPs with long onset times had a coronal hole situated between the flare site and the footpoint of the interplanetary magnetic field line connecting to Earth ( Solar-Terrestrial Predictions-V, Hiraiso Solar-Terrestrial Research Center, Ibaraki, Japan). This coronal hole configuration is important for accurate predictions, although the hole may serve as merely a proxy for the plasma conditions that actually affect the propagation and acceleration of the protons. Since coronal holes are easily identifiable using Helium I and other wavelengths, operational forecasters can employ this technique to improve their predictions of SEPs

  13. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  14. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  15. Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet

    Science.gov (United States)

    Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.

    2017-12-01

    Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.

  16. A new fast reconnection model in a collisionless regime

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2008-01-01

    Based on the first principles [i.e., (i) by balancing the magnetic field advection with the term containing electron pressure tensor nongyrotropic components in the generalized Ohm's law; (ii) using the conservation of mass; and (iii) assuming that the weak magnetic field region width, where electron meandering motion supports electron pressure tensor off-diagonal (nongyrotropic) components, is of the order of electron Larmor radius] a simple model of magnetic reconnection in a collisionless regime is formulated. The model is general, resembling its collisional Sweet-Parker analog in that it is not specific to any initial configuration, e.g., Harris-type tearing unstable current sheet, X-point collapse or otherwise. In addition to its importance from the fundamental point of view, the collisionless reconnection model offers a much faster reconnection rate [M c ' less =(c/ω pe ) 2 /(r L,e L)] than Sweet-Parker's classical one (M sp =S -1/2 ). The width of the diffusion region (current sheet) in the collisionless regime is found to be δ c ' less =(c/ω pe ) 2 /r L,e , which is independent of the global reconnection scale L and is only prescribed by microphysics (electron inertial length, c/ω pe , and electron Larmor radius, r L,e ). Amongst other issues, the fastness of the reconnection rate alleviates, e.g., the problem of interpretation of solar flares by means of reconnection, as for the typical solar coronal parameters the obtained collisionless reconnection time can be a few minutes, as opposed to Sweet-Parker's equivalent value of less than a day. The new theoretical reconnection rate is compared to the Magnetic Reconnection Experiment device experimental data by Yamada et al. [Phys. Plasmas 13, 052119 (2006)] and Ji et al. [Geophys. Res. Lett. 35, 13106 (2008)], and a good agreement is obtained.

  17. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    Science.gov (United States)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  18. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  19. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  20. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    Science.gov (United States)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  1. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  2. ON THE CONNECTION BETWEEN PROPAGATING SOLAR CORONAL DISTURBANCES AND CHROMOSPHERIC FOOTPOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Bryans, P.; McIntosh, S. W.; Moortel, I. De [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Pontieu, B. De [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2016-09-20

    The Interface Region Imaging Spectrograph ( IRIS ) provides an unparalleled opportunity to explore the (thermal) interface between the chromosphere, transition region, and the coronal plasma observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory ( SDO ). The SDO /AIA observations of coronal loop footpoints show strong recurring upward propagating signals—“propagating coronal disturbances” (PCDs) with apparent speeds of the order of 100–120 km s{sup −1}. That signal has a clear signature in the slit-jaw images of IRIS in addition to identifiable spectral signatures and diagnostics in the Mg iih (2803 Å) line. In analyzing the Mg iih line, we are able to observe the presence of magnetoacoustic shock waves that are also present in the vicinity of the coronal loop footpoints. We see there is enough of a correspondence between the shock propagation in Mg iih, the evolution of the Si iv line profiles, and the PCD evolution to indicate that these waves are an important ingredient for PCDs. In addition, the strong flows in the jet-like features in the IRIS Si iv slit-jaw images are also associated with PCDs, such that waves and flows both appear to be contributing to the signals observed at the footpoints of PCDs.

  3. A Complex Solar Coronal Jet with Two Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Priest, E. R., E-mail: chenjie@bao.ac.cn [Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.

  4. Electrons in the solar corona. Pt. 3. Coronal streamers analysis from balloon-borne coronagraph

    Energy Technology Data Exchange (ETDEWEB)

    Dollfus, A; Mouradian, Z [Observatoire de Paris, Section de Meudon, 92 (France)

    1981-03-01

    During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5 Rsub(sun) during 5 hr, with an externally occulted coronagraph. Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s/sup -1/; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 x 10/sup 6/ K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 Rsub(sun). Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.

  5. Association of 3He-rich solar energetic particles with large-scale coronal waves

    Science.gov (United States)

    Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark

    2016-07-01

    Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.

  6. Solar Coronal Plumes and the Fast Solar Wind Bhola N. Dwivedi1 ...

    Indian Academy of Sciences (India)

    Is there any contribution of plume plasma to the fast SW streams at all? ..... but to a slow diminution of the reconnection activity, presumably with the effect ... might think, even if the thermal energy could be dumped at the base of the plume,.

  7. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-06-01

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some of these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.

  8. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  9. MAXIMUM CORONAL MASS EJECTION SPEED AS AN INDICATOR OF SOLAR AND GEOMAGNETIC ACTIVITIES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  10. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  11. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  12. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  13. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, J. [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Zuccarello, F. P.; Aulanier, G.; Schmieder, B.; Démoulin, P., E-mail: jaroslav.dudik@asu.cas.cz [LESIA, Observatoire de Paris, Psl Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-07-20

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171 Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.

  14. Spectral characteristics of aurorae connected with high-velocity flows of the solar wind from coronal holes

    International Nuclear Information System (INIS)

    Khviyuzova, T.A.; Leont'ev, S.V.

    1997-01-01

    Bright electron aurorae almost always followed by red lower edge occur when the Earth is being passed by high-velocity flows from coronal holes within the auroral range at the night meridian. In contrast to other types of the solar wind the high-velocity flows from coronal holes do not cause the occurrence of A type red polar aurorae, that is, the spectrum of electrons pouring into the Earth atmosphere in these cases is shifted towards higher energies

  15. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Eastwood, J. P.; Krupařová, Oksana; Santolík, Ondřej; Souček, Jan; Magdalenic, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Oliveros, J.C.M.; Bale, S. D.

    2016-01-01

    Roč. 823, č. 1 (2016) ISSN 2041-8205 R&D Projects: GA ČR GJ16-16050Y; GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : solar -terrestrial relations * coronal mass ejections (CMEs) * radio radiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.522, year: 2016 http://iopscience.iop.org/article/10.3847/2041-8205/823/1/L5/meta

  16. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Henney, Carl J.; Arge, C. Nick, E-mail: marion.weinzierl@durham.ac.uk [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States)

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surface flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.

  17. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    International Nuclear Information System (INIS)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.; Martínez, Lurdes M.; Buleje, Yovanny J.; Morita, Satoshi; Asai, Ayumi; UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari

    2017-01-01

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  18. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K. [Geophysical Institute of Peru, Calle Badajoz 169, Mayorazgo IV Etapa, Ate Vitarte, Lima (Peru); Martínez, Lurdes M.; Buleje, Yovanny J. [Centro de Investigación del Estudio de la Actividad Solar y sus Efectos Sobre la Tierra, Facultad de Ciencias, Universidad Nacional San Luis Gonzaga de Ica, Av. Los Maestros S/N, Ica (Peru); Morita, Satoshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari, E-mail: denis@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan)

    2017-02-10

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  19. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B., E-mail: paulo.simoes@glasgow.ac.uk, E-mail: lyndsay.fletcher@glasgow.ac.uk, E-mail: arussell@maths.dundee.ac.uk, E-mail: hhudson@ssl.berkeley.edu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  20. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  1. The size of coronal hard X-ray sources in solar flares: How big are they?

    Science.gov (United States)

    Effenberger, F.; Krucker, S.; Rubio da Costa, F.

    2017-12-01

    Coronal hard X-ray sources are considered to be one of the key signatures of non-thermal particle acceleration and heating during the energy release in solar flares. In some cases, X-ray observations reveal multiple components spatially located near and above the loop top and even further up in the corona. Here, we combine a detailed RHESSI imaging analysis of near-limb solar flares with occulted footpoints and a multi-wavelength study of the flare loop evolution in SDO/AIA. We connect our findings to different current sheet formation and magnetic break-out scenarios and relate it to particle acceleration theory. We find that the upper and usually fainter emission regions can be underestimated in their size due to the majority of flux originating from the lower loops.

  2. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    International Nuclear Information System (INIS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-01-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  3. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, Lauren N.; Cranmer, Steven R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  4. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  5. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    International Nuclear Information System (INIS)

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-01-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event

  6. Effect of magnetic reconnection in stellar plasma

    Science.gov (United States)

    Hammoud, M.; El Eid, M.; Darwish, M.

    2017-06-01

    An important phenomenon in Astrophysics is the process of magnetic reconnection (MGR), which is envisaged to understand the solar flares, coronal mass ejection, interaction of the solar wind with the Earth’s magnetic field (so called geomagnetic storm) and other phenomena. In addition, it plays a role in the formation of stars. MGR involves topological change of a set of magnetic field lines leading to a new equilibrium configuration of lower magnetic energy. The MGR is basically described in the framework of the Maxwell’s equations linked to Navier-Stockes equations. Nevertheless, many details are still not understood. In this paper, we investigate the MGR process in the framework of the Magnetohydrodynamic (MHD) model of a single conducting fluid using a modern powerful computational tool (OpenFOAM). We will show that the MGR process takes place only if resistivity exists. However, despite the high conductivity of the plasma, resistivity becomes effective in a very thin layer generating sharp gradients of the magnetic field, and thus accelerating the reconnection process. The net effect of MGR is that magnetic energy is converted into thermal and kinetic energies leading to heating and acceleration of charged particles. The Sun’s coronal ejection is an example of the MGR process.

