WorldWideScience

Sample records for solar cells consisting

  1. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    Science.gov (United States)

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-07

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    KAUST Repository

    Kageshima, Yosuke

    2016-04-18

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  3. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  4. Solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, W.

    1977-03-03

    A solar collector is described. The absorber consists of a plate onto which the light is focussed through lenses. The heat is transported from the absorber to the heat accumulator via metallic heat conductors. In case of insufficient solar radiation, the heat transport from the collector to the accumulator may be interrupted by a disconnecting switch. The casing consists of Eternit.

  5. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-08-18

    Concerning the exsisting solar cell utilizing wavelength transition, the area of the solar cell element necessary for unit electric power output can be made small, but transition efficiency of the solar cell as a whole including a plastic plate with phosphor is not high. This invention concerns a solar cell which is appropriate for transferring the light within a wide spectrum range of the sunlight to electricilty efficiently, utilizes wavelength transition and has high efficiency per unit area. In other words, the solar cell of this invention has the feature of providing in parallel with a photoelectric transfer layer a layer of wavelength transitioning material (phosphor) which absorbs the light within the range of wavelength of low photoelectric transfer efficiency at the photoelectric transfer layer and emits the light within the range of wavelength in which the photoelectric transfer rate is high on the light incident side of the photoelectric transfer layer. (5 figs)

  6. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  7. Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells

    Directory of Open Access Journals (Sweden)

    Hideaki Komiyama

    2016-07-01

    Full Text Available Solution-processable star-shaped and linear π-conjugated oligomers consisting of an electron-donating tetrathienoanthracene (TTA core and electron-accepting diketopyrrolopyrrole (DPP arms, namely, TTA-DPP4 and TTA-DPP2, were designed and synthesized. Based on density functional theory calculations, the star-shaped TTA-DPP4 has a larger oscillator strength than the linear TTA-DPP2, and consequently, better photoabsorption property over a wide range of visible wavelengths. The photovoltaic properties of organic solar cells based on TTA-DPP4 and TTA-DPP2 with a fullerene derivative were evaluated by varying the thickness of the bulk heterojunction active layer. As a result of the enhanced visible absorption properties of the star-shaped π-conjugated structure, better photovoltaic performances were obtained with relatively thin active layers (40–60 nm.

  8. Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2012-05-01

    Full Text Available An anatase TiO2 material with hierarchically structured spheres consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSCs. Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron recombination rate compared to the conventional TiO2 nanoparticles. In contrast, the effective electron diffusion coefficient, Dn, was not sensitive to the variation of the TiO2 morphology. The TiO2 spheres showed the same Dn as that of the nanoparticles. The influence of TiCl4 post-treatment on the conduction band of the TiO2 spheres and on the kinetics of electron transport and back reactions was also investigated. It was found that the TiCl4 post-treatment caused a downward shift of the TiO2 conduction band edge by 30 meV. Meanwhile, a fourfold increase of the effective electron lifetime of the DSC was also observed after TiCl4 treatment. The synergistic effect of the variation of the TiO2 conduction band and the electron recombination determined the open-circuit voltage of the DSC.

  9. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  10. Interfacial engineering and configuration design of bilayered photoanode consisting of macroporous tin dioxide/titanium dioxide for high performance dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhao, Peilu; Sun, Hongbin; Tian, Liyuan; Wang, Biao; Liu, Fengmin; Sun, Peng; Lu, Geyu

    2015-01-01

    Highlights: • Hierarchical SnO 2 /TiO 2 porous nanostructure combines fast electron transport, slow charge recombination and high specific surface area. • SnO 2 @TiO 2 hollow sphere synthesized by a facile water bath method exhibits superior light scattering ability. • High efficiency of 7.79% is achieved for double layered photoanode based on macroporous SnO 2 /TiO 2 composite nanomaterials. - Abstract: Two kinds of tin oxide (SnO 2 )/titanium oxide (TiO 2 ) composite materials have been synthesized and applied as electrodes in dye-sensitized solar cells (DSSCs) with high performance. The porous SnO 2 /TiO 2 material (PSTM) consisting of SnO 2 nanosheets cluster and TiO 2 nanoparticles (P25) shows a superior dye adsorption ability due to its large specific surface area (151.1 m 2 g −1 ). The PSTM based cell exhibits the slowest electron recombination rate among the cells tested from electrochemical impedance spectra measurements, and obtains final power conversion efficiency (PCE) up to 6.80%. Another novel structure of SnO 2 @TiO 2 hollow sphere (STHS) prepared via a facile water bath process is designed to improve the light utilization efficiency with its excellent light scattering ability. Though the charge recombination resistance of STHS (25.6 Ω) is smaller than that of P25 (30.6 Ω), the PCE of the DSSCs based on the former is 5.82%, showing over 9.2% increment than the latter (5.33%). This can be mainly ascribed to the enhanced light-harvesting ability and charge collection efficiency of the macroporous hollow sphere structure, both of which contribute to a higher short current density and hence for the better photovoltaic performance. Furthermore, we demonstrate a bilayered film of PSTM (charge conduction layer) and STHS (light scattering layer) as photoanode aiming to further improve the efficiency of DSSC by engineered integration of different promising materials. The results indicate that the PSTM+STHS based cell shows an obvious 14.6% increase

  11. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  12. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  13. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Solar cell shingle

    Science.gov (United States)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  15. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2011-01-01

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector b ·E-vector perpendicular =0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector b ·E-vector perpendicular =0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of

  16. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  17. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  18. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  19. Solar cell array interconnects

    Science.gov (United States)

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  20. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  1. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  2. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  3. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  4. A Self-consistent Model of the Solar Tachocline

    Science.gov (United States)

    Wood, T. S.; Brummell, N. H.

    2018-02-01

    We present a local but fully nonlinear model of the solar tachocline, using three-dimensional direct numerical simulations. The tachocline forms naturally as a statistically steady balance between Coriolis, pressure, buoyancy, and Lorentz forces beneath a turbulent convection zone. Uniform rotation is maintained in the radiation zone by a primordial magnetic field, which is confined by meridional flows in the tachocline and convection zone. Such balanced dynamics has previously been found in idealized laminar models, but never in fully self-consistent numerical simulations.

  5. Iron sulphide solar cells

    Science.gov (United States)

    Ennaoui, A.; Tributsch, H.

    1984-12-01

    The abundant, naturally occurring natural compound pyrite (FeS2) can be used as a semiconducting material for photoelectrochemical and photovoltaic solar cells. Unlike most of the intensively studied photoactive materials, pyrite solar cell production would never be limited by the availability of the elements or by their compatibility with the environment. An energy gap of 0.95 eV has been determined for pyrite, and it is noted that the theoretical efficiency limit for solar energy conversion in this material is of the order of 15-20 percent.

  6. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  7. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  8. Nature's Solar Cell

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Nature's Solar Cell. Stephen Suresh Gautham Nadig. Research News Volume 1 Issue 2 February 1996 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0102-0104 ...

  9. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    tus of hybrid perovskite solar cells. 1. Introduction. Gradually, primary energy resources such as fossil fuels, coal, and natural gas are depleting, while the global energy consump- tion is increasing. Solar energy, along with wind, biomass, tidal, and geothermal sources is emerging as an answer to our energy- starved planet.

  10. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  11. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology...

  12. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  13. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... for organic solar cell applications, opening new patterning possibilities....

  14. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  15. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  16. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  17. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  18. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  19. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    High efficiency, flexibility, and cell architecture of the emerging hybrid halide perovskite have caught the attention of researchers and technologists in the field. This article fo- cuses on the emergence, properties, and current research sta- tus of hybrid perovskite solar cells. 1. Introduction. Gradually, primary energy resources ...

  20. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  1. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  2. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  3. Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells.

    Science.gov (United States)

    Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau

    2012-12-07

    We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.

  4. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  5. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  6. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  7. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  8. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  9. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  10. Upconversion in solar cells

    Science.gov (United States)

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  11. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  12. Si Microwire Array Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Boettcher, Shannon W.; Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Spurgeon, Joshua M.; Warren, Emily L.; Briggs, Ryan M.; Lewis, Nathan S.; Atwater, Harry A.

    2010-01-01

    Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J{sub sc}) of up to 24 mA cm{sup -2}, and fill factors >65% and employed Al{sub 2}O{sub 3} dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN{sub x}:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J{sub sc}. Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J{sub sc} of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements.

  13. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  14. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  15. High Efficiency, Deployable Solar Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrathin, lightweight, flexible, and easily deployable solar cell (SC) capable of specific power greater than 1kW/kg is the target of this development and are at an...

  16. Distributed series resistance effects in solar cells

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1982-01-01

    A mathematical treatment is presented of the effects of one-dimensional distributed series resistance in solar cells. A general perturbation theory is developed, including consistently the induced spatial variation of diode current density and leading to a first-order equivalent lumped resistance...

  17. Solar cell module assembly jig

    Science.gov (United States)

    Ofarrell, H. W. (Inventor)

    1966-01-01

    The invention relates to the manufacture of solar cell modules and more particularly to a jig for assembling, positioning and maintaining the components under resilient pressure, while the entire assembly and the jig is subjected to heat for simultaneously soldering all of the various circuit connections; as well as structurally bonding the layers into a strong light weight structure which minimizes the tendency of the solar cells to crack and the other components and electrical connections to fracture.

  18. Solar cell with back side contacts

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  19. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  20. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  1. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  2. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  3. How the relative permittivity of solar cell materials influences solar cell performance

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Huss-Hansen, Mathias K.; Hansen, Ole

    2017-01-01

    The relative permittivity of the materials constituting heterojunction solar cells is usually not considered as a design parameter when searching for novel combinations of heterojunction materials. In this work, we investigate the validity of such an approach. Specifically, we show the effect...... of the materials permittivity on the physics and performance of the solar cell by means of numerical simulation supported by analytical relations. We demonstrate that, depending on the specific solar cell configuration and materials properties, there are scenarios where the relative permittivity has a major...... the heterojunction partner has a high permittivity, solar cells are consistently more robust against several non-idealities that are especially likely to occur in early-stage development, when the device is not yet optimized....

  4. Advances in Perovskite Solar Cells

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed. PMID:27812475

  5. Concentrator-solar-cell development

    Science.gov (United States)

    Grenon, L.

    1982-07-01

    A program is described which is a continuation of earlier programs for the development of high-efficiency, low-cost, silicon concentrator solar cells. The base-line process steps and process sequences identified in these earlier contracts were evaluated and specific processes reviewed. In particular, emphasis on the use of Czochralski-grown silicon wafers rather than float-zone wafers were examined. Additionally, a study of the trade-offs between textured and nontextured cells was initiated, and the limits within which the low-cost plated nickel copper metallization can be used in concentrator solar cell applications was identified.

  6. Rehydrating dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Christian Hellert

    2017-05-01

    Full Text Available Dye sensitized solar cells (DSSCs are silicon free, simply producible solar cells. Longevity, however, is a longstanding problem for DSSCs. Due to liquid electrolytes being commonly used, evaporation of the electrolyte causes a dramatic drop in electric output as cells continue to be used unmaintained. Stopping evaporation has been tried in different ways in the past, albeit with differing degrees of success. In a recent project, a different route was chosen, exploring ways of revitalizing DSSCs after varying periods of usage. For this, we focused on rehydration of the cells using distilled water as well as the electrolyte contained in the cells. The results show a significant influence of these rehydration procedures on the solar cell efficiency. In possible applications of DSSCs in tents etc., morning dew may thus be used for rehydration of solar cells. Refillable DSSCs can also be used in tropical climates or specific types of farms and greenhouses where high humidity serves the purpose of rehydrating DSSCs.

  7. Development of a shingle-type solar cell module

    Science.gov (United States)

    Shepard, N. F., Jr.; Sanchez, L. E.

    1978-01-01

    The development of a solar cell module, which is suitable for use in place of shingles on the sloping roofs of residental or commercial buildings, is reported. The design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. The shingle solar cell module consists of two basic functional parts: an exposed rigid portion which contains the solar cell assembly, and a semi-flexible portion which is overlapped by the higher courses of the roof installation. Consideration is given to the semi-flexible substrate configuration and solar cell and module-to-module interconnectors. The results of an electrical performance analysis are given and it is noted that high specific power output can be attributed to the efficient packing of the circular cells within the hexagon shape. The shingle should function for at least 15 years, with a specific power output of 98 W/sq w.

  8. Photon upconversion for thin film solar cells

    NARCIS (Netherlands)

    de Wild, J.

    2012-01-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part

  9. Solar cell circuit and method for manufacturing solar cells

    Science.gov (United States)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  10. Nanocomposite enables sensitized solar cell

    Science.gov (United States)

    Phuyal, Dibya D.

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenerate the dye. On the photoanode is a high band-gap semiconducting material, primarily of a nanostructure morphology of titanium (II) dioxide (TiO2), dye molecules whose molar absorption is typically in the visible spectrum, are adsorbed onto the surface of TiO 2. To improve the current DSSCs, there are many parameters that can be investigated. In a conventional DSSC, a thick semiconducting layer such as the nanoparticle TiO2 layer induces charge separation efficiently while concurrently increasing the charge transport distance, leading the cell to suffer from more charge recombination and deterioration in charge collection efficiency. To improve on this limitation, TiO2 nanowires (NW) and nanotubes (NT) are explored to replace the nanoparticle photoanode. One-dimensional nanostructures are known for the excellent electron transport properties as well as maintaining a relatively high surface area. Hence one of the focuses of this thesis explores at using different morphologies and composition of TiO2 nanostructures to enhance electron collection efficiency. Another challenge in conventional DSSCs is the limit in light absorption of solar irradiation. Dyes are limited to absorption only in the visible range, and have a low molar absorption coefficient in the near infrared (NIR). Tuning dyes is extremely complicated and may have more disadvantages than simply by extending light harvesting. Therefore our strategy is to incorporate quantum dots to replace the dye, as well as prepare a

  11. Effects of radiation on solar cells as photovoltaic generators

    Directory of Open Access Journals (Sweden)

    Radosavljević Radovan Lj.

    2012-01-01

    Full Text Available The growing need for obtaining electrical energy through renewable energy sources such as solar energy have lead to significant technological developments in the production of the basic element of PV conversion, the solar cell. Basically, a solar cell is a p-n junction whose characteristics have a great influence on its output parameters, primarily efficiency. Defects and impurities in the basic material, especially if located within the energy gap, may be activated during its lifetime, becoming traps for optically produced electron-hole pairs and, thus, decreasing the output power of the cell. All of the said effects could be induced in many ways over a lifetime of a solar cell and are consistent with the effects that radiation produces in semiconductor devices. The aim of this paper is to investigate changes in the main characteristics of solar cells, such as efficiency, output current and power, due to the exposure of solar systems to different (hostile radiation environments.

  12. High performance electrocatalyst consisting of CoS nanoparticles on an organized mesoporous SnO2 film: its use as a counter electrode for Pt-free, dye-sensitized solar cells.

