WorldWideScience

Sample records for solar corona ii

  1. Joint Soviet-French studies of the solar corona. II - Photometry of the solar corona on June 30, 1973

    Science.gov (United States)

    Vsekhsvyatsky, S. K.; Dzyubenko, N. I.; Ivanchuk, V. I.; Popov, O. S.; Rubo, G. A.; Koutchmy, S.; Koutchmy, O.; Shtelmacher, G.

    1981-04-01

    Results are presented of a study of negatives obtained on June 30, 1973 during the total solar eclipse in Africa; the study was part of a joint Soviet-French experiment on white corona dynamics, carried out by expeditions of Kiev University (Atar, Mauritania) and the Paris Astrophysical Institute (Moussoro, Chad). The distribution of total corona brightness up to 4.5 solar radii and its K and F corona components for east and north directions were found on the basis of novel methods of photometry and colorimetry using star images up to 8.5m as the photometry standards. Neither the color effect nor flattening is found in the inner part (less than 2.5 solar radii) of the F corona. Integral corona brightness in the standard zone of 1.03-6.00 solar radii was found to be 0.64 x 10 to the -6th solar-E.

  2. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  3. A guide to the solar corona

    CERN Document Server

    Billings, Donald E

    1966-01-01

    A Guide to the Solar Corona is specifically directed to the space scientist or engineer who is not a specialist in solar physics, but whose work requires a fairly detailed knowledge of the corona. It is hoped that the material may prove useful to most graduate students in astrophysics, while solar physicists may find some topics of interest and value to them. The book contains 12 chapters and begins with three descriptive chapters that provide the casual reader with a concept of the corona as it is evident through more or less direct observation. Topics covered include the development of coron

  4. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  5. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Science.gov (United States)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  6. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  7. Meteoric ions in the corona and solar wind

    International Nuclear Information System (INIS)

    Lemaire, J.

    1990-01-01

    The total mass of refractory material of interplanetary origin penetrating and evaporated in the meltosphere surrounding the sun has been inferred from observations of meteoroids and fireballs falling in earth's atmosphere. The amount of iron atoms deposited this way in the solar corona is of the order of 3000 t/s or larger. The measured flux of outflowing solar wind iron ions is equal to 2200 t/s. The close agreement of both fluxes is evidence that a significant fraction of iron ions observed in the solar wind and in the corona must be of meteoric origin. A similar accord is also obtained for silicon ions. The mean velocity of meteoroid ions formed in the solar corona is equal to the free-fall velocity: i.e., independent of their atomic mass as the thermal speed of heavy ion measured in low-density solar wind streams at 1 AU. Furthermore, the heavy ions of meteoric origin escape out of the corona with a larger bulk velocity than the protons which are mainly of solar origin. These differences of heavy ion and proton bulk velocities are also observed in the solar wind. 52 refs

  8. Kinetic Physics of the Solar Corona and Solar Wind

    Directory of Open Access Journals (Sweden)

    Marsch Eckart

    2006-07-01

    Full Text Available Kinetic plasma physics of the solar corona and solar wind are reviewed with emphasis on the theoretical understanding of the in situ measurements of solar wind particles and waves, as well as on the remote-sensing observations of the solar corona made by means of ultraviolet spectroscopy and imaging. In order to explain coronal and interplanetary heating, the microphysics of the dissipation of various forms of mechanical, electric and magnetic energy at small scales (e.g., contained in plasma waves, turbulences or non-uniform flows must be addressed. We therefore scrutinise the basic assumptions underlying the classical transport theory and the related collisional heating rates, and also describe alternatives associated with wave-particle interactions. We elucidate the kinetic aspects of heating the solar corona and interplanetary plasma through Landau- and cyclotron-resonant damping of plasma waves, and analyse in detail wave absorption and micro instabilities. Important aspects (virtues and limitations of fluid models, either single- and multi-species or magnetohydrodynamic and multi-moment models, for coronal heating and solar wind acceleration are critically discussed. Also, kinetic model results which were recently obtained by numerically solving the Vlasov–Boltzmann equation in a coronal funnel and hole are presented. Promising areas and perspectives for future research are outlined finally.

  9. The Faraday rotation experiment. [solar corona

    Science.gov (United States)

    Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.

    1984-01-01

    The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.

  10. The coronas-F space mission key results for solar terrestrial physics

    CERN Document Server

    2014-01-01

    This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.

  11. Synchronized observations of bright points from the solar photosphere to the corona

    Science.gov (United States)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  12. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  13. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  14. Skylab investigations of solar corona

    International Nuclear Information System (INIS)

    Krivsky, L.

    1976-01-01

    The findings are reported obtained by the observation of the Sun and its corona from Skylab. The most important findings include the discovery of explosive loop structures induced by eruptive phenomena below the corona, in the chromosphere. The front edge of the explosive loop structure was observed at a distance of 1,700,000 to 2,800,000 km from the Sun. The rate of prominence was around 500 km/s. The loop structure disturbed the original shape of the corona above the solar disk edge. A graph was plotted of the variation of the release of the expanding loop structure from the solar surface in millions of kilometers with time. The graph aided in refuting the erroneous assumption that the prominence was not associated with radio bursts similar to those induced by plasma shock waves. It was also shown that a prominent shock wave is present in the vicinity of the expanding structure front which, at lower levels, got released from the eruptive flare above the solar ''surface''. The knowledge obtained does not involve the Sun alone but is also valuable from the point of view of the prognosis of consequent magnetic anomalies in the interstellar space and geomagnetic disturbances on the Earth. (Z.S.)

  15. MASC: Magnetic Activity of the Solar Corona

    Science.gov (United States)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  16. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  17. Soviet-France cooperative study of the solar corona

    International Nuclear Information System (INIS)

    Vsekhvsyatskij, S.K.; Dzyubenko, N.I.; Ivanchuk, V.I.; Popov, O.S.; Rubo, G.A.; Kuchmij, S.; Kuchmij, O.; Shtel'makher, G.

    1981-01-01

    The study continues the investigations on the solar corona performed according to the program of the Soviet-France experiment ''The white corona dynamics'' during total solar eclipses on July 10 1972 and June 30, 1973 by the expeditions of Kiev University and Paris Astrophysical Institute. The results of the study of eclipse negatives obtained on June 30 1973 in Africa are given. On the basis of new methods of photometry and colorimetry using star images up to 8.5sup(m) as the photometry standards it has been found with high accuracy the distribution of the total corona brightness up to r approximately equal to 4.5 Rsub(S) and its K- and F-corona components for E and N directions. Neither color effect nor flattening is found in the dust component (r -6 Esub(S)

  18. Viking solar corona experiment

    International Nuclear Information System (INIS)

    Tyler, G.L.; Brenkle, J.P.; Komarek, T.A.; Zygielbaum, A.I.

    1977-01-01

    The 1976 Mars solar conjunction resulted in complete occulations of the Viking spacecraft by the sun at solar minimum. During the conjunction period, coherent 3.5- and 13-cm wavelength radio waves from the orbiters passed through the solar corona and were received with the 64-m antennas of the NASA Deep Space Network. Data were obtained within at least 0.3 and 0.8 R/sub s/ of the photosphere at the 3.5- and 13-cm wavelengths, respectively. The data can be used to determine the plasma density integrated along the radio path, the velocity of density irregularities in the coronal plasma, and the spectrum of the density fluctuations in the plasma. Observations of integrated plasma density near the south pole of the sun generally agree with a model of the corona which has an 8:1 decrease in plasma density from the equator to the pole. Power spectra of the 3.5- and 13-cm signals at a heliocentric radial distance of about 2 R/sub s/ have a 1/2-power width of several hundred hertz and vary sharply with proximate geometric miss distance. Spectral broadening indicates a marked progressive increase in plasma irregularities with decreasing ray altitude at scales between about 1 and 100 km

  19. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: brandenb@nordita.org [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)

    2017-08-20

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  20. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  1. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  2. Co-existence of two plasma phases in solar and AGN coronas

    Directory of Open Access Journals (Sweden)

    Kubičela A.

    1998-01-01

    Full Text Available Here we have juxtaposed two distant cosmic locations of the Sun and AGN where neutral hydrogen appears in a close connection with hot coronas. Besides the solar photosphere, chromosphere and prominences where the presence of neutral hydrogen is well established, its emission quite high in hot solar corona is still puzzling. Some of earlier observations where Hα emission in solar corona was detected in eclipse and in daily coronagraphic observations are reviewed. A proper theoretical explanation of this cold chromospheric-type emission in the hot corona does not exist yet. On the other side, a similar emission of hydrogen lines is present in Active Galactic Nuclei (AGNs. Much research work is currently being done in this field. We outline some of the concepts of the AGN structure prevailing in the astrophysics today.

  3. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  4. Comparison of reconnection in magnetosphere and solar corona

    Science.gov (United States)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  5. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  6. Threaded-Field-Line Model for the Transition Region and Solar Corona

    Science.gov (United States)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  7. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  8. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  9. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    International Nuclear Information System (INIS)

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-01-01

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  10. Tomographic Validation of the AWSoM Model of the Inner Corona During Solar Minima

    Science.gov (United States)

    Manchester, W.; Vásquez, A. M.; Lloveras, D. G.; Mac Cormack, C.; Nuevo, F.; Lopez-Fuentes, M.; Frazin, R. A.; van der Holst, B.; Landi, E.; Gombosi, T. I.

    2017-12-01

    Continuous improvement of MHD three-dimensional (3D) models of the global solar corona, such as the Alfven Wave Solar Model (AWSoM) of the Space Weather Modeling Framework (SWMF), requires testing their ability to reproduce observational constraints at a global scale. To that end, solar rotational tomography based on EUV image time-series can be used to reconstruct the 3D distribution of the electron density and temperature in the inner solar corona (r used to validate steady-state 3D MHD simulations of the inner corona using the latest version of the AWSoM model. We perform the study for selected rotations representative of solar minimum conditions, when the global structure of the corona is more axisymmetric. We analyse in particular the ability of the MHD simulation to match the tomographic results across the boundary region between the equatorial streamer belt and the surrounding coronal holes. The region is of particular interest as the plasma flow from that zone is thought to be related to the origin of the slow component of the solar wind.

  11. Magnetic tornadoes as energy channels into the solar corona.

    Science.gov (United States)

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  12. New Views of the Solar Corona from STEREO and SDO

    Science.gov (United States)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  13. The heating of the solar corona. Pt. 2

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Thonemann, P.C.; Wilson, R.

    1975-01-01

    The density and temperature distribution of the solar corona is calculated assuming an energy balance between thermal conduction and radiated power loss with the primary heating of the corona by the dissipation of sound-waves propagated upwards from below the sun's surface. A sharp transition region is found and the calculated results are compared with observations. A detailed model atmosphere for the transition region and corona is derived using the Harvard Smithsonian Reference Atmosphere (for the chromosphere) as starting point. Hydrostatic equilibrium is assumed in the calculations but it is also shown that a pressure arises because of the sound-waves which is of comparable magnitude to hydrostatic pressure. The inclusion of this pressure introduces difficulties that are discussed. (orig.) [de

  14. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  15. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present ...

  16. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); Shearer, Paul [Department of Mathematics, 2074 East Hall, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043 (United States)

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  17. A cone-like enhancement of polar solar corona plasma and its influence on heliospheric particles

    Science.gov (United States)

    Grzedzielski, Stan; Sokół, Justyna M.

    2017-04-01

    We will present results of the study of the properties of the solar wind plasma due to rotation of the polar solar corona. We focus in our study on the solar minimum conditions, when the polar coronal holes are well formed and the magnetic field in the solar polar corona exhibit almost regular "ray-like" structure. The solar rotation twists the magnetic field lines of the expanding fast polar solar wind and the resulting toroidal component of the field induces a force directed towards the rotation axis. This phenomenon is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. like in AGN jets). The pinch compresses the polar solar corona plasma and forms a cone-like enhancement of the solar wind density aligned with the rotation axis in the spherically symmetric case. The effect is likely very dynamic due to fast changing conditions in the solar corona, however in the study presented here, we assume a time independent description to get an order-of-magnitude estimate. The weak pinch is treated as a first-order perturbation to the zeroth-order radial flow. Following the assumptions based on the available knowledge about the plasma properties in the polar solar corona we estimated the most typical density enhancements. The cone like structure may extend as far from the Sun as tens of AU and thus will influence the heliospheric particles inside the heliosphere. An increase of the solar wind density in the polar region may be related with a decrease of the solar wind speed. Such changes of the solar wind plasma at high latitudes may modify the charge-exchange and electron impact ionization rates of heliospheric particles in interplanetary space. We will present their influence on the interstellar neutral gas and energetic neutral atoms observed by IBEX.

  18. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  19. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  20. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  1. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    Science.gov (United States)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

  2. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Science.gov (United States)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  3. Photometric intensity and polarization measurements of the solar corona.

    Science.gov (United States)

    Mcdougal, D. S.

    1971-01-01

    Use of a satellite photometric observatory (SPO) to measure the solar corona from Miahuatlan, Mexico during the Mar. 7, 1970, total eclipse of the sun. The SPO is equipped with a 24-in. Cassegrainian telescope, a four-channel photoelectric photometer, a Wollaston prism, and a rotating half-wave plate. Simultaneous measurements were made of the two orthogonal components of coronal light in the B and R bands of the UBVRI system. A 1-minute arc aperture was scanned from the lunar disk center out to five solar radii in a series of spirals of gradually increasing radius. For the first time, simultaneous multicolor intensity, degree, and angle of polarization profiles are computed from photoelectric measurements. Comparison of the variations of the measurements for each spiral scan yield a detailed picture of the intensity and polarization features in the K corona.

  4. Solar corona electron density distribution

    International Nuclear Information System (INIS)

    Esposito, P.B.; Edenhofer, P.; Lueneburg, E.

    1980-01-01

    Three and one-half months of single-frequency (f= 0 2.2 x 10 9 Hz) time delay data (earth-to-spacecraft and return signal travel time) were acquired from the Helios 2 spacecraft around the time of its solar occupation (May 16, 1976). Following the determination of the spacecraft trajectory the excess time delay due to the integrated effect of free electrons along the signal's ray path could be separated and modeled. An average solar corona, equatorial, electron density profile, during solar minimum, was deduced from time delay measurements acquired within 5--60 solar radii (R/sub S/) of the sun. As a point of reference, at 10 R/sub S/ from the sun we find an average electron density of 4500 el cm -3 . However, there appears to be an asymmtry in the electron density as the ray path moved from the west (preoccultation) to east (post-occulation) solar limb. This may be related to the fact that during entry into occulation the heliographic latitude of the ray path (at closes approach to the sun) was about 6 0 , whereas during exit it became -7 0 . The Helios electron density model is compared with similar models deduced from a variety of different experimental techniques. Within 5--20 R/sub S/ of the sun the models separate according to solar minimum or maximum conditions; however, anomalies are evident

  5. Periodicities in the X-ray Emission from the Solar Corona: SphinX and SOXS Observations

    Science.gov (United States)

    Steślicki, M.; Awasthi, A. K.; Gryciuk, M.; Jain, R.

    The structure and evolution of the solar magnetic field is driven by a magnetohydrodynamic dynamo operating in the solar interior, which induces various solar activities that exhibit periodic variations on different timescales. Therefore, probing the periodic nature of emission originating from the solar corona may provide insights of the convection-zone-photosphere-corona coupling processes. We present the study of the mid-range periodicities, between rotation period (˜27 days) and the Schwabe cycle period (˜11 yr), in the solar soft X-ray emission, based on the data obtained by two instruments: SphinX and SOXS in various energy bands.

  6. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  7. High Performance Computing Application: Solar Dynamo Model Project II, Corona and Heliosphere Component Initialization, Integration and Validation

    Science.gov (United States)

    2015-06-24

    distribution at this level replaced a constant temperature assumption, and density was calculated locally through a balance of radiation loss, thermal...G. References Altschuler, M. D., and G. Newkirk, Jr. (1969), Magnetic fields and the structure of the solar corona. I: Methods of calculating ...Weather, 11, 17-33, doi:10.1029/2012SW000853. Nakamizo, A., T. Tanaka, Y. Kubo , S. Kamei, H. Shimazu, and H. Shinagawa (2009), Development of the

  8. The Mechanism for Energy Buildup in the Solar Corona

    Science.gov (United States)

    Antiochos, Spiro; Knizhnik, Kalman; DeVore, Richard

    2017-10-01

    Magnetic reconnection and helicity conservation are two of the most important basic processes determining the structure and dynamics of laboratory and space plasmas. The most energetic dynamics in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The origin of these explosions is that the lowest-lying magnetic flux in the Sun's corona undergoes the continual buildup of stress and free energy that can be released only through explosive ejection. We perform MHD simulations of a coronal volume driven by quasi-random boundary flows designed to model the processes by which the solar interior drives the corona. Our simulations are uniquely accurate in preserving magnetic helicity. We show that even though small-scale stress is injected randomly throughout the corona, the net result of magnetic reconnection is a coherent stressing of the lowest-lying field lines. This highly counter-intuitive result - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions. It is likely to be a mechanism that is ubiquitous throughout laboratory and space plasmas. This work was supported by the NASA LWS and SR Programs.

  9. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    International Nuclear Information System (INIS)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-01-01

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  10. Are coronae of late type stars made of solar-like structures? The Fx-HR diagram and the pressure-temperature correlation

    OpenAIRE

    Peres, G.; Orlando, S.; Reale, F.

    2004-01-01

    We show that stellar coronae can be composed of X-ray emitting structures like those in the solar corona, using a large set of ROSAT/PSPC observations of late-type-stars, and a large set of solar X-ray data collected with Yohkoh/SXT. We have considered data on the solar corona at various phases of the cycle and various kinds of X-ray coronal structures, from flares to the background corona. The surface flux (F_x) vs. spectral hardness ratio (HR) diagram is a fundamental tool for our study. We...

  11. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Science.gov (United States)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  12. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  13. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun's activity. Moreover, the Sun's atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun's proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This "solar stellar connection" is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region

  14. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  15. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  16. Observations of Fe XIV Line Intensity Variations in the Solar Corona During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Johnson, Payton; Ladd, Edwin

    2018-01-01

    We present time- and spatially-resolved observations of the inner solar corona in the 5303 Å line of Fe XIV, taken during the 21 August 2017 solar eclipse from a field observing site in Crossville, TN. These observations are used to characterize the intensity variations in this coronal emission line, and to compare with oscillation predictions from models for heating the corona by magnetic wave dissipation.The observations were taken with two Explore Scientific ED 102CF 102 mm aperture triplet apochromatic refractors. One system used a DayStar custom-built 5 Å FWHM filter centered on the Fe XIV coronal spectral line and an Atik Titan camera for image collection. The setup produced images with a pixel size of 2.15 arcseconds (~1.5 Mm at the distance to the Sun), and a field of view of 1420 x 1060 arcseconds, covering approximately 20% of the entire solar limb centered near the emerging sunspot complex AR 2672. We obtained images with an exposure time of 0.22 seconds and a frame rate of 2.36 Hz, for a total of 361 images during totality.An identical, co-aligned telescope/camera system observed the same portion of the solar corona, but with a 100 Å FWHM Baader Planetarium solar continuum filter centered on a wavelength of 5400 Å. Images with an exposure time of 0.01 seconds were obtained with a frame rate of 4.05 Hz. These simultaneous observations are used as a control to monitor brightness variations not related to coronal line oscillations.

  17. The nonuniform magnetohydrodynamic nature of the solar corona. III. Cylindrical geometry

    International Nuclear Information System (INIS)

    De ville, A.; Priest, E.R.

    1989-01-01

    The method developed by Priest in 1988 for modeling steady MHD disturbances in the solar corona is extended to a cylindrical geometry, which is more realistic for three-dimensional structures, such as plumes and coronal holes, which are observed in the corona. Both axial symmetric and nonaxial magnetic fields are treated. The basic characteristics of the axisymmetric solutions are found to be similar to the previous Cartesian case. Quantitatively, the interactions are stronger in the central region and weaker at the outer boundary. Pressure gradients are also found to be smaller. Solutions dependent on all three spatial variables exhibit an asymmetry because of the angular dependence. They depend upon the azimuthal magnetic field imposed at the coronal base. The solutions found in this paper may be useful in interpreting the physics of MHD interactions observed in numerical experiments and also in the solar atmosphere

  18. Energy distribution of nanoflares in the quiet solar corona

    Science.gov (United States)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  19. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    Science.gov (United States)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  20. Annual Properties of Transverse Waves in the Corona over most of Solar Cycle 24

    Science.gov (United States)

    Weberg, M. J.; Morton, R. J.; McLaughlin, J. A.

    2017-12-01

    Waves are an omnipresent feature in heliophysical plasmas. In particular, transverse (or "Alfvénic") waves have been observed at a wide range of spatial and temporal scales within the corona and solar wind. These waves play a key role in transporting energy through the solar atmosphere and are also thought to contribute to the heating and acceleration of the solar wind. Previous studies of low-frequency (automated detection and measurement of low-frequency transverse waves with over 7 years of SDO / AIA data to provide a detailed picture of coronal transverse waves in polar plumes and, for the first time, begin to examine their long-term behaviour. We measure waves at three different heights in each of eight, four-hour periods spanning May 2010 - May 2017. We find that the bulk wave parameters within these 24 regions are largely consistent over most of a solar cycle. However, there is some evidence for smaller-scale variations both with height and over time periods of a few years. We also discuss total energy flux estimations based on the full wave power spectra, which yields a more nuanced picture than previous values based on summary statistics. Overall, this work expands our view of wave processes in the corona and is relevant to both theoretical and modelling considerations of energy transport within the solar atmosphere. Crucially, these initial results suggest that the energy flux provided by the low-frequency transverse waves varies little over the solar cycle, potentially indicating that the waves provide a consistent source of energy to the corona and beyond.

  1. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  2. Absolute photometry of the corona of July 10, 1972 total solar eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Khetsuriani, Ts.S.; Tetruashvili, Eh.I.

    1985-01-01

    The observations were carried out by the Abastumani astrophysical observatory expedition at July 10.1972 total solar eclipse from a site of the Chukotka Peninsula. The photometry of the corona images is performed by the equidensity method having expressed the intensities in absolute units. The F and K components of the corona are separated on the basis of photometric and polarisation data. The variations of the electron concentration with the distance from the centre of the Sun and tempeatures at various distances are calculated.

  3. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    Science.gov (United States)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  4. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  5. Electron cyclotron maser instability in the solar corona: The role of superthermal tails

    International Nuclear Information System (INIS)

    Vlahos, L.; Sharma, R.R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone--driven electron cyclotron maser instability is analyzed. We found that for a supertheral tail with temperature approx.10 keV (i) the first harmonic (X- and O-mode) is suppressed for n/sub t//n/sub r/roughly-equal1 (n/sub t/ and n/sub r/ are the densities of superthermal tail and loss-cone electrons) and (ii) the second harmonic (X- and O-modes) is suppressed for n/sub t//n/sub r/ -1 . We present a qualitative discussion on the formation of superthermal taisl and suggest that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona

  6. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O. [Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA 01854 (United States)

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  7. Empirical models of the Solar Wind : Extrapolations from the Helios & Ulysses observations back to the corona

    Science.gov (United States)

    Maksimovic, M.; Zaslavsky, A.

    2017-12-01

    We will present extrapolation of the HELIOS & Ulysses proton density, temperature & bulk velocities back to the corona. Using simple mass flux conservations we show a very good agreement between these extrapolations and the current state knowledge of these parameters in the corona, based on SOHO mesurements. These simple extrapolations could potentially be very useful for the science planning of both the Parker Solar Probe and Solar Orbiter missions. Finally will also present some modelling considerations, based on simple energy balance equations which arise from these empirical observationnal models.

  8. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  9. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  10. New Techniques Used in Modeling the 2017 Total Solar Eclipse: Energizing and Heating the Large-Scale Corona

    Science.gov (United States)

    Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa

    2017-08-01

    Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.

  11. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  12. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  13. Resonators for magnetohydrodynamic waves in the solar corona: The effect of modulation of radio emission

    International Nuclear Information System (INIS)

    Zaitsev, V.V.; Stepanov, A.V.