  7. More Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  8. ROLE OF THE CORONAL ALFVÉN SPEED IN MODULATING THE SOLAR-WIND HELIUM ABUNDANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The helium abundance He/H in the solar wind is relatively constant at ∼0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ∼0.01 at solar minimum to ∼0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995–2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v {sub A} in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v {sub A} near the source surface; resonance with Alfvén waves, with v {sub A} and the relative speed of α -particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.

  9. History and Development of Coronal Mass Ejections as a Key Player in Solar Terrestrial Relationship

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are relatively a recently discovered phenomenon in 1971, some 15 years into the Space Era. It took another two decades to realize that CMEs are the most important players in solar terrestrial relationship as the root cause of severe weather in Earths space environment. CMEs are now counted among the major natural hazards because they cause large solar energetic particle (SEP) events and major geomagnetic storms, both of which pose danger to humans and their technology in space and ground. Geomagnetic storms discovered in the 1700s, solar flares discovered in the 1800s, and SEP events discovered in the 1900s are all now found to be closely related to CMEs via various physical processes occurring at various locations in and around CMEs, when they interact with the ambient medium. This article identifies a number of key developments that preceded the discovery of white-light CMEs suggesting that CMEs were waiting to be discovered. The last two decades witnessed an explosion of CME research following the launch of the Solar and Heliospheric Observatory mission in 1995, resulting in the establishment of a full picture of CMEs.

  10. A THEMIS Survey of Flux Ropes and Traveling Compression Regions: Location of the Near-Earth Reconnection Site During Solar Minimum

    Science.gov (United States)

    Imber, S. M.; Slavin, J. A.; Auster, H. U.; Angelopoulos, V.

    2011-01-01

    A statistical study of flux ropes and traveling compression regions (TCRs) during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) second tail season has been performed. A combined total of 135 flux ropes and TCRs in the range GSM X approx -14 to -31 R(sub E) were identified, many of these occurring in series of two or more events separated by a few tens of seconds. Those occurring within 10 min of each other were combined into aggregated reconnection events. For the purposes of this survey, these are most likely the products of reconnect ion occurring simultaneously at multiple, closely spaced x-lines as opposed to statistically independent episodes of reconnection. The 135 flux ropes and TCRs were grouped into 87 reconnection events; of these, 28 were moving tailward and 59 were moving Earthward. The average location of the near-Earth x-line determined from statistical analysis of these reconnection events is (X(sub GSM), Y*(sub GSM)) = (-30R(sub E), 5R(sub E)), where Y* includes a correction for the solar aberration angle. A strong east-west asymmetry is present in the tailward events, with >80% being observed at GSM Y* > O. Our results indicate that the Earthward flows are similarly asymmetric in the midtail region, becoming more symmetric inside - 18 R(sub E). Superposed epoch analyses indicate that the occurrence of reconnection closer to the Earth, i.e., X > -20 R(sub E), is associated with elevated solar wind velocity and enhanced negative interplanetary magnetic field B(sub z). Reconnection events taking place closer to the Earth are also far more effective in producing geomagnetic activity, judged by the AL index, than reconnection initiated beyond X approx -25 R(sub E).

  11. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    International Nuclear Information System (INIS)

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  12. CHROMOSPHERIC AND CORONAL OBSERVATIONS OF SOLAR FLARES WITH THE HELIOSEISMIC AND MAGNETIC IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Oliveros, Juan-Carlos; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal; Bain, Hazel [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States); Lindsey, Charles [North West Research Associates, CORA Division, Boulder, CO 80301 (United States); Bogart, Rick; Couvidat, Sebastien; Scherrer, Phil [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-01-10

    We report observations of white-light ejecta in the low corona, for two X-class flares on 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared (chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles {sup c}oronal rain{sup ,} appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 ± 8 km s{sup –1}. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.

  13. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  14. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    Science.gov (United States)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-01-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a basal state (at 1.5 x 10(exp 6) K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  15. Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts

    International Nuclear Information System (INIS)

    Kahler, S.W.; Cliver, E.W.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.

    1985-01-01

    We compare fast (v> or =500 km s -1 ) coronal mass ejections (CME's) with reported metric type II bursts to study the properties of CME's associated with coronal shocks. We confirm an earlier report of fast frontside CME's with no associated metric type II bursts and calculate that 33 +- 15% of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. We use the equal visibility of solar frontside and backside CME's to deduce the observability of backside type II bursts. We calculate that 23 +- 7% of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 +- 4% of all type II bursts originate in backside flares. CME speed again is the most important factor in the observability of backside type II bursts

  16. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. X. [Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Shanghai 200030 (China); Qiu, J., E-mail: chengjx@shao.ac.cn [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  17. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    International Nuclear Information System (INIS)

    Cheng, J. X.; Qiu, J.

    2016-01-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  18. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-01-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method

  19. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    Czech Academy of Sciences Publication Activity Database

    Zhou, X.; Büchner, J.; Bárta, Miroslav; Gan, W.; Liu, S.

    2016-01-01

    Roč. 827, č. 2 (2016), 94/1-94/14 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : acceleration of particles * magnetic reconnection * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  20. Electron Acceleration by Cascading Reconnection in the Solar Corona. I. Magnetic Gradient and Curvature Drift Effects

    Czech Academy of Sciences Publication Activity Database

    Zhou, X.; Büchner, J.; Bárta, Miroslav; Gan, W.; Liu, S.

    2015-01-01

    Roč. 815, č. 1 (2015), 6/1-6/17 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : acceleration of particles * magnetic reconnection * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  1. Influence of coronal mass ejections on parameters of high-speed solar wind: a case study

    Science.gov (United States)

    Shugay, Yulia; Slemzin, Vladimir; Rodkin, Denis; Yermolaev, Yuri; Veselovsky, Igor

    2018-05-01

    We investigate the case of disagreement between predicted and observed in-situ parameters of the recurrent high-speed solar wind streams (HSSs) existing for Carrington rotation (CR) 2118 (December 2011) in comparison with CRs 2117 and 2119. The HSSs originated at the Sun from a recurrent polar coronal hole (CH) expanding to mid-latitudes, and its area in the central part of the solar disk increased with the rotation number. This part of the CH was responsible for the equatorial flank of the HSS directed to the Earth. The time and speed of arrival for this part of the HSS to the Earth were predicted by the hierarchical empirical model based on EUV-imaging and the Wang-Sheeley-Arge ENLIL semi-empirical replace model and compared with the parameters measured in-situ by model. The predicted parameters were compared with those measured in-situ. It was found, that for CR 2117 and CR 2119, the predicted HSS speed values agreed with the measured ones within the typical accuracy of ±100 km s-1. During CR 2118, the measured speed was on 217 km s-1 less than the value predicted in accordance with the increased area of the CH. We suppose that at CR 2118, the HSS overtook and interacted with complex ejecta formed from three merged coronal mass ejections (CMEs) with a mean speed about 400 km s-1. According to simulations of the Drag-based model, this complex ejecta might be created by several CMEs starting from the Sun in the period between 25 and 27 December 2011 and arriving to the Earth simultaneously with the HSS. Due to its higher density and magnetic field strength, the complex ejecta became an obstacle for the equatorial flank of the HSS and slowed it down. During CR 2117 and CR 2119, the CMEs appeared before the arrival of the HSSs, so the CMEs did not influence on the HSSs kinematics.

  2. MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvenic Flow

    Science.gov (United States)

    Farrugia, C. J.; Lugaz, N.; Alm, L.; Vasquez, B. J.; Argall, M. R.; Kucharek, H.; Matsui, H.; Torbert, R. B.; Lavraud, B.; Le Contel, O.; Shuster, J. R.; Burch, J. L.; Khotyaintsev, Y. V.; Giles, B. L.; Fuselier, S. A.; Gershman, D. J.; Ergun, R.; Eastwood, J. P.; Cohen, I. J.; Dorelli, J.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Marklund, G. T.; Paulson, K.; Petrinec, S.; Phan, T.; Pollock, C.

    2017-12-01

    We present MMS) observations during two dayside magnetopause crossingsunder hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow, and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B ( 20 nT) pointing south, and (ii) a density profile with episodic decreases to values of 0.3 /cc followed by moderate recovery. During the crossings he magnetosheath magnetic field is stronger than the magnetosphere field by a factor of 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S-line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due kinetic Alfvén waves.During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Tperp>Tpar) were observed. Another aim of the paper isto distinguish bow shock-induced field and flow perturbations from reconnection-related signatures.The high resolution MMS data together with 2D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.

  3. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    International Nuclear Information System (INIS)

    Vemareddy, P.

    2017-01-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  4. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)

    2017-08-10

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  5. Numerical Study of the Cascading Energy Conversion of the Reconnecting Current Sheet in Solar Eruptions

    Science.gov (United States)

    Ye, J.; Lin, J.; Raymond, J. C.; Shen, C.