    Science.gov (United States)

    Park, Jung Tae; Lee, Chang Soo; Kim, Jong Hak

    2015-01-14

    High energy conversion efficiencies of 6.6% and 7.5% are demonstrated in solid and liquid states, Pt-free, dye-sensitized solar cells (DSSCs), respectively, based on CoS nanoparticles on an organized mesoporous SnO2 (om-SnO2) counter electrode. These results correspond to improvements of 14% and 9%, respectively, compared to a conventional Pt counter electrode and are among the highest values reported for Pt-free DSSCs. The om-SnO2 layer plays a pivotal role as a platform to deposit a large amount of highly electrocatalytically active CoS nanoparticles via a facile solvothermal reaction. The om-SnO2 platform with a high porosity, larger pores, and good interconnectivity is derived from a poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer template, which provides not only improved interaction sites for the formation of CoS nanoparticles but also enhanced electron transport. The structural, morphological, chemical, and electrochemical properties of CoS on the om-SnO2 platform are investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements. The performance enhancement results from the excellent electron transport at the fluorine-doped tin oxide (FTO)/counter electrode/electrolyte interface, reduced resistance at the FTO/CoS interface, and better catalytic reduction at the counter electrode/electrolyte interface.

  13. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  14. Incineration of organic solar cells

    NARCIS (Netherlands)

    Søndergaard, Roar R.; Zimmermann, Yannick Serge; Espinosa, Nieves; Lenz, Markus; Krebs, Frederik

    2016-01-01

    Recovery of silver from the electrodes of roll-to-roll processed organic solar cells after incineration has been performed quantitatively by extraction with nitric acid. This procedure is more than 10 times faster than previous reports and the amount of acid needed for the extraction is reduced

  15. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  16. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  17. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  18. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  19. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...

  20. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  1. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    the morphology of the active layer of the solar cells when produced with water based inks using R2R coating. Using a broad range of scattering and imaging techniques, cells coated with water based inks were investigated, and compared to their spin coated counterpart. Two challenges to be addressed were small...... cells. Ptychography offers desirable properties such as potentially high resolution, quantitative contrast and possibility for tomography. Both these X-ray imaging techniques were used to measure the samples with high spatial and chemical resolution. In addition, these experiments explored and reviewed...

  2. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  3. SLAM examination of solar cells and solar cell welds

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  4. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  5. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    . A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...

  6. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  7. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  8. Recent Advances in Solar Cell Technology

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  9. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)

    IHA NEYDE YUKIE MURAKAMI

    2000-01-01

    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  10. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  11. Rational Strategies for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  12. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  13. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available An attractive and cheaper alternative to siliconbased photovoltaic (PV) cells for the conversion of solar light into electrical energy is to utilise dyeadsorbed, large-band-gap metal oxide materials such as TiO2 to absorb the solar light...

  14. Bypass diode for a solar cell

    Science.gov (United States)

    Rim, Seung Bum [Palo Alto, CA; Kim, Taeseok [San Jose, CA; Smith, David D [Campbell, CA; Cousins, Peter J [Menlo Park, CA

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  15. Solar Cells Using Quantum Funnels

    KAUST Repository

    Kramer, Illan J.

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.

  16. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  17. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  18. Theoretical investigation on heterojunction solar cell

    International Nuclear Information System (INIS)

    Prema, K.; Geetha, K.

    1986-11-01

    The study of thin film solar cells has proved that the surface is rough. A two-dimensional method based on the integral equation technique to analyse thin film solar cells has been developed by DeMey et al. In this paper we present our analysis of a thin film solar cell using the above techniques. Variation of the minority carrier concentration, the saturation current and the junction current of the solar cell with surface roughness is presented. (author). 8 refs, 4 figs

  19. Nanostructured organic and hybrid solar cells.

    Science.gov (United States)

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Machine for welding solar cell connections

    Energy Technology Data Exchange (ETDEWEB)

    Lorans, D.Y.

    1977-08-09

    A machine for welding a connection wire over a solar cell electrode is described which comprises a base, a welding mount for the solar cell which is supported on the base, means for holding the solar cell on the welding mount, welding electrodes, means to lower the welding electrodes over the solar cell and the connection wire superimposed thereon, means for applying electric current pulses to said welding electrodes. It is characterized by the fact that it further comprises means for imparting to said mount an alternating transverse movement in relation to said base before and during the welding operation.

  1. Single-Walled Carbon Nanotubes in Solar Cells.

    Science.gov (United States)

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  2. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  3. Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells.

    Science.gov (United States)

    Genovese, Matthew P; Lightcap, Ian V; Kamat, Prashant V

    2012-01-24

    A transformative approach is required to meet the demand of economically viable solar cell technology. By making use of recent advances in semiconductor nanocrystal research, we have now developed a one-coat solar paint for designing quantum dot solar cells. A binder-free paste consisting of CdS, CdSe, and TiO(2) semiconductor nanoparticles was prepared and applied to conducting glass surface and annealed at 473 K. The photoconversion behavior of these semiconductor film electrodes was evaluated in a photoelectrochemical cell consisting of graphene-Cu(2)S counter electrode and sulfide/polysulfide redox couple. Open-circuit voltage as high as 600 mV and short circuit current of 3.1 mA/cm(2) were obtained with CdS/TiO(2)-CdSe/TiO(2) electrodes. A power conversion efficiency exceeding 1% has been obtained for solar cells constructed using the simple conventional paint brush approach under ambient conditions. Whereas further improvements are necessary to develop strategies for large area, all solid state devices, this initial effort to prepare solar paint offers the advantages of simple design and economically viable next generation solar cells. © 2011 American Chemical Society

  4. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  5. Monolithic cells for solar fuels.

    Science.gov (United States)

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  6. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    Science.gov (United States)

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  7. Nanobump assembly for plasmonic organic solar cells

    Science.gov (United States)

    Song, Hyung-Jun; Jung, Kinam; Lee, Gunhee; Ko, Youngjun; Lee, Jong-Kwon; Choi, Mansoo; Lee, Changhee

    2014-10-01

    We demonstrate novel plasmonic organic solar cells (OSCs) by embedding an easy processible nanobump assembly (NBA) for harnessing more light. The NBA is consisted of precisely size-controlled Ag nanoparticles (NPs) generated by an aerosol process at atmospheric pressure and thermally deposited molybdenum oxide (MoO3) layer which follows the underlying nano structure of NPs. The active layer, spin-casted polymer blend solution, has an undulated structure conformably covering the NBA structure. To find the optimal condition of the NBA structure for enhancing light harvest as well as carrier transfer, we systematically investigate the effect of the size of Ag NPs and the MoO3 coverage on the device performance. It is observed that the photocurrent of device increases as the size of Ag NP increases owing to enhanced plasmonic and scattering effect. In addition, the increased light absorption is effectively transferred to the photocurrent with small carrier losses, when the Ag NPs are fully covered by the MoO3 layer. As a result, the NBA structure consisted of 40 nm Ag NPs enclosed by 20 nm MoO3 layer leads to 18% improvement in the power conversion efficiency compared to the device without the NBA structure. Therefore, the NBA plasmonic structure provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of organic solar cells.

  8. Achieving 15% Tandem Polymer Solar Cells

    Science.gov (United States)

    2015-06-23

    final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency of 19.3% under...novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency of 19.3% under reverse bias was achieved and the results...solar cells with 10.2% power conversion efficiency via stacking two PDTP-DFBT:PC71BM bulk heterojunctions, connected by MoO3/PEDOT:PSS/ ZnO as an

  9. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in

  10. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2005-07-01

    Full Text Available A novel system that harnesses solar energy is the nano-crystalline TiO dye-sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using...

  11. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    flexible triple junction, amorphous silicon solar cells. At the Malaysia Energy Centre (MEC), we fabricated triple junction amorphous silicon solar cells (up to 12⋅7% efficiency (Wang et al 2002)) and laser-interconnected modules on steel, glass and polyimide substrates. A major issue encountered is the adhesion of thin film ...

  12. Scaling up ITO-Free solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E.W.C.; Zimmermann, B.; Slooff, L.H.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.; Jørgensen, M.; Krebs, F.C.; Andriessen, H.A.J.M.

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm and

  13. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  14. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  15. Improved CMX solar cell coverglasses and optical solar reflectors

    Science.gov (United States)

    Whalley, A. M.; Jones, D. P.; Dollery, A. A.; Murphy, N.; Porter, D. A.

    Recent development programs have demonstrated that considerable improvements in optical and thermooptical performance as well as mechanical properties of CMX solar cell coverglasses and optical solar reflectors (OSRs) can be achieved. Optical coatings can increase infrared emittance by 4 percent and decrease solar absorptance by 50 percent. Chemical treatments can be used to increase glass strength to four times its untreated value or to provide integral antireflection layers which reduce reflection to 0.5 percent per surface. Automated test equipment for proving the strength of each coverglass and mirror has been designed and manufactured.

  16. Coating Processes Boost Performance of Solar Cells

    Science.gov (United States)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  17. Danish participation in the IEA solar cell activities

    International Nuclear Information System (INIS)

    1994-05-01

    In the 12-month period 01.05.93 - 30.04.94 the Danish activities in the IEA 'Solar Cell Agreement' consisted in: participation in the Executive Committee (ExCo) and participation in Task 1 'Exchange and Dissemination of Information on PV Power Systems'. ExCo has meetings every half-year and is a coordinating organ for the Agreement. Work on the Task 1 is organized in 4 subtasks: (1) mapping of solar cell activities in the OECD countries and preparation of an IEA handbook on solar cell technology; (2) publishing of a semiannual newsletter about the agreement; (3) an 'executive conference' on solar cell technology and its uses with participation of the decision-makers in respective power industries; (4) information dissemination whenever required. Demonstration projects, like a photovoltaic roof-integrated system connected to the grid. have been implemented. Three larger solar cell projects, subsidized by the EU means, comprehend 'real time monitoring' by a solar system, WHO project 'Solar Energy Applications for Primary Health Care Clinics for Remote Rural Areas' (SAPHIR) and a grid-connected photovoltaic system in a suburb residential settlement. (EG)

  18. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  19. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  20. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  1. Consistent chromosome abnormalities in LS/BL murine lymphosarcoma cells

    International Nuclear Information System (INIS)

    Juraskova, V.

    1987-01-01

    LS/BL lymphosarcoma was induced by radiation in a C57BL/10 mouse in 1963 and was converted to ascites form in the first mouse transfer generation. In the course of cultivation in vivo the modal number of chromosomes dropped from the initial value 42 to 41 to 39 (73%). The cytogenetic characterization of the LS/BL tumor was carried out using the G-banding technique. Chromosome abnormalities were consistent in the cell line and involved chromosomes Nos. 3, 6, 12, 13, 16 and X. The most frequent abnormality was the presence of three markers and trisomy of chromosome No. 16. (author). 2 figs., 2 tabs., 38 refs

  2. Providing Consistent (A)ATSR Solar Channel Radiometry for Climate Studies

    Science.gov (United States)

    Smith, D.; Latter, B. G.; Poulsen, C.

    2012-04-01

    Data from the solar reflectance channels of the Along Track Scanning Radiometer (ATSR) series of instruments are being used in applications for monitoring trends in clouds and aerosols. In order to provide quantitative information, the radiometric calibrations of the sensors must be consistent, stable and ideally traced to international standards. This paper describes the methods used to monitor the calibrations of the ATSR instruments to provide consistent Level 1b radiometric data sets. Comparisons of the in-orbit calibrations are made by reference to data from quasi stable sites such as DOME-C in Antarctica or Saharan Desert sites. Comparisons are performed either by time coincident match-ups of the radiometric data for sensors having similar spectral bands and view/solar geometry and overpass times as for AATSR and MERIS; or via a reference BRDF model derived from averages of measurements over the site from a reference sensor where there is limited or no temporal overlap (e.g. MODIS-Aqua, ATSR-1 and ATSR-2). The results of the intercomparisons provide values of the long term calibration drift and systematic biases between the sensors. Look-up tables based on smoothed averages of the drift measurements are used to provide the corrections to Level 1b data. The uncertainty budgets for the comparisons are provided. It is also possible to perform comparisons of measurements against high spectral resolution instruments that are co-located on the same platform, i.e. AATSR/SCIA on ENVISAT and ATSR-2/GOME on ERS-2. The comparisons are performed by averaging the spectrometer data to the spectral response of the filter radiometer, and averaging the radiometer data to the spatial resolution of the spectrometer. In this paper, the authors present the results of the inter-comparisons to achieve a consistent calibration for the solar channels of the complete ATSR dataset. An assessment of the uncertainties associated with the techniques will be discussed. The impacts of the

  3. Multiple Exciton Generation in Quantum Dot Solar Cells

    Science.gov (United States)

    Semonin, O. E.

    Photovoltaics are limited in their power conversion efficiency (PCE) by very rapid relaxation of energetic carriers to the band edge. Therefore, photons from the visible and ultraviolet parts of the spectrum typically are not efficiently converted into electrical energy. One approach that can address this is multiple exciton generation (MEG), where a single photon of sufficient energy can generate multiple excited electron-hole pairs. This process has been shown to be more efficient in quantum dots than bulk semiconductors, but it has never been demonstrated in the photocurrent of a solar cell. In order to demonstrate that multiple exciton generation can address fundamental limits for conventional photovoltaics, I have developed prototype devices from colloidal PbS and PbSe quantum dot inks. I have characterized both the colloidal suspensions and films of quantum dots with the goal of understanding what properties determine the efficiency of the solar cell and of the MEG process. I have found surface chemistry effects on solar cells, photoluminescence, and MEG, and I have found some chemical treatments that lead to solar cells showing MEG. These devices show external quantum efficiency (EQE) greater than 100% for certain parts of the solar spectrum, and I extract internal quantum efficiency (IQE) consistent with previous measurements of colloidal suspensions of quantum dots. These findings are a small first step toward breaking the single junction Shockley-Queisser limit of present-day first and second generation solar cells, thus moving photovoltaic cells toward a new regime of efficiency.

  4. Characterising dye-sensitized solar cells

    Science.gov (United States)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2009-08-01

    With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grätzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.

  5. Solar cells based on gallium antimonide

    International Nuclear Information System (INIS)

    Andreev, V. M.; Sorokina, S. V.; Timoshina, N. Kh.; Khvostikov, V. P.; Shvarts, M. Z.

    2009-01-01

    Liquid-phase epitaxy and diffusion from the gas phase have been used to create various kinds of GaSb-based solar cell structures intended for use in cascaded solar-radiation converters. A narrow-gap (GaSb) solar cell was studied in tandem based on a combination of semiconductors GaAs-GaSb (two p-n junctions) and GaInP/GaAs-GaSb (three p-n junctions). The maximum efficiency of photovoltaic conversion in GaSb behind the wide-gap cells is η = 6.5% (at sunlight concentration ratio of 275X, AM1.5D Low AOD spectrum).

  6. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  7. Development and Prospect of Nanoarchitectured Solar Cells

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-01-01

    Full Text Available This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically reviewed and summarized in this paper, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention is given to those relying on quantum effect.

  8. Solar cell with a gallium nitride electrode

    Science.gov (United States)

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  9. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  10. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  11. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  12. Advanced Silicon Space Solar Cells Using Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Ruby, D.S.; Zaidi, S.H.

    1999-03-31

    Application of nanotechnology and advanced optical structures offer new possibilities for improved radiation tolerance in silicon solar cells. We describe the application of subwavelength diffractive structures to enhance optical absorption near the surface, and thereby improve the radiation tolerance.