    1982-01-01

    It is shown that the existence of a minimum of the Alfven speed in the corona at a height of approx.1R/sub sun/ follows from the characteristics of type II radio bursts. The region of a reduced Alfven speed is a resonator for a fast magnetosonic (FMS) waves. The eigenmodes of the resonator are determined. The period of the fundamental mode has the order of several minutes. In the resonator FMS waves can be excited at the Cherenkov resonance by streams of energetic ions. Modulations of metal solar radio emission with a period of several minutes is explained by the effect of the propagation of radio waves through an oscillating magnetohydrodynamic (MHD) resonator

  14. Flare-induced MHD disturbances in the corona--Moreton waves and type II shocks

    International Nuclear Information System (INIS)

    Uchida, Y.

    1972-01-01

    The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton' s surface wave and the peculiar appearance in the shape and position of the type II burst sources can be consistently understood by considering the refraction, focussing, and fermation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Based on some comparison of the positions of low-Alfven-velocity regions in the corona with observed positions of type II burst sources, it is proposed that the type II burst sources may be identified with such low-Alfven-velocity regions ''illuminated'' by thus enhanced shocks. (U.S.)

  15. Field-Lines-Threaded Model for: (1) the Low Solar Corona; (2) Electrons in the Transition Region; and (3) Solar Energetic Particle Acceleration and Transport

    Science.gov (United States)

    Sokolov, I.; van der Holst, B.; Jin, M.; Gombosi, T. I.; Taktakishvili, A.; Khazanov, G. V.

    2013-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ('thread'), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to find the local solution. We present the development of the AWSoM code of the University of Michigan with the field-lines-threaded Low Solar Corona. In the transition region, where the essentially kinetic description of the electron energy fluxes is required, we solve the Fokker-Plank equation on the system of threads, to achieve the physically consistent description of chromosphere evaporation. The third application for the field-lines-treaded model is the Solar Energetic Particle (SEP) acceleration and transport. Being the natural extension of the Field

  16. Calculated Resonance Line Profiles of [Mg II], [C II], and [Si IV] in the Solar Atmosphere

    Science.gov (United States)

    Avrett, E.; Landi, E.; McKillop, S.

    2013-12-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  17. Calculated resonance line profiles of [Mg II], [C II], and [Si IV] in the solar atmosphere

    International Nuclear Information System (INIS)

    Avrett, E.; McKillop, S.; Landi, E.

    2013-01-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  18. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  19. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  20. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    International Nuclear Information System (INIS)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-01-01

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent

  1. Resonators for magnetohydrodynamic waves in the solar corona: radioemission modulation effect

    International Nuclear Information System (INIS)

    Zajtsev, V.V.; Stepanov, A.V.

    1982-01-01

    Data on type 2 solar radio bursts are analyzed in the framework of a model of radio emission production by shock waves. Type 2 solar radio bursts data are shown to suggest the existence of Alfven velocity minimum at a height of the one solar radius in the corona. The domain of a low Alfven velocity is a resonator for the fast magnetosonic waves. The eigenmodes of the resonator are determined. The main mode period is about a few minutes. Fast modes in the resonator can be amplified by energetic ion beams at the Cherenkov resonance. The modulation of meter solar radio emission with a period of about a few minutes can be explained by radiowave propagation through the MHD-resonator

  2. Neutral Hydrogen and Its Emission Lines in the Solar Corona

    Science.gov (United States)

    Vial, Jean-Claude; Chane-Yook, Martine

    2016-12-01

    Since the Lyman-α rocket observations of Gabriel ( Solar Phys. 21, 392, 1971), it has been realized that the hydrogen (H) lines could be observed in the corona and that they offer an interesting diagnostic for the temperature, density, and radial velocity of the coronal plasma. Moreover, various space missions have been proposed to measure the coronal magnetic and velocity fields through polarimetry in H lines. A necessary condition for such measurements is to benefit from a sufficient signal-to-noise ratio. The aim of this article is to evaluate the emission in three representative lines of H for three different coronal structures. The computations have been performed with a full non-local thermodynamic-equilibrium (non-LTE) code and its simplified version without radiative transfer. Since all collisional and radiative quantities (including incident ionizing and exciting radiation) are taken into account, the ionization is treated exactly. Profiles are presented at two heights (1.05 and 1.9 solar radii, from Sun center) in the corona, and the integrated intensities are computed at heights up to five solar radii. We compare our results with previous computations and observations ( e.g. Lα from Ultraviolet Coronal Spectrometer) and find a rough (model-dependent) agreement. Since the Hα line is a possible candidate for ground-based polarimetry, we show that in order to detect its emission in various coronal structures, it is necessary to use a very narrow (less than 2 Å wide) bandpass filter.

  3. The CORONAS-Photon/TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S.; Zhitnik, I.; Bogachev, S.; Bugaenko, O.; Ignat'ev, A.; Mitrofanov, A.; Perzov, A.; Shestov, S.; Slemzin, V.; Suhodrev, N.

    The new experiment TESIS is developent for russian CORONAS-Photon mission launch is planned on the end of 2007 The experiment is aimed on the study of activity of the Sun in the phases of minimum rise and maximum of 24 th cycle of Solar activity by the method of XUV imaging spectroscopy The method is based on the registration full-Sun monochromatic images with high spatial and temporal resolution The scientific tasks of the experiment are i Investigation dynamic processes in corona flares CME etc with high spatial up to 1 and temporal up to 1 second resolution ii determination of the main plasma parameters like plasma electron and ion density and temperature differential emission measure etc iii study of the processes of appearance and development large scale long-life magnetic structures in the solar corona study of the fluency of this structures on the global activity of the corona iv study of the mechanisms of energy accumulation and release in the solar flares and mechanisms of transformation of this energy into the heating of the plasma and kinematics energy To get the information for this studies the TESIS will register full-Sun images in narrow spectral intervals and the monochromatic lines of HeII SiXI FeXXI-FeXXIII MgXII ions The instrument includes 5 independent channels 2 telescopes for 304 and 132 A wide-field 2 5 degrees coronograph 280-330A and 8 42 A spectroheliographs The detailed description of the TESIS experiment and the instrument is presented

  4. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  5. Catastrophic cooling and cessation of heating in the solar corona

    Science.gov (United States)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  6. SUPRATHERMAL ELECTRONS IN THE SOLAR CORONA: CAN NONLOCAL TRANSPORT EXPLAIN HELIOSPHERIC CHARGE STATES?

    International Nuclear Information System (INIS)

    Cranmer, Steven R.

    2014-01-01

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements

  7. Electrons in the solar corona. Pt. 3. Coronal streamers analysis from balloon-borne coronagraph

    Energy Technology Data Exchange (ETDEWEB)

    Dollfus, A; Mouradian, Z [Observatoire de Paris, Section de Meudon, 92 (France)

    1981-03-01

    During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5 Rsub(sun) during 5 hr, with an externally occulted coronagraph. Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s/sup -1/; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 x 10/sup 6/ K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 Rsub(sun). Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.

  8. The colour of the solar corona and dust grains in it

    International Nuclear Information System (INIS)

    Ajmanov, A.K.; Nikolsky, G.M.

    1980-01-01

    The photometry of coronal negatives is carried out. The films were obtained at the March 7, 1970 and July 10, 1972 eclipses. A distribution of the coronal brightness in the red (635 mm), green (545 nm), and blue (455 nm) wavelength intervals up to distances of (6-7)Rsub(sun) is deduced (Figure 1). Colour indexes of the corona (the emission ratio red/blue-Csub(rb) and green/blue-Csub(gb)) have been obtained. We assume Csub(rb) = Csub(gb) = 1 in the inner corona ( = 1 μm. RED brightness is evaluated to be 4 x 10 -10 anti Bsub(sun). There is 1 grain of dust in the elementary volume with cross section of 1 cm 2 along the line of sight. The intensity of dust emission in wavelength interval 10 μm deduced by the authors is approximately 1 μ W cm -2 sm -1 . That is in agreement with Mankin et al. (1974) and Lena et al. (1974) observations. The whole dust mass of RED is -11 cm -3 . Determination of the colour of the solar corona have been made by a number of scientists (Tikhov, 1940, 1957; Allen, 1946; Blackwell, 1952; Michard, 1956; Sharonov, 1958; Nay et al. 1961). The corona colour was found to be somewhat redder than the Sun's. However this question is not finally settled to date. (orig.)

  9. Structure of the solar transition region and inner corona

    International Nuclear Information System (INIS)

    Mariska, J.T.

    1977-01-01

    Emission gradient curves for extreme ultraviolet (EUV) resonance lines of lithium-like ions were constructed from spectroheliograms of quiet limb regions and a north polar coronal hole observed with the Harvard experiment on Skylab. The observations are interpreted with simple coronal models. Comparison of the theoretical and observed emission gradients for quiet regions indicates that for these areas the temperature rises throughout the inner corona (1.03 less than or equal to r less than or equal to 1.20 R/sub mass/). In the coronal hole the temperature rises in a manner consistent with a constant conductive flux to an isothermal corona at a temperature of 1.1 x 10 6 K at 1.08/sub mass/. The geometry of the coronal hole boundary is also determined. The boundary geometry and density distribution are combined with typical solar wind parameters at the north to determine an outflow velocity of 15 km s -1 at 1.08 R/sub mass/. The energy balance implications of the models are examined. It was found that in the transition region both conduction and radiation are important in determining the energy balance in network regions in both quiet areas and coronal holes. Additional energy sources are required in the network in coronal holes. In the corona it is found that, to within the errors of the determination, the energy losses, and hence the requirements for mechanical heating, are the same in quiet regions and coronal holes

  10. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  11. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  12. The TESIS experiment on the CORONAS-PHOTON spacecraft

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  13. Double Arc Instability in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, N.; Kusano, K., E-mail: n-ishiguro@isee.nagoya-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan (Japan)

    2017-07-10

    The stability of the magnetic field in the solar corona is important for understanding the causes of solar eruptions. Although various scenarios have been suggested to date, the tether-cutting reconnection scenario proposed by Moore et al. is one of the widely accepted models to explain the onset process of solar eruptions. Although the tether-cutting reconnection scenario proposes that the sigmoidal field formed by internal reconnection is the magnetic field in the pre-eruptive state, the stability of the sigmoidal field has not yet been investigated quantitatively. In this paper, in order to elucidate the stability problem of the pre-eruptive state, we developed a simple numerical analysis in which the sigmoidal field is modeled by a double arc electric current loop and its stability is analyzed. As a result, we found that the double arc loop is more easily destabilized than the axisymmetric torus, and it becomes unstable even if the external field does not decay with altitude, which is in contrast to the axisymmetric torus instability. This suggests that tether-cutting reconnection may well work as the onset mechanism of solar eruptions, and if so, the critical condition for eruption under a certain geometry may be determined by a new type of instability rather than by the torus instability. Based on them, we propose a new type of instability called double arc instability (DAI). We discuss the critical conditions for DAI and derive a new parameter κ , defined as the product of the magnetic twist and the normalized flux of the tether-cutting reconnection.

  14. Waves and Turbulence in the Solar Corona: A Surplus of Sources and Sinks

    Science.gov (United States)

    Cranmer, Steven R.

    2018-06-01

    The Sun's corona is a hot, dynamic, and highly stochastic plasma environment, and we still do not yet understand how it is heated. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be filled with waves and turbulent eddies. Models that invoke the dissipation of these magnetohydrodynamic (MHD) fluctuations have had some success in explaining the heating. In this presentation I will review some new insights about the different ways these waves are thought to be created and destroyed. For example: (1) Intergranular bright points in the photosphere are believed to extend upwards as coronal flux tubes, and their transverse oscillations are driven by the underlying convection. New high-resolution MHD simulations predict the kinetic energy spectra of the resulting coronal waves and serve as predictions for upcoming DKIST observations. (2) Magnetic reconnection in the supergranular network of the low corona can also generate MHD waves, and new Monte Carlo models of the resulting power spectra will be presented. The total integrated power in these waves is typically small in comparison to that of photosphere-driven waves, but they dominate the total spectrum at periods longer than about 30 minutes. (3) Because each magnetic field line in the corona is tied to at least one specific chromospheric footpoint (each with its own base pressure), the corona also plays host to field-aligned "density striations." These fluctuations vary with the supergranular network on timescales of roughly a day, but they also act as a spatially varying background through which the higher-frequency waves propagate. These multiple sources of space/time variability must be taken into account to properly understand off-limb measurements from CoMP and EIS/Hinode, as well as in-situ measurements from Parker Solar Probe.

  15. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    Science.gov (United States)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  16. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  17. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    Science.gov (United States)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  18. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-α line profile observations

    International Nuclear Information System (INIS)

    Argo, H.V.

    1981-01-01

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-α (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya

  19. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

    Science.gov (United States)

    Pipin, V. V.; Tomozov, V. M.

    2018-04-01

    Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP 10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.

  20. Configuration of and Motions in the Solar Corona at the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Rusin, Vojtech; Vanur, Roman; Economou, Thanasis; Voulgaris, Aristeidis; Seiradakis, John H.; Seaton, Daniel; Dantowitz, Ronald; Lockwood, Christian A.; Nagle-McNaughton, Timothy; Perez, Cielo; Meadors, Erin N.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Ide, Charles A.; Daly, Declan M.; Davis, Allen Bradford; Lu, Muzhou; Steele, Amy; Lee, Duane; Freeman, Marcus J.; Sliski, David; Rousseva, Ana; Greek Salem (Oregon) Team; Voulgaris, Aristeidis; Seiradakis, John Hugh; Koukioglou, Stavros; Kyriakou, Nikos; Vasileiadou, Anna; Greek Carbondale (Illinois) Team; Economou, Thanasis; Kanouras, Spyros; Irakleous, Christina; Golemis, Adrianos; Tsioumpanika, Nikoleta; Plexidas, Nikos; Tzimkas, Nikos; Kokkinidou, Ourania

    2018-06-01

    We report on high-contrast data reduction of white-light images from the August 21, 2017, total solar eclipse. We show the configuration of the solar corona at this declining phase of the solar-activity cycle, with the projection onto the plane of the sky of the three-dimensional coronal streamers plus extensive polar plumes. We discuss the relation of the white-light coronal loops visible in our observations with extreme-ultraviolet observations from NASA’s Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and NOAA’s GOES-16 Solar Ultraviolet Imager (SUVI). We show differences and motions over a 65-minute interval between observations from our main site at Willamette University in Salem, Oregon, and a subsidiary site in Carbondale, Illinois. We discuss, in particular, a giant demarcation about 1 solar radius outward in the southwest that crosses the radial streamers.Our observations of the eclipse were sponsored in large part by the Committee for Research and Exploration of the National Geographic Society and by the Solar Terrestrial Program of the National Geographic Society. Additional support was received from the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the University of Pennsylvania (for DS), the Slovak Academy of Sciences VEGA project 2/0003/16, and the Freeman Foote Expeditionary and Brandi funds at Williams College. We thank Stephen Thorsett, Rick Watkins, and Honey Wilson of Willamette University for their hospitality. See http://totalsolareclipse.org or http://sites.williams.edu/eclipse/2017-usa/.

  1. Ubiquitous and Continuous Propagating Disturbances in the Solar Corona

    Science.gov (United States)

    Morgan, Huw; Hutton, Joseph

    2018-02-01

    A new processing method applied to Atmospheric Imaging Assembly/Solar Dynamic Observatory observations reveals continuous propagating faint motions throughout the corona. The amplitudes are small, typically 2% of the background intensity. An hour’s data are processed from four AIA channels for a region near disk center, and the motions are characterized using an optical flow method. The motions trace the underlying large-scale magnetic field. The motion vector field describes large-scale coherent regions that tend to converge at narrow corridors. Large-scale vortices can also be seen. The hotter channels have larger-scale regions of coherent motion compared to the cooler channels, interpreted as the typical length of magnetic loops at different heights. Regions of low mean and high time variance in velocity are where the dominant motion component is along the line of sight as a result of a largely vertical magnetic field. The mean apparent magnitude of the optical velocities are a few tens of km s‑1, with different distributions in different channels. Over time, the velocities vary smoothly between a few km s‑1 to 100 km s‑1 or higher, varying on timescales of minutes. A clear bias of a few km s‑1 toward positive x-velocities is due to solar rotation and may be used as calibration in future work. All regions of the low corona thus experience a continuous stream of propagating disturbances at the limit of both spatial resolution and signal level. The method provides a powerful new diagnostic tool for tracing the magnetic field, and to probe motions at sub-pixel scales, with important implications for models of heating and of the magnetic field.

  2. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  3. Diffusion effects on the line intensities of He I and He II in the solar transition region

    International Nuclear Information System (INIS)

    Shine, R.; Gerola, H.; Linsky, J.L.

    1975-01-01

    A heuristic treatment of diffusion in the solar chromosphere-corona transition region is developed. Diffusion becomes increasingly important with steeper temperature gradients, in active and quiet regions relative to coronal holes, and with increasing excitation potential. Numerical calculations are made for the resonance lines of He i and He ii and show that diffusion can enhance these lines. Thus the helium lines may appear relatively weak in coronal holes due to a weakening of the enhancement mechanism. Most transition region lines will be less affected by diffusion than He i or He ii

  4. Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth’s ionosphere during total solar eclipses from 1932 to 1999

    Directory of Open Access Journals (Sweden)

    C. J. Davis

    Full Text Available Measurements of the ionospheric E region during total solar eclipses in the period 1932–1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, 8, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in 8 has a negligible probability of being a chance occurrence.

    Key words. Ionosphere (solar radiation and cosmic ray effects – Solar physics, astrophysics, and astronomy (corona and transition region

  5. Thermodynamics of the Solar Corona and Evolution of the Solar Magnetic Field as Inferred from the Total Solar Eclipse Observations of 11 July 2010

    Science.gov (United States)

    Habbal, Shadia Rifai; Druckmueller, Miloslav; Morgan, Huw; Ding, Adalbert; Johnson, Judd; Druckmuellerova, Hana; Daw, Adrian; Arndt, Martina B.; Dietzel, Martin; Saken, Jon

    2011-01-01

    We report on multi-wavelength observations of the corona taken simultaneously in broadband white light, and in seven spectral lines, H-alpha 656.3 nm, Fe IX 435.9 nm, Fe X 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm and Ni XV 670.2 nm. The observations were made during the total solar eclipse of 11 July 2010 from the atoll of Tatakoto in French Polynesia. Simultaneous imaging with narrow bandpass filters in each of these spectral lines and in their corresponding underlying continua maximized the observing time during less than ideal observing conditions and yielded outstanding quality data. The application of two complementary image processing techniques revealed the finest details of coronal structures at 1" resolution in white light, and 6.5" in each of the spectral lines. This comprehensive wavelength coverage confirmed earlier eclipse findings that the solar corona has a clear two-temperature structure: The open field lines, expanding outwards from the solar surface, are characterized by electron temperatures near 1 X 10(exp 6) K, while the hottest plasma around 2X 10(exp 6) K resides in loop-like structures forming the bulges of streamers. The first images of the corona in the forbidden lines of Fe IX and Ni XV, showed that there was very little coronal plasma at temperatures below 5 X 10(exp 5) K and above 2.5X 10(exp 6) K. The data also enabled temperature differentiations as low as 0:2 X 10(exp 6) K in different density structures. These observations showed how the passage of CMEs through the corona, prior to totality, produced large scale ripples and very sharp streaks, which could be identified with distinct temperatures for the first time. The ripples were most prominent in emission from spectral lines associated with temperatures around 10(exp 6) K. The most prominent streak was associated with a conical-shaped void in the emission from the coolest line of Fe IX and from the hottest line of Ni XV. A prominence, which erupted prior to

  6. Bright point study. [of solar corona

    Science.gov (United States)

    Tang, F.; Harvey, K.; Bruner, M.; Kent, B.; Antonucci, E.

    1982-01-01

    Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission and high resolution photospheric magnetograph observations on September 11, 1980 are presented. A total of 31 bipolar ephemeral regions were found in the photosphere from birth in 9.3 hours of combined magnetograph observations from three observatories. Two of the three ephemeral regions present in the field of view of the Ultraviolet Spectrometer-Polarimeter were observed in the C IV 1548 line. The unobserved ephemeral region was determined to be the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three regions. The Flat Crystal Spectrometer observed only low level signals in the O VIII 18.969 A line, which were not statistically significant to be positively identified with any of the 16 ephemeral regions detected in the photosphere. In addition, the data indicate that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions, while more ephemeral regions were observed than their counterparts in the transition region and the corona.

  7. Clementine Observes the Moon, Solar Corona, and Venus

    Science.gov (United States)

    1997-01-01

    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  8. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  9. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Science.gov (United States)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  10. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    Science.gov (United States)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  11. The energy and pressure balance in the corona

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.; Wilson, R.

    1976-01-01

    This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: (a) heating of the outer corona by mechanical waves; (b) convective out-flow of gas giving rise to the solar wind; (c) thermal conductions; (d) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested. (author)

  12. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    Science.gov (United States)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  13. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    Science.gov (United States)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  14. Comparative study of the loss cone-driven instabilities in the low solar corona

    International Nuclear Information System (INIS)

    Sharma, R.R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone--driven instabilities in the low solar corona is undertaken. The instailities considered are the electron maser, the whistler, and the electrostatic upper hybrid. We show that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strongly magnetized plasma (ω/sub e//Ω/sub e/ 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). We also show that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, we suggest that the electron cyclotron maser instability can be the explanation for intense radio bursts only when the first harmonic escapes from the low corona. We propose a possible explanation for the escape of the first harmonic from a flaring loop

  15. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    Science.gov (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project No.284461, www.eheroes.eu).

  16. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first

  17. Sparse Bayesian Inference and the Temperature Structure of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Byers, Jeff M. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-02-20

    Measuring the temperature structure of the solar atmosphere is critical to understanding how it is heated to high temperatures. Unfortunately, the temperature of the upper atmosphere cannot be observed directly, but must be inferred from spectrally resolved observations of individual emission lines that span a wide range of temperatures. Such observations are “inverted” to determine the distribution of plasma temperatures along the line of sight. This inversion is ill posed and, in the absence of regularization, tends to produce wildly oscillatory solutions. We introduce the application of sparse Bayesian inference to the problem of inferring the temperature structure of the solar corona. Within a Bayesian framework a preference for solutions that utilize a minimum number of basis functions can be encoded into the prior and many ad hoc assumptions can be avoided. We demonstrate the efficacy of the Bayesian approach by considering a test library of 40 assumed temperature distributions.

  18. Properties of minimum-flux coronae in dwarfs and giants

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    Using a method due to Hearn, we examine the properties of minimum-flux coronae in dwarfs and giants. If the fraction phi of the total stellar luminosity which is used to heat the corona is equal to the solar value phi/sub s/, then red dwarfs must have coronae that are cooler than the solar corona: in UV Ceti, for example, the coronal temperature is a factor 3 less than in the Sun. This is consistent with an independent estimate of coronal temperature in a flare star. If phi=phi/sub s/, main-sequence stars hotter than the Sun have coronae which are hotter than the solar corona. Soft X-rays from Sirius suggest that the coronal temperature in Sirius is indeed hotter than the Sun by a factor of about 40 percent. Giants show an even more marked decrease in coronal temperature at later spectral type than do the dwarfs. We suggest that the reason for the presence of O V emission in β Gem and O VI emission in α Aur, and the absence of O V emission in α Boo and α Tau, is that the coronae in the latter two stars are cooler (rather than hotter, as McClintock et al. have suggested) than in the former two. Our results explain why it is more likely that mass loss has been detected in α Aur and α Boo, but not in α Tau or β Gem. Using a simple flare model, we show that flares in both a dwarf star (UV Ceti) and a giant (α Aur) were initiated not in the corona, but in the transition region

  19. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Zapiór, M.; Heinzel, P.; Oliver, R.; Ballester, J. L.

    2016-01-01

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  20. SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, M.; Heinzel, P. [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov, The Czech Republic (Czech Republic); Oliver, R.; Ballester, J. L. [Universitat de les Illes Balears. Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-08-20

    We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for different modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.

  1. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    International Nuclear Information System (INIS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-01-01

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of β than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona

  3. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    DEFF Research Database (Denmark)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow

    2015-01-01

    advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun......Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D...... structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant...

  4. X-ray spectrometer spectrograph telescope system. [for solar corona study

    Science.gov (United States)

    Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.; Salat, S. W.; Franks, A.; Schmidtke, G.; Schweizer, W.; Speer, R. J.