    2017-12-01

    In this paper, we present a resistive magnetohydrodynamical study (2D) of the CME eruption based on the Lin & Forbes model (2000) regarding the cascading reconnection by a high-order Godunov scheme code, to better understand the physical mechanisms responsible for the internal structure of the current sheet (CS) and the high reconnection rate. The main improvements of this work include: 1) large enough spatial scale consistent with the stereo LASCO data that yields an observable current sheet 2) A realistic plasma environment (S&G, 1999) adopted rather than an isothermal atmosphere and higher resolution inside CS 3) The upper boundary condition set to be open. The simulation shows a typical acceleration below 2 R⊙, then its speed slightly fluctuated, and the flux rope velocity is estimated to be 100 km/s-250 km/s for a slow CME. The reconnection rates are around 0.02 estimated from inflow and outflow velocities. The dynamic features show a great consistence with the LASCO observations. Looking into the fine structure of CS, magnetic reconnection initializes with a Sweet-Parker stage, and undergoes the time-dependent Petschek/fractural patterns. While the CME continues climbing up, the outflow region becomes turbulent which enhances the reconnection rates furthermore. The local reconnection rates present a simple linear dependence with the length-width ratio of multiple small-scale CSs. The principal X-point is close to the Sun's surface during the entire eruption, causing the energy partition to be unequal. Energy conversion in the vicinity of the principal X-point has also been addressed by simply employing energy equations. And we demonstrate that the dominant energy transfer consists of a conversion of the incoming Poynting flux to enthalpy flux in the sunward direction and bulk kinetic energy in the CME direction. The spectrum of magnetic energy doesn't follow a simple power law after secondary islands appear, and the spectrum index varies from 1.5 to 2

  6. A New Approach to Observing Coronal Dynamics: MUSE, the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, T. D.

    2017-12-01

    The Multi-Slit Solar Explorer is a Small Explorer mission recently selected for a Phase A study, which could lead to a launch in 2022. It will provide unprecendented observations of the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE's multi-slit coronal spectroscopy will exploit a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  7. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    Science.gov (United States)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  8. Reconnection, Particle Acceleration, and Hard X-ray Emission in Eruptive Solar Flares

    Science.gov (United States)

    Martens, Petrus C.

    1998-11-01

    The frequent occurrence of Hard X-ray emission from the top of flaring loops was one of the discoveries by the Hard X-ray telescope on board the Japanese Yohkoh satellite. I will show how the combined effect of magnetic field convergence and pitch- angle scattering of non-thermal electrons injected at the top of the loop results in the generation of looptop sources with properties akin to those observed by Yohkoh. In addition it is shown that the injection of proton beams in the loop legs, expected from theory, reproduces the observed high temperature ``ridges" in the loop legs by mirroring and energy loss through collisions. I will interpret these numerical results as supporting the now widely accepted model of an erupting magnetic flux tube generating a reconnecting current sheet in its wake, where most of the energy release takes place. The strong similarity with the reconnection observed in the MRX experiment in Princeton will be analyzed in detail.

  9. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Science.gov (United States)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  10. OBSERVATIONS OF LINEAR POLARIZATION IN A SOLAR CORONAL LOOP PROMINENCE SYSTEM OBSERVED NEAR 6173 Å

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Couvidat, Sébastien, E-mail: shilaire@ssl.berkeley.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-05-10

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  11. Interchange Slip-Running Reconnection and Sweeping SEP-Beams

    Science.gov (United States)

    Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.

    2011-01-01

    We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.

  12. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  13. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    Science.gov (United States)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-01-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a basal state (at 1.5 x 10(exp 6) K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  14. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.; Temmer, Manuela [University of Graz, Institute of Physics, IGAM-Kanzelhöhe Observatory, Graz (Austria); Vennerstrom, Susanne [National Space Institute, DTU Space (Denmark); Vršnak, Bojan [Hvar Observatory, Faculty of Geodesy, Zagreb (Croatia); Heber, Bernd, E-mail: stefan.hofmeister@uni-graz.at [Universität Kiel, Institut für Experimentelle und Angewandte Physik, Kiel (Germany)

    2017-02-01

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO /AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO /AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 ± 1.6 G, and the percentaged unbalanced magnetic flux is 49 ± 16%. The mean magnetic field density, the mean unsigned magnetic field density, and the percentaged unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38% (81%) of the unbalanced magnetic flux of coronal holes arises from only 1% (10%) of the coronal hole area, clustered in magnetic flux tubes with field strengths >50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc>0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.

  15. Magnetic reconnection in nontoroidal plasmas

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2005-01-01

    Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length

  16. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-latitude of Their Solar Source Coronal Holes.

    Science.gov (United States)

    Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan

    2018-03-01

    We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

  17. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    Science.gov (United States)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  18. Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  19. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Innes, D. E., E-mail: pankaj@kasi.re.kr [Max-Planck Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{sup −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  20. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E.

    2016-01-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s −1 and it accelerated to ∼1490 km s −1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s −1 ) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  1. A lower limit to the altitude of coronal particle storage regions deduced from solar proton energy spectra

    Science.gov (United States)

    Krimigis, S. M.

    1973-01-01

    The spectrum of low energy protons observed at 1 AU following solar flares shows little or no evidence of energy degradation down to approximately 0.3 MeV. Such observations may be used to set a lower limit on the altitude of hypothetical coronal particle storage regions, ranging from 2 to 7 R sub s. It is pointed out that closed coronal magnetic loop structures are observed to extend to 2R sub s, so that long-term storage of low energy protons does not take place in the immediate vicinity of the sun. It is further suggested that in the few cases where the proton spectrum appears to be degraded at low energies, the energy loss may be due to adiabatic deceleration in the expanding solar wind. The alternative of continual acceleration is suggested as a plausible substitute for the particle storage hypothesis.

  2. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    Science.gov (United States)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  3. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven; Toma, Giuliana de; Burkepile, Joan; Galloy, Michael [National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States); Rachmeler, Laurel A. [NASA Marshall Space Flight Center, Huntsville, AL 35811 (United States); Rosa, Marc L. De, E-mail: sgibson@ucar.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States)

    2017-05-10

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  4. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  5. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2017-09-10

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  6. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    International Nuclear Information System (INIS)

    Montes-Solís, María; Arregui, Iñigo

    2017-01-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  7. Empirical Reconstruction and Numerical Modeling of the First Geoeffective Coronal Mass Ejection of Solar Cycle 24

    Science.gov (United States)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.; Socker, D. G.; Rouillard, A. P.

    2011-03-01

    We analyze the kinematics and morphology of a coronal mass ejection (CME) from 2010 April 3, which was responsible for the first significant geomagnetic storm of solar cycle 24. The analysis utilizes coronagraphic and heliospheric images from the two STEREO spacecraft, and coronagraphic images from SOHO/LASCO. Using an empirical three-dimensional (3D) reconstruction technique, we demonstrate that the CME can be reproduced reasonably well at all times with a 3D flux rope shape, but the case for a flux rope being the correct interpretation is not as strong as some events studied with STEREO in the past, given that we are unable to infer a unique orientation for the flux rope. A model with an orientation angle of -80° from the ecliptic plane (i.e., nearly N-S) works best close to the Sun, but a model at 10° (i.e., nearly E-W) works better far from the Sun. Both interpretations require the cross section of the flux rope to be significantly elliptical rather than circular. In addition to our empirical modeling, we also present a fully 3D numerical MHD model of the CME. This physical model appears to effectively reproduce aspects of the shape and kinematics of the CME's leading edge. It is particularly encouraging that the model reproduces the amount of interplanetary deceleration observed for the CME during its journey from the Sun to 1 AU.

  8. EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.; Socker, D. G.; Rouillard, A. P.

    2011-01-01

    We analyze the kinematics and morphology of a coronal mass ejection (CME) from 2010 April 3, which was responsible for the first significant geomagnetic storm of solar cycle 24. The analysis utilizes coronagraphic and heliospheric images from the two STEREO spacecraft, and coronagraphic images from SOHO/LASCO. Using an empirical three-dimensional (3D) reconstruction technique, we demonstrate that the CME can be reproduced reasonably well at all times with a 3D flux rope shape, but the case for a flux rope being the correct interpretation is not as strong as some events studied with STEREO in the past, given that we are unable to infer a unique orientation for the flux rope. A model with an orientation angle of -80 deg. from the ecliptic plane (i.e., nearly N-S) works best close to the Sun, but a model at 10 deg. (i.e., nearly E-W) works better far from the Sun. Both interpretations require the cross section of the flux rope to be significantly elliptical rather than circular. In addition to our empirical modeling, we also present a fully 3D numerical MHD model of the CME. This physical model appears to effectively reproduce aspects of the shape and kinematics of the CME's leading edge. It is particularly encouraging that the model reproduces the amount of interplanetary deceleration observed for the CME during its journey from the Sun to 1 AU.

  9. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  10. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    International Nuclear Information System (INIS)

    Kahler, S. W.

    2013-01-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME , and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  11. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  12. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory.

    Science.gov (United States)

    Möstl, C; Isavnin, A; Boakes, P D; Kilpua, E K J; Davies, J A; Harrison, R A; Barnes, D; Krupar, V; Eastwood, J P; Good, S W; Forsyth, R J; Bothmer, V; Reiss, M A; Amerstorfer, T; Winslow, R M; Anderson, B J; Philpott, L C; Rodriguez, L; Rouillard, A P; Gallagher, P; Nieves-Chinchilla, T; Zhang, T L

    2017-07-01

    We present an advance toward accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over two thirds of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by five in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60° longitudinal width, constant speed, and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for one correct prediction, two to three false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 ± 16.6 h difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first-order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.

  13. THE POSSIBLE IMPACT OF L5 MAGNETOGRAMS ON NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pevtsov, Alexei A., E-mail: marion.weinzierl@durham.ac.uk [National Solar Observatory 3010 Coronal Loop, sunspot NM 88349 (United States)

    2016-09-10

    The proposed Carrington-L5 mission would bring instruments to the L5 Lagrange point to provide us with crucial data for space weather prediction. To assess the importance of including a magnetograph, we consider the possible differences in non-potential solar coronal magnetic field simulations when magnetograph observations are available from the L5 point, compared with an L1-based field of view (FOV). A timeseries of synoptic radial magnetic field maps is constructed to capture the emergence of two active regions from the L5 FOV. These regions are initially absent in the L1 magnetic field maps, but are included once they rotate into the L1 FOV. Non-potential simulations for these two sets of input data are compared in detail. Within the bipolar active regions themselves, differences in the magnetic field structure can exist between the two simulations once the active regions are included in both. These differences tend to reduce within 5 days of the active region being included in L1. The delayed emergence in L1 can, however, lead to significant persistent differences in long-range connectivity between the active regions and the surrounding fields, and also in the global magnetic energy. In particular, the open magnetic flux and the location of open magnetic footpoints, are sensitive to capturing the real-time of emergence. These results suggest that a magnetograph at L5 could significantly improve predictions of the non-potential corona, the interplanetary magnetic field, and of solar wind source regions on the Sun.