  13. Solar cell efficiency tables (version 50)

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin A. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052 Australia; Hishikawa, Yoshihiro [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics (RCPV), Central 2, Umezono 1-1-1, Ibaraki Tsukuba 305-8568 Japan; Warta, Wilhelm [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 Freiburg D-79110 Germany; Dunlop, Ewan D. [European Commission-Joint Research Centre, Directorate C-Energy, Transport and Climate, Via E. Fermi 2749 Ispra IT-21027 VA Italy; Levi, Dean H. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Hohl-Ebinger, Jochen [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 Freiburg D-79110 Germany; Ho-Baillie, Anita W. H. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052 Australia

    2017-06-21

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2017 are reviewed.

  14. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  15. Silicon Germanium Quantum Well Solar Cell

    Data.gov (United States)

    National Aeronautics and Space Administration — A single crystal SiGe has enormous potentials for high performance chips and solar cells. This project seeks to fabricate a rudimentary but 1st cut quantum-well...

  16. Electrospun Polymer-Fiber Solar Cell

    Directory of Open Access Journals (Sweden)

    Shinobu Nagata

    2013-01-01

    Full Text Available A novel electrospun polymer-fiber solar cell was synthesized by electrospinning a 1 : 2.5 weight% ratio mixture of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV and [6,6]-phenyl C61 butyric acid methyl ester (PCBM resulting in bulk heterojunctions. Electrospinning is introduced as a technique that may increase polymer solar cell efficiency, and a list of advantages of the technique applied to solar cells is discussed. The device achieved a power conversion efficiency of %. The absorption and photoluminescence of MEH-PPV nanofibers are compared to thin films of the same material. Electrospun nanofibers are discussed as a favorable structure for application in polymer solar cells.

  17. The state of organic solar cells-A meta analysis

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Carlé, Jon Eggert; Søndergaard, Roar R.

    2013-01-01

    Solar cells that convert sunlight into electrical power have demonstrated a large and consistent growth through several decades. The growth has spawned research on new technologies that potentially enable much faster, less costly and environmentally friendly manufacture from earth abundant materi...

  18. Investigating dye-sensitised solar cells

    Science.gov (United States)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2010-05-01

    At present there is considerable global concern in relation to environmental issues and future energy supplies, for instance climate change (global warming) and the rapid depletion of fossil fuel resources. This trepidation has initiated a more critical investigation into alternative and renewable sources of power such as geothermal, biomass, hydropower, wind and solar energy. The immense dependence on electrical power in today's society has prompted the manufacturing of devices such as photovoltaic (PV) cells to help alleviate and replace current electrical demands of the power grid. The most popular and commercially available PV cells are silicon solar cells which have to date the greatest efficiencies for PV cells. The drawback however is that the manufacturing of these cells is complex and costly due to the expense and difficulty of producing and processing pure silicon. One relatively inexpensive alternative to silicon PV cells that we are currently studying are dye-sensitised solar cells (DSSC or Grätzel Cells). DSSC are biomimetic solar cells which are based on the process of photosynthesis. The SFI Strategic Research Centre for Solar Energy Conversion is a research cluster based in Ireland formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific research area is in DSSC and their electrical properties. We are currently developing testing equipment for arrays of DSSC and developing optoelectronic models which todescribe the performance and behaviour of DSSCs.

  19. 3D-printed external light trap for solar cells.

    Science.gov (United States)

    van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel

    2016-05-01

    We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

  20. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  1. Improved protection for silicon solar cells

    Science.gov (United States)

    Broder, J. D.

    1970-01-01

    Fluorinated ethylene propylene /FEP/ film is substituted for epoxy cement in bonding glass covers to silicon solar cells. Insensitivity of FEP to ultraviolet radiation reduces requirement for filtering and does not impair cell performance. Cell costs are reduced and cover mounting is simplified.

  2. Towards a Self-Consistent Simulation Capability of Catastrophic Solar Energetic Particle Events

    Science.gov (United States)

    Sokolov, I.; Gombosi, T. I.; Bindi, V.; Borovikov, D.; Kota, J.; Giacalone, J.

    2016-12-01

    Space weather refers to variations in the space environment that can affect technologies or endanger human life and health. Solar energetic particle (SEP) events can affect communications and airline safety. Satellites are affected by radiation damage to electronics and to components that produce power and provide images. Sun and star sensors are blinded during large SEP events. Protons of ≳30 MeV penetrate spacesuits and spacecraft walls. Events, like that of August 4, 1972, would have been fatal to moon-walking astronauts. Catastrophic events typically are characterized by hard particle energy spectra potentially containing large fluxes of hundreds of MeV-GeV type particles. These super-energetic particles can penetrate even into the "safest" areas of spacecraft and produce induced radioactivity. We describe several technologies which are to be combined into a physics-based, self consistent model to understand and forecast the origin and evolution of SEP events: The Alfvén Wave Solar-wind Model (AWSoM) simulates the chromosphere-to-Earth system using separate electron and ion temperatures and separate parallel and perpendicular temperatures. It solves the energy equations including thermal conduction and coronal heating by Alfvén wave turbulence. It uses adaptive mesh refinement (AMR), which allows us to cover a broad range of spacial scales. The Eruptive Event Generator using the Gibson-Low flux-rope model (EEGGL) allows the user to select an active region on the sun, select the polarity inversion line where the eruption is observed, and insert a Gibson-Low flux-rope to produce eruption. The Multiple-Field-Lines-Advection Model for Particle Acceleration (M-FLAMPA) solves the particle transport equation along a multitude of interplanetary magnetic field lines originating from the Sun, using time-dependent parameters for the shock and magnetic field obtained from the MHD simulation. It includes a self-consistent coupling of Alfvén wave turbulence to the SEPs

  3. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells.

    Science.gov (United States)

    Haruk, Alexander M; Mativetsky, Jeffrey M

    2015-06-11

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  4. Method to manufacture solar cells

    International Nuclear Information System (INIS)

    Hanschmann, H.

    1978-01-01

    An attempt has been made to outwit physics and to improve the solar energy utilization in households and space ships by means of power storers, gravitational drive and other futuristic means. (DG) [de

  5. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  6. Nanoparticle Solar Cell Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  7. Protective material for solar cell; Taiyo denchiyo hyomen hogozai

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, M.; Domoto, T. [Nitto Denko Corp., Osaka (Japan)

    1998-02-03

    The protective material for the solar cell of this invention consists of fluororesin containing from 1 to 20wt% titanium oxide particles with the particle size range from 1 to 1,000nm. Surface contamination of the protective material for the solar cell and deterioration of the adhesive are prevented when titanium oxide with particular particle size is contained in the fluororesin in a particular range as mentioned above. Titanium oxide has photocatalytic performance to decompose organic substances, and the surface protective material for the solar cell containing titanium oxide can decompose and remove dirt such as dust adhering the surface for preventing surface contamination. In addition, total light permeability can be maintained at high rate and the permeability of less than 350nm ultraviolet rays causing deterioration of the adhesive can be decreased if the particle size and content of titanium oxide are specified. Titanium dioxide of anatase type crystal structure is ideal as the titanium oxide. 1 tab.

  8. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  9. 24% efficient PERL structure silicon solar cells

    International Nuclear Information System (INIS)

    Zhao, J.; Wang, A.; Green, M.A.

    1990-01-01

    This paper reports that the performance of silicon solar cells have been significantly improved using an improved PERL (passivated emitter, rear locally-diffused) cell structure. This structure overcomes deficiencies in an earlier PERC (passivated emitter and rear cell) cell structure by locally diffusing boron into contact areas at the rear of the cells. Terrestrial energy conversion efficiencies up to 24% are reported for silicon cells for the first time. Air Mass O efficiencies approach 21%. The first batches of concentrator cells using the new structure have demonstrated significant improvement with 29% efficient concentrator silicon cells expected in the near future

  10. Third Working Meeting on Gallium Arsenide Solar Cells

    Science.gov (United States)

    Walker, G. H. (Compiler)

    1976-01-01

    Research results are reported for GaAs Schottky barrier solar cells, GaAlAs/GaAs heteroface solar cells, and GaAlAs graded band gap solar cells. Related materials studies are presented. A systems study for GaAs and Si solar concentrator systems is given.

  11. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  12. Plastic Schottky-barrier solar cells

    Science.gov (United States)

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  13. Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2017-06-14

    Herein, the open-circuit voltage (V OC ) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of V OC to discuss the difference in the primary loss mechanism of V OC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of V OC in both solar cells are further discussed on the basis of the experimental data.

  14. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  15. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  16. Scaling Up ITO-free solar cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Coenen, Erica W. C.; Zimmermann, Birger

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm...... and the effect of the grid line resistance are explored for a series of devices. Laser-beam-induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different...... resistances. The performance of ITO-free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large-area devices at simulated 1...

  17. Microscopic optoelectronic defectoscopy of solar cells

    Directory of Open Access Journals (Sweden)

    Dallaeva D.

    2013-05-01

    Full Text Available Scanning probe microscopes are powerful tool for micro- or nanoscale diagnostics of defects in crystalline silicon solar cells. Solar cell is a large p-n junction semiconductor device. Its quality is strongly damaged by the presence of defects. If the cell works under low reverse-biased voltage, defects emit a light in visible range. The suggested method combines three different measurements: electric noise measurement, local topography and near-field optical beam induced current and thus provides more complex information. To prove its feasibility, we have selected one defect (truncated pyramid in the sample, which emitted light under low reverse-biased voltage.

  18. Organic solar cells fundamentals, devices, and upscaling

    CERN Document Server

    Rand, Barry P

    2014-01-01

    Solution-Processed DonorsB. Burkhart, B. C. ThompsonSmall-Molecule and Vapor-Deposited Organic Photovoltaics R. R. Lunt, R. J. HolmesAcceptor Materials for Solution-Processed Solar Cells Y. HeInterfacial Layers R. Po, C. Carbonera, A. BernardiElectrodes in Organic Photovoltaic Cells S. Yoo, J.-Y. Lee, H. Kim, J. LeeTandem and Multi-Junction Organic Solar Cells J. Gilot, R. A. J. JanssenBulk Heterojunction Morphology Control and Characterization T. Wang, D. G. LidzeyOptical Modeling and Light Management

  19. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  20. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2006-02-01

    Full Text Available is the nano- crystalline TiO2dye- sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using simple materials. The production process generates...

  1. Thermal stability of gallium arsenide solar cells

    Science.gov (United States)

    Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara

    2017-12-01

    This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.

  2. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  3. Microbial solar cells: applying photosynthetic and electrochemically active organisms

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to

  4. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  5. Light-trapping in perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qing Guo, E-mail: duqi0001@e.ntu.edu.sg [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Institute of High Performance Computing, A* STAR, Singapore, 138632 (Singapore); Shen, Guansheng [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); John, Sajeev [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Department of Physics, Soochow University, Suzhou (China)

    2016-06-15

    We numerically demonstrate enhanced light harvesting efficiency in both CH{sub 3}NH{sub 3}PbI{sub 3} and CH(NH{sub 2}){sub 2}PbI{sub 3}-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm{sup 2}, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm{sup 2}) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH{sub 2}){sub 2}PbI{sub 3} based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm{sup 2}, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH{sub 2}){sub 2}PbI{sub 3} based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  6. Space Radiation Effect on Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Jae-Jin Lee

    2008-12-01

    Full Text Available High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1 was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  7. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. © 2013 American Chemical Society.

  8. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  9. Invited Paper: CIGS-based thin film solar cells and modules: Unique material properties

    Science.gov (United States)

    Nakada, Tokio

    2012-04-01

    Although CIGS solar cells consist of a polycrystalline thin film grown on a glass substrate, more than 20% conversion efficiency has been achieved. The efficiency has reached the same level as polycrystalline silicon solar cells. This high efficiency has not yet been observed in other thin film solar cells including thin film Si and CdTe. Therefore, it is important to understand the mechanisms that allow CIGS solar cells to exhibit high conversion efficiencies. This paper discusses the origin of the high efficiency and demonstrates that it is caused by the unique material properties of CIGS films.

  10. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  11. Silicon MIS/inversion-layer solar cells

    Science.gov (United States)

    Olsen, L. C.

    1982-10-01

    Silicon Metal-Insulator-Semiconductor/Inversion-Layer (MIS-IL) solar cells were investigated as an approach to low cost terrestrial photovoltaics. Considerable progress was made concerning the development of procedures for SiO deposition for inversion-layer formation, the characterization of the fixed charge in deposited SiO layers, surface state density at the Si-SiO interface, fabrication and characterization of MIS-IL solar cells. Improvements were also made in the theory of MIS-IL solar cells, and utilized to calculate cell performance for a range of insulator charge and base resistivities. Inversion layer formation was studied in several ways. MOS devices was analyzed to determine the magnitude of the net positive charge, Q/sub POS/, vensus surface potential, Psi/sub S/. In situ sheet resistance measurements was made to determine the charge distribution within the deposited SiO layer. Finally, estimates of Q/sub POS/ obtained by comparing experimental results for MIS-IL cells and theory are compared with values of Q/sub POS/ determined for MOS structures fabricated simultaneously with the solar cells. Cell fabrication procedures emphasized low temperature processing.

  12. Modeling Emerging Solar Cell Materials and Devices

    Science.gov (United States)

    Thongprong, Non

    Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving

  13. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  14. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  15. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...... of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells...

  16. Solar Cells Having a Nanostructured Antireflection Layer

    DEFF Research Database (Denmark)

    2013-01-01

    An solar cell having a surface in a first material is provided, the optical device having a non-periodic nanostructure formed in the surface, the nanostructure comprising a plurality of cone -haped structures wherein the cones are distributed non-periodically on the surface and have a random height...... distribution, at least a part of the cone-shaped structures having a height of at least 100 nm. The first material may be SiC or GaN. A method of manufacturing a non-periodic nanostructured surface on a solar cell, is furthermore provided, the method comprising the steps of providing a surface comprising Si...

  17. High throughput solar cell ablation system

    Science.gov (United States)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  18. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  19. Origami-enabled deformable silicon solar cells

    International Nuclear Information System (INIS)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-01-01

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics

  20. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-most cost driving factor due to expensive raw materials and processing. Given the limited lifetime and stability of PSCs as compared with other mature technologies such as silicon-based solar cells, the technological future of PSCs beyond that of academic interests rests in reducing cost of production...

  1. Advances in solar cell welding technology

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.; Lott, D.R.

    1982-09-01

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived lowearth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  2. Calculation of the Performance of Solar Cells With Spectral Down Shifters Using Realistic Outdoor Solar Spectra

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2007-01-01

    Spectral down converters and shifters have been proposed as a good means to enhance the efficiency of underlying solar cells. In this paper, we focus on the simulation of the outdoor performance of solar cells with spectral down shifters, i.e., multicrystalline silicon solar cells with semiconductor

  3. Decohesion Kinetics in Polymer Organic Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-12-10

    © 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  4. Photochromic dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Noah M. Johnson

    2015-11-01

    Full Text Available We report the fabrication and characterization of photochromic dye sensitized solar cells that possess the ability to change color depending on external lighting conditions. This device can be used as a “smart” window shade that tints, collects the sun's energy, and blocks sunlight when the sun shines, and is completely transparent at night.

  5. Assembly jig assures reliable solar cell modules

    Science.gov (United States)

    Ofarrell, H. O.

    1966-01-01

    Assembly jig holds the components for a solar cell module in place as the assembly is soldered and bonded by the even heat of an oven. The jig is designed to the configuration of the planned module. It eliminates uneven thermal conditions caused by hand soldering methods.

  6. Energy. From firewood to solar cell

    International Nuclear Information System (INIS)

    Reijnders, L.