    1979-01-01

    A new sounding rocket payload that has been developed for X-ray spectroscopic studies of the solar corona is described. The instrument incorporates a grazing incidence Rowland mounted grating spectrograph and an extreme off-axis paraboloic sector feed system to isolate regions of the sun of order 1 x 10 arc seconds in size. The focal surface of the spectrograph is shared by photographic and photoelectric detection systems, with the latter serving as a part of the rocket pointing system control loop. Fabrication and alignment of the optical system is based on high precision machining and mechanical metrology techniques. The spectrograph has a resolution of 16 milliangstroms and modifications planned for future flights will improve the resolution to 5 milliangstroms, permitting line widths to be measured.

  5. The Time-Dependent Chemistry of Cometary Debris in the Solar Corona

    Science.gov (United States)

    Pesnell, W. D.; Bryans, P.

    2015-01-01

    Recent improvements in solar observations have greatly progressed the study of sungrazing comets. They can now be imaged along the entirety of their perihelion passage through the solar atmosphere, revealing details of their composition and structure not measurable through previous observations in the less volatile region of the orbit further from the solar surface. Such comets are also unique probes of the solar atmosphere. The debris deposited by sungrazers is rapidly ionized and subsequently influenced by the ambient magnetic field. Measuring the spectral signature of the deposited material highlights the topology of the magnetic field and can reveal plasma parameters such as the electron temperature and density. Recovering these variables from the observable data requires a model of the interaction of the cometary species with the atmosphere through which they pass. The present paper offers such a model by considering the time-dependent chemistry of sublimated cometary species as they interact with the solar radiation field and coronal plasma. We expand on a previous simplified model by considering the fully time-dependent solutions of the emitting species' densities. To compare with observations, we consider a spherically symmetric expansion of the sublimated material into the corona and convert the time-dependent ion densities to radial profiles. Using emissivities from the CHIANTI database and plasma parameters derived from a magnetohydrodynamic simulation leads to a spatially dependent emission spectrum that can be directly compared with observations. We find our simulated spectra to be consistent with observation.

  6. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  7. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    Science.gov (United States)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  8. Joint Soviet--French investigations of the solar corona. 2. Photometry of solar corona of June 30, 1973

    International Nuclear Information System (INIS)

    Vsekhsvyatskii, S.; Dzyubenko, N.; Ivanchuk, V.; Popov, O.; Rubo, G.; Koutchmy, S.; Koutchmy, O.; Stellmacher, G.

    1981-01-01

    The results are presented on a study of eclipse negative obtained on June 30, 1973, in Africa in the program of the Soviet--French experiment ''Dynamics of the White Corona'' by expeditions of Kiev University (Atar, Mauritania) and the Paris Astropysical Institute (Moussoro, Chad). The distributions of the total brightness of the corona out to rapprox. =4.5 R/sub sun/ and of its K and F components for the E and N directions are found with high accuracy on the basis of a new method of photometry and colorimetry using the images of stars down to 8.5/sup m/ as photometric standards. Neither reddening nor flattening of the dusty F component were detected at r -6 E/sub sun/

  9. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, Federico A.; Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires (Argentina); Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  10. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  11. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  12. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    Science.gov (United States)

    2016-06-05

    efficiently by using current density rather than electric field as the fundamental wave quantity. 3. Moser & Bellan (2012) showed that the effective gravity...there is effectively a magnetic bubble. This is relevant to interplanetary magnetic clouds spawned by the eruptions of solar corona structures. 10...release. Haw, Magnus , & Bellan, Paul. 2015. 1D fast coded aperture camera. Review of Scientific Instruments, 86(4). 043506. Moser, Auna L., & Bellan

  13. Current Sheets in the Corona and the Complexity of Slow Wind

    Science.gov (United States)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  14. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-10-01

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.

  15. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.-S.; Kim, R.-S. [Korea Astronomy and Space Science Institute, Whaamdong, Yooseong-ku, Daejeon, 305-348 (Korea, Republic of); Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S., E-mail: kscho@kasi.re.kr [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  16. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  17. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)

    2016-03-25

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  18. Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.

    Science.gov (United States)

    Vásquez, A. M.; Frazin, R. A.

    We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.

  19. Magnetic neutral sheets in evolving fields. I - General theory. II - Formation of the solar corona

    Science.gov (United States)

    Parker, E. N.

    1983-01-01

    The problem of the hydrostatic equilibrium of a large-scale magnetic field embedded in a fluid with infinite electrical conductivity is considered. It is pointed out that a necessary condition for static equilibrium is the invariance of the small-scale pattern in the field along the large-scale direction. A varying topological pattern implies that no fluid pressure distribution exists for which the field is everywhere static. Magnetic neutral sheets form, and dynamical reconnection of the field takes place. It is shown here that the invariance is also a sufficient condition for the existence of a fluid pressure distribution producing static equilibrium. Even in the simplest cases, however, the requirements on the fluid pressure are extreme and, a priori, are unlikely. It is concluded that almost all twisted flux tubes packed together produce dynamical nonequilibrium and dissipation of their twisting. This is the basic effect underlying the long-standing conjecture that the shuffling of the footpoints of the bipolar magnetic fields in the sun is responsible for heating the active corona. Attention is then given to the consequences of this general dynamical dissipation in the magnetic fields that produce the active corona of the sun. The footpoints of the field are continually manipulated by the subphotospheric convection in such a way that the lines of force are continually wrapped and rotated about one another.

  20. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901 (United States)

    2017-09-10

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  1. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhao, Lulu

    2017-01-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  2. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  3. LAD Dissertation Prize: Laboratory Identification of Magnetohydrodynamic Eruption Criteria in the Solar Corona

    Science.gov (United States)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    2018-06-01

    Ideal magnetohydrodynamic instabilities such as the kink and torus instabilities are believed to play an important role in driving storage-and-release eruptions in the solar corona. These instabilities act on long-lived, arched magnetic flux ropes that are line-tied to the solar surface. In spite of numerous observational and computational studies, the conditions under which these instabilities produce an eruption remain a subject of intense debate. In this paper, we use a line-tied, arched flux rope experiment to systematically study storage-and-release eruption mechanisms in the laboratory [1]. Thin in situ magnetic probes facilitate the study of both the equilibrium and the stability of these laboratory flux ropes. In particular, they permit the direct measurement of magnetic (J×B) forces, both in equilibrium [2] and during dynamic events [3, 4]. Regarding stability and eruptions, two major results are reported: First, a new stability regime is identified where torus-unstable flux ropes fail to erupt. In this ‘failed torus’ regime, the flux rope is torus-unstable but kink-stable. Under these conditions, a dynamic toroidal field tension force surges in magnitude and prevents the flux rope from erupting [3, 4]. This dynamic tension force, which is missing from existing eruption models, is generated by magnetic self-organization events within the line-tied flux rope. Second, a clear torus instability threshold is observed in the kink-unstable regime. This latter result, which is consistent with existing theoretical [5] and numerical [6] results, verifies the key role of the torus instability in driving flux rope eruptions in the solar corona.[1] C. E. Myers, Ph.D. Thesis, Princeton University (2015)[2] C. E. Myers et al., Phys. Plasmas 23, 112102 (2016)[3] C. E. Myers et al., Nature 528, 526 (2015)[4] C. E. Myers et al., Plasma Phys. Control. Fusion 59, 014048 (2017)[5] O. Olmedo & J. Zhang, Astrophys. J. 718, 433 (2010)[6] T. Török & B. Kliem, Astrophys. J

  4. Are All Flare Ribbons Simply Connected to the Corona?

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Paraschiv, Alin; Lacatus, Daniela; Donea, Alina [Monash Center for Astrophysics, School of Mathematical Science, Monash University, Victoria 3800 (Australia); Lindsey, Charlie, E-mail: judge@ucar.edu, E-mail: alina.donea@monash.edu, E-mail: alin.paraschiv@monash.edu, E-mail: daniela.lacatus@monash.edu, E-mail: indsey@cora.nwra.com [Northwest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2017-04-01

    We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode , Solar Dynamics Observatory , and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, with no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission.

  5. Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Krucker, Säm; Christe, Steven; Buitrago-Casas, Juan Camilo; Narukage, Noriyuki; Vievering, Juliana

    2017-11-01

    The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.

  6. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  7. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    Science.gov (United States)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty

  8. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  9. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  10. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for

  11. Electron cyclotron maser instability in the solar corona - The role of superthermal tails

    Science.gov (United States)

    Vlahos, L.; Sharma, R. R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.

  12. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    International Nuclear Information System (INIS)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-01-01

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for (Omega) ∝ (ωL) 1/3 (ω c /ω) ∼ 1.5. Here ω c is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as (Omega) increases. (4) As (Omega) increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as (Omega) increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50-70%. (7) The interference effect and the disappearance of the x mode at (Omega) ∼> 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion

  13. Investigation on a TEA-CO II laser with surface corona pre-ionization

    Science.gov (United States)

    Behjat, A.; Aram, M.; Soltanmoradi, F.; Shabanzadeh, M.

    2006-05-01

    The construction of a surface corona UV pre-ionized TEA CO II laser is described and dependence of its average output energy of the laser to gas mixture, discharge voltage and repetition rate is investigated. The electric circuit diagram and geometry of the pre-ionization system are presented. Configuration of circuit has been designed to produce only impulsive voltage difference between the laser electrodes. Also, the triggering configuration of trigatron is prepared for fast operation to minimize the arc occurrence as much as possible. Some data of current, voltage, laser pulses and average output energy versus gas mixture and applied voltages are given. IR spectrometer is used for measurements of central output wavelength of the laser. Operation of the laser on two adjacent vibrational-rotational transitions of CO II molecule has been observed that shows the ability of this laser for working on multi-line in a same time for special applications.

  14. Faraday rotation fluctuations of MESSENGER radio signals through the equatorial lower corona near solar minimum

    Science.gov (United States)

    Wexler, D. B.; Jensen, E. A.; Hollweg, J. V.; Heiles, C.; Efimov, A. I.; Vierinen, J.; Coster, A. J.

    2017-02-01

    Faraday rotation (FR) of transcoronal radio transmissions from spacecraft near superior conjunction enables study of the temporal variations in coronal plasma density, velocity, and magnetic field. The MESSENGER spacecraft 8.4 GHz radio, transmitting through the corona with closest line-of-sight approach 1.63-1.89 solar radii and near-equatorial heliolatitudes, was recorded soon after the deep solar minimum of solar cycle 23. During egress from superior conjunction, FR gradually decreased, and an overlay of wave-like FR fluctuations (FRFs) with periods of hundreds to thousands of seconds was found. The FRF power spectrum was characterized by a power law relation, with the baseline spectral index being -2.64. A transient power increase showed relative flattening of the spectrum and bands of enhanced spectral power at 3.3 mHz and 6.1 mHz. Our results confirm the presence of coronal FRF similar to those described previously at greater solar offset. Interpreted as Alfvén waves crossing the line of sight radially near the proximate point, low-frequency FRF convey an energy flux density higher than that of the background solar wind kinetic energy, but only a fraction of that required to accelerate the solar wind. Even so, this fraction is quite variable and potentially escalates to energetically significant values with relatively modest changes in estimated magnetic field strength and electron concentration. Given the uncertainties in these key parameters, as well as in solar wind properties close to the Sun at low heliolatitudes, we cannot yet confidently assign the quantitative role for Alfvén wave energy from this region in driving the slow solar wind.

  15. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  16. Electron acceleration in the Solar corona - 3D PiC code simulations of guide field reconnection

    Science.gov (United States)

    Alejandro Munoz Sepulveda, Patricio

    2017-04-01

    The efficient electron acceleration in the solar corona detected by means of hard X-ray emission is still not well understood. Magnetic reconnection through current sheets is one of the proposed production mechanisms of non-thermal electrons in solar flares. Previous works in this direction were based mostly on test particle calculations or 2D fully-kinetic PiC simulations. We have now studied the consequences of self-generated current-aligned instabilities on the electron acceleration mechanisms by 3D magnetic reconnection. For this sake, we carried out 3D Particle-in-Cell (PiC) code numerical simulations of force free reconnecting current sheets, appropriate for the description of the solar coronal plasmas. We find an efficient electron energization, evidenced by the formation of a non-thermal power-law tail with a hard spectral index smaller than -2 in the electron energy distribution function. We discuss and compare the influence of the parallel electric field versus the curvature and gradient drifts in the guiding-center approximation on the overall acceleration, and their dependence on different plasma parameters.

  17. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  18. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  19. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  20. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes

    International Nuclear Information System (INIS)

    Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.

    2008-01-01

    The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals

  1. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    Science.gov (United States)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  2. Frontier of solar observation. Solar activity observed by 'HINODE' mission

    International Nuclear Information System (INIS)

    Watanabe, Tetsuya

    2008-01-01

    After launched in September 2006, solar observation satellite 'HINODE' has been a solar observatory on orbit with the scientific instruments well operated and its continuous observation was conducted steadily on almost all solar atmospheres from photosphere to corona. 'HINODE' was equipped with the solar optical telescope, extreme-ultraviolet imaging spectrometer and x-ray telescope and aimed at clarifying the mystery of solar physics related with coronal heating and magnetic reconnection. Present state of 'HINODE' was described from observations made in initial observation results, which have made several discoveries, such as Alfven waves in the corona, unexpected dynamics in the chromosphere and photosphere, continuous outflowing plasma as a possible source of solar wind, and fine structures of magnetic field in sunspots and solar surface. (T. Tanaka)

  3. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  4. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  5. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  6. Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  7. White Light Solar Corona: An Atlas of 1988 K-Coronameter Synoptic Charts, December 1987-January 1989. Technical note

    International Nuclear Information System (INIS)

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.

    1990-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 30 July 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Light Solar Corona: An Atlas of K-Coronameter Synoptic Charts (Table 1). The data, in the form of synoptic charts, are extended at both the beginning and the end of each year to provide some overlap with the preceding and succeeding volumes. This is also necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period, since the rotations do not coincide with the yearly calendar. Further observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. Together with the synoptic maps and polar synoptic maps, two additional sections designed to aid the user are included in the volume. As in previous Atlases, the Activity Report Summary for the year is given and the Mauna Loa Solar Observatory Calendar for 1988 (Table III) is also included. This is a list of days on which no coronal observations were achieved. These synoptic data should be regarded as a preliminary presentation in which corrections have not fully been made for the day-to-day variations and scattering of polarized light by the earth's atmosphere. Data from the east and west limbs are presented separately in the synoptic charts, as transient and evolutionary changes in the white light corona can substantially modify the distribution of coronal material over the 14 days between sequential limb passages

  8. Soviet Union-France cooperative study of the solar corona. 1. The structure singularities and photometry of the corona on July 10, 1972

    International Nuclear Information System (INIS)

    Vsekhsvyatskij, S.K.; Dzyubenko, N.I.; Nesmyanovich, A.T.; Popov, O.S.; Kuchmij, S.; Centre National de la Recherche Scientifique, 75 - Paris

    1975-01-01

    The results of the study of the eclipse negatives obtained by the expedition of the astronomy division of the Kiev University on 10 July 1972 in accordance with the program of the Soviet-France experiment ''Thynamics of white corona'' are given. New formations - ''voids'' and sharp boundary are obtained side by side with the usual coronal structure details: -polar ray systems, large coronal beams; arch systems. A great number of extended thin streamers in the south-west square and a helical beam over bright condensation are registered. Photometry of one of the negatives exibited a considerable heterogeneity of the corona. Mean values of the K-corona brightness are in agreement with the brightness of a maximum corona according to Van de Hulst model within the range of p < 2R. The coronal gifts are registered near the N-pole and in the south-west region are registered

  9. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  10. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    Science.gov (United States)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  11. SIMULTANEOUS OBSERVATION OF SOLAR OSCILLATIONS ASSOCIATED WITH CORONAL LOOPS FROM THE PHOTOSPHERE TO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Liu, S.; Zhang, Y. Z.; Zhao, H.; Xu, H. Q.; Xie, W. B. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China); Liu, Y. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-01-01

    The solar oscillations along one coronal loop in AR 11504 are observed simultaneously in white light emission and Doppler velocity by SDO/HMI, and in UV and EUV emissions by SDO/AIA. The technique of the time-distance diagram is used to detect the propagating oscillations of the emission intensities along the loop. We find that although all the oscillation signals were intercorrelated, the low chromospheric oscillation correlated more closely to the oscillations of the transition region and corona than to those of the photosphere. Situated above the sunspot, the oscillation periods were {approx}3 minutes in the UV/EUV emissions; however, moving away from the sunspot and into the quiet Sun, the periods became longer, e.g., up to {approx}5 minutes or more. In addition, along another loop we observe both the high-speed outflows and oscillations, which roughly had a one-to-one corresponding relationship. This indicates that the solar periodic oscillations may modulate the magnetic reconnections between the loops of the high and low altitudes that drive the high-speed outflows along the loop.

  12. Intensity of emission lines of the quiescent solar corona: comparison between calculated and observed values

    Science.gov (United States)

    Krissinel, Boris

    2018-03-01

    The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.

  13. Acoustic waves in M dwarfs: Maintaining a corona

    Science.gov (United States)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  14. CORONA project -contribution to VVER nuclear education and training

    International Nuclear Information System (INIS)

    Ilieva, M.; Miteva, R.; Takov, T.

    2016-01-01

    CORONA Project is established to stimulate the transnational mobility and lifelong learning amongst VVER end users. The project aims to provide a special purpose structure for training of specialists and to maintain the nuclear expertise by gathering the existing and generating new knowledge in the VVER area. CORONA Project consists of two parts: CORONA I (2011-2014) ''Establishment of a regional center of competence for VVER technology and Nuclear Applications'', co-financed by the Framework Program 7 of the European Union (EU) and CORONA II (2015-2018) ''Enhancement of training capabilities in VVER technology through establishment of VVER training academy'', co-financed by HORIZON 2020, EURATOM 2014-2015. The selected form of the CORONA Academy, together with the online availability of the training opportunities will allow trainees from different locations to access the needed knowledge on demand. The project will target also new-comers in VVER community like Vietnam, Turkey, Belarus, etc. (authors)

  15. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  16. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  17. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    OpenAIRE

    Reames, Donald V.

    2018-01-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances o...

  18. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    Science.gov (United States)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  19. MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona

    Science.gov (United States)

    Huang, Y.; Song, P.; Vasyliunas, V. M.

    2017-12-01

    We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.

  20. Characteristics of a corona discharge with a hot corona electrode

    International Nuclear Information System (INIS)

    Kulumbaev, E. B.; Lelevkin, V. M.; Niyazaliev, I. A.; Tokarev, A. V.

    2011-01-01

    The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.

  1. Multi-crystalline II-VI based multijunction solar cells and modules

    Science.gov (United States)

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  2. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Science.gov (United States)

    Fainshtein, Victor; Egorov, Yaroslav

    2018-03-01

    In recent years, information about the distance between the body of rapid coronal mass ejection (CME) and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R) applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun-Earth axis. For this purpose, using the "ice-cream cone" model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs) and for HCME-related shocks. With these data, we managed to obtain the B(R) distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME sites moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial) part actually moves in the slow wind.

  3. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela [Astronomický ústav, Akademie věd České Republiky, v.v.i., Fričova 298, 251 65 Ondřejov (Czech Republic); Wiegelmann, Thomas, E-mail: dieter.nickeler@asu.cas.cz [Max-Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-10

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.

  4. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  5. R CORONAE BOREALIS STARS ARE VIABLE FACTORIES OF PRE-SOLAR GRAINS

    International Nuclear Information System (INIS)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie

    2015-01-01

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon–oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10 −3 yr −1 ) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180–540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, we calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains

  6. STRUCTURE AND DYNAMICS OF THE 2010 JULY 11 ECLIPSE WHITE-LIGHT CORONA

    International Nuclear Information System (INIS)

    Pasachoff, J. M.; Rusin, V.; Saniga, M.

    2011-01-01

    The white-light corona (WLC) during the total solar eclipse on 2010 July 11 was observed by several teams in the Moon's shadow stretching across the Pacific Ocean and a number of isolated islands. We present a comparison of the WLC as observed by eclipse teams located on the Tatakoto Atoll in French Polynesia and on Easter Island, 83 minutes later, combined with near-simultaneous space observations. The eclipse was observed at the beginning of the solar cycle, not long after solar minimum. Nevertheless, the solar corona shows a plethora of different features (coronal holes, helmet streamers, polar rays, very faint loops and radial-oriented thin streamers, a coronal mass ejection, and a puzzling 'curtain-like' object above the north pole). Comparing the observations from the two sites enables us to detect some dynamic phenomena. The eclipse observations are further compared with a hairy-ball model of the magnetic field and near-simultaneous images from the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory, the Extreme Ultraviolet Imager on NASA's Solar Terrestrial Relations Observatory, the Sun Watcher, using Active Pixel System Detector and Image Processing on ESA's PRoject for Onboard Autonomy, and the Naval Research Laboratory's Large Angle and Spectrometric Coronagraph on ESA's Solar and Heliospheric Observatory. The Ludendorff flattening coefficient is 0.156, matching the expected ellipticity of coronal isophotes at 2 Rs un , for this rising phase of the solar-activity cycle.

  7. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    Science.gov (United States)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  8. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2016-10-20

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  9. Little Eyes on Large Solar Motions

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Images taken during the solar eclipse in 2012. The central color composite of the eclipsed solar surface was captured by SDO, the white-light view of the solar corona around it was taken by the authors, and the background, wide-field black-and-white view is from LASCO. The white arrows mark the atypical structure. [Alzate et al. 2017]It seems like science is increasingly being done with advanced detectors on enormous ground- and space-based telescopes. One might wonder: is there anything left to learn from observations made with digital cameras mounted on 10-cm telescopes?The answer is yes plenty! Illustrating this point, a new study using such equipment recently reports on the structure and dynamics of the Suns corona during two solar eclipses.A Full View of the CoronaThe solar corona is the upper part of the Suns atmosphere, extending millions of kilometers into space. This plasma is dynamic, with changing structures that arise in response to activity on the Suns surface such as enormous ejections of energy known as coronal mass ejections (CMEs). Studying the corona is therefore important for understanding what drives its structure and how energy is released from the Sun.Though there exist a number of space-based telescopes that observe the Suns corona, they often have limited fields of view. The Solar Dynamics Observatory AIA, for instance, has spectacular resolution but only images out to 1/3 of a solar radius above the Suns limb. The space-based coronagraph LASCO C2, on the other hand, provides a broad view of the outer regions of the corona, but it only images down to 2.2 solar radii above the Suns limb. Piecing together observations from these telescopes therefore leaves a gap that prevents a full picture of the large-scale corona and how it connects to activity at the solar surface.Same as the previous figure, but for the eclipse in 2013. [Alzate et al. 2017]To provide this broad, continuous picture, a team of scientists used digital cameras mounted on 10

  10. Comparative study of the loss cone-driven instabilities in the low solar corona

    Science.gov (United States)

    Sharma, R. R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.

  11. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  12. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  13. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Directory of Open Access Journals (Sweden)

    Fainshtein V.G.

    2018-03-01

    Full Text Available In recent years, information about the distance between the body of rapid coronal mass ejection (CME and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun–Earth axis. For this purpose, using the “ice-cream cone” model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs and for HCME-related shocks. With these data we managed to obtain the B(R distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME parts moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial part actually moves in the slow wind.

  14. The Solar Wind from Pseudostreamers and their Environs: Opportunities for Observations with Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.

    2017-12-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Mid-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of pseudostreamers shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at thepseudostreamer base low in the corona. We review and model possible coronal magnetic configurations and solar wind plasma properties at different distances from the solar surface that

  15. Mass and energy flows between the Solar chromosphere, transition region, and corona

    Science.gov (United States)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  16. A Spectroscopic Study of the Energy Deposition in the Low Corona: Connecting Global Modeling to Observations

    Science.gov (United States)

    Szente, J.; Landi, E.; Toth, G.; Manchester, W.; van der Holst, B.; Gombosi, T. I.

    2017-12-01

    We are looking for signatures of coronal heating process using a physically consistent 3D MHD model of the global corona. Our approach is based on the Alfvén Wave Solar atmosphere Model (AWSoM), with a domain ranging from the upper chromosphere (50,000K) to the outer corona, and the solar wind is self-consistently heated and accelerated by the dissipation of low-frequency Alfvén waves. Taking into account separate electron and anisotropic proton heating, we model the coronal plasma at the same time and location as observed by Hinode/EIS, and calculate the synthetic spectra that we compare with the observations. With the obtained synthetic spectra, we are able to directly calculate line intensities, line width, thermal and nonthermal motions, line centroids, Doppler shift distributions and compare our predictions to real measurements. Our results directly test the extent to which Alfvénic heating is present in the low corona.