  14. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  15. Determination of Differential Emission Measure Distribution of Coronal Structures Observed by SphinX During Recent Minimum of Solar Activity

    Science.gov (United States)

    Kepa, Anna; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kowalinski, Miroslaw

    SphinX is a high-sensitivity soft X-ray spectrophotometer which measures soft X-ray spectra in the energy range between 0.8 keV and 15 keV. From February to November 2009 the instrument has observed unusually quiet solar coronal emission as well as a number of weak solar flares. Based on SphinX spectra it is possible to study the differential emission measure distributions (DEM) in the temperature range roughly between 1 MK and 10 MK. The aim of the present study is to unveil DEM plasma distributions for selected activity conditions and analyze their variability.

  16. SLIPPING MAGNETIC RECONNECTION OF FLUX-ROPE STRUCTURES AS A PRECURSOR TO AN ERUPTIVE X-CLASS SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Hou, Yijun; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yang, Kai, E-mail: liting@nao.cas.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2016-10-20

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory . The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30−40 km s{sup −1}, with an average period of 130 ± 30 s. The Si iv λ 1402.77 line showed a redshift of 10−30 km s{sup −1} and a line width of 50−120 km s{sup −1} at the west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.

  17. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  18. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.

    2017-01-01

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO/AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic fie...

  19. Comparison of ionospheric convection and the transpolar potential before and after solar wind dynamic pressure fronts: implications for magnetospheric reconnection

    Science.gov (United States)

    Boudouridis, A.; Zesta, E.; Lyons, L. R.; Kim, H.-J.; Lummerzheim, D.; Wiltberger, M.; Weygand, J. M.; Ruohoniemi, J. M.; Ridley, A. J.

    2012-04-01

    The solar wind dynamic pressure, both through its steady state value and through its variations, plays an important role in the determination of the state of the terrestrial magnetosphere and ionosphere, its effects being only secondary to those of the Interplanetary Magnetic Field (IMF). Recent studies have demonstrated the significant effect solar wind dynamic pressure enhancements have on ionospheric convection and the transpolar potential. Further studies have shown a strong response of the polar cap boundary and thus the open flux content of the magnetosphere. These studies clearly illustrate the strong coupling of solar wind dynamic pressure fronts to the terrestrial magnetosphere-ionosphere system. We present statistical studies of the response of Super Dual Auroral Radar Network (SuperDARN) flows, and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) transpolar potentials to sudden enhancements in solar wind dynamic pressure. The SuperDARN results show that the convection is enhanced within both the dayside and nightside ionosphere. The dayside response is more clear and immediate, while the response on the nightside is slower and more evident for low IMF By values. AMIE results show that the overall convection, represented by the transpolar potential, has a strong response immediately after an increase in pressure, with magnitude and duration modulated by the background IMF Bz conditions. We compare the location of the SuperDARN convection enhancements with the location and motion of the polar cap boundary, as determined by POLAR Ultra-Violet Imager (UVI) images and runs of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic model for specific events. We find that the boundary exhibits a poleward motion after the increase in dynamic pressure. The enhanced ionospheric flows and the poleward motion of the boundary on the nightside are both signatures of enhanced tail reconnection, a conclusion that is reinforced by the observation of the

  20. MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

    International Nuclear Information System (INIS)

    Yang, Heesu; Chae, Jongchul; Park, Hyungmin; Song, Dong-uk; Cho, Kyuhyoun; Lim, Eun-Kyung; Lee, Kyoung-sun

    2014-01-01

    We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 Å line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation

  1. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  2. The history of re-connection and the concept of the solar wind plasma with relatively small electrical conductivity

    Science.gov (United States)

    Chertkov, A. D.

    1995-01-01

    Petschek's 're-connection' model, aspiring to be universal, treated as a boundary problem meets unresolvable difficulties connected with impossibility to specify correctly boundary and initial conditions. This problem was incorrectly formulated. Hence, ineradicable logarithmic singularities occurred on the boundary surfaces. Attempts to eliminate them by incorporating the finite electrical conductivity are incorrect. This should lead to the change in the equation type, boundary condition type and in consequence to the change in solutions. Besides, the slow mode shocks cannot be driven by small internal source. As an alternative a new plasma concept is suggested. The state of fully ionized plasma in space depends completely on the entropy of the plasma heating source and on the process in which plasma is involved. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of plasma should be very far from the thermodynamic equilibrium. Debye's screening is not complete. The excitation of the powerful resonant self-consistent electric fields in plasma provides low electric conductivity. The MHD problems should be treated in frameworks of dissipative theories.

  3. The Magnetic Reconnection Code: Center for Magnetic Reconnection Studies

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Bhattacharjee

    2007-04-20

    Understanding magnetic reconnection is one of the principal challenges in plasma physics. Reconnection is a process by which magnetic fields reconfigure themselves, releasing energy that can be converted to particle energies and bulk flows. Thanks to the availability of sophisticated diagnostics in fusion and laboratory experiments, in situ probing of magnetospheric and solar wind plasmas, and X-ray emission measurements from solar and stellar plasmas, theoretical models of magnetic reconnection can now be constrained by stringent observational tests. The members of the CMRS comprise an interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities.

  4. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  5. Chasing the Great American 2017 Total Solar Eclipse: Coronal Results from NASA's WB-57F High-Altitude Research Aircraft

    Science.gov (United States)

    Caspi, A.; Tsang, C.; DeForest, C. E.; Seaton, D. B.; Bryans, P.; Burkepile, J.; Casey, T. A.; Collier, J.; Darrow, D.; DeLuca, E.; Durda, D. D.; Gallagher, P.; Golub, L.; Judge, P. G.; Laurent, G. T.; Lewis, J.; Mallini, C.; Parent, T.; Propp, T.; Steffl, A.; Tomczyk, S.; Warner, J.; West, M. J.; Wiseman, J.; Zhukov, A.

    2017-12-01

    Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations. Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near- IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more. We present results of solar coronal measurements from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 high-altitude research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and medium-wave IR (3-5 μm) cameras operating at high cadence (30 Hz) with 3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft flew along the eclipse path, separated by 110 km, to observe a summed 7

  6. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Antolin, P.; Rouppe van der Voort, L.

    2012-01-01

    Observed in cool chromospheric lines, such as Hα or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of ∼310 km and ∼710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of ∼70 km s –1 , and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling in neighboring strands

  7. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak...... statistically to zero, indicating that the associated high‐speed streams have a high chance to miss the Earth. Similar, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret...

  8. The Onset of Magnetic Reconnection: Tearing Instability in Current Sheets with a Guide Field

    Science.gov (United States)

    Daldorff, L. K. S.; Klimchuk, J. A.; Knizhnik, K. J.

    2016-12-01

    Magnetic reconnection is fundamental to many solar phenomena, ranging from coronal heating, to jets, to flares and CMEs. A poorly understood yet crucial aspect of reconnection is that it does not occur until magnetic stresses have built to sufficiently high levels for significant energy release. If reconnection were to happen too soon, coronal heating would be weak and flares would be small. As part of our program to study the onset conditions for magnetic reconnection, we have investigated the instability of current sheets to tearing. Surprisingly little work has been done on this problem for sheets that include a guide field, i.e., for which the field rotates by less than 180 degrees. This is the most common situation on the Sun. We present numerical 3D resistive MHD simulations of several sheets and show how the behaviour depends on the shear angle (rotation). We compare our results to the predictions of linear theory and discuss the nonlinear evolution in terms of plasmoid formation and the interaction of different oblique tearing modes. The relevance to the Sun is explained.

  9. The Large-scale Coronal Structure of the 2017 August 21 Great American Eclipse: An Assessment of Solar Surface Flux Transport Model Enabled Predictions and Observations

    Science.gov (United States)

    Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan

    2018-01-01

    On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.

  10. mxCSM: A 100-slit, 6-Wavelength Wide-Field Coronal Spectropolarimeter for the Study of the Dynamics and the Magnetic Fields of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haosheng, E-mail: lin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States)

    2016-03-30

    Tremendous progress has been made in the field of observational coronal magnetometry in the first decade of the Twenty-First century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important for our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employs large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six CELs simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  11. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    Science.gov (United States)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-07-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  12. FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION

    International Nuclear Information System (INIS)

    Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-01-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  13. Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?

    International Nuclear Information System (INIS)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.; Bame, S.J.; Luhmann, J.G.; Smith, E.J.