    2006-01-01

    An outline is given of the development of energy and the options to secure the energy supply for the future. Much information is given about energy efficiency, the exploitation of tar sands, reopening of the coal mines in the Netherlands, nuclear fusion and fission, wave energy and solar cells, etc [nl

  7. Baselines for Lifetime of Organic Solar Cells

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Espinosa Martinez, Nieves; Ciammaruchi, Laura

    2016-01-01

    The process of accurately gauging lifetime improvements in organic photovoltaics (OPVs) or other similar emerging technologies, such as perovskites solar cells is still a major challenge. The presented work is part of a larger effort of developing a worldwide database of lifetimes that can help...

  8. CPV solar cell modeling and metallization optimization

    NARCIS (Netherlands)

    Gupta, D.K.; Barink, M.; Langelaar, M.

    2018-01-01

    Concentrated photovoltaics (CPV) has recently gained popularity due to its ability to deliver significantly more power at relatively lower absorber material costs. In CPVs, lenses and mirrors are used to concentrate illumination over a small solar cell, thereby increasing the incident light by

  9. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications...

  10. CPV solar cell modeling and metallization optimization

    NARCIS (Netherlands)

    Gupta, D.K.; Barink, Marco; Langelaar, M.

    2018-01-01

    Concentrated photovoltaics (CPV) has recently gained popularity due to its ability to deliver significantly more power at relatively lower absorber material costs. In CPVs, lenses and mirrors are used to concentrate illumination over a small solar cell, thereby increasing the incident light by

  11. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  12. PHOTOELECTROCHEMICAL SOLAR CELLS BASED ON DYE ...

    African Journals Online (AJOL)

    conventional solid-state solar cells convert light into electricity by ... network via diffusion [2] due to electron scattering to the conductive .... The surface network morphology of these film layers was examined with an atomic force microscope in contact mode. (AFM: Nanoscope Illa from digital instruments version 4.42r4).

  13. Upconverter solar cells: materials and applications

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2011-01-01

    Spectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower

  14. Solar Cell Efficiency Tables (Version 51)

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Dean H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Green, Martin A. [University of New South Wales; Hishikawa, Yoshihiro [National Institute of Advanced Industrial Science and Technology (AIST); Dunlop, Ewan D. [European Commission-Joint Research Centre; Hohl-Ebinger, Jochen [Fraunhofer Institute for Solar Energy Systems; Ho-Baillie, Anita W. Y. [University of New South Wales

    2017-12-14

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2017 are reviewed, together with progress over the last 25 years. Appendices are included documenting area definitions and also listing recognised test centres.

  15. Floating-Emitter Solar-Cell Transistor

    Science.gov (United States)

    Sah, C. T.; Cheng, L. J.

    1986-01-01

    Conceptual transistor embedded in photovoltaic diode promises to increase efficiency to more than 20 percent. Solar-cell transistor has front-surface contact, rear contact, and floating emitter. Variety of other contact and junction configurations possible, but do not offer ease of fabrication in combination with high performance.

  16. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells

    OpenAIRE

    Yu, Ze

    2012-01-01

    This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs. Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. I...

  17. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  18. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  19. Review of Recent Progress in Dye-Sensitized Solar Cells

    OpenAIRE

    Fan-Tai Kong; Song-Yuan Dai; Kong-Jia Wang

    2007-01-01

    We introduced the structure and the principle of dye-sensitized solar cell (DSC). The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from sma...

  20. Plastic Schottky barrier solar cells

    Science.gov (United States)

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  1. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution in the infr......Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... characterized. Spectral responses are measured and in two types of measured GaAs solar cells (with Au and Ag nanoparticles) there was no clear efficiency enhancement in the NIR spectral range. In the case of Au nanoparticles it could be explained in similar way to the absorption data: the effect being broad...... cells spectral response to longer wavelengths, through possibly cheap and simple technologies: EBL can be substituted by colloidal solutions implementation and electroless plating is not expensive and results to be effective within a broad set of parameters (size, shape, density). Another application...

  2. Development and Testing of Shingle-type Solar Cell Modules

    Science.gov (United States)

    Shepard, N. F., Jr.

    1979-01-01

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.

  3. Light-induced performance increase of silicon heterojunction solar cells

    KAUST Repository

    Kobayashi, Eiji

    2016-10-11

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  4. Light-induced performance increase of silicon heterojunction solar cells

    Science.gov (United States)

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Christmann, Gabriel; Descoeudres, Antoine; Nicolay, Sylvain; Despeisse, Matthieu; Watabe, Yoshimi; Ballif, Christophe

    2016-10-01

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  5. Light trapping in horizontally aligned silicon microwire solar cells.

    Science.gov (United States)

    Martinsen, Fredrik A; Smeltzer, Benjamin K; Ballato, John; Hawkins, Thomas; Jones, Max; Gibson, Ursula J

    2015-11-30

    In this study, we demonstrate a solar cell design based on horizontally aligned microwires fabricated from 99.98% pure silicon via the molten core fiber drawing method. A similar structure consisting of 50 μm diameter close packed wires (≈ 0.97 packing density) on a Lambertian white back-reflector showed 86 % absorption for incident light of wavelengths up to 850 nm. An array with a packing fraction of 0.35 showed an absorption of 58 % over the same range, demonstrating the potential for effective light trapping. Prototype solar cells were fabricated to demonstrate the concept. Horizontal wire cells offer several advantages as they can be flexible, and partially transparent, and absorb light efficiently over a wide range of incident angles.

  6. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    Science.gov (United States)

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  7. Review of Recent Progress in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fan-Tai Kong

    2007-01-01

    Full Text Available We introduced the structure and the principle of dye-sensitized solar cell (DSC. The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from small cells in the laboratory to industrialization large-scale production were reviewed. At last, the future development of DSC was prospective for the tendency of dye-sensitized solar cells.

  8. 14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2004-08-01

    The 14th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental properties of PV silicon, new solar cell designs, advanced solar cell processing techniques, and cell-related module issues. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions will review recent advances in crystal growth, new cell designs, new processes and process characterization techniques, cell fabrication approaches suitable for future manufacturing demands, and solar cell encapsulation. This year's theme, ''Crystalline Si Solar Cells: Leapfrogging the Barriers,'' reflects the continued success of crystalline Si PV in overcoming technological barriers to improve solar cell performance and lower the cost of Si PV. The workshop will consist of presentations by invited speakers, followed by discussion sessions. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV. The sessions will include: Advances in crystal growth and material issues; Impurities and defects; Dynamics during device processing; Passivation; High-efficiency Si solar cells; Advanced processing; Thin Si solar cells; and Solar cell reliability and module issues.

  9. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  10. Solar Airplanes and Regenerative Fuel Cells

    Science.gov (United States)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of

  11. Laser scanning of experimental solar cells

    Science.gov (United States)

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  12. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...... by pressing a silicon stamp containing a mu m size raised grid structure into the TiO2 by use of a hydraulic press (1 ton/50 cm(2)). The performance of these microstructured substrates in a ETA cell sensitized by a thermally evaporated or chemical bath deposited PbS film and completed by a PEDOT:PSS hole...

  13. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  14. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  15. Superstrate sub-cell voltage-matched multijunction solar cells

    Science.gov (United States)

    Mascarenhas, Angelo; Alberi, Kirstin

    2016-03-15

    Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.

  16. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  17. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  18. Accelerated stress testing of terrestrial solar cells

    Science.gov (United States)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  19. Fabrication and Characterization of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mohamed FATHALLAH

    2014-05-01

    Full Text Available Dye-sensitized solar cell (DSSC constitutes a real revolution in the conversion of solar energy into electricity after 40 years of the invention of silicon solar cells. The working mechanism is based on a photoelectrochemical system, similar to the photosynthesis in plant leaves. The efficiencies of the DSSC are high as those obtained from amorphous silicon solar cells (10-11 % and intensive efforts are done in different directions to improve this efficiency.

  20. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  1. Gallium Arsenide solar cell radiation damage experiment

    Science.gov (United States)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  2. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun; Wang, Changlei; Gorman, Brian; Yan, Yanfa; Al-Jassim, Mowafak

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  3. Highly efficient light management for perovskite solar cells

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  4. Interface engineering of Graphene-Silicon heterojunction solar cells

    Science.gov (United States)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2016-11-01

    Graphene has attracted great research interests due to its unique mechanical, electrical and optical properties, which opens up a huge number of opportunities for applications. Recently, Graphene-Silicon (Grsbnd Si) solar cell has been recognized as one interesting candidate for the future photovoltaic. Since the first Grsbnd Si solar cell reported in 2010, Grsbnd Si solar cell has been intensively investigated and the power converse efficiency (PCE) of it has been developed to 15.6%. This review presents and discusses current development of Grsbnd Si solar cell. Firstly, the basic concept and mechanism of Grsbnd Si solar cell are introduced. Then, several key technologies are introduced to improve the performance of Grsbnd Si solar cells, such as chemical doping, annealing, Si surface passivation and interlayer insertion. Particular emphasis is placed on strategies for Grsbnd Si interface engineering. Finally, new pathways and opportunities of "MIS-like structure" Grsbnd Si solar cells are described.

  5. METHOD AND APPARATUS FOR CHARACTERIZATION OF A SOLAR CELL

    DEFF Research Database (Denmark)

    2017-01-01

    ; and estimating variations in the solar cell, thereby electrically characterizing the solar cell. The disclosure further relates to a solar cell characterization apparatus for characterization of a solar cell, comprising: a light source for generating an optical probe light; a modulation unit, configured......The present disclosure relates to a method for characterization of a solar cell, comprising the steps of: providing an optical probe light; modulating the optical probe light with a modulation frequency of between 100 kHz and 50 MHz, thereby obtaining a modulated probe light; scanning the modulated...... probe light such that said modulated probe light is incident on at least a part of the surface of the solar cell, and such that the part of the solar cell exposed to the modulated probe light converts the modulated probe light to an electrical signal; detecting and analyzing said electrical signal...

  6. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.

    Science.gov (United States)

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang

    2013-11-28

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

  7. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  8. Thin-film polycrystalline silicon solar cells

    Science.gov (United States)

    Funghnan, B. W.; Blanc, J.; Phillips, W.; Redfield, D.

    1980-08-01

    Thirty-four new solar cells were fabricated on Wacker Sislo substrates and the AM-1 parameters were measured. A detailed comparison was made between the measurement of minority carrier diffusion length by the OE method and the penetrating light laser scan grain boundary photoresponse linewidth method. The laser scan method has more experimental uncertainty and agrees within 10 to 50% with the QE method. It allows determination of L over a large area. Atomic hydrogen passivation studies continued on Wacker material by three techniques. A method of determining surface recombination velocity, s, from laser scan data was developed. No change in s in completed solar cells after H-plasma treatment was observed within experimental error. H-passivation of bare silicon cars as measured by the new laser scan photoconductivity technique showed very large effects.

  9. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  10. Promises and challenges of perovskite solar cells

    Science.gov (United States)

    Correa-Baena, Juan-Pablo; Saliba, Michael; Buonassisi, Tonio; Grätzel, Michael; Abate, Antonio; Tress, Wolfgang; Hagfeldt, Anders

    2017-11-01

    The efficiencies of perovskite solar cells have gone from single digits to a certified 22.1% in a few years’ time. At this stage of their development, the key issues concern how to achieve further improvements in efficiency and long-term stability. We review recent developments in the quest to improve the current state of the art. Because photocurrents are near the theoretical maximum, our focus is on efforts to increase open-circuit voltage by means of improving charge-selective contacts and charge carrier lifetimes in perovskites via processes such as ion tailoring. The challenges associated with long-term perovskite solar cell device stability include the role of testing protocols, ionic movement affecting performance metrics over extended periods of time, and determination of the best ways to counteract degradation mechanisms.

  11. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  12. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Science.gov (United States)

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  13. Spectropolarimetric forward modelling of the lines of the Lyman-series using a self-consistent, global, solar coronal model

    Science.gov (United States)

    Khan, A.; Belluzzi, L.; Landi Degl'Innocenti, E.; Fineschi, S.; Romoli, M.

    2011-05-01

    Context. The presence and importance of the coronal magnetic field is illustrated by a wide range of phenomena, such as the abnormally high temperatures of the coronal plasma, the existence of a slow and fast solar wind, the triggering of explosive events such as flares and CMEs. Aims: We investigate the possibility of using the Hanle effect to diagnose the coronal magnetic field by analysing its influence on the linear polarisation, i.e. the rotation of the plane of polarisation and depolarisation. Methods: We analyse the polarisation characteristics of the first three lines of the hydrogen Lyman-series using an axisymmetric, self-consistent, minimum-corona MHD model with relatively low values of the magnetic field (a few Gauss). Results: We find that the Hanle effect in the above-mentioned lines indeed seems to be a valuable tool for analysing the coronal magnetic field. However, great care must be taken when analysing the spectropolarimetry of the Lα line, given that a non-radial solar wind and active regions on the solar disk can mimic the effects of the magnetic field, and, in some cases, even mask them. Similar drawbacks are not found for the Lβ and Lγ lines because they are more sensitive to the magnetic field. We also briefly consider the instrumental requirements needed to perform polarimetric observations for diagnosing the coronal magnetic fields. Conclusions: The combined analysis of the three aforementioned lines could provide an important step towards better constrainting the value of solar coronal magnetic fields.

  14. The photophysics of perovskite solar cells

    Science.gov (United States)

    Sum, Tze Chien

    2014-09-01

    Solution-processed hybrid organic-inorganic perovskite solar cells, a newcomer to the photovoltaic arena, have taken the field by storm with their extraordinary power conversion efficiencies exceeding 17%. In this paper, the photophysics and the latest findings on the carrier dynamics and charge transfer mechanisms in this new class of photovoltaic material will be examined and distilled. Some open photophysics questions will also be discussed.

  15. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  16. Accelerated stress testing of terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  17. Gallium arsenide solar cell radiation damage study

    Science.gov (United States)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  18. Photonic Nanostructures Design and Optimization for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2015-08-01

    Full Text Available In this paper, a semiconducting photonic nanostructure capable of wide range absorption and tunable optical resonance has been designed with a proposed theoretical optimization model. The design consists of ZnO/CdS core-shell nanowire arrays as well as multilayer thin films that act to absorb incident electromagnetic (EM waves over a broad frequency range. Theoretical, as well as numerical, studies of the nanostructure inside a solar cell plate have been conducted in order to validate the proposed microstructural design. Excellent energy absorption rates of EM waves have been achieved in the high frequency range by using the optical resonance of the nanowire array. By combining multilayer thin film with the core-shell nanowire in the unit cell of a photonic solar cell, a broadband high absorption has been achieved. Moreover, the geometry of the proposed photonic nanostructure is obtained through the implementation of a genetic algorithm. This avoids local minima and an optimized absorption rate of ~90% over the frequency range of 300 to 750 THz has been obtained in the solar cell.

  19. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  20. Development of gallium arsenide solar cells

    Science.gov (United States)

    1973-01-01

    The potential of ion implantation as a means to the development of high efficiency gallium arsenide solar cells is investigated. Summaries are included of the results of computer calculations of GaAs cell characteristics, based on a model which includes the effects of surface recombination, junction space-charge region recombination, and built-in fields produced by nonuniform doping in the region; of the fabrication technology developed under the program; and of the results of electrical and optical measurements on the samples produced during the program. It was determined that measured AMO efficiencies were more than a factor of two lower than the calculated values.