  17. Probing the Quiet Solar Atmosphere from the Photosphere to the Corona

    Science.gov (United States)

    Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas

    2018-04-01

    We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.

  18. CORONA ACADEMY, Opportunities for Enhancement of Training Capabilities in VVER Technology

    International Nuclear Information System (INIS)

    Ilieva, M.; Dieguez Porras, P.; Klepakova, A.

    2016-01-01

    Full text: The general objective of the project CORONA II is to enhance the safety of nuclear installations through further improvement of the training capabilities for providing the necessary personnel competencies in VVER area. More specific objective of the project is to continue the development of a state-of-the-art regional training network for VVER competence called CORONA Academia. The project aims at continuation of the European cooperation and support in this area for preservation and further development of expertise in the nuclear field by improvement of higher education and training. The consortium is focusing its effort on using the most advanced ways of providing training to the trainees, saving cost and time–distance learning and e-learning approaches which will be tested in CORONA II Project. The knowledge management portal will integrate the information on VVER web into a single communication system and develop and implement a semantic web structure to achieve mutual recognition of authentication information with other databases. That will enable the partners to share the materials available in each specific training center. (author

  19. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  20. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  1. Solar Probe Plus: A NASA Mission to Touch the Sun

    Science.gov (United States)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  2. White light coronal structures and flattening during six total solar eclipses

    Directory of Open Access Journals (Sweden)

    B.A. Marzouk

    2016-12-01

    Flattening index is the first quantitative parameter introduced for analyses of the global structure of the solar corona. It varies with respect to the phase of the solar activity and sunspot number. In this paper we study the solar corona during the 1990, 1999, 2006, 2008, 2009 and 2012 total solar eclipses. We obtain flattening coefficients for all the six eclipses by using a new computer program. Our results are in a good agreement with published results.

  3. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  4. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States)

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  5. OSO 8 observations of wave propagation in the solar chromosphere and transition region

    Science.gov (United States)

    Chipman, E. G.

    1978-01-01

    The University of Colorado instrument on OSO 8 has been used to observe relative phases of the 300-s intensity variation between the temperature-minimum region and several emission lines formed in the solar chromosphere and chromosphere-corona transition region. The lines used are due to Fe II, Si II, C II, Si IV, and C IV. The scattered light in the spectrograph, which originates almost entirely in the spectral region between 1700 and 1900 A, was used as a probe of the temperature-minimum region. The lines of Fe II, Si II, and C II show almost identical delays of approximately 30 s relative to the temperature minimum, while the intensity oscillations of the lines of Si IV and C IV appear to lead the temperature-minimum intensity oscillations by about 10 s.

  6. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  7. Extension of the ACE solar panels is tested in SAEF-II

    Science.gov (United States)

    1997-01-01

    Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  8. Fragmentation of electric currents in the solar corona by plasma flows

    Czech Academy of Sciences Publication Activity Database

    Nickeler, Dieter Horst; Karlický, Marian; Wiegelmann, T.; Kraus, Michaela

    2013-01-01

    Roč. 556, August (2013), A61/1-A61/12 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0103; GA ČR GA13-24782S Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * Sun flares * Sun corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  9. Corona SDK hotshot

    CERN Document Server

    Flanagan, Nevin

    2013-01-01

    Using a project based approach you will learn the coolest aspects of Corona SDK development. Each project contains step bystep explanations, diagrams, screenshots, and downloadable materials.This book is for users who already have completed at least one simple app using Corona and are familiar with mobile development using another platform and have done Lua programming in another context. Knowledge of the basic functions of Corona routines, as well as an understanding of the Lua programming language's syntax and common libraries, is assumed throughout.

  10. Corona helps curb losses

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, M.; Lahtinen, M.; Lustre, L.

    1996-11-01

    The greatest power losses in electricity transmission arise through a phenomenon called load losses. Corona losses caused by the surface discharge of electricity also constitute a considerable cost item. IVS, the nationwide network company, is investigating corona- induced losses, and has also commissioned similar research from IVO International, the Technical Research Centre of Finland (VTT) and from Tampere University of Technology. The research work strives to gain more in-depth knowledge on the phenomenon of frosting and its impact on corona losses. The correct prediction of frost helps reduce corona losses, while also cutting costs considerably. (orig.)

  11. MUSE, the Multi-Slit Solar Explorer

    Science.gov (United States)

    Lemen, J. R.; Tarbell, T. D.; De Pontieu, B.; Wuelser, J. P.

    2017-12-01

    The Multi-Slit Solar Explorer (MUSE) has been selected for a Phase A study for the NASA Heliophysics Small Explorer program. The science objective of MUSE is to make high spatial and temporal resolution imaging and spectral observations of the solar corona and transition region in order to probe the mechanisms responsible for energy release in the corona and understand the dynamics of the solar atmosphere. The physical processes are responsible for heating the corona, accelerating the solar wind, and the rapid release of energy in CMEs and flares. The observations will be tightly coupled to state-of-the-art numerical modeling to provide significantly improved estimates for understanding and anticipating space weather. MUSE contains two instruments: an EUV spectrograph and an EUV context imager. Both have similar spatial resolutions and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE spectrograph employs a novel multi-slit design that enables a 100x improvement in spectral scanning rates, which will reveal crucial information about the dynamics (e.g., temperature, velocities) of the physical processes that are not observable with current instruments. The MUSE investigation builds on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, and ITA Oslo.

  12. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  13. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  14. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  15. Preliminary results from the orbiting solar observatory 8: Persistent velocity fields in the chromosphere and transition region

    International Nuclear Information System (INIS)

    Lites, B.W.; Bruner, E.C. Jr.; Chipman, E.G.; Shine, R.A.; Rottman, G.J.; White, O.R.; Athay, R.G.

    1976-01-01

    Velocity images, or tachograms, of the solar chromosphere and chromosphere-corona transition region were made by measuring the Si II 1816.93 A chromospheric line and the Si IV 1393.8 A transition region line with the University of Colorado spectrometer aboard OSO-8. Persistent flows are indicated in both active and quiet regions of the solar atmosphere. In quiet regions, areas of enhanced emission (the chromospheric network) are apparently systematically redshifted with respect to the areas of lower intensity. This correlation does not hold in active regions, where long-lived downflows into sunspots have been observed

  16. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    Science.gov (United States)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and

  17. Automatic recognition of coronal type II radio bursts: The ARBIS 2 method and first observations

    Science.gov (United States)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter; Steward, Graham; Patterson, Garth

    Major space weather events such as solar flares and coronal mass ejections are usually accompa-nied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typi-cal speed of 1000 km s-1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. We present a new method developed to de-tect type II coronal radio bursts automatically and describe its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ˜ 80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio bursts are also presented. ARBIS 2 is now operational with IPS Radio and Space Services, providing email alerts and event lists internationally.

  18. Evolving Waves and Turbulence in the Outer Corona and Inner Heliosphere: The Accelerating Expanding Box

    Energy Technology Data Exchange (ETDEWEB)

    Tenerani, Anna; Velli, Marco [EPSS, UCLA, Los Angeles, CA (United States)

    2017-07-01

    Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.

  19. "SOLAR MAGNETIZED ""TORNADOES:"" RELATION TO FILAMENTS"

    OpenAIRE

    Su, Yang; Wang, Tongjiang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-01-01

    Solar magnetized "tornadoes", a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but root in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" {Two papers which focused on different aspect of solar tornadoes were published in the Astrophysical Journal Letters (Li et al. 2012) and Nature (W...

  20. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    Science.gov (United States)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  1. The 1995 total solar eclipse: an overview.

    Science.gov (United States)

    Singh, J.

    A number of experiments were conducted during the total solar eclipse of October 24, 1995. First time efforts were made to photograph the solar corona using IAF jet aircrafts and transport planes ad hot air balloons.

  2. Simulating the Mg II NUV Spectra & C II Resonance Lines During Solar Flares

    Science.gov (United States)

    Kerr, Graham Stewart; Allred, Joel C.; Leenaarts, Jorrit; Butler, Elizabeth; Kowalski, Adam

    2017-08-01

    The solar chromosphere is the origin of the bulk of the enhanced radiative output during solar flares, and so comprehensive understanding of this region is important if we wish to understand energy transport in solar flares. It is only relatively recently, however, with the launch of IRIS that we have routine spectroscopic flarea observations of the chromsphere and transition region. Since several of the spectral lines observed by IRIS are optically thick, it is necessary to use forward modelling to extract the useful information that these lines carry about the flaring chromosphere and transition region. We present the results of modelling the formation properties Mg II resonance lines & subordinate lines, and the C II resonance lines during solar flares. We focus on understanding their relation to the physical strucutre of the flaring atmosphere, exploiting formation height differences to determine if we can extract information about gradients in the atmosphere. We show the effect of degrading the profiles to the resolution of the IRIS, and that the usual observational techniques used to identify the line centroid do a poor job in the early stages of the flare (partly due to multiple optically thick line components). Finally, we will tentatively comment on the effects that 3D radiation transfer may have on these lines.

  3. Comet C/2011 W3 (Lovejoy) between 2 and 10 Solar Radii: Physical Parameters of the Comet and the Corona

    Science.gov (United States)

    Raymond, J. C.; Downs, Cooper; Knight, Matthew M.; Battams, Karl; Giordano, Silvio; Rosati, Richard

    2018-05-01

    Comet C/2011 W3 (Lovejoy) is the first sungrazing comet in many years to survive perihelion passage. We report ultraviolet observations with the Ultraviolet Coronagraph Spectrometer (UVCS) spectrometer aboard the Solar and Heliospheric Observatory satellite at five heights as the comet approached the Sun. The brightest line, Lyα, shows dramatic variations in intensity, velocity centroid, and width during the observation at each height. We derive the outgassing rates and the abundances of N, O, and Si relative to H, and we estimate the effective diameter of the nucleus to be several hundred meters. We consider the effects of the large outgassing rate on the interaction between the cometary gas and the solar corona and find good qualitative agreement with the picture of a bow shock resulting from mass loading by cometary neutrals. We obtain estimates of the solar wind density, temperature, and speed, and compare them with predictions of a global magnetohydrodynamic simulation, finding qualitative agreement within our uncertainties. We also determine the sublimation rate of silicate dust in the comet’s tail by comparing the visible brightness from the Large Angle Spectroscopic Coronagraphs with the Si III intensity from UVCS. The sublimation rates lie between the predicted rates for olivines and pyroxenes, suggesting that the grains are composed of a mixture of those minerals.

  4. Prediction of CMEs and Type II Bursts from Sun to Earth

    Science.gov (United States)

    Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.

    2017-12-01

    Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.

  5. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, Avery J.; Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  6. Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update

    Science.gov (United States)

    Fox, N. J.

    2016-12-01

    Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.

  7. Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update

    Science.gov (United States)

    Fox, N. J.

    2017-12-01

    The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.

  8. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    Science.gov (United States)

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. New techniques for the characterisation of dynamical phenomena in solar coronal images

    Science.gov (United States)

    Robbrecht, E.

    2007-02-01

    ) was an important step on the way to subarcsecond telescopes. It allows a spatial resolution of 1" in the EUV and UV bands and, simultaneously, a temporal resolution of the order of a few seconds. Coronal physics studies are dominated by two major and interlinked problems: coronal heating and solar wind acceleration. Above the chromosphere there is a thin transition layer in which the temperature suddenly increases and density drops. How can the temperature of the solar corona be three orders of magnitude higher than the temperature of the photosphere? In order for this huge temperature gradient to be stationary, non-thermal energy must be transported from below the photosphere towards the chromosphere and corona and converted into heat to balance the radiative and conductive losses. This puzzle of origin, transport and conversion of energy is referred to as the "coronal heating problem". Due to its fundamental role in the structuring of the corona, the magnetic field is supposed to play an important role in the heating. In this dissertation we describe two aspects of solar coronal dynamics: waves in coronal loops (Part I) and coronal mass ejections (Part II). We investigate the influence of (semi-) automated techniques on solar coronal research. This is a timely discussion since the observation of solar phenomena is transitioning from manual detection to "Solar Image Processing". Our results are mainly based on images from the Extreme UV Imaging Telescope (EIT) and the Large Angle and Spectrometric Coronagraph (LASCO), two instruments onboard the satellite SOHO (Solar and Heliospheric Observatory) of which we recently celebrated its 11th anniversary. The high quality of the images together with the long timespan created a valuable database for solar physics research. Part I reports on the first detection of slow magnetoacoustic waves in transequatorial coronal loops observed in high cadence image sequences simultaneously produced by EIT and TRACE (Transition Region

  10. From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions

    Science.gov (United States)

    Cheung, Mark

    2017-08-01

    The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.

  11. SphinX: The Solar Photometer in X-Rays

    Czech Academy of Sciences Publication Activity Database

    Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S.; Pertsov, A.A.; Kotov, Yu. D.; Fárník, František; Reale, F.; Phillips, K. J. H.

    2013-01-01

    Roč. 283, č. 2 (2013), s. 631-649 ISSN 0038-0938 Institutional support: RVO:67985815 Keywords : solar corona * solar instrumentation * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.805, year: 2013

  12. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Science.gov (United States)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-03-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  13. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Science.gov (United States)

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-04-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  14. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    Science.gov (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  15. A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

    Energy Technology Data Exchange (ETDEWEB)

    Stenborg, Guillermo; Howard, Russell A. [Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-04-10

    White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory ( SOHO ) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory ( STEREO ), a time-dependent model of the background corona is generated from about a month of similar images. The creation of such models is possible because the missions carrying these instruments are orbiting the Sun at about 1 au. However, the orbit profiles for the upcoming Solar Orbiter and Solar Probe Plus missions are very different. These missions will have elliptic orbits with a rapidly changing radial distance, hence invalidating the techniques in use for the SOHO /LASCO and STEREO /SECCHI instruments. We have been investigating techniques to generate background models out of just single images that could be used for the Solar Orbiter Heliospheric Imager and the Wide-field Imager for the Solar Probe Plus packages on board the respective spacecraft. In this paper, we introduce a state-of-the-art, heuristic technique to create the background intensity models of STEREO /HI-1 data based solely on individual images, report on new results derived from its application, and discuss its relevance to instrumental and operational issues.

  16. Solar Probe Plus: A mission to touch the sun

    Science.gov (United States)

    Kinnison, J.; Lockwood, M. K.; Fox, N.; Conde, R.; Driesman, A.

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) determine the structure and dynamics of the magnetic fields at the sources of the fast and slow solar wind, 2) trace the flow of energy that heats the corona and accelerates the solar wind. and 3) determine what mechanisms accelerate and transport energetic particles. In this paper, we present the Solar Probe Plus mission along with a brief comparison with some previous concepts for such a mission, and discuss the trade studies that led to the SPP implementation. We present a summary of the challenges associated with operation in the solar encounter environment and discuss the technology development and engineering trade studies to compose a mission that will not only survive this environment, but will provide the data needed to answer the science questions that have remained unanswered to date.

  17. Second-stage acceleration in solar flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    A model proposed by Chevalier and Scott to account for cosmic ray acceleration in an expanding supernova remnant is applied to the case of a shock wave injected into the solar corona by a flare. Certain features of solar cosmic rays can be explained by this model. (orig.) [de

  18. Imprint of the Sun on the Solar Wind

    Science.gov (United States)

    Woo, R.; Habbal, S. R.

    1998-01-01

    Observations of the inner corona in polarized brightness by the Mauna Loa MkIII K-coronameter and soft X-ray by Yohkoh of the inner corona are combined with Ulysses radio occultation measurements of the solar wind to demonstrate that the signature of active regions and bright points is present in the heliocentric distance range of 10-30 Ro.

  19. Solar radio bursts as a tool for space weather forecasting

    Science.gov (United States)

    Klein, Karl-Ludwig; Matamoros, Carolina Salas; Zucca, Pietro

    2018-01-01

    The solar corona and its activity induce disturbances that may affect the space environment of the Earth. Noticeable disturbances come from coronal mass ejections (CMEs), which are large-scale ejections of plasma and magnetic fields from the solar corona, and solar energetic particles (SEPs). These particles are accelerated during the explosive variation of the coronal magnetic field or at the shock wave driven by a fast CME. In this contribution, it is illustrated how full Sun microwave observations can lead to (1) an estimate of CME speeds and of the arrival time of the CME at the Earth, (2) the prediction of SEP events attaining the Earth. xml:lang="fr"

  20. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L., E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China)

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  1. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  2. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  3. Validation of Spherically Symmetric Inversion by Use of a Tomographically Reconstructed Three-Dimensional Electron Density of the Solar Corona

    Science.gov (United States)

    Wang, Tongjiang; Davila, Joseph M.

    2014-01-01

    Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 solar radius as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066).We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50 deg. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.

  4. Cyclotron Line in Solar Microwave Radiation by Radio Telescope RATAN-600 Observations of the Solar Active Region NOAA 12182

    Science.gov (United States)

    Peterova, N. G.; Topchilo, N. A.

    2017-12-01

    This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  5. Implications of the Deep Minimum for Slow Solar Wind Origin

    Science.gov (United States)

    Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.

    2009-12-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.

  6. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  7. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  8. Extended neutral atmosphere effect on solar wind interaction with nonmagnetic bodies of the solar system

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskij, A.M.; Mitnitskij, V.Ya.

    1987-01-01

    Numeric modelling of the Venus flow-around by the solar wind with regard to stream loading by heavy ions, produced under photoionization of the Venus neutral oxygen corona, is conducted. It is shown, that this effect can account for a whole number of peculiarities related to the solar wind interaction with the planet which have not been clearly explained yet, namely, shock wave position, solar wind stream and magnetic field characteristics behind the front

  9. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo; Bian, Xingming; Wang, Donglai [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Lu, Tiebing, E-mail: tiebinglu@ncepu.edu.cn [Beijing Key Laboratory of High Voltage and EMC, North China Electric Power University, Beijing 102206 (China); Hiziroglu, Huseyin [Department of Electrical and Computer Engineering, Kettering University, Flint, Michigan 48504 (United States)

    2016-03-15

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  10. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    Science.gov (United States)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin

    2016-03-01

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  11. Flares on A-Type Stars: Evidence for Heating of Solar Corona by Nanoflares?

    Czech Academy of Sciences Publication Activity Database

    Švanda, Michal; Karlický, Marian

    2016-01-01

    Roč. 831, č. 1 (2016), 9/1-9/7 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Grant - others:GA ČR(CZ) GA15-02112S Institutional support: RVO:67985815 Keywords : stars * activity * coronae Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  12. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    Science.gov (United States)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  13. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  14. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    Science.gov (United States)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  15. The research on a novel type of the solar-blind UV head-mounted displays

    Science.gov (United States)

    Zhao, Shun-long

    2011-08-01

    Ultraviolet technology of detecting is playing a more and more important role in the field of civil application, especially in the corona discharge detection, in modern society. Now the UV imaging detector is one of the most important equipments in power equipment flaws detection. And the modern head-mounted displays (HMDs) have shown the applications in the fields of military, industry production, medical treatment, entertainment, 3D visualization, education and training. We applied the system of head-mounted displays to the UV image detection, and a novel type of head-mounted displays is presented: the solar-blind UV head-mounted displays. And the structure is given. By the solar-blind UV head-mounted displays, a real-time, isometric and visible image of the corona discharge is correctly displayed upon the background scene where it exists. The user will see the visible image of the corona discharge on the real scene rather than on a small screen. Then the user can easily find out the power equipment flaws and repair them. Compared with the traditional UV imaging detector, the introducing of the HMDs simplifies the structure of the whole system. The original visible spectrum optical system is replaced by the eye in the solar-blind UV head-mounted displays. And the optical image fusion technology would be used rather than the digital image fusion system which is necessary in traditional UV imaging detector. That means the visible spectrum optical system and digital image fusion system are not necessary. This makes the whole system cheaper than the traditional UV imaging detector. Another advantage of the solar-blind UV head-mounted displays is that the two hands of user will be free. So while observing the corona discharge the user can do some things about it. Therefore the solar-blind UV head-mounted displays can make the corona discharge expose itself to the user in a better way, and it will play an important role in corona detection in the future.

  16. Spicular downflows in late-type giant coronae

    International Nuclear Information System (INIS)

    Wallenhorst, S.G.

    1980-01-01

    Models of the coronae of late-type stars are considered, under the assumption that the dominant coronal energy loss is not conduction, as is usually assumed, but rather the losses due to hot spicular material falling back onto the chromosphere. This assumption is used to estimated the increase in stellar mass-loss rate which should occur when stars evolve across the so-called Supersonic Transition Locus (STL). For a constant downward number flux, this increase is estimate to be about one order of magnitude. Energy-balance models are then considered for spicule-dominated coronae, under the additional assumption that the energy input flux to the corona is constant over a star's post-main sequence evolution; this assumption is found to be consistent with observed red giant mass-loss rates. A sequence of models is constructed which enables the various coronal parameters to be estimated for different masses and radii. The models yield results similar to those of the minimum flux coronal theory of A.G. Hearn; these similarities, along with the validity of the minimum flux technique, are discussed. It is shown that several criticisms of the minimum flux method, due to Antiochos and Underwood (1978) and Van Tend (1979), are valid for minimum flux models in which spicular downflow is neglected, but are satisfied by the models considered below. Solutions which precisely satisfy the constant-flux assumption are not found to exist for solar mass stars. Under the assumption that the minimum flux theory is correct, and using a downflow number flux derived from the energy-balance model, the jump in mass-loss rate at the STL is reevaluated. In this more rigorous case, the jump is found to be only about a factor of three. It is concluded that large increases in mass-loss rate are not to be expected as stars evolve across this transition locus

  17. A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses

    Science.gov (United States)

    Suess, S. T.; Poletto, G.

    2004-01-01

    We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.

  18. A comparison of solar wind streams and coronal structure near solar minimum

    Science.gov (United States)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  19. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO (United States); Matthaeus, W. H. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Viall, N. M. [NASA/Goddard Space Flight Center, Mail Code 671, Greenbelt, MD 20771 (United States); Cranmer, S. R. [University of Colorado, Duane E226, Boulder, CO 80305 (United States)

    2016-09-10

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  20. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    Science.gov (United States)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  1. MUSE: the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, Theodore D.; De Pontieu, Bart

    2017-08-01

    The Multi-Slit Solar Explorer is a proposed Small Explorer mission for studying the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE’s multi-slit coronal spectroscopy will use a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  2. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  3. Coronal Streamers Revealed during Solar Eclipses: Seeing is not Believing, and Pictures Can Lie

    Directory of Open Access Journals (Sweden)

    Richard Woo

    2011-08-01

    Full Text Available For those fortunate enough to have personally witnessed and photographed the visible corona surrounding the Sun during a solar eclipse, pictures are usually a let down for not living up to the visual view. After 150 years of investigating the corona, we understand it more fully and now know this difference to be real. The difference stems from our inability to either see or image the true distribution of simultaneous brightness because of its large dynamic range (eg, Rodriguez, Woods, 2008 Digital Image Processing, Upper Saddle River: Pearson Prentice Hall. Brightness in the corona is unprecedented, as it falls by three orders of magnitude over a distance of only one solar radius from the Sun.

  4. Large-scale volcanism associated with coronae on Venus

    Science.gov (United States)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  5. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    Czech Academy of Sciences Publication Activity Database

    Nickeler, Dieter Horst; Wiegelmann, T.; Karlický, Marian; Kraus, Michaela

    2017-01-01

    Roč. 837, č. 2 (2017), 104/1-104/11 ISSN 0004-637X R&D Projects: GA ČR(CZ) GA16-05011S; GA ČR(CZ) GA16-13277S Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * Sun * corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  6. H and K (Ca II) emissions as observed in coronal spectrum in the July 20, 1963 solar eclipse

    International Nuclear Information System (INIS)

    Cavallini, F.; Righini, A.

    1975-01-01

    From a detailed analysis of a coronal spectrum taken from a DC-8 jet airplane during the Eclipse of 20 July, 1963 a rough model of a coronal cold region (T approximately 10 5 K) has been obtained. The model explains the presence of the abnormal H and K (Ca II) emissions and the large amount of F corona present in the spectrum. (Auth.)