    1989-01-01

    Electron heat flux dropout events have been observed in the solar wind using the ISEE 3 plasma electron data set. These events manifest themselves as dropouts of the solar wind halo electrons which are normally found streaming outward along the local magnetic field. These dropouts leave nearly isotropic distributions of solar wind halo electrons, and consequently, the heat flux in these events is reduced to near the observational noise level. We have examined ISEE 3 data from shortly after launch (August 16, 1978) through the end of 1978 and identified 25 such events ranging in duration from 20 min to over 11 hours. Comparison with the ISEE 3 magnetometer data indicates that these intervals nearly always occur in conjunction with large rotations of the interplanetary magnetic field. Statistical analyses of the plasma and magnetic field data for the 25 dropout intervals indicate that heat flux dropouts generally occur in association with high plasma densities low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. A second set of 25 intervals chosen specifically to lie at large field rotations, but at times at which not heat flux dropouts were observed, do not show these characteristic plalsma variations. This suggests that the dropout intervals comprise a unique set of events. Since the hot halo electrons normally found streaming outward from the Sun along the interplanetary magnetic field (the solar wind electron heat flux) are a result of direct magnetic connection to the hot solar corona, heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the Sun and instead are connected to the outer heliosphere at both ends

  14. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  15. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.-S.; Kim, R.-S. [Korea Astronomy and Space Science Institute, Whaamdong, Yooseong-ku, Daejeon, 305-348 (Korea, Republic of); Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S., E-mail: kscho@kasi.re.kr [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  16. Role of Magnetic Reconnection in Heating Astrophysical Plasmas

    Science.gov (United States)

    Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.

    2017-12-01

    The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.

  17. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  18. Magnetic Reconnection

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Kulsrud, Russell; Ji, Hantao

    2009-01-01

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two-fluid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also briefly discussed.

  19. The Response Time of the Magnetopause Reconnection Location to Changes in the Solar Wind: MMS Case Study

    Science.gov (United States)

    Trattner, K. J.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gomez, R. G.; Grimes, E. W.; Lewis, W. S.; Mauk, B.; Petrinec, S. M.; Pollock, C. J.

    2016-01-01

    Reconnection at the Earth's magnetopause is the mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy, mass, and momentum to flow into the magnetosphere. It is the primary science goal of the recently launched MMS mission to unlock the mechanism of magnetic reconnection with a novel suite of plasma and field instruments. This study investigates several magnetopause crossings in the vicinity of the X-line on 19 September 2015 and compares the observed X-line location with predictions from the Maximum Magnetic Shear model. Rotations of the interplanetary magnetic field OMF) during the magnetopause crossings together with the close proximity of the four MMS satellites are used to determine the response time of the reconnection X-line location to changes in the IMF. The reconnection location exhibits a continuous motion during slow changes in the IMF but a delayed response to sudden changes in the IMF.

  20. The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y.; Wang, B.; Li, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Cheng, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, J. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Li, L. P. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Hu, Q.; Li, G., E-mail: hqsong@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2017-10-10

    Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, i.e., the bright leading front, dark cavity, and bright core, corresponding to a high-low-high density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high-density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).

  1. The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Wang, B.; Li, B.; Cheng, X.; Zhang, J.; Li, L. P.; Hu, Q.; Li, G.

    2017-01-01

    Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, i.e., the bright leading front, dark cavity, and bright core, corresponding to a high-low-high density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high-density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).

  2. The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection

    Science.gov (United States)

    Song, H. Q.; Cheng, X.; Chen, Y.; Zhang, J.; Wang, B.; Li, L. P.; Li, B.; Hu, Q.; Li, G.

    2017-10-01

    Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, I.e., the bright leading front, dark cavity, and bright core, corresponding to a high-low-high density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high-density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).

  3. Coronal Heating Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  4. DUAL-STAGE RECONNECTION DURING SOLAR FLARES OBSERVED IN HARD X-RAY

    International Nuclear Information System (INIS)

    Xu Yan; Jing Ju; Wang Haimin; Cao Wenda

    2010-01-01

    In this Letter, we present hard X-ray (HXR) observation by the Reuven Ramaty High Energy Solar Spectroscopic Imager of the 2003 October 29 X10 flare. Two pairs of HXR conjugate footpoints have been identified during the early impulsive phase. This geometric configuration is very much in the manner predicted by the 'tether-cutting' scenario first proposed by Moore and Roumeliotis. The HXR light curves show that the outer pair of footpoints disappeared much faster than the other pair. This temporal behavior further confirms that this event is a good example of the 'tether-cutting' model. In addition, we reconstructed a three-dimensional magnetic field based on the nonlinear force-free extrapolation and found that each pair of HXR footpoints were indeed linked by corresponding magnetic field lines.

  5. Role of the Coronal Alfvén Speed in Modulating the Solar-wind Helium Abundance

    Science.gov (United States)

    Wang, Y.-M.

    2016-12-01

    The helium abundance He/H in the solar wind is relatively constant at ˜0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ˜0.01 at solar minimum to ˜0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995-2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v A in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v A near the source surface; resonance with Alfvén waves, with v A and the relative speed of α-particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.

  6. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the eliophysics System Observatory

    Czech Academy of Sciences Publication Activity Database

    Möstl, C.; Isavnin, A.; Boakes, P. D.; Kilpua, E. K. J.; Davies, J. A.; Harrison, R. A.; Barnes, D.; Krupař, Vratislav; Eastwood, J.; Good, S. W.; Forsyth, R. J.; Bothmer, V.; Reiss, M. A.; Amerstorfer, T.; Winslow, R. M.; Anderson, B.J.; Philpott, L. C.; Rodriguez, L.; Rouillard, A. P.; Gallagher, P.; Nieves-Chinchilla, T.; Zhang, T. L.

    2017-01-01

    Roč. 15, č. 7 (2017), s. 955-970 ISSN 1539-4956 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : space weather * coronal mass ejections * STEREO * heliospheric imagers * Heliophysics System Observatory * heliophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://onlinelibrary.wiley.com/doi/10.1002/2017SW001614/full

  7. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C. [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore—560034 (India); Gopalswamy, N., E-mail: kishore@iiap.res.in [Code 671, Solar Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  8. Solar magnetic field - 1976 through 1985: an atlas of photospheric magnetic field observations and computed coronal magnetic fields from the John M. Wilcox Solar Observatory at Stanford, 1976-1985

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.

    1986-01-01

    Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of Solar Cycle 21. Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field -- Source Surface model. This provides a 3-dimensional picture of the heliospheric field-evolution during the solar cycle. In this report the authors present the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structure of the solar and heliospheric fields, which determine the environment for solar - terrestrial relations and provide the context within which solar-activity-related events occur, can be approximated from these data

  9. White light coronal structures and flattening during six total solar eclipses

    Directory of Open Access Journals (Sweden)

    B.A. Marzouk

    2016-12-01

    Flattening index is the first quantitative parameter introduced for analyses of the global structure of the solar corona. It varies with respect to the phase of the solar activity and sunspot number. In this paper we study the solar corona during the 1990, 1999, 2006, 2008, 2009 and 2012 total solar eclipses. We obtain flattening coefficients for all the six eclipses by using a new computer program. Our results are in a good agreement with published results.

  10. Three-dimensional structure of the coronal magnetic field and the solar wind speed distribution projected on the photosphere in 1974

    International Nuclear Information System (INIS)

    Hakamada, K.

    1987-01-01

    Since the solar wind and coronal holes were relatively steady in 1974, the average distribution of the solar wind speed on the source surface and that of the line-of-sight component of the photospheric magnetic fields (B 1 ) can be constructed, with fair accuracy, by the superposed epoch analysis. The three-dimensional structure of the coronal magnetic fields is then computed from this average map of B 1 based on the potential model. The average distribution of the solar wind speed on the source surface, obtained from interplanetary scintillation observations, is then projected onto the photosphere along the open field lines in the corona. The high-speed regions thus projected are compared with the He I (1083 nm) coronal holes and are found to have a similar geometry. The results are also suggestive that the solar wind does not blow out uniformly from the vicinity of a coronal hole and that the speed is higher at the east side in that region than at the west side. The slower speed regions on the source surface have a sinusoidal structure in heliographic latitude-longitude coordinates and are similar to the brightness distribution of the K corona and the structure of closed field line regions projected onto the photosphere. copyrightAmerican Geophysical Union 1987

  11. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    International Nuclear Information System (INIS)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.; Gary, G. Allen

    2014-01-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  12. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L. [Space Science Office, ZP13, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen, E-mail: mitzi.adams@nasa.gov, E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: gag0002@uah.edu [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA. (United States)

    2014-03-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  13. Table of solar activity associated with coronal mass ejections observed by the SMM coronagraph/polarimeter in 1980. Technical note

    International Nuclear Information System (INIS)

    Webb, D.F.

    1987-10-01

    This report is the description and presentation of a table of solar activity considered to be associated with coronal mass ejections (CMEs) as observed during 1980 with the High Altitude Observatory's Coronagraph/Polarimeter (C/P) on the SMM spacecraft. The list has formed the basic data set for several studies, most prominently a study of CME associations published by Webb and Hundhausen (1987). An attendant source of CME data is the unpublished C/P Event List for 1980, which co-evolved with the association list under the guidance of Art Hundhausen. Discussions of the details of the selection and verification of the list of SMM CMEs are contained in the above paper as well as in this papers of Hundhausen et al. (1984) and Hundhausen (1987)

  14. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    Science.gov (United States)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  15. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  16. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    Science.gov (United States)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  17. Achieving fast reconnection in resistive MHD models via turbulent means

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2012-04-01

    Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  18. The Heating of Solar Coronal Loops by Alfvén Wave Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Van Ballegooijen, A. A. [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Asgari-Targhi, M.; Voss, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-11-01

    In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.

  19. THERMAL PROPERTIES OF A SOLAR CORONAL CAVITY OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Gibson, Sarah E. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Kucera, Therese A. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hudson, Hugh S. [Space Sciences Laboratories, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kano, Ryouhei, E-mail: kreeves@cfa.harvard.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-02-20

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during 2008 July that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity 'cores' with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK, and 2.0 MK (for July 19, July 21, and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  20. The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ-ray events

    Science.gov (United States)

    Plotnikov, I.; Rouillard, A. P.; Share, G. H.