  1. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  2. High Temperature InGaN-based Solar Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — An efficient generation of solar power in a space environment is an enduring challenging for all NASA missions. The current available solar cells, however, suffer...

  3. Design of cascaded low cost solar cell with CuO substrate

    International Nuclear Information System (INIS)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-01-01

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m 2 leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m 2 . This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr

  4. Design of cascaded low cost solar cell with CuO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Samson, Mil' shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan [Advanced Electronic Technology Center, ECE Dept., University of Massachusetts, Lowell, MA-01851 (United States)

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

  5. Design of cascaded low cost solar cell with CuO substrate

    Science.gov (United States)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-01

    For many years the main focus of R&D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs 250-400 / m2 leads to a cost of 0.12-0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost 100 / m2. This will allow the novel solar cell to produce electricity at a cost of 0.06-0.08 / kW-hr.

  6. Transparent antennas for solar cell integration

    Science.gov (United States)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  7. Photovoltaic Technology: The Case for Thin-Film Solar Cells

    OpenAIRE

    Shah, Arvind; Torres, Pedro; Tscharner, Reto; Wyrsch, Nicolas; Keppner, Herbert

    2013-01-01

    The advantages and limitations of photovoltaic solar modules for energy generation are reviewed with their operation principles and physical efficiency limits. Although the main materials currently used or investigated and the associated fabrication technologies are individually described, emphasis is on silicon-based solar cells. Wafer-based crystalline silicon solar modules dominate in terms of production, but amorphous silicon solar cells have the potential to undercut costs owing, for exa...

  8. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  9. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  10. OPTEC: A Cubesat for Solar Cell Calibration

    Science.gov (United States)

    Landis, Geoffrey; Hepp, Aloysius; Arutyunov, Dennis; White, Kelsey; Witsberger, Paul

    2014-01-01

    A new type of small spacecraft, the cubesat, has introduced a new concept for extremely small, low-cost missions into space. Cubesats are designed to be launched as secondary payloads on other missions, and are made up of unit elements (U) of size 10 cm by 10 cm by 10 cm, with a nominal mass of no more than 1.33 kg per U. We have designed a cubesat, OPTEC (Orbital Photovoltaic Testbed Cubesat) as a low-cost testbed to demonstrate, calibrate, and test solar cell technologies in space. Size of the cubesat is 2U (10x10x20cm, and the mass 2.66 kg. The cubesat deploys from the International Space Station into Low Earth Orbit at an altitude of about 420 km. Up to two 4x8cm test solar panels can be flown, with full I-V curves and temperature measurements taken.

  11. Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

    Directory of Open Access Journals (Sweden)

    Zhang Yinong

    2014-09-01

    Full Text Available Thin film solar cell consists of various layers so the surface of solar cell shows heterogeneous textures. Because of this property the visual inspection of micro-crack is very difficult. In this paper, we propose the machine vision-based micro-crack detection scheme for thin film solar cell panel. In the proposed method, the crack edge detection is based on the application of diagonal-kernel and cross-kernel in parallel. Experimental results show that the proposed method has better performance of micro-crack detection than conventional anisotropic model based methods on a cross- kernel.

  12. The effect of low energy protons on silicon solar cells with simulated coverglass cracks

    Science.gov (United States)

    Gasner, S.; Anspaugh, B.; Francis, R.; Marvin, D.

    1991-01-01

    Results of a series of low-energy proton (LEP) tests are presented. The purpose of the tests was to investigate the effect of low-energy protons on the electrical performance of solar cells with simulated cracked covers. The results of the tests were then related to the space environment. A matrix of LEP tests was set up using solar cells with simulated cracks to determine the effect on electrical performance as a function of fluence, energy, crack width, coverglass adhesive shielding, crack location, and solar cell size. The results of the test were, for the most part, logical, and consistent.

  13. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  14. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  15. Simulation of an electrowetting solar concentration cell

    Science.gov (United States)

    Khan, Iftekhar; Rosengarten, Gary

    2015-09-01

    Electrowetting control of liquid lenses has emerged as a novel approach for solar tracking and concentration. Recent studies have demonstrated the concept of steering sunlight using thin electrowetting cells without the use of any bulky mechanical equipment. Effective application of this technique may facilitate designing thin and flat solar concentrators. Understanding the behavior of liquid-liquid and liquid-solid interface of the electrowetting cell through trial and error experimental processes is not efficient and is time consuming. In this paper, we present a simulation model to predict the liquid-liquid and liquid-solid interface behavior of electrowetting cell as a function of various parameters such as applied voltage, dielectric constant, cell size etc. We used Comsol Multiphysics simulations incorporating experimental data of different liquids. We have designed both two dimensional and three dimensional simulation models, which predict the shape of the liquid lenses. The model calculates the contact angle using the Young-Lippman equation and uses a moving mesh interface to solve the Navier-stokes equation with Navier slip wall boundary condition. Simulation of the electric field from the electrodes is coupled to the Young-Lippman equation. The model can also be used to determine operational characteristics of other MEMS electrowetting devices such as electrowetting display, optical switches, electronic paper, electrowetting Fresnel lens etc.

  16. Nanorods and nanotubes for solar cells.

    Science.gov (United States)

    Kislyuk, V V; Dimitriev, O P

    2008-01-01

    Nanorods and nanotubes as photoactive materials as well as electrodes in photovoltaic cells have been launched a few years ago, and the literature in this field started to appear only recently. The first steps have shown both advantages and disadvantages of their application, and the main expectation associated with their effective charge transport has not been realized completely. This article aims to review both the first and the recent tendencies in the development and application of nanorod and nanotube materials in photovoltaic cells. Two basic techniques of synthesis of crystalline nanorod structures are described, the top-down and bottom-up approaches, respectively. Design and photovoltaic performance of solar cells based on various semiconductor nanorod materials, such as TiO2, ZnO, CdS, CdSe, CdTe, CuO, Si are presented and compared with respective solar cells based on semiconductor nanoparticles. Specific of synthesis and application of carbon nanotubes in photovoltaic devices is also reviewed.

  17. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  18. Thermal analysis of a solar collector consisting of V cavities for water heating; Analise termica de um coletor solar composto de cavidades V para aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Michel Fabio de Souza

    2009-03-15

    The solar water heating is carried through, in Brazil, by means of solar heaters compound for collectors flat plate of the type plate-and-pipes, devices that operate in stationary position and they do not require tracking of the sun. A compound collector for some formed V-trough concentrators can be an alternative to the conventional solar collectors flat plate. This compound collector for V-trough is considered, each one, for side-walls which are specularly reflecting surfaces associates in V (equivalent to a triangular gutter). Next to the vertex to each V-trough concentrators an absorber tube is fixed, for flow of the fluid to be heated. Interconnection of the absorbers tubes forms a similar tubular network existing in solar collectors of the type the plate and pipe. V-trough concentrators with the absorbers tubes are made use in series in the interior a prismatic box, which have one of its faces consisting by a glass covering and directed toward incidence of the solar radiation. An analysis of thermal performance of these devices operating stationary and without tracking of the sun is researched. A mathematical model for the computational simulation of the optical and thermal performance of these concentrative devices is elaborated, whose implementation was carried through software EES (Engineering Equation Solver). The efficiency optics of V-trough concentrators with cylindrical absorbers is calculated from the adaptation of the methodology used for Fraidenraich (1994), proposal for Hollands (1971) for V-trough cavities with plain absorbers. The thermal analysis of the considered collector was based on the applied methodology the CPC for Hsieh (1981) and Leao (1989). Relative results to the thermal performance of V-trough concentrators suggest that these configurations are not competitive, technique and economically, with the conventional plain collectors. Although some geometric configurations presented next thermal efficiencies to the conventional plain

  19. Analysis of Si/SiGe Heterostructure Solar Cell

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Singh

    2014-01-01

    Full Text Available Sunlight is the largest source of carbon-neutral energy. Large amount of energy, about 4.3 × 1020 J/hr (Lewis, 2005, is radiated because of nuclear fusion reaction by sun, but it is unfortunate that it is not exploited to its maximum level. Various photovoltaic researches are ongoing to find low cost, and highly efficient solar cell to fulfil looming energy crisis around the globe. Thin film solar cell along with enhanced absorption property will be the best, so combination of SiGe alloy is considered. The paper presented here consists of a numerical model of Si/Si1-xGex heterostructure solar cell. The research has investigated characteristics such as short circuit current density (Jsc, generation rate (G, absorption coefficient (α, and open circuit voltage (Voc with optimal Ge concentration. The addition of Ge content to Si layer will affect the property of material and can be calculated with the use of Vegard’s law. Due to this, short circuit current density increases.

  20. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    Science.gov (United States)

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  1. An interim report on the NTS-2 solar cell experiment

    Science.gov (United States)

    Statler, R. L.; Walker, D. H.

    1979-01-01

    Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects.

  2. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  3. N-type solar cells: advantages, issues, and current scenarios

    Science.gov (United States)

    Singha, Bandana; Solanki, Chetan S.

    2017-07-01

    Crystalline silicon, including p-type czochralski (CZ) mono-crystalline and multi-crystalline (mc) silicon, has been the workhorse for solar cell production for decades. In recent years, there has been many developments in n-type c-Si solar cells basically due to the advantages of n-type c-Si wafers over p-type wafers. However, there are some limitations in making n-type solar cells considering the technologies involved to fabricate p-type cells. In this paper, different advantages of n-types wafers, their limitations in solar cell production, and an analysis of total market coverage are discussed.

  4. Indirect solar-pumped laser diode using a solar cell; Taiyo denchi wo mochiita taiyoko kansetsu reikigata handotai laser no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Y.; Yugami, H.; Naito, H.; Arashi, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    This paper describes the operating characteristics of a stabilizing circuit using commercial electricity, those of a stabilizing circuit using solar cells, relation between the quantity of solar radiation and the maximum output of a semiconductor laser diode (LD), and simulation results of annual LD output in Sendai City. The stabilizing circuit for the solar-cell driven LD was structured such that the output of the solar cell panels was guided to a DC/DC converter, that the voltage was set at a prescribed value and that the current was stabilized with the use of power MOSFET. The solar cells used in the experiment were monocrystal silicone solar cells with the maximum output of 53W each. In the experiment, the LD was protected by stabilizing the current at a set value when an excess current was supplied to the stabilizing circuit. As a result of the simulation of the annual LD output from the meteorological data of Sendai City, it was predicted that a solar cell of approximately 1kW was able to provide an annual output of 102MJ and that the efficiency was highest with four sheets of the solar cell. Consequently, consistency proved to be essential between the LD and the solar cell output. 3 refs., 7 figs.

  5. Ultraviolet damage in solar cell assemblies with various UV filters

    Science.gov (United States)

    Meulenberg, A., Jr.

    1977-01-01

    Ultraviolet damage to the new violet and non-reflective type solar cell assemblies, was studied, and potential advantages of using coverslides with no filters or filters with cut-off wavelengths below 0.35 micron were determined. The experiments consisted of three types of tests on fused silica coverslides with 0.35- and 0.30-micron cut-off filters and no cut-off filters, as well as on ceria-doped microsheet coverslides. Ultraviolet irradiation for over 1500 hours at one sun conditions (AMO) was carried out under vacuum of about 1 million torr. Nearly identical results for non-reflective type cells with 0.35-micro cut-off filters or ceria-doped coverslides were obtained. The 0.30-um filtered cell shows greater than average degradation. The unfiltered cell shows an abrupt drop in the first 20 UVSH and very little subsequent degradation.

  6. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    A three-phased project with the objective to industrialize DTU's basic polymer solar cell technology was started in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project's phase 1.The key tasks in phase 1 are to stream-line DTU's tech-nology for the industrial utilization, to demonstrate production according to this stream-lined technology at Mekoprint A/S and finally to fertilize the market for polymer solar cells by demonstrating their use in appli-cations that harmonize with their present maturity level. The main focus in the stream-lining of DTU's technology has been to demonstrate a convincing rate of reduction for the production cost, and thereby make a competitive price plausible. This has been materialized as a learning curve showing that the polymer technology presently develops considerably faster than the silicon technology. The polymer solar cells will, under the assumption that both technologies follow a projection of the learning curve, gain a cost-leading position within a reasonable time. A production cost of 5 Euro/Wp has already been demonstrated in DTU's pilot plant, and a road map for the further decrease to 1 Euro/Wp is drawn. This target is expected to be reached in 2013 in the ongoing phase 2 of the project. Another activity essential for the industrialization has been the launch of specialized materials, equipment and services required for the processing of DTU's polymer solar cells. Relevant products and services are made available for sale on DTU's homepage, www.energyconversion.dtu.dk. A production line for polymer solar cells has been established at Mekoprint. For this a retrofit solution was chosen where the core of an existing screen-printing line was dismantled and fitted to a slot-die printing head manufactured in DTU's workshop

  7. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  8. Photonic crystals for light trapping in solar cells

    International Nuclear Information System (INIS)

    Gjessing, Jo

    2012-01-01

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  9. Investigation of Indoor Stability Testing of Polymer Solar Cell

    Directory of Open Access Journals (Sweden)

    Pelin Kavak

    2016-01-01

    Full Text Available We have fabricated organic solar cell of a new low bandgap polymer poly[4,4-bis(2-ethylhexyl-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl-alt-4,7-bis(2-thienyl-2,1,3-benzothiadiazole-5′,5′′-diyl] (PCPDTTBTT. We have investigated for the first time the stability tests, ISOS-L-1 and ISOS-D-3, of PCPDTTBTT solar cells. Thermal annealing of PCPDTTBTT solar cells at 80°C brought about an improvement of photocurrent generation, stability, and efficiency of the solar cells. T80 value of PCPDTTBTT solar cell is about 150 hours which is close to P3HT (235 h. PCPDTTBTT is very promising polymer for both polymer solar cell efficiency and stability.

  10. Advantages of thin silicon solar cells for use in space

    Science.gov (United States)

    Denman, O. S.

    1978-01-01

    A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.

  11. Applications of Fluorogens with Rotor Structures in Solar Cells

    Directory of Open Access Journals (Sweden)

    Kok-Haw Ong

    2017-05-01

    Full Text Available Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  12. Applications of Fluorogens with Rotor Structures in Solar Cells.

    Science.gov (United States)

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  13. Solar Cell Nanotechnology Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Das, Biswajit [Univ. of Nevada, Las Vegas, NV (United States)

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the

  14. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  15. Elongated nanostructures for radial junction solar cells.

    Science.gov (United States)

    Kuang, Yinghuan; Vece, Marcel Di; Rath, Jatindra K; Dijk, Lourens van; Schropp, Ruud E I

    2013-10-01

    In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented.

  16. Nanoscale dimples for improved absorption in organic solar cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Rubahn, Horst-Günter; Madsen, Morten

    Organic solar cells (OSC’s) have attracted much attention in the past years due to their potential low-cost, light-weight and mechanical flexibility. A method for improving the power conversion efficiencies of the devices is by incorporating structured electrodes in the solar cell architecture, a...... ordered and discorded dimple arrangement and their contribution to light management is presented. Such dimples can later be employed to fabricate nanostructured electrodes in P3HT/PCBM organic solar cells....