  7. Morphology of Pseudostreamers and Solar Wind Properties

    Science.gov (United States)

    Panasenco, Olga; Velli, Marco

    2016-05-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona - active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop the specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates the conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Middle-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers (PSs) if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of PSs shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at the PS base low in the corona.

  8. Latitude dependence of the solar wind speed: Influence of the coronal magnetic field geometry

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1976-01-01

    The dependence of solar wind speed on latitude as influenced by the magnetic field configuration of the inner corona is studied. It is found that in general, a dipolelike field geometry characteristic of a minimum-type corona tends to produce a solar wind speed distribution which increases with heliographic latitude, in accordance with observations. At very high coronal base densities and temperatures, however, this effect is minimal or even inverted. Physically, the field affects the wind speed through its area divergence, a larger divergence resulting in correspondingly lower speeds. During solar minimum, eclipse photographs suggest that the field divergence increases from pole to equator, a characteristic not apparent during solar maximum. Hence we expect the latitudinal increase in speed to be most pronounced at the minimum phase of solar activity

  9. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    Science.gov (United States)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; hide

    2015-01-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.

  10. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven; Toma, Giuliana de; Burkepile, Joan; Galloy, Michael [National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States); Rachmeler, Laurel A. [NASA Marshall Space Flight Center, Huntsville, AL 35811 (United States); Rosa, Marc L. De, E-mail: sgibson@ucar.edu [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States)

    2017-05-10

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  11. Solar Probe Plus

    Science.gov (United States)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  12. Ions mobilities in corona discharge

    International Nuclear Information System (INIS)

    Bakhtaev, Sh. A.; Bochkareva, G. V.; Sydykova, G. K.

    2000-01-01

    Ion mobility in unipolar corona at small inter-electron distances (up to 0.01 m) when as coroning element serves micro-wire is consider. Experimental data of ion mobility in corona discharge external zone in atmospheric air are obtained and its comparative analysis with known data is worked out. (author)

  13. Nonlinearity and instability in stellar coronae

    International Nuclear Information System (INIS)

    Martens, P.C.H.

    1983-01-01

    This thesis is mainly concerned with time dependent processes occurring in the hot and teneous plasma - about 1 million degrees and higher and less than 10 10 cm density - that forms the outer envelopes of many stars including the sun. These envelopes - coronae - emit X-rays and indirectly in the ultraviolet and are therefore mainly observed by satellite techniques. Part I consists of a general introduction to the work and an overview of the non-linear methods that are used in the following. Part II and part III are concerned with respectively open and closed coronal structures. There is great similarity in the physics of these two systems, but the open structures are somewhat more complicated. (Auth.)

  14. RADIOEMISSÕES SOLARES TIPO II ASSOCIADAS A FLARES E CMES

    Directory of Open Access Journals (Sweden)

    Rafael Douglas Cunha-Silva

    2013-12-01

    Full Text Available Atribuídas a ondas de choque e a ejeções de plasmoide, as emissões solares tipo II são ondaseletromagnéticas geradas a partir de oscilações do plasma coronal. A origem dos choques associados a essasemissões é ainda uma questão em aberto da física solar. Enquanto alguns trabalhos sugerem os flares solarescomo seus acionadores, outros fornecem indícios de serem as ejeções de massa coronal (CMEs sua origemmais provável. Este trabalho apresenta os resultados da análise de duas emissões tipo II, registradas por doisespectrômetros da rede e-CALLISTO (extended-Compound Astronomical Low-cost Low-frequency Instrument forSpectroscopy and Transportable Observatory, os quais operam na faixa de frequências de 45-870 MHz. Oprimeiro evento, observado em 13 de junho de 2010, às 05:38 UT, apresentou uma taxa de deriva em frequênciade -0,2 MHz s-1, correspondente a uma velocidade de choque de 528 km s-1, estando, temporalmente, associadoa uma CME lenta (~320 km s-1 e a um flare solar em raios-X, classe M1.0. O segundo evento, observado em 09de Agosto de 2011, às 08:02 UT, apresentou uma taxa de deriva em frequência de -1,4 MHz s-1, correspondentea uma velocidade de choque de 1375 km s-1, estando, temporalmente, associado a uma CME tipo halo (~1610km s-1 e a um flare solar em raios-X, classe X6.9. Os resultados obtidos, para os parâmetros observacionais dasemissões tipo II e para os parâmetros físicos de suas fontes, são discutidos no contexto de sua relação com seuflares e CMEs associados.

  15. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  16. Physics of the Solar Active Regions from Radio Observations

    Science.gov (United States)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  17. Slender Ca ii H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S.; Rutten, R. J.; Szydlarski, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Wiegelmann, T.; Riethmüller, T. L.; Noort, M. van; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Knölker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Schmidt, W., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-04-01

    A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca ii H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca ii H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.

  18. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  19. Chaotic characteristics of corona discharges in atmospheric air

    International Nuclear Information System (INIS)

    Tan Xiangyu; Zhang Qiaogen; Wang Xiuhuan; Sun Fu; Zha Wei; Jia Zhijie

    2008-01-01

    A point-plane electrode system in atmospheric air is established to investigate the mechanism of the corona discharge. By using this system, the current pulses of the corona discharges under the 50 Hz ac voltage are measured using partial discharge (PD) measurement instrument and constitute the point-plane voltage-current (V-I) characteristic equation together with the voltage. Then, this paper constructs the nonlinear circuit model and differential equations of the system in an attempt to give the underlying dynamic mechanism based on the nonlinear V-I characteristics of the point-plane corona discharges. The results show that the chaotic phenomenon is found in the corona circuit by the experimental study and nonlinear dynamic analysis. The basic dynamic characteristics, including the Lyapunov exponent, the existence of the strange attractors, and the equilibrium points, are also found and analyzed in the development process of the corona circuit. Moreover, the time series of the corona current pulses obtained in the experiment is used to demonstrate the chaotic characteristics of the corona current based on the nonlinear dynamic circuit theory and the experimental basis. It is pointed out that the corona phenomenon is not a purely stochastic phenomenon but a short term deterministic chaotic activity

  20. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  1. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  2. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  3. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  4. 78 FR 28836 - Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1430-000] Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request..., of Arlington Valley Solar Energy II, LLC's application for market-based rate authority, with an...

  5. Solar heating and cooling of mobile homes, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, A.A.

    1976-12-01

    The specific objectives of the Phase II program were: (1) through system testing, confirm the feasibility of a solar heated and cooled mobile home; (2) update system performance analysis and provide solar heating and cooling computer model verification; (3) evaluate the performance of both an absorption and a Rankine air conditioning system; (4) perform a consumer demand analysis through field survey to ascertain the acceptance of solar energy into the mobile home market; and (5) while at field locations to conduct the consumer demand analysis, gather test data from various U.S. climatic zones. Results are presented and discussed. (WHK)

  6. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  7. Acceleration and propagation of energetic particles in the solar corona: from RHESSI data analysing to the preparation of the STIX tool operations on Solar Orbiter

    International Nuclear Information System (INIS)

    Musset, S.

    2016-01-01

    The Sun is an active star and one manifestation of its activity is the production of solar flares. It is currently admitted that solar flares are caused by the release of magnetic energy during the process of magnetic reconnection in the solar upper atmosphere, the solar corona. During these flares, a large fraction of the magnetic energy is transferred to the acceleration of particles (electrons and ions). However, the details of particle acceleration during flares are still not completely understood. Several scenarios and models have been developed to explain particle acceleration. In some of them, electric fields, produced at the location of current sheets, which can be fragmented or collapsing, and which are preferentially located on quasi-separatrix layers (QSLs), are accelerating particles. To investigate a possible link between energetic particles and direct electric fields produced at current sheet locations, we looked for a correlation between X-ray emission from energetic electrons and electric currents which can be measured at the photospheric level. We used the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI) data to produce spectra and images of the X-ray emissions during GOES X-class flares, and spectro polarimetric data from the Helio seismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) to calculate the vertical current densities from the reconstructed 3D vector magnetic field. A correlation between the coronal X-ray emissions (tracing the energetic electrons near the acceleration site) and the strong current ribbons at the photospheric level (tracing the coronal current sheet) was found in the five studied X-class flares. Moreover, thanks to the 12-minute time cadence of SDO/HMI, we could study for the first time the time evolution of electric currents : in several flares, a change in the current intensity, occurring during the flare peak, was found to be spatially correlated with X-ray emission sites. These

  8. Radiative origins of the solar corona

    International Nuclear Information System (INIS)

    Koch, P.

    1978-01-01

    Within observational accuracy, the radiation pressure aT 4 /3 at the effective solar temperature is equal to the coronal gas pressure nkT. This suggests a radiative gas discontinuity between optically thick and optically thin regions. Ideal transitions of this nature are studied and the applicability of this model to the Sun is explored. Further empirical corroboration is obtained if the gas pressure anomalies of Gulyaev are resolved by postulating a corrective gradient of radiation pressure possibly caused by Lyman-α opacity. (Auth.)

  9. Tar removal from biomass derived fuel gas by pulsed corona discharges: chemical kinetic study II

    NARCIS (Netherlands)

    Nair, S.A.; Yan, K.; Pemen, A.J.M.; Heesch, van E.J.M.; Ptasinski, K.J.; Drinkenburg, A.A.H.

    2005-01-01

    Tar (heavy hydrocarbon or poly aromatic hydrocarbon (PAH)) removal from biomass derived fuel gas is one of the biggest obstacles in its utilization for power generation. We have investigated pulsed corona as a method for tar removal. Our previous experimental results indicate the energy consumption

  10. Fine-Scale Fluctuations in the Corona Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy; Schuler, Timothy

    2013-01-01

    The High Resolution Coronal Imager(HiC) flew aboard a NASA sounding rocket on 2012 July11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region11520.We selected events based on a lifetime greater than 11s (twoHiC frames)and intensities greater than a threshold determined from the average background intensity in a pixel and the photon and electronic noise. We find fluctuations occurring down to the smallest timescale(11s).Typical intensity fluctuations are 20% background intensity, while some events peaka t100%the background intensity.Generally the fluctuations are clustered in solar structures, particularly the moss.We interpret the fluctuations in the moss as indicative of heating events. We use the observed events to model the active region core.

  11. Shock–Cloud Interaction in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan)

    2017-02-20

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of the shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.

  12. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  13. The nanoparticle biomolecule corona: lessons learned - challenge accepted?

    Science.gov (United States)

    Docter, D; Westmeier, D; Markiewicz, M; Stolte, S; Knauer, S K; Stauber, R H

    2015-10-07

    Besides the wide use of engineered nanomaterials (NMs) in technical products, their applications are not only increasing in biotechnology and biomedicine, but also in the environmental field. While the physico-chemical properties and behaviour of NMs can be characterized accurately under idealized conditions, this is no longer the case in complex physiological or natural environments. Herein, proteins and other biomolecules rapidly bind to NMs, forming a protein/biomolecule corona that critically affects the NMs' (patho)biological and technical identities. As the corona impacts the in vitro and/or in vivo NM applications in humans and ecosystems, a mechanistic understanding of its relevance and of the biophysical forces regulating corona formation is mandatory. Based on recent insights, we here critically review and present an updated concept of corona formation and evolution. We comment on how corona signatures may be linked to effects at the nano-bio interface in physiological and environmental systems. In order to comprehensively analyse corona profiles and to mechanistically understand the coronas' biological/ecological impact, we present a tiered multidisciplinary approach. To stimulate progress in this field, we introduce the potential impact of the corona for NM-microbiome-(human)host interactions and the novel concept of 'nanologicals', i.e., the nanomaterial-specific targeting of molecular machines. We conclude by discussing the relevant challenges that still need to be resolved in this field.

  14. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  15. ELLERMAN BOMBS AT HIGH RESOLUTION. II. TRIGGERING, VISIBILITY, AND EFFECT ON UPPER ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, Gregal J. M.; Rouppe van der Voort, Luc H. M.; Rutten, Robert J., E-mail: g.j.m.vissers@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2013-09-01

    We use high-resolution imaging spectroscopy with the Swedish 1-m Solar Telescope (SST) to study the transient brightenings of the wings of the Balmer H{alpha} line in emerging active regions that are called Ellerman bombs. Simultaneous sampling of Ca II 8542 A with the SST confirms that most Ellerman bombs also occur in the wings of this line, but with markedly different morphology. Simultaneous images from the Solar Dynamics Observatory (SDO) show that Ellerman bombs are also detectable in the photospheric 1700 A continuum, again with differing morphology. They are also observable in 1600 A SDO images, but with much contamination from C IV emission in transition-region features. Simultaneous SST spectropolarimetry in Fe I 6301 A shows that Ellerman bombs occur at sites of strong-field magnetic flux cancellation between small bipolar strong-field patches that rapidly move together over the solar surface. Simultaneous SDO images in He II 304 A, Fe IX 171 A, and Fe XIV 211 A show no clear effect of the Ellerman bombs on the overlying transition region and corona. These results strengthen our earlier suggestion, based on H{alpha} morphology alone, that the Ellerman bomb phenomenon is a purely photospheric reconnection phenomenon.

  16. A new perspective on solar active regions

    Science.gov (United States)

    Strong, K. T.; Bruner, M. E.

    1996-01-01

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  17. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    Science.gov (United States)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  18. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  19. IMAGING COMET ISON C/2012 S1 IN THE INNER CORONA AT PERIHELION

    Energy Technology Data Exchange (ETDEWEB)

    Druckmüller, Miloslav [Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno (Czech Republic); Habbal, Shadia Rifai [Institute for Astronomy, University of Hawaii, Honolulu 96822, Hawaii (United States); Aniol, Peter [ASTELCO Systems GmbH, D-82152 Martinsried (Germany); Ding, Adalbert [Institute of Optics and Atomic Physics, Technische Universitaet Berlin, and Institute of Technical Physics, Berlin (Germany); Morgan, Huw [Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2014-04-01

    Much anticipation and speculation were building around comet ISON, or C/2012 S1, discovered on 2012 September 21 by the International Scientific Optical Network telescope in Russia, and bound for the Sun on 2013 November 28, with a closest heliocentric approach distance of 2.7 R {sub ☉}. Here we present the first white light image of the comet's trail through the inner corona. The image was taken with a wide field Lyot-type coronagraph from the Mees Observatory on Haleakala at 19:12 UT, past its perihelion passage at 18:45 UT. The perfect match between the comet's trail captured in the inner corona and the trail that had persisted across the field of view of 2-6 R {sub ☉} of the Solar and Heliospheric Observatory Large Angle and Spectrometric Coronagraph Experiment/C2 coronagraph at 19:12 UT demonstrates that the comet survived its perihelion passage.

  20. Solar Magnetism eXplorer (Solme X)

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  1. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  2. Modeling of Trichel pulses in negative corona

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu. S.; Deryugin, A.A.; Kochetov, I.V.; Pan'kin, M.V.; Trushkin, N.I.

    1998-01-01

    Results are reported of detailed numerical studies of Trichel pulse formation for dry air in short-gap coronas. Continuity equations for electrons, positive and negative ions, and the Poisson equation averaged over the current cross section were solved numerically with appropriate boundary conditions. The results of numerical simulation make it possible to analyze in detail the trailing edge of the Trichel pulse and the inter-pulse pause determining the period between pulses. In particular, the variations of the total number of negative ions in the corona spacing occurring under typical conditions of a pulsating corona, proved to be quite insignificant. A comparison with experiments demonstrated a reasonable agreement both for the shape of the pulse and for the average characteristics of the negative corona. (J.U.)

  3. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  4. mxCSM: A 100-slit, 6-Wavelength Wide-Field Coronal Spectropolarimeter for the Study of the Dynamics and the Magnetic Fields of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haosheng, E-mail: lin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States)

    2016-03-30

    Tremendous progress has been made in the field of observational coronal magnetometry in the first decade of the Twenty-First century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important for our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employs large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six CELs simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  5. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    Science.gov (United States)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  6. Corona Associations and Their Implications for Venus

    Science.gov (United States)

    Chapman, M.G.; Zimbelman, J.R.

    1998-01-01

    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  7. Evolution of CME Mass in the Corona

    Science.gov (United States)

    Howard, Russell A.; Vourlidas, Angelos

    2018-04-01

    The idea that coronal mass ejections (CMEs) pile up mass in their transport through the corona and heliosphere is widely accepted. However, it has not been shown that this is the case. We perform an initial study of the volume electron density of the fronts of 13 three-part CMEs with well-defined frontal boundaries observed with the Solar and Heliospheric Observatory/ Large Angle and Spectrometric COronagraph (SOHO/LASCO) white-light coronagraphs. We find that, in all cases, the volume electron density decreases as the CMEs travel through the LASCO-C2 and -C3 fields of view, from 2.6 - 30 R_{⊙}. The density decrease follows closely a power law with an exponent of -3, which is consistent with a simple radial expansion. This indicates that in this height regime there is no observed pile-up.

  8. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  9. DYNAMICS OF A PROMINENCE-HORN STRUCTURE DURING ITS EVAPORATION IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Chen, Yao; Fu, Jie; Li, Bo [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Xing [Department of Physics, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3BZ (United Kingdom); Liu, Wei, E-mail: yaochen@sdu.edu.cn [Stanford-Lockheed Institute for Space Research, Stanford University, Stanford, CA 94305 (United States)

    2016-08-20

    The physical connections among and formation mechanisms of various components of the prominence-horn cavity system remain elusive. Here we present observations of such a system, focusing on a section of the prominence that rises and separates gradually from the main body. This forms a configuration sufficiently simple to yield clues regarding the above issues. It is characterized by embedding horns, oscillations, and a gradual disappearance of the separated material. The prominence-horn structure exhibits a large-amplitude longitudinal oscillation with a period of ∼150 minutes and an amplitude of ∼30 Mm along the trajectory defined by the concave horn structure. The horns also experience a simultaneous transverse oscillation with a much smaller amplitude (∼3 Mm) and a shorter period (∼10–15 minutes), likely representative of a global mode of the large-scale magnetic structure. The gradual disappearance of the structure indicates that the horn, an observational manifestation of the field-aligned transition region separating the cool and dense prominence from the hot and tenuous corona, is formed due to the heating and diluting process of the central prominence mass; most previous studies suggested that it is the opposite process, i.e., the cooling and condensation of coronal plasmas, that formed the horn. This study also demonstrates how the prominence transports magnetic flux to the upper corona, a process essential for the gradual build-up of pre-eruption magnetic energy.

  10. The Yohkoh mission for high-energy solar physics

    Science.gov (United States)

    Acton, L.; Tsuneta, S.; Ogawara, Y.; Bentley, R.; Bruner, M.; Canfield, R.; Culhane, L.; Doschek, G.; Hiei, E.; Hirayama, T.

    1992-01-01

    Data on solar flare mechanisms and the sun's corona will be generated by Japan's Yohkoh satellite's X-ray imaging sensors and X-ray and gamma-ray spectrometers. It is noted that the X-ray corona above active regions expands, in some cases almost continually, in contradiction of the widely accepted model of magnetohydrostatic equilibrium in such regions. Flaring X-ray bright points have been discovered to often involve ejecta into an adjacent, much larger and fainter magnetic loop, which brightens along its length at speeds up to 1000 km/sec.

  11. Characterization of β-FeSi II films as a novel solar cell semiconductor

    Science.gov (United States)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  12. Pulsed corona demonstrator for semi-industrial scale air purification

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  13. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  14. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  15. MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Wolfson, Richard; Drake, Christina; Kennedy, Max

    2012-01-01

    The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s –1 . Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

  16. Transition region, coronal heating and the fast solar wind

    Science.gov (United States)

    Li, Xing

    2003-07-01

    It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  17. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  18. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  19. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    Science.gov (United States)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  20. Solar activity and its evolution across the corona: recent advances

    Directory of Open Access Journals (Sweden)

    Rodriguez Luciano

    2013-04-01

    Full Text Available Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections, and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  1. Imaging a Magnetic-breakout Solar Eruption

    Science.gov (United States)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Liu, Wei; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang

    2016-04-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ˜100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions.

  2. IMAGING A MAGNETIC-BREAKOUT SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang; Liu, Wei

    2016-01-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ∼100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions

  3. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  4. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  5. QUANTIFYING THE ANISOTROPY AND SOLAR CYCLE DEPENDENCE OF '1/f' SOLAR WIND FLUCTUATIONS OBSERVED BY ADVANCED COMPOSITION EXPLORER

    International Nuclear Information System (INIS)

    Nicol, R. M.; Chapman, S. C.; Dendy, R. O.

    2009-01-01

    The power spectrum of the evolving solar wind shows evidence of a spectral break between an inertial range (IR) of turbulent fluctuations at higher frequencies and a '1/f' like region at lower frequencies. In the ecliptic plane at ∼1 AU, this break occurs approximately at timescales of a few hours and is observed in the power spectra of components of velocity and magnetic field. The '1/f' energy range is of more direct coronal origin than the IR, and carries signatures of the complex magnetic field structure of the solar corona, and of footpoint stirring in the solar photosphere. To quantify the scaling properties we use generic statistical methods such as generalized structure functions and probability density functions (PDFs), focusing on solar cycle dependence and on anisotropy with respect to the background magnetic field. We present structure function analysis of magnetic and velocity field fluctuations, using a novel technique to decompose the fluctuations into directions parallel and perpendicular to the mean local background magnetic field. Whilst the magnetic field is close to '1/f', we show that the velocity field is '1/f α ' with α ≠ 1. For the velocity, the value of α varies between parallel and perpendicular fluctuations and with the solar cycle. There is also variation in α with solar wind speed. We have examined the PDFs in the fast, quiet solar wind and intriguingly, whilst parallel and perpendicular are distinct, both the B field and velocity show the same PDF of their perpendicular fluctuations, which is close to gamma or inverse Gumbel. These results point to distinct physical processes in the corona and to their mapping out into the solar wind. The scaling exponents obtained constrain the models for these processes.

  6. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  7. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    Science.gov (United States)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  8. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  9. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    International Nuclear Information System (INIS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-01-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a ∼50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  10. Mission Concepts for High-Resolution Solar Imaging with a Photon Sieve

    Science.gov (United States)

    Rabin, Douglas M.; Davila, Joseph; Daw, Adrian N.; Denis, Kevin L.; Novo-Gradac, Anne-Marie; Shah, Neerav; Widmyer, Thomas R.

    2017-08-01

    The best EUV coronal imagers are unable to probe the expected energy dissipation scales of the solar corona (rocket, a single spacecraft with a deployed boom, and two spacecraft flying in precise formation.

  11. Physics of solar prominences. Proceedings of the Colloquium, Oslo, Norway, August 14-18, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, E; Maltby, P

    1979-01-01

    These papers deal with recent theoretical and observational studies of the physics of solar prominences. Specific topics include reviews of prominence spectra and their interpretation, polarimetric observations and magnetic-field determination in prominences, observations of the prominence-corona interface, theories on the formation and stability of quiescent prominences, prominence classifications, observations of active prominences, observations and interpretations of coronal manifestations of eruptive prominences, and models of prominence structure and dynamics. Other contributions discuss simultaneous observations of Ca II and hydrogen Balmer lines in quiescent prominences, recent results in quiescent-prominence spectroscopy, the solar helium abundance obtained from optical spectra of quiescent prominences, and Stokes polarimetry of quiescent prominences in the He I D3 line. Magnetic-field determination based on the Hanle effect is also examined, along with the orientation of prominence microstructure relative to magnetic-field direction, radio observations of quiescent-prominence filaments at centimeter and millimeter wavelengths, EUV observations of filaments, and a magnetic-field reconnection model of quiescent prominences.

  12. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    Science.gov (United States)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  13. The Origin and Dynamics of Solar Magnetism

    CERN Document Server

    Thompson, M. J; Culhane, J. L; Nordlund, Å; Solanki, S. K; Zahn, J.-P

    2009-01-01

    The articles collected in this volume present all aspects of solar magnetism: from its origin in the solar dynamo to its evolution and dynamics that create the variability of solar phenomena, its well-known 11-year activity cycle that leads to the ever-changing pattern of sunspots and active regions on the Sun. Several contributions deal with the solar dynamo, the driver of many solar phenomena. Other contributions treat the transport and emergence of the magnetic flux through the outer layers of the Sun. The coupling of magnetic fields from the surface to the solar corona and beyond is also described, together with current studies on the predictability of solar activity. This book is aimed at researchers and graduate students working in solar physics and space science. It provides a full review of our current understanding of solar magnetism by the foremost experts in the field.