    2017-12-01

    Context. The observation of >100 MeV γ-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when γ-rays are detected even when the solar eruptions occurred beyond the solar limb as viewed from Earth provide favorable viewing conditions for studying the role of coronal shocks driven by coronal mass ejections (CMEs) in the acceleration of these particles. Aims: In this paper, we investigate the spatial and temporal evolution of the coronal shocks inferred from stereoscopic observations of behind-the-limb flares to determine if they could be the source of the particles producing the γ-rays. Methods: We analyzed the CMEs and early formation of coronal shocks associated with γ-ray events measured by the Fermi-Large Area Telescope (LAT) from three eruptions behind the solar limb as viewed from Earth on 2013 Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based on remote-sensing observations to model the expansion of the CME shocks from above the solar surface to the upper corona. Coupling the expansion model to various models of the coronal magnetic field allowed us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of particles produced by the shock to the solar surface visible from Earth. Results: The reconstructed shock fronts for the three events became magnetically connected to the visible solar surface after the start of the flare and just before the onset of the >100 MeV γ-ray emission. The shock surface at these connections also exhibited supercritical Mach numbers required for significant particle energization. The strongest γ-ray emissions occurred when the flanks of the shocks were connected in a quasi-perpendicular geometry to the field lines reaching the visible surface. Multipoint, in situ, measurements of solar energetic particles (SEPs) were

  1. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Science.gov (United States)

    Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.

    2018-03-01

    We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  2. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Directory of Open Access Journals (Sweden)

    Temmer Manuela

    2018-01-01

    Full Text Available We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  3. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States); Matthaeus, W. H. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Viall, N. M. [NASA/Goddard Space Flight Center, Mail Code 671, Greenbelt, MD 20771 (United States); Cranmer, S. R. [University of Colorado, Duane E226, Boulder, CO 80305 (United States)

    2016-09-10

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  4. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  5. The dynamics of coronal magnetic structures

    International Nuclear Information System (INIS)

    Weber, W.

    1978-01-01

    An analysis is made of the evolution of coronal magnetic fields due to the interaction with the solar wind. An analysis of the formation of coronal streamers, arising as a result of the stretching of bipolar fields, is given. Numerical simulations of the formation of coronal streamers are presented. Fast-mode shocks as triggers of microturbulence in the solar corona are discussed

  6. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  7. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  8. Direct Evidence of an Eruptive, Filament-hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    Science.gov (United States)

    Chen, Bin; Bastian, T. S.; Gary, D. E.

    2014-10-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  9. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    International Nuclear Information System (INIS)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-01-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  10. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  11. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    Czech Academy of Sciences Publication Activity Database

    Dudík, Jaroslav; Polito, V.; Janvier, M.; Mulay, S.M.; Karlický, Marian; Aulanier, G.; Del Zanna, G.; Dzifčáková, Elena; Mason, H. E.; Schmieder, B.

    2016-01-01

    Roč. 823, č. 1 (2016), 41/1-41/21 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/1652; GA ČR GAP209/12/0103 Grant - others:The Royal Society/Newton Fellowship(GB) NFAluminiNF120818 Institutional support: RVO:67985815 Keywords : Sun * flares * magnetic reconnection Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  12. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  13. Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects

    Science.gov (United States)

    Murray, Sophie A.; Guerra, Jordan A.; Zucca, Pietro; Park, Sung-Hong; Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole; Bothmer, Volker

    2018-04-01

    Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.

  14. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  15. THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY

    International Nuclear Information System (INIS)

    Masson, S.; Aulanier, G.; Pariat, E.; Schrijver, C. J.

    2009-01-01

    Flare ribbons are commonly attributed to the low-altitude impact, along the footprints of separatrices or quasi-separatrix layers (QSLs), of particle beams accelerated through magnetic reconnection. If reconnection occurs at a three-dimensional coronal magnetic null point, the footprint of the dome-shaped fan surface would map a closed circular ribbon. This paper addresses the following issues: does the entire circular ribbon brighten simultaneously, as expected because all fan field lines pass through the null point? And since the spine separatrices are singular field lines, do spine-related ribbons look like compact kernels? What can we learn from these observations about current sheet formation and magnetic reconnection in a null-point topology? The present study addresses these questions by analyzing Transition Region and Coronal Explorer and Solar and Heliospheric Observatory/Michelson Doppler Imager observations of a confined flare presenting a circular ribbon. Using a potential field extrapolation, we linked the circular shape of the ribbon with the photospheric mapping of the fan field lines originating from a coronal null point. Observations show that the flare ribbon outlining the fan lines brightens sequentially along the counterclockwise direction and that the spine-related ribbons are elongated. Using the potential field extrapolation as initial condition, we conduct a low-β resistive magnetohydrodynamics simulation of this observed event. We drive the coronal evolution by line-tied diverging boundary motions, so as to emulate the observed photospheric flow pattern associated with some magnetic flux emergence. The numerical analysis allows us to explain several observed features of the confined flare. The vorticity induced in the fan by the prescribed motions causes the spines to tear apart along the fan. This leads to formation of a thin current sheet and induces null-point reconnection. We also find that the null point and its associated topological

  16. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  17. Plasma properties of hot coronal loops utilizing coordinated SMM and solar research rocket observations

    Science.gov (United States)

    Moses, J. Daniel

    1989-01-01

    Three improvements in photographic x-ray imaging techniques for solar astronomy are presented. The testing and calibration of a new film processor was conducted; the resulting product will allow photometric development of sounding rocket flight film immediately upon recovery at the missile range. Two fine grained photographic films were calibrated and flight tested to provide alternative detector choices when the need for high resolution is greater than the need for high sensitivity. An analysis technique used to obtain the characteristic curve directly from photographs of UV solar spectra were applied to the analysis of soft x-ray photographic images. The resulting procedure provides a more complete and straightforward determination of the parameters describing the x-ray characteristic curve than previous techniques. These improvements fall into the category of refinements instead of revolutions, indicating the fundamental suitability of the photographic process for x-ray imaging in solar astronomy.

  18. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  19. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Zaqarashvili, T. V., E-mail: ramon.oliver@uib.es [Institute of Physics, IGAM, University of Graz, Universitätsplatz 5, 8010, Graz (Austria)

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  20. Fast solar hard X-ray bursts and large scale coronal structures

    International Nuclear Information System (INIS)

    Simnett, G.M.

    1982-01-01

    The conditions at the Sun at the times corresponding to a selected set 22 fast impulsive hard X-ray bursts reported by Crannell et al. are examined. It is suggested that one of the bursts must arise from a precipitating beam of subrelativistic electrons; the source of the electrons is postulated to be in a region very remote from the X-ray site on the basis of type III and other radio data. The connection is via a coronal magnetic loop extending to approx.3 R/sub sun/ above the photosphere. The energy in the electron beam is estimated at 3 x 10 27 ergs. Intense soft X-ray and/or microwave radio storms at times corresponding to many of the impulsive X-ray bursts lead the conclusion that 14, and possibly 18, of the 22 bursts could have the same interpretation. The energy in such an electron beam could be important when considering the trigger phase of some flares

  1. A numerical study of two interacting coronal mass ejections

    Directory of Open Access Journals (Sweden)

    J. M. Schmidt

    2004-06-01

    Full Text Available The interaction in the solar wind between two coronal mass ejections (CMEs is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.

  2. FAN-SPINE TOPOLOGY FORMATION THROUGH TWO-STEP RECONNECTION DRIVEN BY TWISTED FLUX EMERGENCE

    International Nuclear Information System (INIS)

    Toeroek, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.; Golub, L.

    2009-01-01

    We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-β magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven 'kinematic' emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.

  3. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    International Nuclear Information System (INIS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-01-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  4. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan, E-mail: hjcsolar@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-10-20

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  5. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.type="synopsis">type="main">Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each sunspot cycle and that the polar field that has accumulated by the time of each sunspot minimum is a good

  6. Coronal Streamers Revealed during Solar Eclipses: Seeing is not Believing, and Pictures Can Lie

    Directory of Open Access Journals (Sweden)

    Richard Woo

    2011-08-01

    Full Text Available For those fortunate enough to have personally witnessed and photographed the visible corona surrounding the Sun during a solar eclipse, pictures are usually a let down for not living up to the visual view. After 150 years of investigating the corona, we understand it more fully and now know this difference to be real. The difference stems from our inability to either see or image the true distribution of simultaneous brightness because of its large dynamic range (eg, Rodriguez, Woods, 2008 Digital Image Processing, Upper Saddle River: Pearson Prentice Hall. Brightness in the corona is unprecedented, as it falls by three orders of magnitude over a distance of only one solar radius from the Sun.

  7. The Solar Cycle Variation of Coronal Temperature and Density During Cycle 21-22

    Science.gov (United States)

    1994-06-15

    We notice that a dramatic change in the intensity ratio implies a small change in temperature and therefore the precise calibration of each...The higher temperature material of these zones tends to lie over regions where magnetograph observations indicate a change in polarity of weak large...SPIE, 331,442, 1982. 7. Altrock, LC., Clmate Impact of Solar Variability Greenbelt, MD, NASA Conf. Publ. 3086, p. 287, 1990. 8. Fisher, LRL., McCabe, M

  8. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  9. Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2006-03-01

    Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.

  10. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V. [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, A-8010 Graz (Austria); Frahm, R. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Davies, J. A. [RAL Space, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); Vršnak, B.; Žic, T. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, 1000 Zagreb (Croatia); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Zhang, T. L., E-mail: tanja.rollett@gmx.at [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  11. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  12. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  13. Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission

    Science.gov (United States)

    Hudson, H. S.

    2017-12-01

    A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.