  17. On transport mechanisms in solar cells involving organic semiconductors

    OpenAIRE

    Nolasco Montaño, Jairo César

    2011-01-01

    The knowledge of transport mechanisms in solar cells is useful to determine electrical losses. In my doctoral thesis we studied the transport mechanisms in solar cells involving organic semiconductors. We show that models which have been used to study amorphous inorganic solar cells can be applied on organic ones. We conclude that: multitunelling capture emission and tunelling-enhanced interface recombination mechanisms contribute to the dark current characteristics in P3HT/Si, Pc/C60 and P3H...

  18. Temperature optimization of high concentrated active cooled solar cells

    OpenAIRE

    Sabry, M.

    2016-01-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coe...

  19. Method of fabricating bifacial tandem solar cells

    Science.gov (United States)

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  20. Dye solar cell research: EU delegation presentation

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-09

    Full Text Available Franscious Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 13 November 2009 © CSIR 2007 www.csir.co.za CONTENT head2right...Background head2rightCSIR Dye Solar Cell Research head2rightCollaborations and Links head2rightAcknowledgements © CSIR 2007 www.csir.co.za BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average...

  1. Cold crucible Czochralski for solar cells

    Science.gov (United States)

    Trumble, T. M.

    1982-01-01

    The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.

  2. Solar-Hydrogen Fuel-Cell Vehicles

    OpenAIRE

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional or global pollution. Hydrogen FCEVs would combine the best features of battery-powere...

  3. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  4. The Photophysics of Perovskite Solar Cells

    Science.gov (United States)

    Sum, Tze-Chien

    2015-03-01

    Solution processed organic-inorganic lead halide perovskite solar cells, with power conversion efficiencies approaching 20%, are presently the forerunner amongst the next generation photovoltaic technologies. These remarkable performances can be attributed to their large absorption coefficients, long charge carrier diffusion lengths and low non-radiative recombination rates. In addition, these materials also possess excellent light emission and optical gain properties. In this talk, I will review the developmental milestones in this field and distil the recent findings on the photophysical mechanisms of this remarkable material. I will also highlight some of our latest charge dynamics studies and other investigations on the novel properties of this amazing material system.

  5. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  6. Progress in batteries and solar cells. Volume 5

    International Nuclear Information System (INIS)

    Shimotake, H.

    1984-01-01

    The 89 articles in this book are on research in batteries, solar cells and fuel cells. Topics include uses of batteries in electric powered vehicles, load management in power plants, batteries for miniature electronic devices, electrochemical processes, and various electrode and electrolyte materials, including organic compounds. Types of batteries discussed are lithium, lead-acid, manganese dioxide, Silver cells, Air cells, Nickel cells and solar cells. Problems of recharging and life cycle are also discussed

  7. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  8. Fabrication of dye-sensitized solar cells with multilayer photoanodes ...

    Indian Academy of Sciences (India)

    sensitized solar cells. The aim of this study was to search how a thin sub-layer of the hydrothermally grown TiO2 NCs in the photoanodes could improve the efficiency of TiO2 P25-based solar cells. The highest efficiency of 6.5% was achieved for a cell ...

  9. Photon recycling in the graded bandgap solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, N.H. [Cairo Univ., Dept. of Mathematics and Engineering Physics, Giza (Egypt); Haleem, A.M. Abdel [Cairo Univ., Dept. of Mathematics and Engineering Physics, EIFayoum (Egypt); Habib, S.E.D. [Cairo Univ., Electronics and Communication Dept., Giza (Egypt)

    2006-07-01

    We derived a general integral expression for the carrier radiative recombination rate in solar cells. The photon Boltzmann equation is solved taking into account the photon recycling effect inside the cell and assuming arbitrary spatial variation of the absorption coefficient. This expression can thus be used for graded bandgap solar cells. (Author)

  10. Silicon bulk growth for solar cells: Science and technology

    Science.gov (United States)

    Kakimoto, Koichi; Gao, Bing; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji

    2017-02-01

    The photovoltaic industry is in a phase of rapid expansion, growing by more than 30% per annum over the last few decades. Almost all commercial solar cells presently use single-crystalline or multicrystalline silicon wafers similar to those used in microelectronics; meanwhile, thin-film compounds and alloy solar cells are currently under development. The laboratory performance of these cells, at 26% solar energy conversion efficiency, is now approaching thermodynamic limits, with the challenge being to incorporate these improvements into low-cost commercial products. Improvements in the optical design of cells, particularly in their ability to trap weakly absorbed light, have also led to increasing interest in thin-film cells based on polycrystalline silicon; these cells have advantages over other thin-film photovoltaic candidates. This paper provides an overview of silicon-based solar cell research, especially the development of silicon wafers for solar cells, from the viewpoint of growing both single-crystalline and multicrystalline wafers.

  11. [Advances in microbial solar cells--A review].

    Science.gov (United States)

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  12. Solar cells: photovoltaic energy; Les cellules solaires: energie photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.P.; Faraggi, B.; Labouret, A.; Cumunel, P.

    2001-07-01

    This book presents the principles of the photovoltaic conversion of solar energy, the characteristics of solar cells of various technologies, the related equipments (batteries, charge controllers) and all necessary knowledge for the design of solar power supplies and circuits. (J.S.)

  13. Nanostructured InGaP Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The operating conditions of conventional multijunction solar cells are severely limited by the current matching requirements of serially connected devices. The goal...

  14. Testing of gallium arsenide solar cells on the CRRES vehicle

    Science.gov (United States)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  15. Testing of gallium arsenide solar cells on the CRRES vehicle

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage

  16. Characterization of Inverted Polymer Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Carney, Tyler; Tzolov, Marian

    Inverted solar cells were proven to be an improvement over polymer solar cells in terms of durability and reliability. We have fabricated the solar cells using P3HT and PCPDTBT as the active polymer with PC60BM as the electron acceptor. The materials we deposited from solution by spin coating on glass substrates with ITO film. Molybdenum oxide was thermally evaporated overtop the spin coated polymer solar cell to realize the inverted design. The devices were finalized by thermally evaporated aluminum contacts which were then mechanically reinforced with silver paste. Current voltage characteristics were performed both in dark and under illumination to characterize the inverted solar cells and to verify the inverted solar cell design. Impedance spectroscopy in dark and under illumination were used to gain more information about the photoelectric processes in the devices and to build a realistic equivalent circuit model of the inverted solar cells. The inverted solar cells were then compared against standard polymer bulk heterojunction solar cells produced with the same active materials.

  17. Study on the development and stability of perovskite solar cells

    Science.gov (United States)

    Xing, Shucheng

    2017-08-01

    Recently, the development of perovskite solar cells has aroused the concern of the majority of scholars, the current photoelectric conversion efficiency has reached 21%. So the thorough study of the principle of perovskite type solar cells will make better the use of its special performance. But so far, perovskite type solar cells still have many unstable factors. This paper first discusses the predecessor of perovskite solar cells, dye-sensitized batteries, and then study the working principle of the former, followed by the perovskite-type thermal instability and light instability to be discussed, at last talks about the current Major issues perovskite materials are facing and make a summary.

  18. Organic solar cells theory, experiment, and device simulation

    CERN Document Server

    Tress, Wolfgang

    2014-01-01

    This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on

  19. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  20. The influence of silicon wafer thickness on characteristics of multijunction solar cells with vertical p—n-junctions

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2012-02-01

    Full Text Available A multijunction silicon solar cell with vertical p–n junctions consisted of four serial n+–p–p+-structures was simulated using Silvaco TCAD software package. The dependence of solar cell characteristics on the silicon wafer thickness is investigated for a wide range of values.

  1. Photosensitizers from Spirulina for Solar Cell

    Directory of Open Access Journals (Sweden)

    Liqiu Wang

    2014-01-01

    Full Text Available Spirulina is a kind of blue-green algae with good photosynthetic efficiency and might be used for photovoltaic power generation. So this paper used living spirulina as novel photosensitizer to construct spirulina biosolar cell. The results showed that spirulina had the photoelectric conversion effect, and could let the spirulina biosolar cell have 70 μA photocurrent. Meanwhile, adding glucose sucrose or chitosan in the spirulina anode chamber, they could make the maxima current density of the cell greatly increased by 80 μA, 100 μA, and 84 μA, respectively, and the sucrose could improve the maximum power density of the cell to 63 mW/m−2. Phycobiliprotein played an important role in the photosynthesis of spirulina. So in this paper phycobiliprotein was extracted from spirulina to composite with squaraine dye to sensitize nanocrystalline TiO2 photoanode for building dye sensitized solar cell, and the photoelectric properties of the cell also were investigated.

  2. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells.

    Science.gov (United States)

    Löper, Philipp; Moon, Soo-Jin; de Nicolas, Sílvia Martín; Niesen, Bjoern; Ledinsky, Martin; Nicolay, Sylvain; Bailat, Julien; Yum, Jun-Ho; De Wolf, Stefaan; Ballif, Christophe

    2015-01-21

    Tandem solar cells constructed from a crystalline silicon (c-Si) bottom cell and a low-cost top cell offer a promising way to ensure long-term price reductions of photovoltaic modules. We present a four-terminal tandem solar cell consisting of a methyl ammonium lead triiodide (CH3NH3PbI3) top cell and a c-Si heterojunction bottom cell. The CH3NH3PbI3 top cell exhibits broad-band transparency owing to its design free of metallic components and yields a transmittance of >55% in the near-infrared spectral region. This allows the generation of a short-circuit current density of 13.7 mA cm(-2) in the bottom cell. The four-terminal tandem solar cell yields an efficiency of 13.4% (top cell: 6.2%, bottom cell: 7.2%), which is a gain of 1.8%abs with respect to the reference single-junction CH3NH3PbI3 solar cell with metal back contact. We employ the four-terminal tandem solar cell for a detailed investigation of the optical losses and to derive guidelines for further efficiency improvements. Based on a power loss analysis, we estimate that tandem efficiencies of ∼28% are attainable using an optically optimized system based on current technology, whereas a fully optimized, ultimate device with matched current could yield up to 31.6%.

  3. Processes for chalcopyrite-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lux-Steiner, M.C.; Ennaoui, A.; Fischer, C.-H.; Jaeger-Waldau, A.; Klaer, J.; Klenk, R.; Koenenkamp, R.; Matthes, T.; Scheer, R.; Siebentritt, S.; Weidinger, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    2000-02-21

    This contribution deals with the investigations of chalcopyrite solar cells. Main attention is paid to absorber materials with band gaps larger than 1.5 eV. Besides the different efforts to modify and optimise stoichiometric CuInS{sub 2} films, novel deposition technologies for CuGaSe{sub 2} films and buffer layers as well as alternative buffer layers were studied and compared. With ZnSe as alternative buffer layer on Cu(InGa)(S,Se){sub 2} absorbers developed by SSI Camarillo and Siemens Solar, Munich, total area efficiencies up to 13.7% and active area efficiencies up to 15.7% could be reached, respectively. For CuInS{sub 2} two important results were achieved. The efficiency of Cu-poor CuInS{sub 2} cells could be increased to 8.3%. Standard Cu-rich prepared devices led to a new record efficiency of 12.5%. (orig.)

  4. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  5. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Petru Adrian Cotfas

    2018-03-01

    Full Text Available The capacitance is one of the key dynamic parameters of solar cells, which can provide essential information regarding the quality and health state of the cell. However, the measurement of this parameter is not a trivial task, as it typically requires high accuracy instruments using, e.g., electrical impedance spectroscopy (IS. This paper introduces a simple and effective method to determine the electric capacitance of the solar cells. An RLC (Resistor Inductance Capacitor circuit is formed by using an inductor as a load for the solar cell. The capacitance of the solar cell is found by measuring the frequency of the damped oscillation that occurs at the moment of connecting the inductor to the solar cell. The study is performed through simulation based on National Instruments (NI Multisim application as SPICE simulation software and through experimental capacitance measurements of a monocrystalline silicon commercial solar cell and a photovoltaic panel using the proposed method. The results were validated using impedance spectroscopy. The differences between the capacitance values obtained by the two methods are of 1% for the solar cells and of 9.6% for the PV panel. The irradiance level effect upon the solar cell capacitance was studied obtaining an increase in the capacitance in function of the irradiance. By connecting different inductors to the solar cell, the frequency effect upon the solar cell capacitance was studied noticing a very small decrease in the capacitance with the frequency. Additionally, the temperature effect over the solar cell capacitance was studied achieving an increase in capacitance with temperature.

  6. Scalable fabrication of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; Yang, Mengjin; Berry, Joseph J.; van Hest, Maikel F. A. M.; Zhu, Kai

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

  7. TEMPERATUREEFFECT OFELECTRICALPROPERTIES OF CIGS SOLAR CELL

    Directory of Open Access Journals (Sweden)

    A. M. Ferouani

    2015-07-01

    Full Text Available In this paper we are interested in studying the copper–indium–gallium–selenium (CIGS solar cells sandwiched between cadmium sulfide (CdS and ZnO as buffer layers, and Molybdenum (Mo. Thus, we report our simulation results using the capacitance simulator (SCAPS in terms of layer thickness, absorber layer band gap and operating temperature to find out the optimum choice. An efficiency of 20.61% (with Voc of 635.2mV, Jsc of 44.08 mA/cm2 and fill factor of 0.73 has been achieved with CdS used as buffer layer as the reference case. It is also found that the high efficiency CIGS cells with the low temperature were a very high efficiency conversion.

  8. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  9. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... which is a laboratory teaching tool developed at Transylvania University of Brasov. Using this platform, solar cells can be characterized under various illumination, temperature and angle of light incidence. Additionally, the SolarLab platform includes guided exercises and intuitive graphical user...... interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...

  10. Solar power roof shingle

    Science.gov (United States)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  11. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  12. Advanced laser processing for industrial solar cell manufacturing (ALPINISM)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Fieret, J. [Exitech Ltd. (United Kingdom)

    2006-05-04

    The study was aimed at improving methods for the manufacture of high efficiency solar cells and thereby increase production rates. The project focused on the laser grooved buried contact solar cell (LGBC) which is produced by high-speed laser machining. The specific objectives were (i) to optimise the laser technology for high speed processing; (ii) to optimise the solar cell process conditions for high speed processing; (iii) to produce a prototype tool and demonstrate high throughput; and (iv) to demonstrate increased cell efficiency using laser processing of rear contact. Essentially, all the objectives were met and Exitech have already sold six production tools and one research tool developed in this study. In addition, it was found that laser processing at the rear cell surface offers the prospect of LGBC solar cells with an efficiency of 20 per cent. BP Solar Limited carried out this work under contract to the DTI.

  13. Light trapping characteristics of glass substrate with hemisphere pit arrays in thin film Si solar cells

    International Nuclear Information System (INIS)

    Chen Le; Wang Qing-Kang; Wangyang Pei-Hua; Huang Kun; Shen Xiang-Qian

    2015-01-01

    In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by ∼ 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar cell from 20% to 13%. The HP glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 4ω. These results are basically consistent with the experimental results. (paper)

  14. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Towards consistent chronology in the early Solar System: high resolution 53Mn-53Cr chronometry for chondrules.

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Q; Jacobsen, B; Moynier, F; Hutcheon, I D

    2007-05-02

    New high-precision {sup 53}Mn-{sup 53}Cr data obtained for chondrules extracted from a primitive ordinary chondrite, Chainpur (LL3.4), define an initial {sup 53}Mn/{sup 55}Mn ratio of (5.1 {+-} 1.6) x 10{sup -6}. As a result of this downward revision from an earlier higher value of (9.4 {+-} 1.7) x 10{sup -6} for the same meteorite (Nyquist et al. 2001), together with an assessment of recent literature, we show that a consistent chronology with other chronometers such as the {sup 26}Al-{sup 26}Mg and {sup 207}Pb-{sup 206}Pb systems emerges in the early Solar System.