  14. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  15. Equitable Colorings Of Corona Multiproducts Of Graphs

    Directory of Open Access Journals (Sweden)

    Furmánczyk Hanna

    2017-11-01

    Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].

  16. Dynamics of the transition corona

    International Nuclear Information System (INIS)

    Masson, Sophie; McCauley, Patrick; Golub, Leon; Reeves, Katharine K.; DeLuca, Edward E.

    2014-01-01

    Magnetic reconnection between the open and closed magnetic fields in the corona is believed to play a crucial role in the corona/heliosphere coupling. At large scale, the exchange of open/closed connectivity is expected to occur in pseudo-streamer (PS) structures. However, there is neither clear observational evidence of how such coupling occurs in PSs, nor evidence for how the magnetic reconnection evolves. Using a newly developed technique, we enhance the off-limb magnetic fine structures observed with the Atmospheric Imaging Assembly and identify a PS-like feature located close to the northern coronal hole. We first identify that the magnetic topology associated with the observation is a PS, null-point (NP) related topology bounded by the open field. By comparing the magnetic field configuration with the EUV emission regions, we determined that most of the magnetic flux associated with plasma emission are small loops below the PS basic NP and open field bounding the PS topology. In order to interpret the evolution of the PS, we referred to a three-dimensional MHD interchange reconnection modeling the exchange of connectivity between small closed loops and the open field. The observed PS fine structures follow the dynamics of the magnetic field before and after reconnecting at the NP obtained by the interchange model. Moreover, the pattern of the EUV plasma emission is the same as the shape of the expected plasma emission location derived from the simulation. These morphological and dynamical similarities between the PS observations and the results from the simulation strongly suggest that the evolution of the PS, and in particular the opening/closing of the field, occurs via interchange/slipping reconnection at the basic NP of the PS. Besides identifying the mechanism at work in the large-scale coupling between the open and closed fields, our results highlight that interchange reconnection in PSs is a gradual physical process that differs from the impulsive

  17. A Model fot the Sources of the Slow Solar Wind

    Science.gov (United States)

    Antiochos, S. K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2011-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to approx.60deg, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model. Key words: solar wind - Sun: corona - Sun: magnetic topology

  18. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  19. The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem

    Science.gov (United States)

    Yousef, S. M.

    The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.

  20. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

    Science.gov (United States)

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-03-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  1. A SOLAR SPECTROSCOPIC ABSOLUTE ABUNDANCE OF ARGON FROM RESIK

    International Nuclear Information System (INIS)

    Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D.

    2010-01-01

    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 A and 3.733 A, respectively, with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 ± 0.07 (Ar XVII) and 6.49 ± 0.16 (Ar XVIII), which are in agreement to within uncertainties. The weighted mean is 6.45 ± 0.06, which is between two recent compilations of the solar Ar abundance and suggests that the photospheric and coronal abundances of Ar are very similar.

  2. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  3. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  4. Corona development and floral nectaries of Asclepiadeae (Asclepiadoideae, Apocynaceae

    Directory of Open Access Journals (Sweden)

    Mariana Maciel Monteiro

    Full Text Available ABSTRACT Flowers of Asclepiadoideae are notable for possessing numerous nectaries and elaborate coronas, where nectar can accumulate but is not necessarily produced. Given the complexity and importance of these structures for reproduction, this study aimed to analyze the ontogeny of the corona, the structure and position of nectaries and the histochemistry of the nectar of species of Asclepiadeae. Two types of coronas were observed: androecial [C(is] and corolline (Ca. The development of the C(is-type of corona initiates opposite the stamens in all species examined with the exception of Matelea in which it begins to develop as a ring around the filament tube. Despite their morphological variation, coronas typically originate from the androecium. A notable difference among the studied species was the location of the nectaries. Primarily, they are located in the stigmatic chamber, where nectar composed of carbohydrates and lipids is produced. A secondary location of nectaries found in species of Peplonia and Matelea is within the corona, where nectar is produced and stored, composed of carbohydrates and lipids in Peplonia and only carbohydrates in Matelea. The functional role of nectar is related to the location of its production since it is a resource for pollinators and inducers of pollen germination.

  5. Solar wind flows associated with hot heavy ions

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1980-05-01

    Solar wind heavy ion spectra measured with the Vela instrumentation have been studied with the goal of determining the solar origins of various solar wind structures which contain anomalously high ionization states. Since the ionization states freeze-in close to the sun they are good indicators of the plasma conditions in the low and intermediate corona. Heavy ion spectra from three different periods throughout the solar cycle have been analyzed. These data are consistent with freezing-in temperatures ranging from approx. 1.5 x 10 6 K to higher than 9 x 10 6 . The spectra indicating hot coronal conditions occur in roughly 1/7 of all measurements and almost exclusively in postshock flows (PSFs), nonshock related helium abundance enhancements (HAEs), or noncompressive density enhancements (NCDEs). The PSFs and HAEs are both probably interplanetary manifestations of solar flares. The observation of several flare-related HAEs which were not preceded by an interplanetary shock suggests that the flare-heated plasma can evolve into the solar wind without producing a noticeable shock at 1 AU. The NCDEs with hot heavy ions differ from the PSF-HAEs in several ways implying that they evolve from events or places with lower temperatures and less energy than those associated with the flares, but with higher temperatures and densities than the quiet corona. Active regions, coronal mass ejections, and equatorial streamers are possible sources for the NCDEs with spectra indicating hot coronal conditions. These events owe their enhanced densities to coronal processes as opposed to interplanetary dynamical processes. Models of the solar wind expansion demonstrate how some NCDEs can have extreme, nonequilibrium ionization distributions

  6. Solar Chameleons

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  7. Imaging and spectroscopic observations of the 9 March 2016 Total Solar Eclipse in Palangkaraya

    International Nuclear Information System (INIS)

    Kholish, Abdul Majid Al; Jihad, Imanul; Andika, Irham Taufik; Puspitaningrum, Evaria; Ainy, Fathin Q.; Ramadhan, Sahlan; Arifyanto, M. Ikbal; Malasan, Hakim L.

    2016-01-01

    The March 9 th 2016 total solar eclipse observation was carried out at Universitas Palangkaraya, Central Kalimantan. Time-resolved imaging of the Sun has been conducted before, after, and during totality of eclipse while optical spectroscopic observation has been carried out only at the totality. The imaging observation in white light was done to take high resolution images of solar corona. The images were taken with a DSLR camera that is attached to a refractor telescope (d=66 mm, f/5.9). Despite cloudy weather during the eclipse moments, we managed to obtain the images with lower signal-to-noise ratio, including identifiable diamond ring, prominence and coronal structure. The images were processed using standard reduction procedure to increase the signal-to-noise ratio and to enhance the corona. Then, the coronal structure is determined and compared with ultraviolet data from SOHO to analyze the correlation between visual and ultraviolet corona. The spectroscopic observation was conducted using a slit-less spectrograph and a DSLR camera to obtain solar flash spectra. The flash spectra taken during the eclipse show emissions of H 4861 Å, He I 5876 Å, and H 6563 Å. The Fe XIV 5303 Å and Fe X 6374 Å lines are hardly detected due to low signal-to-noise ratio. Spectral reduction and analysis are conducted to derive the emission lines intensity relative to continuum intensity. We use the measured parameters to determine the temperature of solar chromosphere. (paper)

  8. Direct observation of a single nanoparticle-ubiquitin corona formation

    Science.gov (United States)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate

  9. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  10. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus

    Science.gov (United States)

    Hoogenboom, T.; Martin, P.; Housean, G. A.

    2005-01-01

    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  11. High-energy particles associated with solar flares

    International Nuclear Information System (INIS)

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  12. The acceleration and propagation of solar energetic particles

    International Nuclear Information System (INIS)

    Dalla, Silvia

    2004-01-01

    During flares and coronal mass ejections at the Sun, ions and electrons can be accelerated to high energies. They can escape from the solar corona into interplanetary space, and be detected by instruments on board spacecraft. This paper will review measurements of these solar energetic particles (SEPs) and models of their acceleration and propagation.It is generally agreed that SEP flux enhancements fall into two distinct classes: the so-called impulsive events, thought to originate in solar flares, and gradual events, thought to be the result of acceleration at the shock driven through the corona and interplanetary space by coronal mass ejections. A fundamental assumption of this model for SEPs is that particles' guiding centers propagate essentially parallel to the interplanetary magnetic field lines, and cross-field particle diffusion is negligible.The recent passage of the Ulysses spacecraft over the solar poles provided the first ever measurements of SEPs out of the ecliptic plane. Analysis of these data has revealed several fundamental differences with respect to the near-ecliptic measurements, such as large delays in particle arrival and in fluxes reaching their peak value. It will be shown that the current model of SEP acceleration and propagation does not account for the Ulysses results, which would more easily be explained by efficient cross-field diffusion of energetic particles

  13. La Colección de Tapices de la Corona de España. Notas sobre su formación y conservación

    Directory of Open Access Journals (Sweden)

    Herrero Carretero, Concha

    2001-05-01

    Full Text Available Not availableLa Colección de Tapices de la Corona de España puede considerarse una de las mayores del mundo, gracias al patrocinio de los Monarcas que enriquecieron el patrimonio de la Corona con sucesivas adquisiciones y a la custodia ejercida por el Real Oficio de la Tapicería. Medidas excepcionales que permitieron la pervivencia de una colección tan rica en calidad y en cantidad, paradigma de las colecciones europeas, fueron las disposiciones testamentarias de los Monarcas de la Casa de Austria cuya progresiva evolución, desde Carlos V a Carlos II, vinculó las tapicerías al servicio de los príncipes herederos y las imprimió un carácter de bien afecto representativo de la autoridad de la Corona.

  14. Spatial Mapping and Quantification of Soft and Hard Protein Coronas at Silver Nanocubes

    DEFF Research Database (Denmark)

    Miclaus, Teodora; Bochenkov, Vladimir; Ogaki, Ryosuke

    2014-01-01

    kinetics of the corona-formation at cube edges/corners versus facets at short incubation times, where the polymer stabilization agent delayed corona hardening. The soft corona contained more protein than the hard corona at all time-points (8-fold difference with 10% serum conditions).......Protein coronas around silver nanocubes were quantified in serum-containing media using localized surface plasmon resonances. Both soft and hard coronas showed exposure-time and concentration-dependent changes in protein surface density with time-dependent hardening. We observed spatially dependent...

  15. Corona Borealis

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    (the Northern Crown; abbrev. CrB, gen. Coronae Borealis; area 179 sq. deg.) A northern constellation which lies between Boötes and Hercules, and culminates at midnight in mid-May. It represents the crown that in Greek mythology was made by Hephaestus, god of fire, and worn by Princess Ariadne of Crete. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  16. Core-Shell-Corona Micelles with a Responsive Shell.

    Science.gov (United States)

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  17. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. III. THE PATH TO THE TRANSITION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Ada; Hansteen, Viggo H.; Pontieu, Bart De; Carlsson, Mats; Voort, Luc Rouppe van der [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Rubio, Luis Ramón Bellot [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3040, E-18080 Granada (Spain); Rodríguez, Jaime de la Cruz, E-mail: ada@astro.uio.no [Institute for Solar Physics, Dept. of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden)

    2016-07-10

    We study, for the first time, the ascent of granular-sized magnetic bubbles from the solar photosphere through the chromosphere into the transition region and above. Such events occurred in a flux emerging region in NOAA 11850 on 2013 September 25. During that time, the first co-observing campaign between the Swedish 1-m Solar Telescope (SST) and the Interface Region Imaging Spectrograph (IRIS) spacecraft was carried out. Simultaneous observations of the chromospheric H α 656.28 nm and Ca ii 854.2 nm lines, plus the photospheric Fe i 630.25 nm line, were made with the CRISP spectropolarimeter at the Spitzer Space Telescope ( SST ) reaching a spatial resolution of 0.″14. At the same time, IRIS was performing a four-step dense raster of the emerging flux region, taking slit jaw images at 133 (C ii, transition region), 140 (Si iv, transition region), 279.6 (Mg ii k, core, upper chromosphere), and 283.2 nm (Mg ii k, wing, photosphere). Spectroscopy of several lines was performed by the IRIS spectrograph in the far- and near-ultraviolet, of which we have used the Si iv 140.3 and the Mg ii k 279.6 nm lines. Coronal images from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory were used to investigate the possible coronal signatures of the flux emergence events. The photospheric and chromospheric properties of small-scale emerging magnetic bubbles have been described in detail in Ortiz et al. Here we are able to follow such structures up to the transition region. We describe the properties, including temporal delays, of the observed flux emergence in all layers. We believe this may be an important mechanism of transporting energy and magnetic flux from subsurface layers to the transition region and corona.

  18. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  19. Dynamics of the Solar Chromosphere. II. Ca II H2V and K2V Grains versus Internetwork Fields

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Berger, T.E.

    1998-01-01

    We use the Advanced Stokes Polarimeter at the NSO/Sacramento Peak Vacuum Tower Telescope to search for spatio- temporal correlations between enhanced magnetic fields in the quiet solar internetwork photosphere and the occurrence of Ca II H2v grains in the overlying chromosphere.We address the

  20. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  1. Investigating the concept of fraunhofer lines as a potential method to detect corona in the wavelength region 338.67nm – 405nm during the day

    CSIR Research Space (South Africa)

    Maistry, N

    2015-09-01

    Full Text Available the results obtained it was determined that the purchased optical filter was not filtering out the solar radiation and hence no corona was detected. The signal to noise ratio was 0.0314. Hence a new approach of simulating a narrow band-pass filter in MATLAB...

  2. TESIS experiment on XUV imaging spectroscopy of the Sun onboard the CORONAS-PHOTON satellite

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Bogachev, S. A.; Shestov, S. V.; Bugaenko, O. I.; Suhodrev, N. K.; Pertsov, A. A.; Mitrofanov, A. V.; Ignat'ev, A. P.; Slemzin, V. A.

    We present a brief description of new complex of space telescopes and spectrographs, TESIS, which will be placed aboard the CORONAS-PHOTON satellite. The complex is intended for high-resolution imaging observation of full Sun in the coronal spectral lines and in the spectral lines of the solar transition region. TESIS will be launched at the end of 2007 - early of 2008. About 25 % of the daily TESIS images will be free for use and for downloading from the TESIS data center that is planned to open 2 months before the TESIS launching at http://www.tesis.lebedev.ru

  3. Pulsed Corona for Sustainable Technology

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Pemen, A.J.M.; Yan, K.; Blom, P.P.M.; Huijbrechts, P.A.H.J.; Der Laan, P.C.T. van

    2000-01-01

    Highly active coronas with a peak power of up to 25 MW p/m corona wire and kJ/liter energy densities in the streamer channels can be produced by pulsed power. Since the voltage pulses are short, full breakdown does not occur even though the discharge currents are hundreds of Amperes. A matched pulsed power source can deposit up to 80% of its electrical energy into such a controlled discharge. Reliable and efficient sources characterized by 100 kV,150 ns wide pulses at 1000 Hz have passed 400 hours of operation. The area of applications is growing: VOC control, hot gas cleanup, water and air purification and sterilization. (author)

  4. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    International Nuclear Information System (INIS)

    Wang Pengxiang; Chen Junhong

    2009-01-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  5. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    Science.gov (United States)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  6. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  7. Nanoparticles-cell association predicted by protein corona fingerprints

    Science.gov (United States)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  8. Final Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Wilcox, S. M.; Marion, W. F.; Al-Abbadi, N. M.; Mahfoodh, M.; Al-Otaibi, Z.

    2002-04-01

    The Final Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1998-2000 summarizes the accomplishment of work performed, results achieved, and products produced under Annex II, a project established under the Agreement for Cooperation in the Field of Renewable Energy Research and Development between the Kingdom of Saudi Arabia and the United States. The report covers work and accomplishments from January 1998 to December 2000. A previous progress report, Progress Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997, NREL/TP-560-29374, summarizes earlier work and technical transfer of information under the project. The work was performed in at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, at the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, and at selected weather stations of the Saudi Meteorological and Environmental Protection Administration (MEPA).

  9. Type II GaSb quantum ring solar cells under concentrated sunlight.

    Science.gov (United States)

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  10. Origin of the Wang-Sheeley-Arge solar wind model

    Science.gov (United States)

    Sheeley, Neil R., Jr.

    2017-03-01

    A correlation between solar wind speed at Earth and the amount of magnetic field line expansion in the corona was verified in 1989 using 22 years of solar and interplanetary observations. We trace the evolution of this relationship from its birth 15 years earlier in the Skylab era to its current use as a space weather forecasting technique. This paper is the transcript of an invited talk at the joint session of the Historical Astronomy Division and the Solar Physics Division of the American Astronomical Society during its 224th meeting in Boston, MA, on 3 June 2014.

  11. Neutralized solar energetic particles in the inner heliosphere: a parameter study

    Science.gov (United States)

    Wang, Xiao-Dong; Klecker, Berndt; Futaana, Yoshifumi; Cipriani, Fabrice; Barabash, Stas; Wieser, Martin

    2016-04-01

    The large fluxes of solar energetic particles (SEPs) in Gradual Events, dominated by protons, are believed to be produced by the acceleration of shocks driven by coronal mass ejections (CMEs). As SEPs propagate in the lower corona, there is a chance for them to be neutralized via the charge exchange and/or recombination processes and become energetic neutral atoms (ENAs). These ENAs retain the velocity of their parent SEPs and propagate in straight lines without the influence of the interplanetary magnetic field, and therefore might potentially serve as a new window to observe the particle acceleration processes in the solar corona. STEREO/Low Energy Telescope reported the first probable observation of hydrogen ENAs between 1.6 MeV - 5 MeV from the Sun prior to an X-class flare/CME [Mewaldt et al., 2009]. While such observations were somehow controversial, Wang et al. [2014] simulated the neutralization of solar energetic protons in the corona lower than 40 RS, and the result agreed with the STEREO observation. In this work, we further developed a production model of the ENA near the sun together with a transport model toward the inner planets, and explore the dependences of the ENA characteristics against the model parameters. These parameters include the angular width of the CME, its propagation direction with respect to the Sun-observer line, the propagation speed, the particle density in the corona, the abundances of O6+ and C4+, and the reaction rate of electron impact ionization in the loss of ENAs, and the heliospheric distance of the observer. The calculated ENA flux shows that at lower energy the expected ENA flux depends most sensitively on the CME apex angle and the CME propagation direction. At higher energy the dependence on the coronal density is more prominent. References Mewaldt, R. A., R. A. Leske, E. C. Stone, A. F. Barghouty, A. W. Labrador, C. M. S. Cohen, A. C. Cummings, A. J. Davis, T. T. von Rosenvinge, and M. E. Wiedenbeck (2009), STEREO

  12. The radii of the Wolf-Rayet stars and the extent of their chromosphere-corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Zorec, J [College de France, Paris, France

    1981-03-01

    The radii of 14 Wolf-Rayet stars are computed on the basis of previously reported absolute fluxes in the region from 4150 to 8000 A for 10 WN stars and from 3650 to 8000 A for four WC stars. For comparison, the radii of 11 Of stars are also calculated. The Wolf-Rayet radii are found to range from about 10 to 35 solar radii, values that do not appear to provide supporting evidence for the hypothesis that Of stars evolve into late WN stars. Available UV observations of Gamma-2 Vel are used to investigate the extent of the chromosphere-corona structure in Wolf-Rayet stars. It is suggested that the second electron-temperature maximum in a recently proposed model for the extended envelopes of Wolf-Rayet stars should be further than about 300 solar radii from the center of a star.

  13. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  14. FAST INVERSION OF SOLAR Ca II SPECTRA

    International Nuclear Information System (INIS)

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-01

    We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively

  15. SOHO hunts elusive solar prey

    Science.gov (United States)

    1995-10-01

    limited by inclement weather conditions and atmospheric distortion of the Sun’s signal, and of course they cannot observe the Sun at night. Although the weather problem has been removed in orbit around the Earth, observations are still periodically interrupted when an Earth-orbiting spacecraft enters our planet’s shadow. In contrast, SOHO will provide the first long, clean uninterrupted views of the Sun. Science Objectives SOHO will look beyond the visible soar disk, observing through new windows from the centre of the Sun to the Earth. It will examine three regions - the hidden interior of the Sun, the hot transparent solar atmosphere, and the eternal solar wind of charged particles and magnetic fields that continuously flow outward from the Sun. The twelve instruments on board SOHO are designed to study one or two of these regions in a different, yet complimentary way. Their combined data will link events in the Sun’s atmosphere and solar wind changes taking place deep within the Sun. The SOHO mission has three principle scientific objectives: 1. Study of the structure and dynamics of the solar interior 2. Study of the heating mechanisms of the Sun's million-degree atmosphere, or solar corona 3. Investigation of the solar wind, its origin and its acceleration processes. "Never before have solar physicists had the opportunity to work with such a comprehensive observatory giving them access literally to the whole Sun", said Martin C. E. Huber, the Head of ESA's Space Science Department. Taking the pulse of the Sun SOHO wil illuminate the unseen depths of the Sun by recording widespread throbbing motions of the Sun's visible "surface", or photosphere. These oscillations are caused by sounds that are trapped inside the Sun. On striking the surface and rebounding back down, the sound waves cause the gases there to move up and down. Sound waves that penetrate deep within the Sun produce global surface oscillations with longer periods of up to a few hours; smaller

  16. High-tension corona controlled ozone generator for environment protection

    International Nuclear Information System (INIS)

    Vijayan, T; Patil, Jagadish G

    2010-01-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O 3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  17. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  18. Chasing the Great American 2017 Total Solar Eclipse: Coronal Results from NASA's WB-57F High-Altitude Research Aircraft

    Science.gov (United States)

    Caspi, A.; Tsang, C.; DeForest, C. E.; Seaton, D. B.; Bryans, P.; Burkepile, J.; Casey, T. A.; Collier, J.; Darrow, D.; DeLuca, E.; Durda, D. D.; Gallagher, P.; Golub, L.; Judge, P. G.; Laurent, G. T.; Lewis, J.; Mallini, C.; Parent, T.; Propp, T.; Steffl, A.; Tomczyk, S.; Warner, J.; West, M. J.; Wiseman, J.; Zhukov, A.

    2017-12-01

    Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations. Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near- IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more. We present results of solar coronal measurements from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 high-altitude research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and medium-wave IR (3-5 μm) cameras operating at high cadence (30 Hz) with 3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft flew along the eclipse path, separated by 110 km, to observe a summed 7

  19. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  20. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  1. The Large-scale Coronal Structure of the 2017 August 21 Great American Eclipse: An Assessment of Solar Surface Flux Transport Model Enabled Predictions and Observations

    Science.gov (United States)

    Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan

    2018-01-01

    On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.

  2. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  3. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  4. On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road Laurel, MD 20723 (United States); Riley, P., E-mail: david.lario@jhuapl.edu, E-mail: Nour.Eddine.Raouafi@jhuapl.edu, E-mail: ryunyoung.kwon@gmail.com, E-mail: pete@predsci.com [Predictive Science, 9990 Mesa Rim Road, Suite 170 San Diego, CA 92121 (United States)

    2017-10-01

    Under the paradigm that the main agents in the acceleration of solar energetic particles (SEPs) are shocks initially driven by coronal mass ejections, we analyze whether the properties of the shocks in the corona inferred from combining extreme-ultraviolet (EUV) and white-light (WL) observations from multiple vantage points together with magnetohydrodynamic (MHD) simulations of the corona can be used to determine the release of SEPs into different regions of the heliosphere and hence determine the longitudinal extent of the SEP events. We analyze the SEP events observed on 2011 November 3, 2013 April 11, and 2014 February 25 over a wide range of heliolongitudes. MHD simulations provide the characteristics of the background medium where shocks propagate, in particular the Alfvén and sound speed profiles that allow us to determine both the extent of the EUV waves in the low corona and the fast magnetosonic Mach number ( M {sub FM}) of the shocks. The extent of the EUV waves in the low corona is controlled by this background medium and does not coincide with the extent of the SEP events in the heliosphere. Within the uncertainties of (i) the extent and speed of the shock inferred from EUV and WL images and (ii) the assumptions made in the MHD models, we follow the evolution of M {sub FM} at the region of the shock magnetically connected to each spacecraft. The estimated release times of the first SEPs measured by each spacecraft does not coincide with the time when the M {sub FM} at this region exceeds a given threshold.