  14. Statistical properties of correlated solar flares and coronal mass ejections in cycles 23 and 24

    Science.gov (United States)

    Aarnio, Alicia

    2018-01-01

    Outstanding problems in understanding early stellar systems include mass loss, angular momentum evolution, and the effects of energetic events on the surrounding environs. The latter of these drives much research into our own system's space weather and the development of predictive algorithms for geomagnetic storms. So dually motivated, we have leveraged a big-data approach to combine two decades of GOES and LASCO data to identify a large sample of spatially and temporally correlated solar flares and CMEs. In this presentation, we revisit the analysis of Aarnio et al. (2011), adding 10 years of data and further exploring the relationships between correlated flare and CME properties. We compare the updated data set results to those previously obtained, and discuss the effects of selecting smaller time windows within solar cycles 23 and 24 on the empirically defined relationships between correlated flare and CME properties. Finally, we discuss a newly identified large sample of potentially interesting correlated flares and CMEs perhaps erroneously excluded from previous searches.

  15. H and K (Ca II) emissions as observed in coronal spectrum in the July 20, 1963 solar eclipse

    International Nuclear Information System (INIS)

    Cavallini, F.; Righini, A.

    1975-01-01

    From a detailed analysis of a coronal spectrum taken from a DC-8 jet airplane during the Eclipse of 20 July, 1963 a rough model of a coronal cold region (T approximately 10 5 K) has been obtained. The model explains the presence of the abnormal H and K (Ca II) emissions and the large amount of F corona present in the spectrum. (Auth.)

  16. Automated Temperature and Emission Measure Analysis of Coronal Loops and Active Regions Observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA)

    Science.gov (United States)

    Aschwanden, Markus J.; Boerner, Paul; Schrijver, Carolus J.; Malanushenko, Anna

    2013-03-01

    We developed numerical codes designed for automated analysis of SDO/AIA image datasets in the six coronal filters, including: i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, ii) self-calibration by empirical correction of instrumental response functions, iii) automated generation of differential emission measure [DEM] distributions with peak-temperature maps [ T p( x, y)] and emission measure maps [ EM p( x, y)] of the full Sun or active region areas, iv) composite DEM distributions [d EM( T)/d T] of active regions or subareas, v) automated detection of coronal loops, and vi) automated background subtraction and thermal analysis of coronal loops, which yields statistics of loop temperatures [ T e], temperature widths [ σ T], emission measures [ EM], electron densities [ n e], and loop widths [ w]. The combination of these numerical codes allows for automated and objective processing of numerous coronal loops. As an example, we present the results of an application to the active region NOAA 11158, observed on 15 February 2011, shortly before it produced the largest (X2.2) flare during the current solar cycle. We detect 570 loop segments at temperatures in the entire range of log( T e)=5.7 - 7.0 K and corroborate previous TRACE and AIA results on their near-isothermality and the validity of the Rosner-Tucker-Vaiana (RTV) law at soft X-ray temperatures ( T≳2 MK) and its failure at lower EUV temperatures.

  17. Proton Flares in Solar Activity Complexes: Possible Origins and Consequences

    Science.gov (United States)

    Isaeva, E. S.; Tomozov, V. M.; Yazev, S. A.

    2018-03-01

    Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth's orbit with intensities exceeding 10 particles cm-2 s-1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth's orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.

  18. Breakout Reconnection Observed by the TESIS EUV Telescope

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  19. BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences (Russian Federation)

    2016-01-10

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R{sub ⊙} from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R{sub ⊙} above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s{sup −1}. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  20. BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE

    International Nuclear Information System (INIS)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R ⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R ⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s −1 . At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario

  1. Magnetopause reconnection rate estimates for Jupiter's magnetosphere based on interplanetary measurements at ~5AU

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2006-03-01

    Full Text Available We make the first quantitative estimates of the magnetopause reconnection rate at Jupiter using extended in situ data sets, building on simple order of magnitude estimates made some thirty years ago by Brice and Ionannidis (1970 and Kennel and Coroniti (1975, 1977. The jovian low-latitude magnetopause (open flux production reconnection voltage is estimated using the Jackman et al. (2004 algorithm, validated at Earth, previously applied to Saturn, and here adapted to Jupiter. The high-latitude (lobe magnetopause reconnection voltage is similarly calculated using the related Gérard et al. (2005 algorithm, also previously used for Saturn. We employ data from the Ulysses spacecraft obtained during periods when it was located near 5AU and within 5° of the ecliptic plane (January to June 1992, January to August 1998, and April to October 2004, along with data from the Cassini spacecraft obtained during the Jupiter flyby in 2000/2001. We include the effect of magnetospheric compression through dynamic pressure modulation, and also examine the effect of variations in the direction of Jupiter's magnetic axis throughout the jovian day and year. The intervals of data considered represent different phases in the solar cycle, such that we are also able to examine solar cycle dependency. The overall average low-latitude reconnection voltage is estimated to be ~230 kV, such that the average amount of open flux created over one solar rotation is ~500 GWb. We thus estimate the average time to replenish Jupiter's magnetotail, which contains ~300-500 GWb of open flux, to be ~15-25 days, corresponding to a tail length of ~3.8-6.5 AU. The average high-latitude reconnection voltage is estimated to be ~130 kV, associated with lobe "stirring". Within these averages, however, the estimated voltages undergo considerable variation. Generally, the low-latitude reconnection voltage exhibits a "background" of ~100 kV that is punctuated by one or two significant

  2. Spatial characteristics of magnetotail reconnection

    Science.gov (United States)

    Genestreti, Kevin J.

    We examine the properties of magnetic reconnection as it occurs in the Earth's magnetosphere, first focusing on the spatial characteristics of the near-Earth magnetotail reconnection site, then analyzing the properties of cold plasma that may affect reconnection at the dayside magnetopause. Two models are developed that empirically map the position and occurrence rate of the nightside ion diffusion region, which are based upon Geotail data (first model) and a combination of Geotail and Cluster data (second model). We use these empirical models to estimate that NASA's MMS mission will encounter the ion-scale reconnection site 11+/-4 times during its upcoming magnetotail survey phase. We also find that the occurrence of magnetotail reconnection is localized and asymmetric, with reconnection occurring most frequently at the duskside magnetotail neutral sheet near YGSM* = 5 RE. To determine the physics that governs this asymmetry and localization, we analyze the time history of the solar wind, the instantaneous properties of the magnetotail lobes and current sheet, as well as the geomagnetic activity levels, all for a larger set of Geotail and Cluster reconnection site observations. We find evidence in our own results and in the preexisting literature that localized (small DeltaY) reconnection sites initially form near YGSM* = 5 RE due to an asymmetry in the current sheet thickness. If the solar wind driving remains strong, then localized reconnection sites may expand in the +/-Y direction. The DeltaY extent of the reconnection site ap- pears to be positively correlated with the geomagnetic activity level, which is to be expected for a simplified "energy in equals energy out"-type picture of 3D reconnection. We develop two new methods for determining the temperatures of plasmas that are largely below the energy detection range of electrostatic analyzer instruments. The first method involves the direct application of a theoretical fit to the visible, high-energy portion

  3. Toward laboratory torsional spine magnetic reconnection

    Science.gov (United States)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  4. Relation of astrophysical turbulence and magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-15

    Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.

  5. Three-dimensional Oscillatory Magnetic Reconnection

    International Nuclear Information System (INIS)

    Thurgood, Jonathan O.; McLaughlin, James A.; Pontin, David I.

    2017-01-01

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  6. Three-dimensional Oscillatory Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2017-07-20

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  7. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    International Nuclear Information System (INIS)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Sun, Xudong; Davila, Joseph M.

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s −1 matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit

  8. Correlation Analyses Between the Characteristic Times of Gradual Solar Energetic Particle Events and the Properties of Associated Coronal Mass Ejections

    Science.gov (United States)

    Pan, Z. H.; Wang, C. B.; Wang, Yuming; Xue, X. H.

    2011-06-01

    It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 - 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.

  9. OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D.; Yang, K. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J.; Longcope, D. W., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-05-20

    We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.

  10. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  11. Coronal Mass Ejections: Models and Their Observational Basis

    Directory of Open Access Journals (Sweden)

    P. F. Chen

    2011-04-01

    Full Text Available Coronal mass ejections (CMEs are the largest-scale eruptive phenomenon in the solar system, expanding from active region-sized nonpotential magnetic structure to a much larger size. The bulk of plasma with a mass of ∼10^11 – 10^13 kg is hauled up all the way out to the interplanetary space with a typical velocity of several hundred or even more than 1000 km s^-1, with a chance to impact our Earth, resulting in hazardous space weather conditions. They involve many other much smaller-sized solar eruptive phenomena, such as X-ray sigmoids, filament/prominence eruptions, solar flares, plasma heating and radiation, particle acceleration, EIT waves, EUV dimmings, Moreton waves, solar radio bursts, and so on. It is believed that, by shedding the accumulating magnetic energy and helicity, they complete the last link in the chain of the cycling of the solar magnetic field. In this review, I try to explicate our understanding on each stage of the fantastic phenomenon, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation. Particular attention is paid to clarify some hot debates, e.g., whether magnetic reconnection is necessary for the eruption, whether there are two types of CMEs, how the CME frontal loop is formed, and whether halo CMEs are special.

  12. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    Science.gov (United States)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  13. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  14. MHD aspects of coronal transients

    International Nuclear Information System (INIS)

    Anzer, U.

    1979-10-01

    If one defines coronal transients as events which occur in the solar corona on rapid time scales (< approx. several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena. (orig.) 891 WL/orig. 892 RDG

  15. Using observations of slipping velocities to test the hypothesis that reconnection heats the active region corona

    Science.gov (United States)

    Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde

    2017-08-01

    Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.