  16. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  17. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  18. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  19. Wafer and Solar Cell Characterization by GT-PVSCAN6000

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.; Madjdpour, J.; Auriemma, C.; Mathei, K.; Nakano, K.; Mortiz, H.

    2002-08-01

    The PVSCAN is an instrument designed to characterize silicon solar cell materials and devices. It performs a host of measurements that yield spatial maps of dislocation density, grain distribution, reflectance, and photoresponses from near-junction and the bulk of a solar cell.

  20. Phenothiazine-Based Dyes in Solar Cell Technology

    Directory of Open Access Journals (Sweden)

    Andrei Bejan

    2017-12-01

    Full Text Available Phenothiazine is a fused heterocyclic ring with strong electron-donating character which makes it an important building block for designing organic materials for solar cells applications. The present paper reviews the most recent achievements of phenothiazine-based compounds as dyes in solar cells, with special emphasis on the structure – performance relationship.

  1. Solar cell is housed in light-bulb enclosure

    Science.gov (United States)

    Evans, J. C., Jr.

    1981-01-01

    Inexpensive, conventional solar-cell module uses focusing principle of electric lamp in reverse to produce electric power from sunlight. Standard outdoor light enclosure provides low-cost housing which concentrates sunlight in solar cell. Unit is capable of producing approximately 1 watt of electric power.

  2. STUDY OF PERFORMANCES OF ORGANIC SOLAR CELLS BY ...

    African Journals Online (AJOL)

    30 juin 2011 ... results of analysis of performances of organic solar cells by using what one call the datamining materials. ... Keywords: organic solar cells, gap energie, effiency, PCA. Author Correspondence .... oubli est malencontreux car le type de données disponibles influence toujours la direction de la recherche.

  3. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  4. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  5. Stability and degradation mechanisms in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Bernhard

    2012-04-26

    This thesis deals with stability improvements and the investigation of degradation mechanisms in organic solar cells. Organic solar cells have been in the focus of extensive academic research for over almost two decades and are currently entering the market in small scale applications. For successful large scale applications, next to the improvement of the power conversion efficiency, the stability of organic solar cells has to be increased. This thesis is dedicated to the investigation of novel materials and architectures to study stability-related issues and degradation mechanisms in order to contribute to the basic understanding of the working principles of organic solar cells. Here, impedance spectroscopy, a frequency domain technique, is used to gain information about stability and degradation mechanisms in organic solar cells. In combination with systematic variations in the preparation of solar cells, impedance spectroscopy gives the possibility to differentiate between interface and bulk dominated effects. Additionally, impedance spectroscopy gives access to the dielectric properties of the device, such as capacitance. This offers among other things the opportunity to probe the charge carrier concentration and the density of states. Another powerful way of evaluation is the combination of experimentally obtained impedance spectra with equivalent circuit modelling. The thesis presents results on novel materials and solar cell architectures for efficient hole and electron extraction. This indicates the importance of knowledge over interlayers and interfaces for improving both the efficiency and stability of organic solar cells.

  6. Topology optimization for improving the performance of solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Keulen, F. van; Barink, M.

    2014-01-01

    This work introduces the application of Topology Optimization (TO) to design optimal front metallization patterns for solar cells and increase their power output. A challenging aspect of the solar cell electrode design problem is the strong nonlinear relation between the active layer current and the

  7. Topology optimization of front metallization patterns for solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2015-01-01

    This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front

  8. Photoelectrode nanostructure dye-sensitized solar cell | Kimpa ...

    African Journals Online (AJOL)

    This study used carica papaya (pawpaw leaf) extracts as natural organic dye for dye sensitized solar cell (DSSC). Pawpaw leaf extract is rich in chlorophyll and was extracted using ethanol as the extracting solvent and serve as the sensitizer for DSSC. The specialty of the DSSC relative to other types of solar cells is the use ...

  9. Pathways to a New Efficiency Regime for Organic Solar Cells

    NARCIS (Netherlands)

    Koster, L. Jan Anton; Shaheen, Sean E.; Hummelen, Jan C.

    2012-01-01

    Three different theoretical approaches are presented to identify pathways to organic solar cells with power conversion efficiencies in excess of 20%. A radiation limit for organic solar cells is introduced that elucidates the role of charge-transfer (CT) state absorption. Provided this CT action is

  10. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  11. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  12. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    Science.gov (United States)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  13. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    Research and development of CuIn 1-x Ga x Se 2-y S y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO 2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H 2 S. Presently large (15 cm x 10 cm) CuIn 1-x Ga x S 2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H 2 S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  14. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  15. Photoelectrochemistry of metallo-octacarboxyphthalocyanines for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2011-09-01

    Full Text Available Significant attention is being paid to dye solar cells (DSCs) as the next generation in solar cell technology for their low cost alternative as compared to solid state solar cells....

  16. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  17. Abooming area:non-fullerene acceptors for organic solar cells

    Directory of Open Access Journals (Sweden)

    QU Yangkun

    2016-12-01

    Full Text Available Organic solar cells have been extensively investigated in the last decade because they are one of the very important solutions to the global energy crisis.While predominant electron acceptor materials for organic solar cell are focused on fullerene and its derivatives,scientists are now more desperately looking for new alternative acceptor materials because fullerene acceptors face the challenges of narrow absorption spectrum,low solubility,high cost and non-environmental friendly synthesis processes.Non-fullerene electron acceptors have drawn great attention recently and have been widely used in organic solar cells because they have the great advantages of wide absorption spectrum,high solubility,precise structural controllability,and good processability.In this review paper,we summarize the most significant progresses in the area of non-fullerene organic solar cell acceptors during the last 6 years and we look forward to a bright future of non-fullerene organic solar cells.

  18. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  19. Emerging Semitransparent Solar Cells: Materials and Device Design.

    Science.gov (United States)

    Tai, Qidong; Yan, Feng

    2017-09-01

    Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoparticles and nanoimaging for organic solar cells

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind

    to a water based ink would provide a production environment without toxic fumes from organic solvents and the nanoparticle structure would provide additional morphological control. The first part of the dissertation maps photodegradation in active layers cast from organic solvents. Reduction in degradation...... in photoactive Landfester nanoparticles. The dispersed particles are characterized by size, internal structure and crystallinity. Crystal orientation and spatial distribution of materials are quantified for cast layers of Landfester particles. A layer of particles is also investigated in a tandem solar cell...... and compared to other layers in the structure using Tomographic 3D mapping. The fourth part presents a projection alignment algorithm for tomographic methods. It works by estimating projection movement through iterative logic using projection distance minimization. It is tested on simulated datasets...

  1. Wearable solar cells by stacking textile electrodes.

    Science.gov (United States)

    Pan, Shaowu; Yang, Zhibin; Chen, Peining; Deng, Jue; Li, Houpu; Peng, Huisheng

    2014-06-10

    A new and general method to produce flexible, wearable dye-sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal-textile electrode that was made from micrometer-sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire-shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Excess junction current of silicon solar cells

    Science.gov (United States)

    Wang, E. Y.; Legge, R. N.; Christidis, N.

    1973-01-01

    The current-voltage characteristics of n(plus)-p silicon solar cells with 0.1, 1.0, 2.0, and 10 ohm-cm p-type base materials have been examined in detail. In addition to the usual I-V measurements, we have studied the temperature dependence of the slope of the I-V curve at the origin by the lock-in technique. The excess junction current coefficient (Iq) deduced from the slope at the origin depends on the square root of the intrinsic carrier concentration. The Iq obtained from the I-V curve fitting over the entire forward bias region at various temperatures shows the same temperature dependence. This result, in addition to the presence of an aging effect, suggest that the surface channel effect is the dominant cause of the excess junction current.

  3. Contact formation in gallium arsenide solar cells

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  4. Workshop - Solar cells and daylight. Solar cell house. House building with integrated solar cell systems; Workshop - Solceller og dagslys. Solcellehus. Boligbyggeri med integrerede solcelleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Mio; Hansen, Ellen Kathrine

    2005-04-15

    The workshop 'Solar cells and daylight' at Aarhus School of Architecture aimed at studying and developing architectural potentials of integrating solar cell systems in building components for future house building. The aim of the process was to stress that technical conditions such as energy technological component design might work as central points of support in the future shaping and organisation of qualitative and functional design of houses. (BA)

  5. Solar cells: Operating principles, technology, and system applications

    Science.gov (United States)

    Green, M. A.

    Solar cell theory, materials, fabrication, design, modules, and systems are discussed. The solar source of light energy is described and quantified, along with a review of semiconductor properties and the generation, recombination, and the basic equations of photovoltaic device physics. Particular attention is given to p-n junction diodes, including efficiency limits, losses, and measurements. Si solar cell technology is described for the production of solar-quality crystals and wafers, and design, improvements, and device structures are examined. Consideration is given to alternate semiconductor materials and applications in concentrating systems, storage, and the design and construction of stand-alone systems and systems for residential and centralized power generation.

  6. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E.

    2010-01-01

    A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.

  7. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  8. The limiting efficiency of band gap graded solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, Nadia H. [Faculty of Engineering, Cairo University, Giza (Egypt); Habib, S.E.D. [Faculty of electronics and communication, Cairo University, Giza (Egypt)

    1998-09-04

    Two fundamental mechanisms limit the maximum attainable efficiency of solar cells, namely the radiative recombination and Auger recombination. We show in this paper that proper band gap grading of the solar cell localizes the Auger recombination around the metallurgical junction. Two beneficial effects result from this Auger recombination localization; first the cell is less sensitive to the surface conditions, and second, the previous estimates for the limiting efficiency of solar cells by Shockley, Tiedje, and Green are revised upwardly. We calculate the optimum bandgap grading profile for several real material systems, including GaInAsP lattice matched to InP, and a-SiGe on a-Si substrate

  9. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  10. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2018-01-01

    Full Text Available A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3 materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.

  11. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  12. Comparative modeling of InP solar cell structures

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  13. A verified technique for calibrating space solar cells

    Science.gov (United States)

    Anspaugh, Bruce

    1987-01-01

    Solar cells have been flown on high-altitude balloons for over 24 years, to produce solar cell standards that can be used to set the intensity of solar simulators. The events of a typical balloon calibration flight are reported. These are: the preflight events, including the preflight cell measurements and the assembly of the flight cells onto the solar tracker; the activities at the National Scientific Balloon Facility in Palestine, Texas, including the preflight calibrations, the mating of the tracker and cells onto the balloon, preparations for launch, and the launch; the payload recovery, which includes tracking the balloon by aircraft, terminating the flight, and retrieving the payload. In 1985, the cells flow on the balloon were also flown on a shuttle flight and measured independently. The two measurement methods are compared and shown to agree within 1 percent.

  14. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  15. Indacenodithienothiophene-Based Ternary Organic Solar Cells

    International Nuclear Information System (INIS)

    Gasparini, Nicola; García-Rodríguez, Amaranda; Prosa, Mario; Bayseç, Şebnem; Palma-Cando, Alex; Katsouras, Athanasios; Avgeropoulos, Apostolos; Pagona, Georgia; Gregoriou, Vasilis G.; Chochos, Christos L.; Allard, Sybille; Scherf, Ulrich; Brabec, Christoph J.; Ameri, Tayebeh

    2017-01-01

    One of the key aspects to achieve high efficiency in ternary bulk-hetorojunction solar cells is the physical and chemical compatibility between the donor materials. Here, we report the synthesis of a novel conjugated polymer (P1) containing alternating pyridyl[2,1,3]thiadiazole between two different donor fragments, dithienosilole and indacenodithienothiophene (IDTT), used as a sensitizer in a host system of indacenodithieno[3,2-b]thiophene,2,3-bis(3-(octyloxy)phenyl)quinoxaline (PIDTTQ) and [6,6]-phenyl C 70 butyric acid methyl ester (PC 71 BM). We found that the use of the same IDTT unit in the host and guest materials does not lead to significant changes in the morphology of the ternary blend compared to the host binary. With the complementary use of optoelectronic characterizations, we found that the ternary cells suffer from a lower mobility-lifetime (μτ) product, adversely impacting the fill factor. However, the significant light harvesting in the near infrared region improvement, compensating the transport losses, results in an overall power conversion efficiency enhancement of ~7% for ternary blends as compared to the PIDTTQ:PC 71 BM devices.

  16. Through cell vias contacts for multijunction solar cells

    Science.gov (United States)

    Richard, Olivier; Volatier, Maïté; Darnon, Maxime; Jaouad, Abdelatif; Bouzazi, Boussairi; Arès, Richard; Fafard, Simon; Aimez, Vincent

    2015-09-01

    The efficiency of multijunction solar cells used in concentrated photovoltaic systems is limited by shading from the grid line top electrode and electrical losses in the top epilayers. We propose to use through cell vias contacts to suppress the top electrode. Simulations show that the combination of through cell vias contacts with thin fingers has a potential absolute efficiency gain of 2 to 3% for concentration factors between 500 and 2000x. In addition, bus bars suppression improves by more than 20% the power extracted from a 6" wafer. Such an architecture requires additional technological steps. We discuss the challenges associated with via etching and report promising etching results for III-V heterostructures and germanium.

  17. Surface Passivation Studies on n+pp+ Bifacial Solar Cell

    Directory of Open Access Journals (Sweden)

    Suhaila Sepeai

    2012-01-01

    Full Text Available Bifacial solar cell is a specially designed solar cell for the production of electricity from both sides of the solar cell. It is an active field of research to make photovoltaics (PV more competitive by increasing its efficiency and lowering its costs. We developed an n+pp+ structure for the bifacial solar cell. The fabrication used phosphorus-oxy-trichloride (POCl3 diffusion to form the emitter and Al diffusion using conventional screen printing to produce the back surface field (BSF. The n+pp+ bifacial solar cell was a sandwiched structure of antireflective coatings on both sides, Argentum (Ag as a front contact and Argentum/Aluminum (Ag/Al as a back contact. This paper reports the solar cell performance with different surface passivation or antireflecting coatings (ARC. Silicon nitride (SiN deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD, thermally grown silicon dioxide (SiO2, PECVD-SiO2, and SiO2/SiN stack were used as ARC. The efficiency obtained for the best bifacial solar cell having SiN as the ARC is 8.32% for front surface illumination and 3.21% for back surface illumination.

  18. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  19. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent....... This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders.......The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent...... and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance...

  20. Business, market and intellectual property analysis of polymer solar cells

    International Nuclear Information System (INIS)

    Nielsen, Torben D.; Krebs, Frederik C.; Cruickshank, Craig; Foged, Soeren; Thorsen, Jesper

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found that the polymer solar cell technology is very poorly protected in Europe with the central patents being valid in only France, Germany, the Netherlands and the United Kingdom. Several countries with a large potential for PV such as Portugal and Greece are completely open and have apparently no relevant patents. This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders. (author)

  1. New Results in Optical Modelling of Quantum Well Solar Cells

    Directory of Open Access Journals (Sweden)

    Silvian Fara

    2012-01-01

    Full Text Available This project brought further advancements to the quantum well solar cell concept proposed by Keith Barnham. In this paper, the optical modelling of MQW solar cells was analyzed and we focussed on the following topics: (i simulation of the refraction index and the reflectance, (ii simulation of the absorption coefficient, (iii simulation of the quantum efficiency for the absorption process, (iv discussion and modelling of the quantum confinement effect, and (v evaluation of datasheet parameters of the MQW cell.