  5. On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks

    Science.gov (United States)

    Lario, D.; Kwon, R.-Y.; Riley, P.; Raouafi, N. E.

    2017-10-01

    Under the paradigm that the main agents in the acceleration of solar energetic particles (SEPs) are shocks initially driven by coronal mass ejections, we analyze whether the properties of the shocks in the corona inferred from combining extreme-ultraviolet (EUV) and white-light (WL) observations from multiple vantage points together with magnetohydrodynamic (MHD) simulations of the corona can be used to determine the release of SEPs into different regions of the heliosphere and hence determine the longitudinal extent of the SEP events. We analyze the SEP events observed on 2011 November 3, 2013 April 11, and 2014 February 25 over a wide range of heliolongitudes. MHD simulations provide the characteristics of the background medium where shocks propagate, in particular the Alfvén and sound speed profiles that allow us to determine both the extent of the EUV waves in the low corona and the fast magnetosonic Mach number (M FM) of the shocks. The extent of the EUV waves in the low corona is controlled by this background medium and does not coincide with the extent of the SEP events in the heliosphere. Within the uncertainties of (I) the extent and speed of the shock inferred from EUV and WL images and (II) the assumptions made in the MHD models, we follow the evolution of M FM at the region of the shock magnetically connected to each spacecraft. The estimated release times of the first SEPs measured by each spacecraft does not coincide with the time when the M FM at this region exceeds a given threshold.

  6. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  7. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  8. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Su Yang; Veronig, Astrid; Temmer, Manuela [IGAM-Kanzelhoehe Observatory, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Wang Tongjiang [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Gan Weiqun, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  9. Formation of Heliospheric Arcs of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F., E-mail: aleida@umich.edu [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom)

    2017-05-01

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.

  10. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    Science.gov (United States)

    Hajipour, Mohammad Javad; Raheb, Jamshid; Akhavan, Omid; Arjmand, Sareh; Mashinchian, Omid; Rahman, Masoud; Abdolahad, Mohammad; Serpooshan, Vahid; Laurent, Sophie; Mahmoudi, Morteza

    2015-05-01

    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the `personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred

  11. Nanoparticles formation and deposition in the trichel pulse corona

    International Nuclear Information System (INIS)

    Amirov, R H; Samoylov, I S; Petrov, A A

    2013-01-01

    Cathode erosion in the negative corona discharge has been studied in the point-to-plane electrode configuration with Cu cathodes in the Trichel pulse regime. Redeposition of erosion products has been found on the cathode surface in form of agglomerates of 10-nm nanoparticles. Nanocraters and nanoparticles formation in the negative corona discharge has been considered in frames of electro-explosive mechanism of cathode erosion. According to this mechanism the cathode erosion is performed as a consequence of elementary erosion events each of which is caused by a Trichel pulse. A 1-dimentional model of corona-produced nanoparticles dynamics in the gap was elaborated. According to results of the simulation, the redeposition is explained by charging of the nanoparticles due to positive ions adsorption and thermionic emission. The size, temperature and initial velocity of the aerosol nanoparticles have the decisive action on redeposition in the negative corona discharge.

  12. The SOLAR-C Mission: Science Objectives and Current Status

    Science.gov (United States)

    Suematsu, Y.; Solar-C Working Group

    2016-04-01

    The SOLAR-C is a Japan-led international solar mission for mid-2020s designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and to advance algorithms for predicting short and long term solar magnetic activities. For these purposes, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1"-0.3"), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. SOLAR-C will also contribute to understand the solar influence on the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions.

  13. Preliminary results from the Orbiting Solar Observatory 8 - Observations of optically thin lines

    Science.gov (United States)

    Shine, R. A.; Roussel-Dupre, D.; Bruner, E. C., Jr.; Chipman, E. G.; Lites, B. W.; Rottman, G. J.; Athay, R. G.; White, O. R.

    1976-01-01

    The University of Colorado spectrometer aboard OSO 8 has measured the high temperature C IV resonance lines (at 1548 and 1551 A) and the Si IV resonance lines (at 1393 and 1402 A) formed in the solar chromosphere-corona transition region. Preliminary results include studies of mean profiles, a comparison of cell and network profiles, and the behavior of the lines at the extreme solar limb.

  14. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  15. A New Approach to Observing Coronal Dynamics: MUSE, the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, T. D.

    2017-12-01

    The Multi-Slit Solar Explorer is a Small Explorer mission recently selected for a Phase A study, which could lead to a launch in 2022. It will provide unprecendented observations of the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE's multi-slit coronal spectroscopy will exploit a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  16. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  17. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  18. Periodic Density Structures and the Origin of the Slow Solar Wind

    Science.gov (United States)

    Viall-Kepko, Nicholeen M.; Vourlidas, Angelos

    2015-01-01

    The source of the slow solar wind has challenged scientists for years. Periodic density structures (PDSs), observed regularly in the solar wind at 1 AU (Astronomical Unit), can be used to address this challenge. These structures have length scales of hundreds to several thousands of megameters and frequencies of tens to hundreds of minutes. Two lines of evidence indicate that PDSs are formed in the solar corona as part of the slow solar wind release and/or acceleration processes. The first is corresponding changes in compositional data in situ, and the second is PDSs observed in the inner Heliospheric Imaging data on board the Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite. The periodic nature of these density structures is both a useful identifier as well as an important physical constraint on their origin. In this paper, we present the results of tracking periodic structures identified in the inner Heliospheric Imager in SECCHI back in time through the corresponding outer coronagraph (COR2) images. We demonstrate that the PDSs are formed around or below 2.5 solar radii-the inner edge of the COR2 field of view. We compute the occurrence rates of PDSs in 10 days of COR2 images both as a function of their periodicity and location in the solar corona, and we find that this set of PDSs occurs preferentially with a periodicity of approximately 90 minutes and occurs near streamers. Lastly, we show that their acceleration and expansion through COR2 is self-similar, thus their frequency is constant at distances beyond 2.5 solar radii.

  19. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  20. Propagation of Torsional Alfvén Waves from the Photosphere to the Corona: Reflection, Transmission, and Heating in Expanding Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Ballester, José Luis, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2017-05-01

    It has been proposed that Alfvén waves play an important role in the energy propagation through the solar atmospheric plasma and its heating. Here we theoretically investigate the propagation of torsional Alfvén waves in magnetic flux tubes expanding from the photosphere up to the low corona and explore the reflection, transmission, and dissipation of wave energy. We use a realistic variation of the plasma properties and the magnetic field strength with height. Dissipation by ion–neutral collisions in the chromosphere is included using a multifluid partially ionized plasma model. Considering the stationary state, we assume that the waves are driven below the photosphere and propagate to the corona, while they are partially reflected and damped in the chromosphere and transition region. The results reveal the existence of three different propagation regimes depending on the wave frequency: low frequencies are reflected back to the photosphere, intermediate frequencies are transmitted to the corona, and high frequencies are completely damped in the chromosphere. The frequency of maximum transmissivity depends on the magnetic field expansion rate and the atmospheric model, but is typically in the range of 0.04–0.3 Hz. Magnetic field expansion favors the transmission of waves to the corona and lowers the reflectivity of the chromosphere and transition region compared to the case with a straight field. As a consequence, the chromospheric heating due to ion–neutral dissipation systematically decreases when the expansion rate of the magnetic flux tube increases.

  1. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  2. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    International Nuclear Information System (INIS)

    Kramar, M.; Inhester, B.; Lin, H.; Davila, J.

    2013-01-01

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field

  3. Analyses of the Photospheric Magnetic Dynamics in Solar Active Region 11117 Using an Advanced CESE-MHD Model

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL (United States); Wu, Shi T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL (United States); Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, AL (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China)

    2016-05-10

    In this study, the photospheric vector magnetograms obtained by Helioseismic and Magnetic Imager on-board the Solar Dynamics Observatory are used as boundary conditions for a CESE-MHD model to investigate some photosphere characteristics around the time of a confined flare in solar active region NOAA AR 11117. We report our attempt of characterizing a more realistic solar atmosphere by including a plasma with temperature stratified from the photosphere to the corona in the CESE-MHD model. The resulted photospheric transverse flow is comparable to the apparent movements of the magnetic flux features that demonstrates shearing and rotations. We calculated the relevant parameters such as the magnetic energy flux and helicity flux, and with analysis of these parameters, we find that magnetic non-potentiality is transported across the photosphere into the corona in the simulated time interval, which might provide a favorable condition for producing the flare.

  4. Influence of corona charging in cellular polyethylene film

    International Nuclear Information System (INIS)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo; Llovera Segovia, Pedro

    2011-01-01

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  5. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  6. Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G. R., E-mail: girjesh@iucaa.in [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune 411007 (India)

    2017-02-10

    We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm lines in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.

  7. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  8. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.

    Science.gov (United States)

    Juling, Sabine; Niedzwiecka, Alicia; Böhmert, Linda; Lichtenstein, Dajana; Selve, Sören; Braeuning, Albert; Thünemann, Andreas F; Krause, Eberhard; Lampen, Alfonso

    2017-11-03

    The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.

  9. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    Science.gov (United States)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  10. NEWLY DISCOVERED GLOBAL TEMPERATURE STRUCTURES IN THE QUIET SUN AT SOLAR MINIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhenguang; Frazin, Richard A.; Landi, Enrico; Manchester, Ward B.; Gombosi, Tamas I. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio, CONICET-University of Buenos Aires, Ciudad de Buenos Aires, CC 67-Suc 28 (Argentina)

    2012-08-20

    Magnetic loops are building blocks of the closed-field corona. While active region loops are readily seen in images taken at EUV and X-ray wavelengths, quiet-Sun (QS) loops are seldom identifiable and are therefore difficult to study on an individual basis. The first analysis of solar minimum (Carrington Rotation 2077) QS coronal loops utilizing a novel technique called the Michigan Loop Diagnostic Technique (MLDT) is presented. This technique combines Differential Emission Measure Tomography and a potential field source surface (PFSS) model, and consists of tracing PFSS field lines through the tomographic grid on which the local differential emission measure is determined. As a result, the electron temperature T{sub e} and density N{sub e} at each point along each individual field line can be obtained. Using data from STEREO/EUVI and SOHO/MDI, the MLDT identifies two types of QS loops in the corona: so-called up loops in which the temperature increases with height and so-called down loops in which the temperature decreases with height. Up loops are expected, however, down loops are a surprise, and furthermore, they are ubiquitous in the low-latitude corona. Up loops dominate the QS at higher latitudes. The MLDT allows independent determination of the empirical pressure and density scale heights, and the differences between the two remain to be explained. The down loops appear to be a newly discovered property of the solar minimum corona that may shed light on the physics of coronal heating. The results are shown to be robust to the calibration uncertainties of the EUVI instrument.

  11. Effects of corona discharge treatment on some properties of wool ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... Corona discharge after operation worsted water absorption property increased and the ... finally conditioned with atmospheric air (20°C, relative humidity ... For corona treatment, a glow discharge generator was used with a.

  12. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  13. Structure and dynamics of solar atmosphere: the reign of SOHO

    International Nuclear Information System (INIS)

    Bocchialini, Karine

    2004-01-01

    In this report for Accreditation to Supervise Research (HDR), the author proposes an overview of his research works which particularly addressed the study of the solar atmosphere, notably based on observations made by the SOHO (Solar and Heliospheric Observatory) satellite. After a recall of his curriculum, he presents and comments results obtained in various areas: Corona heating and origin of solar wind, heating by waves, heating by quasi-steady mechanisms, regions which are sources of fast solar wind, sources of Coronal matter ejections. He also presents the different adopted approaches and methods (multi-wavelength analysis, oscillation measurement, statistical analysis) and the various observed structures (chromospheric network, shiny points, Coronal holes, and protuberances)

  14. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    Science.gov (United States)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  15. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  16. Evaluación estética de seis tipos de coronas para dientes primarios

    Directory of Open Access Journals (Sweden)

    Héctor Alejandro Ramírez Peña

    2017-03-01

    Full Text Available Objetivo: Evaluar las preferencias estéticas en relación con el color y la forma de coronas primarias utilizadas para dientes incisivos superiores primarios, mediante la realización de una encuesta a miembros de la Academia Mexicana de Odontología Pediatrica (AMOP. Material y Métodos: Se establecieron seis grupos de estudio con seis coronas diferentes: grupo 1, coronas de zirconia EZ-Pedo; grupo 2, coronas de zirconia NuSmile Zr; grupo 3, coronas estéticas hechas en el consultorio; grupo 4, coronas de fundas de celuloide; grupo 5, coronas estéticas prefabricadas NuSmile signature; y grupo 6, coronas estéticas fenestradas. Se llevaron a cabo encuestas con la finalidad de conocer las preferencias estéticas de estas diferentes coronas, con la finalidad de conocer cuál es la mejor opción para su uso en el consultorio dental. Resultados: Noventa miembros de la AMOP realizaron una encuesta válida, y se determinó que el grupo 4 fue el mejor evaluado, seguido de los grupos 2, 5, 1, 6 y 3. Se identificaron diferencias significativas entre los diferentes grupos. Conclusiones: Las coronas de fundas de celuloide fueron seleccionadas como mejor alternativa de uso en los dientes primarios anteriores, por parte de los miembros de la AMOP; asimismo, se consideró a las coronas de zirconia como una buena opción terapéutica. Es recomendable que se implemente el tratamiento estético en dientes primarios, para realizar un tratamiento integral.

  17. Acceleration of the Fast Solar Wind through Minor Ions

    Science.gov (United States)

    Li, X.

    2004-01-01

    It is assumed that the magnetic flux tubes are strongly concentrated at the boundaries of the supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 2. Plasma species may already partially lose thermal equilibrium in the transition region, minor ions may already be faster than protons at the very bottom of the corona. 3. The model predicts high temperature alpha particles (T 2 × 107 K) and low proton temperatures (Tp solar radii, suggests that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  18. IUE observations of the chromospheric activity-age relation in young solar-type stars

    International Nuclear Information System (INIS)

    Simon, T.; Boesgaard, A.M.

    1983-01-01

    Except for the synoptic observations of the chromospheric Ca II H-K lines by Wilson (1978), in which he sought evidence for magnetic activity cycles, there is still scant data on stellar activity, especially at UV and X-ray wavelengths where 10 5 K TRs and 10 6 - 10 7 K coronae are expected to radiate. This paper presents new UV data, obtained with the IUE spacecraft, for a dozen solar-type stars in the field. The stars are of spectral type F6 V - G1 V; on the basis of their high Li content, they range in age from 0.1 to 2.8 Gyr. The purpose is to study the evolution of TR and chromospheric emission with stellar age, and also the surface distribution of magnetically active regions as revealed by rotational modulation of UV emission line fluxes. (Auth.)

  19. A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Rubio da Costa, Fatima [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia, E-mail: frubio@stanford.edu [University of Applied Sciences and Arts Northwestern Switzerland, 5210, Windisch (Switzerland)

    2017-06-20

    Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamic parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.

  20. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  1. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  2. Semi-analytical modelling of positive corona discharge in air

    Science.gov (United States)

    Pontiga, Francisco; Yanallah, Khelifa; Chen, Junhong

    2013-09-01

    Semianalytical approximate solutions of the spatial distribution of electric field and electron and ion densities have been obtained by solving Poisson's equations and the continuity equations for the charged species along the Laplacian field lines. The need to iterate for the correct value of space charge on the corona electrode has been eliminated by using the corona current distribution over the grounded plane derived by Deutsch, which predicts a cos m θ law similar to Warburg's law. Based on the results of the approximated model, a parametric study of the influence of gas pressure, the corona wire radius, and the inter-electrode wire-plate separation has been carried out. Also, the approximate solutions of the electron number density has been combined with a simplified plasma chemistry model in order to compute the ozone density generated by the corona discharge in the presence of a gas flow. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  3. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    International Nuclear Information System (INIS)

    Li, Y.; Ding, M. D.; Sun, X.; Qiu, J.; Priest, E. R.

    2017-01-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  4. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Priest, E. R., E-mail: yingli@nju.edu.cn [School of Mathematics and Statistics, University of St Andrews, Fife KY16 9SS, Scotland (United Kingdom)

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  5. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    Science.gov (United States)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  6. More than a solar cycle of synoptic solar and coronal data - a video presentation

    International Nuclear Information System (INIS)

    Hoeksema, J.T.; Scherrer, P.H.; Herant, M.; Title, A.M.

    1988-01-01

    Color video movies of synoptic observations of the sun and corona can now be created. Individual analog frames on laser disks can be referenced digitally and played back at any speed. We have brought together photospheric magnetic field data from the Wilcox Solar Observatory at Stanford and the National Solar Observatory, model computations of the coronal magnetic field, and coronal data from the Sacramento Peak coronagraph and the Mauna Loa K-coronameter and made a series of movies presenting the data sets individually and in comparison with one another. This paper presents a description of each of the data sets and movies developed thus far and briefly outlines some of the more interesting and obvious features observed when viewing the movies

  7. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  8. UNDERCOVER EUV SOLAR JETS OBSERVED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.-H. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Innes, D. E. [Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-12-10

    It is well-known that extreme ultraviolet (EUV) emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions, dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from the Interface Region Imaging Spectrograph, consisting of UV spectra and slit-jaw images (SJI), give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. Collimated outflows with bright roots were present in SJI 1400 Å (transition region) and 2796 Å (upper chromosphere) that were mostly not seen in Atmospheric Imaging Assembly (AIA) 304 Å (transition region) and AIA 171 Å (lower corona) images. The Si iv spectra show a strong blue wing enhancement, but no red wing, in the line profiles of the ejecta for all recurrent jets, indicating outward flows without twists. We see two types of Mg ii line profiles produced by the jets spires: reversed and non-reversed. Mg ii lines remain optically thick, but turn optically thin in the highly Doppler shifted wings. The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique that measures the emitting power of the plasma as a function of the line-of-sight velocity. We found that all the recurrent jets release similar energy (10{sup 8} erg cm{sup −2} s{sup −1}) toward the corona and the downward component is less than 3%.

  9. Dynamic characteristics of corona discharge generated under rainfall condition on AC charged conductors

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-12-01

    By synchronous measurement of corona current and the water droplet deformation process on a conductor surface, different types of corona discharge are visualized when AC voltage is applied on a line-ground electrode system. The corona characteristics are closely related to the applied voltage and water supply rate. With the increase of AC voltage, the positive Taylor cone discharge firstly appears and then disappears, replaced by the dripping and crashing discharge. Furthermore, the number of pulses in each pulse train increases with the increase of applied voltage. The mechanism of the transfer from the positive Taylor cone discharge to the dripping and crashing discharge is found to be related to the oscillation process of the water droplet. The water supply rate also has a great influence on the characteristics of corona currents. The number of positive pulse trains increases linearly when the water supply rate gets larger, leading to a higher audible noise and radio interference level from the AC corona, which is quite different from that of the DC corona. The difference between the AC and DC coronas under rainfall conditions is analyzed finally.

  10. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bastian, T. S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Chintzoglou, G.; De Pontieu, B.; Schmit, D. [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Shimojo, M. [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Leenaarts, J. [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Loukitcheva, M., E-mail: tbastian@nrao.edu [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States)

    2017-08-20

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  11. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    International Nuclear Information System (INIS)

    Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.; Schmit, D.; Shimojo, M.; Leenaarts, J.; Loukitcheva, M.

    2017-01-01

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239 GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T_B and the Mg ii h line radiation temperature T _r_a_d is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T_B (1.25 mm) and mean T _r_a_d (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T _r_a_d and the ALMA T _B region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.

  12. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    Science.gov (United States)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  13. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  14. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.

    Science.gov (United States)

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C

    2016-10-12

    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  15. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    Science.gov (United States)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For

  16. Spectroscopic Studies of Solar Corona VI: Trend in Line-width ...

    Indian Academy of Sciences (India)

    cm coronagraph at the Norikura Solar Observatory on several days during the years 1997–2004. The Coude type .... Top-most panel shows the variation of FWHM of the 6374 Е and 5303 Е emission lines with height above the limb when all ...

  17. The effects of corona on current surges induced on conducting lines by EMP: A comparison of experiment data with results of analytic corona models

    Science.gov (United States)

    Blanchard, J. P.; Tesche, F. M.; McConnell, B. W.

    1987-09-01

    An experiment to determine the interaction of an intense electromagnetic pulse (EMP), such as that produced by a nuclear detonation above the Earth's atmosphere, was performed in March, 1986 at Kirtland Air Force Base near Albuquerque, New Mexico. The results of that experiment have been published without analysis. Following an introduction of the corona phenomenon, the reason for interest in it, and a review of the experiment, this paper discusses five different analytic corona models that may model corona formation on a conducting line subjected to EMP. The results predicted by these models are compared with measured data acquired during the experiment to determine the strengths and weaknesses of each model.

  18. Analysis of counter flow of corona wind for heat transfer enhancement

    Science.gov (United States)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  19. Long-lived sources of solar cosmic rays

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1979-01-01

    The high correlation between prompt solar cosmic rays and a flare-induced MHD shock is well known. We point out that the propagation properties of such a shock cause shock heating of the solar atmosphere to be confined to a unipolar magnetic region. As a result, if particles can be accelerated within the shock-processed part of the corona, the fluxes of suc particles will exhibit sharp spatial gradients near quiescent filaments. The passage of an MHD shock leads to the rapid collapse of magnetic neutral regions which prior to shock passage were collapsing too slowly to accelerate particles. We suggest that these newly triggered magnetic acceleration regions provide a third phase of solar flare acceleration regions provide a third phase of solar flare acceleration which may persist for many days after a flare. Collapsing magnetic regions with lengths scales of order 100 km can explain a variety of coronal phenomena

  20. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  1. Why the negative corona current in air decreases?

    International Nuclear Information System (INIS)

    Pavlik, M.; Skalny, J.D.; Strelle, D.

    1996-01-01

    The time dependence of negative corona current I, called by Gagarin like 'relaxing of CV-characteristics', is a observed phenomena. The observed phenomena was explained by two theoretical models considering the ion-molecule and chemical reactions in the negative corona discharges in air, especially the ozone production. In the presented paper the discrepancies of above mentioned models, re-examination the earlier experimental data and presumptions used in models in a light the latest experimentally confirmed facts are discussed

  2. Solar chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Zioutas, Konstantin

    2010-01-01

    We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  3. Are X-ray emitting coronae around supermassive black holes outflowing?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Teng; Wang, Jun-Xian; Yang, Huan; Zhu, Fei-Fan; Zhou, You-Yuan, E-mail: liuteng@ustc.edu.cn, E-mail: jxw@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-03-10

    Hard X-ray emission in radio-quiet active galactic nuclei (AGNs) is believed to be produced via inverse Compton scattering by hot and compact coronae near the supermassive black hole. However, the origin and physical properties of the coronae, including geometry, kinematics, and dynamics, remain poorly known. In this work, taking [O IV] 25.89 μm emission line as an isotropic indicator of AGNs' intrinsic luminosity, we compare the intrinsic corona X-ray emission between Seyfert 1 and Compton-thin Seyfert 2 galaxies, which are viewed at different inclinations according to the unification scheme. We compile a sample of 130 Compton-thin Seyfert galaxies with both [O IV] 25.89 μm line luminosities measured with the Spitzer Infrared Spectrometer and X-ray spectra observed by XMM-Newton, Chandra, Suzaku, or Swift. Known radio-loud sources are excluded. We fit the X-ray spectra to obtain the absorption-corrected 2-10 keV continuum luminosities. We find that Seyfert 1 galaxies are intrinsically brighter in intrinsic 2-10 keV emission by a factor of 2.8{sub −0.4}{sup +0.5} (2.2{sub −0.3}{sup +0.9} in Swift Burst Alert Telescope 14-195 keV emission), compared with Compton-thin Seyfert 2 galaxies. The Seyfert 1 and Compton-thin Seyfert 2 galaxies follow a statistically identical correlation between the absorption-corrected 2-10 keV luminosity and the 14-195 keV luminosity, indicating that our absorption correction to the 2-10 keV flux is sufficient. The difference in X-ray emission between the two populations is thus unlikely to be due to X-ray absorption, and instead implies an intrinsic anisotropy in the corona X-ray emission. This striking anisotropy of X-ray emission can be explained by a bipolar outflowing corona with a bulk velocity of ∼0.3-0.5c. This would provide a natural link between the so-called coronae and weak jets in these systems. Other consequences of outflowing coronae are also discussed.