  16. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  17. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-08-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  18. Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-01-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  19. Miniature Filament Eruptions and their Reconnections in X-Ray Jets: Evidence for a New Paradigm

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    2014-01-01

    We investigate the onset of approximately10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size less than approximately 10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the jet in emission. The jet bright point forms at the location from which the miniature filament is ejected, analogous to the formation of a standard solar flare in the wake of the eruption of a typical larger-scale chromospheric filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions. They are evidently produced the same way as an on-disk coronal jet we observed in Adams et al. (2014); that on-disk jet had no obvious emerging magnetic field in its base. We conclude that, for many jets, the standard idea of X-ray jets forming from reconnection between emerging flux and preexisting coronal field is incorrect. ACS and RLM were supported by funding from NASA/LWS, Hinode, and ISSI.

  20. Intermittent magnetic reconnection in TS-3 merging experiment

    International Nuclear Information System (INIS)

    Ono, Y.; Hayashi, Y.; Ii, T.; Tanabe, H.; Ito, S.; Kuwahata, A.; Ito, T.; Kamino, Y.; Yamada, T.; Inomoto, M.

    2011-01-01

    Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittent reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.

  1. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)

    2017-09-10

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  2. Identification of coronal heating events in 3D simulations

    Science.gov (United States)

    Kanella, Charalambos; Gudiksen, Boris V.

    2017-07-01

    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (I.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events

  3. Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares

    Science.gov (United States)

    Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.

    2017-12-01

    The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.

  4. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  5. MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere

    Science.gov (United States)

    DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya

    2015-04-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which

  6. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  7. Studying the Kinematic Behavior of Coronal Mass Ejections and Other Solar Phenomena using the Time-Convolution Mapping Method

    Science.gov (United States)

    Hess Webber, Shea A.; Thompson, Barbara J.; Kwon, Ryun Young; Ireland, Jack

    2018-01-01

    An improved understanding of the kinematic properties of CMEs and CME-associated phenomena has several impacts: 1) a less ambiguous method of mapping propagating structures into their inner coronal manifestations, 2) a clearer view of the relationship between the “main” CME and CME-associated brightenings, and 3) an improved identification of the heliospheric sources of shocks, Type II bursts, and SEPs. We present the results of a mapping technique that facilitates the separation of CMEs and CME-associated brightenings (such as shocks) from background corona. The Time Convolution Mapping Method (TCMM) segments coronagraph data to identify the time history of coronal evolution, the advantage being that the spatiotemporal evolution profiles allow users to separate features with different propagation characteristics. For example, separating “main” CME mass from CME-associated brightenings or shocks is a well-known obstacle, which the TCMM aids in differentiating. A TCMM CME map is made by first recording the maximum value each individual pixel in the image reaches during the traversal of the CME. Then the maximum value is convolved with an index to indicate the time that the pixel reached that value. The TCMM user is then able to identify continuous “kinematic profiles,” indicating related kinematic behavior, and also identify breaks in the profiles that indicate a discontinuity in kinematic history (i.e. different structures or different propagation characteristics). The maps obtained from multiple spacecraft viewpoints (i.e., STEREO and SOHO) can then be fit with advanced structural models to obtain the 3D properties of the evolving phenomena. We will also comment on the TCMM's further applicability toward the tracking of prominences, coronal hole boundaries and coronal cavities.

  8. THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY

    International Nuclear Information System (INIS)

    Pontin, D. I.; Wyper, P. F.

    2015-01-01

    Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic flux (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed

  9. Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Zhao, Xiaowei; Zhu, Bei; Yang, Zhongwei, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-10

    We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.

  10. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    Data from the Solar Dynamics Observatory (SDO) were used to look for triggers of jets in a coronal hole. It has been proposed that bright points affiliated with the jets are caused by either random collisions between magnetic elements or by magnetic flux emerging from the photosphere; either of which can give rise to magnetic reconnection. Images from the 193AA filter of the Atmospheric Imaging Assembly (AIA) were searched to identify and locate jets. Changes in the line-of-sight magnetic field prior to the time of the jet were sought in data from the Helioseismic Magnetic Imager (HMI). In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was close to disk center. Of the 15 that we studied 6 were shown to have an increase of the parameter B2 (where B is the line-of-sight component of the magnetic field), within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  11. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  12. Nonlinear Force-free Field Extrapolation of a Coronal Magnetic Flux Rope Supporting a Large-scale Solar Filament from a Photospheric Vector Magnetogram

    Science.gov (United States)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-05-01

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  13. Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare

    Science.gov (United States)

    Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi

    2017-11-01

    As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

  14. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    Science.gov (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  15. Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    OpenAIRE

    Rollett, T.; Moestl, C.; Temmer, M.; Frahm, R. A.; Davies, J. A.; Veronig, A. M.; Vrsnak, B.; Amerstorfer, U. V.; Farrugia, C. J.; Zic, T.; Zhang, T. L.

    2014-01-01

    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the...

  16. Cyclical Variation of the Quiet Corona and Coronal Holes

    Indian Academy of Sciences (India)

    tribpo

    Key words. Coronagraphs—solar activity cycle—solar corona—total ... can be divided into the quiet sun (including coronal holes) and active regions. The ... regions has attracted attention and is termed as 'the extended solar cycle'. Here the.

  17. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  18. Tail reconnection in the global magnetospheric context: Vlasiator first results

    Science.gov (United States)

    Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael

    2017-11-01

    The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.

  19. Magnetic field reconnection at the dayside magnetopause

    International Nuclear Information System (INIS)

    Rijnbeek, R.P.

    1992-01-01

    Magnetic field reconnection is a fundamental energy conversion process, and the energy liberated during this process gives rise to phenomena which can be observed in space and laboratory plasmas. At the dayside magnetopause reconnection results in a coupling between the solar wind and the magnetosphere. Manifestations of this include large disturbances in the magnetic field known as flux transfer events, and accelerated plasma flows along the magnetopause. Progress has been made in the development of a physical model incorporating such phenomena, aided by experimental data from various spacecraft missions

  20. HOW DID A MAJOR CONFINED FLARE OCCUR IN SUPER SOLAR ACTIVE REGION 12192?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yurchyshyn, Vasyl; Wang, Haiming, E-mail: cwjiang@spaceweather.ac.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-09-01

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The current layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.

  1. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  2. Magnetic Reconnection in Extreme Astrophysical Environments

    Science.gov (United States)

    Uzdensky, Dmitri

    Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tionreconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron

  3. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  4. Magnetic Source Regions of Coronal Mass Ejections Brigitte ...

    Indian Academy of Sciences (India)

    2003) or two rows of opposite polarity field extending to ... sional Alfvén waves which bring up helicity from the sub-photospheric part of the flux tube ... Figure 1. Loss of equilibrium model: sketches of coronal field lines showing ... lines of the quadrupolar reconnection before the flare, (bottom left): TRACE observations of the.

  5. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    Energy Technology Data Exchange (ETDEWEB)

    Krista, Larisza D.; Reinard, Alysha [University of Colorado/Cooperative Institute for Research in Environmental Sciences, Boulder, CO 80205 (United States)

    2013-01-10

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 A wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  6. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    International Nuclear Information System (INIS)

    Krista, Larisza D.; Reinard, Alysha

    2013-01-01

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 Å wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  7. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  8. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  9. Imaging a Magnetic-breakout Solar Eruption

    Science.gov (United States)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Liu, Wei; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang

    2016-04-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ˜100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions.

  10. IMAGING A MAGNETIC-BREAKOUT SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang; Liu, Wei

    2016-01-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ∼100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions

  11. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  12. Forced magnetic reconnection

    Science.gov (United States)

    Vekstein, G.

    2017-10-01

    This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.

  13. Role of Magnetic Carpet in Coronal Heating

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different ...

  14. Mechanisms of Coronal Heating S. R. Verma

    Indian Academy of Sciences (India)

    Abstract. The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar ...

  15. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    International Nuclear Information System (INIS)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao

    2017-01-01

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s −1 . During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.

  16. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    Science.gov (United States)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao

    2017-05-01

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19-20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ˜280 km s-1. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ˜8 G.

  17. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Ma, Suli [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yan, Xiaoli [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Xue, Jianchao, E-mail: hdchen@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-05-20

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s{sup −1}. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.

  18. Mass and energy supply of a cool coronal loop near its apex

    Science.gov (United States)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before

  19. Formation of Heliospheric Arcs of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F., E-mail: aleida@umich.edu [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom)

    2017-05-01

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.

  20. Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind

    Science.gov (United States)

    Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu

    2018-04-01

    The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.

  1. Secondary Rayleigh-Taylor Instabilities in the Reconnection Exhaust Jet: A Mechanism for Supra-Arcade Downflows in the Solar Corona

    Science.gov (United States)

    Guo, L.; Bhattacharjee, A.; Huang, Y. M.; Innes, D.

    2014-12-01

    Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features usually observed in active-region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright, upward moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for decades, the mechanism for formation of SADs remains an open issue. Using high-Lundquist-number three-dimensional resistive MHD simulations, we demonstrate that secondary Rayleigh-Taylor type instabilities develop in the downstream region of a reconnecting current sheet. The instability results in the formation of low-density coherent structures that resemble SADs, intertwined with high-density structures that appear to be spike-like. Using SDO/AIA images, we highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with siumlations suggest that secondary Rayleigh-Taylor type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs and spikes. Although the plasma conditions are vastly different, analogous phenomena also occur in the Earth's magnetotail during reconnection.

  2. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  3. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.

    2011-01-01

    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines...... not only ICME events but also SEP events at Mars, with good results providing a consi