  4. Solar particle radiation storms forecasting and analysis the HESPERIA HORIZON 2020 project and beyond

    CERN Document Server

    Crosby, Norma

    2018-01-01

    Solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. This book presents the results and findings of the HESPERIA (High Energy Solar Particle Events forecasting and Analysis) project of the EU HORIZON 2020 programme. It discusses the forecasting operational tools developed within the project, and presents progress to SEP research contributed by HESPERIA both from the observational as well as the SEP modelling perspective. Using multi-frequency observational data and simulations HESPERIA investigated the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space, to the detection near 1 AU. The book also elaborates on the unique software that has been constructed for inverting observations of relativistic SEPs to physical parameters that can be compared with spac e-borne measurements at lower energies. Introductory and pedagogical material incl...

  5. Propagation characteristics of audible noise generated by single corona source under positive DC voltage

    Directory of Open Access Journals (Sweden)

    Xuebao Li

    2017-10-01

    Full Text Available The directivity and lateral profile of corona-generated audible noise (AN from a single corona source are measured through experiments carried out in the semi-anechoic laboratory. The experimental results show that the waveform of corona-generated AN consists of a series of random sound pressure pulses whose pulse amplitudes decrease with the increase of measurement distance. A single corona source can be regarded as a non-directional AN source, and the A-weighted SPL (sound pressure level decreases 6 dB(A as doubling the measurement distance. Then, qualitative explanations for the rationality of treating the single corona source as a point source are given on the basis of the Ingard’s theory for sound generation in corona discharge. Furthermore, we take into consideration of the ground reflection and the air attenuation to reconstruct the propagation features of AN from the single corona source. The calculated results agree with the measurement well, which validates the propagation model. Finally, the influence of the ground reflection on the SPL is presented in the paper.

  6. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    Science.gov (United States)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  7. The effect of atmospheric corona treatment on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2010-01-01

    The effect of atmospheric corona discharge on AM 050 aluminium surface was investigated using electrochemical polarization, SEM-EDX, FIB-SEM. and XPS. The corona treatment was performed with varying time (1, 5, and 15 min) in atmospheric air. A 200 nm oxide layer was generated on AA1050 after...

  8. Inception behaviour of pulsed positive corona in several gases

    International Nuclear Information System (INIS)

    Veldhuizen, E M van; Rutgers, W R

    2003-01-01

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air

  9. Inception behaviour of pulsed positive corona in several gases

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E M van; Rutgers, W R [Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2003-11-07

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air.

  10. Solar Probe Plus: Report of the Science and Technology Definition Team

    Science.gov (United States)

    2008-01-01

    Solar Probe+ will be an extraordinary and historic mission, exploring what is arguably the last region of the solar system to be visited by a spacecraft, the Sun s outer atmosphere or corona as it extends out into space. Approaching as close as 9.5 RS* (8.5 RS above the Sun s surface), Solar Probe+ will repeatedly sample the near-Sun environment, revolutionizing our knowledge and understanding of coronal heating and of the origin and evolution of the solar wind and answering critical questions in heliophysics that have been ranked as top priorities for decades. Moreover, by making direct, in-situ measurements of the region where some of the most hazardous solar energetic particles are energized, Solar Probe+ will make a fundamental contribution to our ability to characterize and forecast the radiation environment in which future space explorers will work and live.

  11. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    International Nuclear Information System (INIS)

    Mackay, Duncan H.; Yeates, Anthony R.; Bocquet, Francois-Xavier

    2016-01-01

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  12. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9SS (United Kingdom); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Bocquet, Francois-Xavier, E-mail: dhm@st-andrews.ac.uk [Met Office, FitzRoy Road, Exeter, EX1 3PB (United Kingdom)

    2016-07-10

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  13. Artificial Photosystem I and II: Highly Selective solar fuels and tandem photocatalysis

    Science.gov (United States)

    Ding, Yuchen; Castellanos, Ignacio; Cerkovnik, Logan; Nagpal, Prashant

    2014-03-01

    Artificial photosynthesis, or generation of solar fuels from CO2/H2O, can provide an important alternative for rising CO2 emission and renewable energy generation. In our recent work, composite photocatalysts (CPCs) made from widebandgap nanotubes and different QDs were used to mimic Photosystem II (PS680) and I (PS700), respectively. By tuning the redox potentials using the size, composition and energy band alignment of QDs, we demonstrate highly selective (>90%) and efficient production of ethane, ethanol and acetaldehyde as solar fuels with different wavelengths of light. We also show that this selectivity is a result of precise energy band alignments (using cationic/anionic doping of nanotubes, QD size etc.), confirmed using measurements of electronic density of states, and alignment of higher redox potentials with hot-carriers can also lead to hot-carrier photocatalysis. This wavelength-selective CPCs can have important implications for inexpensive production of solar fuels including alkanes, alcohols, aldehydes and hydrogen, and making tandem structures (red, green, blue) with three CPCs, allowing almost full visible spectrum (410 ~ 730nm) utilization with different fuels produced simultaneously.

  14. Lower atmosphere of solar flares; Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, Aug. 20-24, 1985

    International Nuclear Information System (INIS)

    Neidig, D.F.

    1986-01-01

    The topics discussed by the present conference encompass the chromospheric flare phenomenon, white light flares, UV emission and the flare transition region, the flare corona and high energy emissions, stellar flares, and flare energy release and transport. Attention is given to radiative shocks and condensation in flares, impulsive brightening of H-alpha flare points, the structure and response of the chromosphere to radiation backwarming during solar flares, the interpretation of continuum emissions in white light flares, and the radiation properties of solar plasmas. Also discussed are EUV images of a solar flare and C III intensity, an active region survey in H-alpha and X-rays, dynamic thermal plasma conditions in large flares, the evolution of the flare mechanism in dwarf stars, the evidence concerning electron beams in solar flares, the energetics of the nonlinear tearing mode, macroscopic electric fields during two-ribbon flares, and the low temperature signatures of energetic particles

  15. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  16. Impedance-stabilized positive corona discharge and its decontamination properties

    International Nuclear Information System (INIS)

    Horak, P; Khun, J

    2010-01-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  17. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  18. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  19. Search for solar axions with the X-ray telescope of the CAST experiment (phase II)

    International Nuclear Information System (INIS)

    Nordt, Annika

    2009-01-01

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ( 4 He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with 4 He inside the magnet. The result for the coupling constant of axions to photons is: g αγγ -10 GeV -1 (95%C.L.) for m a =0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  20. Equilibrium plasma corona surfaces

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    The distribution of charge of one sign when the opposite charge density is given is determined. Poisson's equation is solved in plane geometry for a simple specified ion density. This automatically gives the inverse solution for a given electron density, by reversing the sign of the potential. Some solutions can approximate a microwave confined corona, for very over dense cases

  1. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  2. Radiation magnetohydrodynamic simulations of the formation of hot accretion disk coronae

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)

    2014-04-01

    A new mechanism to form a magnetic pressure supported, high temperature corona above the photosphere of an accretion disk is explored using three dimensional radiation magnetohydrodynamic (MHD) simulations. The thermal properties of the disk are calculated self-consistently by balancing radiative cooling through the surfaces of the disk with heating due to dissipation of turbulence driven by magneto-rotational instability (MRI). As has been noted in previous work, we find the dissipation rate per unit mass increases dramatically with height above the mid-plane, in stark contrast to the α-disk model which assumes this quantity is a constant. Thus, we find that in simulations with a low surface density (and therefore a shallow photosphere), the fraction of energy dissipated above the photosphere is significant (about 3.4% in our lowest surface density model), and this fraction increases as surface density decreases. When a significant fraction of the accretion energy is dissipated in the optically thin photosphere, the gas temperature increases substantially and a high temperature, magnetic pressure supported corona is formed. The volume-averaged temperature in the disk corona is more than 10 times larger than at the disk mid-plane. Moreover, gas temperature in the corona is strongly anti-correlated with gas density, which implies the corona formed by MRI turbulence is patchy. This mechanism to form an accretion disk corona may help explain the observed relation between the spectral index and luminosity from active galactic nucleus (AGNs), and the soft X-ray excess from some AGNs. It may also be relevant to spectral state changes in X-ray binaries.

  3. The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics

    Science.gov (United States)

    Pavlos, George

    2015-04-01

    experimentally and theoretically by using the q-entropy principle included in Tsallis non-extensive statistical theory, following Arimitsu and Arimitsu (2000). Our analysis showed clearly the following: (a) a phase transition process in the solar flare dynamics from a high dimensional non-Gaussian self-organized critical (SOC) state to a low dimensional also non-Gaussian chaotic state, (b) strong intermittent solar corona turbulence and an anomalous (multifractal) diffusion solar corona process, which is strengthened as the solar corona dynamics makes a phase transition to low dimensional chaos, (c) faithful agreement of Tsallis non-equilibrium statistical theory with the experimental estimations of the functions: (i) non-Gaussian probability distribution function P(x), (ii) f(a) and D(q), and (iii) J(p) for the solar flares timeseries and its underlying non-equilibrium solar dynamics, and (d) the solar flare dynamical profile is revealed similar to the dynamical profile of the solar corona zone as far as the phase transition process from self-organized criticality (SOC) to chaos state. However the solar low corona (solar flare) dynamical characteristics can be clearly discriminated from the dynamical characteristics of the solar convection zone. At last we present novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which can take place in Solar wind plasma system. The solar wind plasma as well as the entire solar plasma system is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields ( ) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical

  4. Loeb's and streamer-based mechanism for negative corona current pulses

    International Nuclear Information System (INIS)

    Vagnerova, L.; Skalny, J.D.; Cermak, M.

    1998-01-01

    The negative point-to-plane corona discharge in electronegative gaseous mixtures is studied experimentally and the basic mechanisms controlling the corona phenomena are discussed. The typical shapes of the current pulse waveforms observed in experiments with the nitrogen-freon mixtures are explained in terms of the theory by Loeb and of the positive-streamer-based model. (J.U.)

  5. Prominence-corona interface compared with the chromosphere-corona transition region

    Energy Technology Data Exchange (ETDEWEB)

    Orrall, F Q; Schmahl, E J [Harvard Coll. Observatory, Cambridge, Mass. (USA)

    1976-11-01

    The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio Isub(cell)/Isub(prominence) for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as approximately Tsup(-0.6). The density sensitive C III (formed at T approximately 9x10/sup 4/ K) line ratio Isub(lambda1175)/Isub(lambda977) implies an average density 1.3x10/sup 9/ electrons cm/sup -3/ in the P-C interface and approximately 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is < approximately 10 in most of the prominences studied; in two of the prominences, however, the possibility that tau/sub 0/ is large cannot be rejected. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.

  6. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Hasan, Nusair; Farouk, Bakhtier; Antao, Dion S

    2014-01-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  7. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Jaime de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Hansteen, Viggo; Ortiz, Ada [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Bellot-Rubio, Luis, E-mail: jaime@astro.su.se [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain)

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  8. Nanoparticle-protein corona in invertebrate in vitro testing

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Scavenius, Carsten

    2013-01-01

    , and the primary cells were thus exposed to silver nanoparticles with pre-formed corona of serum albumin (a major serum protein). Here we have profiled proteins forming the hard corona around silver nanoparticles (OECD reference materials, 15 nm and 75 nm) using gel electrophoresis techniques to identify proteins...... that strongly interact with the nanoparticles. This study was accompanied by multi-parametric flow-cytometry analysis of the cellular responses, in particular nanoparticle accumulation and cytotoxicity. The formation of and differential cellular responses to nanoparticle-protein complexes underscore the need...

  9. Fabrication of corona-free nanoparticles with tunable hydrophobicity.

    Science.gov (United States)

    Moyano, Daniel F; Saha, Krishnendu; Prakash, Gyan; Yan, Bo; Kong, Hao; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-22

    A protein corona is formed at the surface of nanoparticles in the presence of biological fluids, masking the surface properties of the particle and complicating the relationship between chemical functionality and biological effects. We present here a series of zwitterionic NPs of variable hydrophobicity that do not adsorb proteins at moderate levels of serum protein and do not form hard coronas at physiological serum concentrations. These particles provide platforms to evaluate nanobiological behavior such as cell uptake and hemolysis dictated directly by chemical motifs at the nanoparticle surface.

  10. The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry

    Science.gov (United States)

    Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca

    2017-09-01

    The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.

  11. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    International Nuclear Information System (INIS)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic

    2016-01-01

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.

  12. Modeling the time evolution of the nanoparticle-protein corona in a body fluid.

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Orco

    Full Text Available BACKGROUND: Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona. RESULTS: We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL. CONCLUSIONS: The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine.

  13. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    Energy Technology Data Exchange (ETDEWEB)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic, E-mail: docter@uni-mainz.de

    2016-05-15

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immune response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.

  14. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  15. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  16. Charge state evolution in the solar wind. III. Model comparison with observations

    International Nuclear Information System (INIS)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-01-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  17. Solar Probe ANalyzer for Ions - Laboratory Performance

    Science.gov (United States)

    Livi, R.; Larson, D. E.; Kasper, J. C.; Korreck, K. E.; Whittlesey, P. L.

    2017-12-01

    The Parker Solar Probe (PSP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 10 RS. PSP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. SPAN-Ai has completed flight calibration and spacecraft integration and is set to be launched in July of 2018. The main mode of operation consists of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. SPAN-Ai's main objective is to measure solar wind ions within an energy range of 5 eV - 20 keV, a mass/q between 1-60 [amu/q] and a field of view of 2400x1200. Here we will show flight calibration results and performance.

  18. NEW OBSERVATIONS OF THE SOLAR 0.5–5 KEV SOFT X-RAY SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, Amir; Woods, Thomas N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-03-20

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ∼0.2 and ∼4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ∼0.5 to ∼5 keV, with ∼0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5–10 MK) emission and are well fit by simple power-law temperature distributions with indices of ∼6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ∼1.6, below the usually observed value of ∼4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  19. Comparison of toluene removal in air at atmospheric conditions by different corona discharges.

    Science.gov (United States)

    Schiorlin, Milko; Marotta, Ester; Rea, Massimo; Paradisi, Cristina

    2009-12-15

    Different types of corona discharges, produced by DC of either polarity (+/-DC) and positive pulsed (+pulsed) high voltages, were applied to the removal of toluene via oxidation in air at room temperature and atmospheric pressure. Mechanistic insight was obtained through comparison of the three different corona regimes with regard to process efficiency, products, response to the presence of humidity and, for DC coronas, current/voltage characteristics coupled with ion analysis. Process efficiency increases in the order +DC toluene conversion and product selectivity were achieved, CO(2) and CO accounting for about 90% of all reacted carbon. Ion analysis, performed by APCI-MS (Atmospheric Pressure Chemical Ionization-Mass Spectrometry), provides a powerful rationale for interpreting current/voltage characteristics of DC coronas. All experimental findings are consistent with the proposal that in the case of +DC corona toluene oxidation is initiated by reactions with ions (O(2)(+*), H(3)O(+) and their hydrates, NO(+)) both in dry as well as in humid air. In contrast, with -DC no evidence is found for any significant reaction of toluene with negative ions. It is also concluded that in humid air OH radicals are involved in the initial stage of toluene oxidation induced both by -DC and +pulsed corona.

  20. Core–corona PSt/P(BA–AA) composite particles by two-stage emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Delong; Ren, Xiaolin; Zhang, Xinya, E-mail: cexyzh@scut.edu.cn; Liao, Shijun [South China University of Technology, School of Chemistry and Chemical Engineering (China)

    2016-03-15

    Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA–AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA–AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core–corona composite particles, P(St/P(BA–AA)), could be regulated and controlled by varying the concentrations of P(BA–AA) or the mass ratio of BA:AA in P(BA–AA). The experimental results indicate that 3.0–6.0 wt% of P(BA–AA) is required to obtain stable composite emulsions, and P(BA–AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core–corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA–A). The regular morphology of the colloidal film is expected to facilitate potential application of core–corona particles in the field of light scattering. Furthermore, the diversity of core–corona particles can be expanded by replacing P(BA–AA) corona particles with other amphiphilic particles.

  1. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Pemen, A.J.M.; Rutgers, W.R.

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration

  2. Corona ignition system for highly efficient gasoline engines; Corona-Zuendsystem fuer hocheffiziente Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John [Federal-Mogul Limited, Manchester (United Kingdom); Lykowski, Jim; Mixell, Kristapher [Federal-Mogul, Plymouth, MI (United States)

    2013-06-01

    Many future gasoline engines will require higher air/fuel ratios and higher mean effective pressures to further improve fuel efficiency. Federal-Mogul has taken up this challenge and has developed the Advanced Corona Ignition System (ACIS) as a new solution to reliably ignite a mix with high AFR/EGR and high MEP. During engine tests ACIS enabled a direct fuel economy improvement of up to 10 %. (orig.)

  3. Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja

    2016-08-01

    Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance.

  4. Turbulence and Waves as Sources for the Solar Wind

    Science.gov (United States)

    Cranmer, S. R.

    2008-05-01

    Gene Parker's insights from 50 years ago provided the key causal link between energy deposition in the solar corona and the acceleration of solar wind streams. However, the community is still far from agreement concerning the actual physical processes that give rise to this energy. It is still unknown whether the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy is input more intermittently from closed loops into the open-field regions. No matter the relative importance of reconnections and loop-openings, though, we do know that waves and turbulent motions are present everywhere from the photosphere to the heliosphere, and it is important to determine how they affect the mean state of the plasma. In this presentation, I will give a summary of wave/turbulence models that seem to succeed in explaining the time-steady properties of the corona (and the fast and slow solar wind). The coronal heating and solar wind acceleration in these models comes from anisotropic turbulent cascade, which is driven by the partial reflection of low-frequency Alfven waves propagating along the open magnetic flux tubes. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above Parker's critical point. As predicted by earlier studies, a larger coronal expansion factor gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. Finally, I will outline the types of future observations that would be most able to test and refine these ideas.

  5. Summary of solar eclipse operations in Australia, June 1974

    International Nuclear Information System (INIS)

    Lathrop, L.W.

    1975-03-01

    During the solar eclipse of June 20, 1974, a team of scientists and engineers from the United States and Australia conducted a series of scientific observations to study the temperature distribution in the solar corona. The performance of the rocket launched experiments is summarized. Two identical experiments were launched. Both rocket systems performed nominally. One failed to acquire the sun before entry into the shadow. Film from the recovered payload verified that the sun was not in view. The other test appeared to point successfully at the sun. However, the payload was not recovered and no data were obtained. The probable cause of the failures is discussed. (U.S.)

  6. Characteristics of coronal mass ejections associated with solar frontside and backside metric type II bursts

    International Nuclear Information System (INIS)

    Kahler, S.W.; Cliver, E.W.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.

    1985-01-01

    We compare fast (v> or =500 km s -1 ) coronal mass ejections (CME's) with reported metric type II bursts to study the properties of CME's associated with coronal shocks. We confirm an earlier report of fast frontside CME's with no associated metric type II bursts and calculate that 33 +- 15% of all fast frontside CME's are not associated with such bursts. Faster CME's are more likely to be associated with type II bursts, as expected from the hypothesis of piston-driven shocks. However, CME brightness and associated peak 3-cm burst intensity are also important factors, as might be inferred from the Wagner and MacQueen (1983) view of type II shocks decoupled from associated CME's. We use the equal visibility of solar frontside and backside CME's to deduce the observability of backside type II bursts. We calculate that 23 +- 7% of all backside type II bursts associated with fast CME's can be observed at the earth and that 13 +- 4% of all type II bursts originate in backside flares. CME speed again is the most important factor in the observability of backside type II bursts

  7. Influence of Axisymmetrically Deformed Explosions in Type II Supernovae on the Reproduction of the Solar System Abundances

    Science.gov (United States)

    Nagataki, Shigehiro

    1999-01-01

    We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.

  8. Two-fluid Numerical Simulations of Solar Spicules

    Energy Technology Data Exchange (ETDEWEB)

    Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep; Wójcik, Darek [Group of Astrophysics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, Abhishek Kumar; Dwivedi, Bhola N., E-mail: blazejkuzma1@gmail.com [Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005 (India)

    2017-11-10

    We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.

  9. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

    Science.gov (United States)

    Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU

    2018-05-01

    The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.

  10. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  11. Asymmetries of the solar Ca II lines

    International Nuclear Information System (INIS)

    Heasley, J.N.

    1975-01-01

    A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca II resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wavelengths and initial amplitudes in the photosphere. (Auth.)

  12. The corona problem connections between operator theory, function theory, and geometry

    CERN Document Server

    Krantz, Steven; Sawyer, Eric; Treil, Sergei; Wick, Brett

    2014-01-01

    The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within. The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to provide background. Particularly noteworthy is a history of the corona problem, authored by the five organizers, that provides a unique glimpse at how the problem and its many different solutions have developed. There has never been a meeting of this kind, and there has never been a volume of this kind. Mathematicians—...

  13. Research on the correlation between corona current spectrum and audible noise spectrum of HVDC transmission line

    Science.gov (United States)

    Liu, Yingyi; Zhou, Lijuan; Liu, Yuanqing; Yuan, Haiwen; Ji, Liang

    2017-11-01

    Audible noise is closely related to corona current on a high voltage direct current (HVDC) transmission line. In this paper, we measured a large amount of audible noise and corona current waveforms simultaneously based on the largest outdoor HVDC corona cage all over the world. By analyzing the experimental data, the related statistical regularities between a corona current spectrum and an audible noise spectrum were obtained. Furthermore, the generation mechanism of audible noise was analyzed theoretically, and the related mathematical expression between the audible noise spectrum and the corona current spectrum, which is suitable for all of these measuring points in the space, has been established based on the electro-acoustic conversion theory. Finally, combined with the obtained mathematical relation, the internal reasons for these statistical regularities appearing in measured corona current and audible noise data were explained. The results of this paper not only present the statistical association regularities between the corona current spectrum and the audible noise spectrum on a HVDC transmission line, but also reveal the inherent reasons of these associated rules.

  14. Variation of the Solar Microwave Spectrum in the Last Half Century

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi; Saito, Masao [National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, 181-8588 (Japan); Iwai, Kazumasa [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Chikusa-ku, Nagoya, 464-8601 (Japan); Asai, Ayumi [Kwasan and Hida Observatories, Kyoto University, Sakyo-ku, Kyoto, 606-8502 (Japan); Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Minamidani, Tetsuhiro, E-mail: masumi.shimojo@nao.ac.jp [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo, 181-8588 (Japan)

    2017-10-10

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20–24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  15. FTIR study of decomposition of carbon dioxide in dc corona discharges

    International Nuclear Information System (INIS)

    Horvath, G; Skalny, J D; Mason, N J

    2008-01-01

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO 2 has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO 2 decomposition is found to be dependent on the voltage, U, with a maximum CO 2 decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO 2 decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  16. FTIR study of decomposition of carbon dioxide in dc corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48, Bratislava (Slovakia); Mason, N J [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2008-11-21

    The decomposition rate of carbon dioxide and the generation of ozone and carbon monoxide in coaxial corona discharges fed by pure CO{sub 2} has been investigated in a dc corona discharge operated in both positive and negative polarities using FTIR spectroscopy. The degree of CO{sub 2} decomposition is found to be dependent on the voltage, U, with a maximum CO{sub 2} decomposition of nearly 10% found in a negative corona discharge for U = 7.5 kV. In all cases the amount of CO{sub 2} decomposition was lower in positive polarity discharges than in negative polarity discharges operated under same conditions. CO and ozone were found to be the main products observed in the discharges.

  17. New computation results for the solar dynamo

    International Nuclear Information System (INIS)

    Csada, I.K.

    1983-01-01

    The analytical solution to the solar dynamo equation leads to a relatively simple algorythm for the computation in terms of kinematic models. The internal and external velocities taken to be in the form of axisymmetric meridional circulation and differential rotation, respectively. Pure radial expanding motions in the corona are also taken into consideration. Numerical results are presented in terms of the velocity parameters for the period of field reversal, decay time, magnitudes and phases of the first four multipoles. (author)

  18. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  19. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  20. SphinX MEASUREMENTS OF THE 2009 SOLAR MINIMUM X-RAY EMISSION

    OpenAIRE

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakala, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-01-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing Sph...