  2. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  3. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  4. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    OpenAIRE

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based ...

  5. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Zhang, Yi; Sun, Song; Kang, Rui; Zhang, Jun; Zhang, Ningning; Yan, Wenhao; Xie, Wei; Ding, Jianjun; Bao, Jun; Gao, Chen

    2015-01-01

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  6. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hoshi, Hajime; Tanaka, Shumpei; Miyoshi, Takashi

    2014-01-01

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I 3 − /I − . • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I 3 − /I − redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I 3 − /I − reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  7. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Science.gov (United States)

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  8. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ujwal K. Thakur

    2017-04-01

    Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  9. One-Dimensional Electron Transport Layers for Perovskite Solar Cells.

    Science.gov (United States)

    Thakur, Ujwal K; Kisslinger, Ryan; Shankar, Karthik

    2017-04-29

    The electron diffusion length ( L n ) is smaller than the hole diffusion length ( L p ) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  10. Design of solar cell materials via soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Himpsel, F.J., E-mail: fhimpsel@wisc.edu [Department of Physics, University of Wisconsin Madison, Madison, WI 53706 (United States); Cook, P.L. [Natural Sciences Department, University of Wisconsin Superior, Superior, WI 54880 (United States); Torre, G. de la [Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Garcia-Lastra, J.M. [Material Physics Center (MPC), Centro de Física de Materiales (CSIC-UPV/EHU), Donostia International Physics Center - DIPC, Departamento de Fisica Aplicada I, Universidad del Pais Vasco, 20018 San Sebastian (Spain); Department of Physics, Center for Atomic-scale Materials Design, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Gonzalez-Moreno, R. [Material Physics Center (MPC), Centro de Física de Materiales (CSIC-UPV/EHU), Donostia International Physics Center - DIPC, Departamento de Fisica Aplicada I, Universidad del Pais Vasco, 20018 San Sebastian (Spain); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hamers, R.J. [Department of Chemistry, University of Wisconsin Madison, Madison, WI 53706 (United States); Kronawitter, C.X. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Johnson, P.S. [Department of Physics, University of Wisconsin Madison, Madison, WI 53706 (United States); Ortega, J.E.; Pickup, D. [Material Physics Center (MPC), Centro de Física de Materiales (CSIC-UPV/EHU), Donostia International Physics Center - DIPC, Departamento de Fisica Aplicada I, Universidad del Pais Vasco, 20018 San Sebastian (Spain); and others

    2013-10-15

    Highlights: ► The use of soft X-ray spectroscopy for developing new materials for solar cells is illustrated. ► A generic layout of a solar cell is given, which facilitates the discussion of the energy levels involved in a solar cell and their optimization. ► Systematic measurements of organometallic dyes are presented in combination with density functional theory. ► The data reveal trends that are useful for tailoring materials for solar cells. ► A solar cell design based on thin film p-type diamond as donor is used as example. -- Abstract: This overview illustrates how spectroscopy with soft X-rays can assist the development of new materials and new designs for solar cells. The starting point is the general layout of a solar cell, which consists of a light absorber sandwiched between an electron donor and an electron acceptor. There are four relevant energy levels that can be measured with a combination of X-ray absorption spectroscopy and photoelectron spectroscopy, as illustrated for an organic dye as absorber attached to a p-doped diamond film as donor. Systematic measurements of organometallic dyes (phthalocyanines and porphyrins) as a function of the metal atom are presented for the metal 2p and N 1s absorption edges. In combination with density functional theory one can discern trends that are useful for tailoring absorber molecules. A customized porphyrin molecule is investigated that combines an absorber with a donor and a linker to an oxide acceptor. The bridge to device fabrication is crossed by correlating spectroscopic features with the photocurrent in hematite photoanodes for water splitting. For speeding up the development of new materials and designs of solar cells a feedback loop between spectroscopy, theory, synthesis and device fabrication is envisioned.

  11. Fundamental investigations on periodic nano- and microstructured organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, M.

    2005-03-15

    Using organic semiconducting materials in solar cells is a new approach with promising possibilities. The great potential of low cost production combined with mechanical flexibility gives rise to new applications. Due to the relatively simple fabrication process from solution and the mechanical flexibility, the production of organic solar cells by the cost effective roll-to-roll process appears promising. However, the preconditions for commercialization are not fulfilled as yet. The demands on organic solar cells strongly depend on the type of application. The highest demands on solar cell technologies are set by the energy market. Organic solar cells are only expected to be competitive on the energy market when the requirements on efficiency, lifetime and costs are fulfilled at the same time. Regarding this as a long term goal, a less demanding but still challenging medium term goal would be the application of relatively small organic solar cell modules for i.e. portable electronic devices. The integration of Organic Field Effect Transistors (OFET) and Organic Light Emitting Diodes (OLED) to all-polymer electronic devices is still under development. Nevertheless, the integration of organic solar cells as one functional component appears promising as the production technologies are expected to be compatible. The innovative contribution of this thesis to the development of organic solar cells is as follows: Motivated by the desire to fabricate efficient and cost effective organic solar cells, the approach of developing novel solar cell architectures based on periodic nano- and microstructures is followed. At present, planar organic solar cells with indium tin oxide (ITO) as a transparent electrode are intensively studied. One decisive cost factor would, however, be the indium price, which is the key component of the ITO electrode. The planar cell architecture can be conceived as a one-dimensional photonic device, however the presented work widens the investigations

  12. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    Science.gov (United States)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  13. Application of carbon nanotubes in perovskite solar cells: A review

    Science.gov (United States)

    Oo, Thet Tin; Debnath, Sujan

    2017-11-01

    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  14. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    Science.gov (United States)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  15. Air stable organic-inorganic nanoparticles hybrid solar cells

    Science.gov (United States)

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  16. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2008-11-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  17. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...... understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing...

  18. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2007-03-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  19. Applications of atomic layer deposition in solar cells

    Science.gov (United States)

    Niu, Wenbin; Li, Xianglin; Krishna Karuturi, Siva; Wenhui Fam, Derrick; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Iing Yoong Tok, Alfred

    2015-02-01

    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  20. Status note on solar cell technology; Statusnotat om solcelleteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This status note briefly describes development and perspectives for solar cell technology internationally and nationally. The note will form part of the background for a coming proposal for a national solar cell strategy. The strategy will be prepared by the Danish Energy Authority in collaboration with the Ministry of Science, Technology and Innovation, Elkraft System, Eltra, representatives from the industry and others. The proposal is expected to give an overall picture of Danish R and D niches and opportunities within solar cell technology. (BA)

  1. Highly doped layer for tunnel junctions in solar cells

    Science.gov (United States)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  2. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A solution process for inverted tandem solar cells

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Bundgaard, Eva; Sylvester-Hvid, Kristian O.

    2011-01-01

    Tandem solar cells with normal and inverted device geometries were prepared by a solution process. Both device types were based on the use of zinc(II)oxide as the electron transporting layer (ETL). The hole transporting layer (HTL) was either PEDOT:PSS for normal geometry tandem solar cells...... or vanadium(V)oxide in the case of inverted tandem cells. It was found that the inverted tandem solar cells performed comparable or better than the normal geometry devices, showing that the connection structure of vanadium(V)oxide, Ag nanoparticles and zinc(II)oxide functions both as a good recombination...... layer, ensuring serial connection, and as a solvent barrier, protecting the first photoactive layer from processing of the second layer. This successfully demonstrates a tandem solar cell fabrication process fully compatible with state-of-the-art solution based automated production procedures....

  4. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Xu Yongfeng; Li Ming; Lin Wenxian; Wang Liuling; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  5. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  7. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine...

  8. Light management in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  9. Panel fabrication utilizing GaAs solar cells

    Science.gov (United States)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  10. Impurities in silicon and their impact on solar cell performance

    NARCIS (Netherlands)

    Coletti, Gianluca

    2011-01-01

    Photovoltaic conversion of solar energy is a rapidly growing technology. More than 80% of global solar cell production is currently based on silicon. The aim of this thesis is to understand the complex relation between impurity content of silicon starting material (“feedstock”) and the resulting

  11. ORGANIC THIN-FILM SOLAR CELLS: NEXT GENERATION LOW ...

    African Journals Online (AJOL)

    Solar energy has the potential to fulfil an important part of the sustainable energy demand for future power generations. Thereby, low-cost organic photovoltaic systems have come into the international researchfocus during thepast ... polymeric solar cells ultra-thin flexible material can be applied to large surfaces by printing ...

  12. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  13. Solar industry in Japan: With solar cells towards the Sun

    International Nuclear Information System (INIS)

    Odrich, B.

    1992-01-01

    In the area of solar energy Japan is considered to be leading with a 36% market share. Two third of the total output are used for consumer products, about 30% for business purposes and 3.4% for research and development. This article gives a survey of the activities of Japanese companies in this area. According to the companies there are obstacles not in the technical area but rather in the market introduction, an area for which at present high capital spendings are necessary. (BWI) [de

  14. Performance enhancement of polymer solar cells using copper oxide nanoparticles

    Science.gov (United States)

    Wanninayake, Aruna P.; Gunashekar, Subhashini; Li, Shengyi; Church, Benjamin C.; Abu-Zahra, Nidal

    2015-06-01

    Copper oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nanoparticles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nanoparticles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA cm-2 and it seemed to increase to 6.484 mA cm-2 in cells containing 0.6 mg of CuO NPs; in addition, the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nanoparticles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nanoparticles.

  15. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  16. Bias-dependent high saturation solar LBIC scanning of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-06-15

    A light beam-induced current measurement system that uses concentrated solar radiation as a beam probe to map spatially distributed defects on a solar cell has been developed and tested [F.J. Vorster, E.E. van Dyk, Rev. Sci. Instrum., submitted for review]. The induced current response from a flat plate EFG Si solar cell was mapped as a function of surface position and cell bias by using a solar light beam induced current (S-LBIC) mapping system while at the same time dynamically biasing the whole cell with an external voltage. This paper examines the issues relating to transient capacitive effects as well as the electrical behaviour of typical solar cell defect mechanisms under spot illumination. By examining the bias dependence of the S-LBIC maps, various defect mechanisms of photovoltaic (PV) cells under concentrated solar irradiance may be identified. The techniques employed to interpret the spatially distributed IV curves as well as initial results are discussed. (author)

  17. Advanced Nanomaterials for High-Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junhong [University of Wisconsin-Milwaukee

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  18. Predicting Solar-Cell Dyes for Cosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Sam L. [Cavendish; Cole, Jacqueline M. [Cavendish; Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Institute; Waddell, Paul G. [Cavendish; Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia; McKechnie, Scott [Cavendish; Liu, Xiaogang [Cavendish

    2014-06-19

    A major limitation of using organic dyes for dye-sensitized solar cells (DSCs) has been their lack of broad optical absorption. Co-sensitization, in which two complementary dyes are incorporated into a DSC, offers a route to combat this problem. Here we construct and implement a design route for materials discovery of new dyes for co-sensitization, beginning with a chemically compatible series of existing laser dyes which are without an anchor group necessary for DSC use. We determine the crystal structures for this dye series, and use their geometries to establish the DSC molecular design prerequisites aided by density-functional theory and time-dependent density-functional theory calculations. Based on insights gained from these existing dyes, modified sensitizers are computationally designed to include a suitable anchor group. A DSC co-sensitization strategy for these modified sensitizers is predicted, using the central features of highest-occupied, and lowest-unoccupied molecular orbital positioning, optical absorption properties, intramolecular charge-transfer characteristics, and steric effects as selection criteria. Through this molecular engineering of a series of existing non-DSC dyes, we predict new materials for DSC co-sensitization.

  19. Photostability of the solar cell dye sensitizer N719

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz

    The photostability of the sensitizer dye [Ru(dcbpyH)2(NCS)2] (Bu4N)2 (referred to as N719) was investigated in a simple model system instead of a complete nanocrystaline dye sensitized titanium dioxide solar cells (nc-DSSC). The applied model system consisted of N719 dyed titanium dioxide...... it was possible to calculate an average value for the oxidative degradation rate of the N719 dye attached to the TiO2 nanoparticles, kdeg = 4 × 10–2 s–1 . Heating and illumination of the model system in the presence of 4-tert-butylpyridine (4-TBP), the commonly used additive in nc-DSSC, revealed the possible...

  20. Maximizing Tandem Solar Cell Power Extraction Using a Three-Terminal Design

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deceglie, Michael G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienacker, Michael [Institute for Solar Energy Research Hamelin; Peibst, Robby [Institute for Solar Energy Research Hamelin

    2018-04-09

    Tandem or multijunction solar cells can greatly increase the efficiency of solar energy conversion by absorbing different energies of the incident solar illumination in semiconductors with different band-gaps, which can operate more efficiently than a single absorber. Many different designs of tandem cells based on high efficiency top cells and Si bottom cells have been proposed, and there is ongoing debate as to whether the sub-cells should be wired in series (to create a tandem device with two terminals) or operated independently (four terminals). An alternative cell configuration that combines some of the strengths of both is a three-terminal device consisting of a top cell optically in series with a modified interdigitated back contact (IBC) Si cell featuring a conductive top contact. Such a configuration can enable improved energy yield while only requiring external wiring on the front and back of the solar cell stack. In this paper, we investigate the operation of three terminal tandems in detail using technology computer aided design (TCAD) device physics simulations. Using III-V top cells as an example case, we show how the addition of a third terminal can deliver comparable power output to a four terminal device, and substantially more power than a two-terminal device, while also enabling power injection and extraction between the two sub-circuits under a variety of spectral conditions.

  1. Stability issues of dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Asghar, M.I.

    2012-11-01

    The thesis discusses dye solar cells (DSCs) which are emerging as a potential candidate for many applications. The goal of the work was to find more stable and higher performing materials for flexible DSCs, improve understanding of the effects on the DSC stability, and to develop experimental methods that give improved resolution of the degradation mechanisms. First an intensive critical literature review was done to highlight the important degradation mechanisms in DSCs. It was concluded that techniques giving chemical information are needed to understand the degradation reactions and their effect on electrical performance. It would be advantageous to have methods that enable monitoring chemical changes in operating DSCs, or periodically over their lifetime during accelerated ageing tests. Here the focus was on new and advanced in-situ methods that allow continuous study of the aging of the cells. In this regard, optical techniques such as Raman spectroscopy, newly introduced image processing method and recently introduced segmented cell method were employed to bridge the link between the chemical changes in the DSCs and the standard PV measurement methods. Here for instance the image processing was demonstrated to study the bleaching of electrolyte under ultraviolet and visible light at 85 deg C. The results obtained with the image processing method and the standard electrical measurements were in agreement and showed that the bleaching of electrolyte was initiated by TiO2 and slowed down by the presence of the dye. For the roll-to-roll production of DSCs cheap, flexible and stable substrates are required. In this work, a series of metals i.e. StS 304, StS 321, StS 316, StS 316L and Ti were successfully stabilized at the CE of a DSC by using a sputtered Pt catalyst layer that doubled also as a corrosion blocking layer. This work was an important step forward towards stable flexible DSCs. Finally, the degradation due to the manufacturing step related to the

  2. Development of Earth-Abundant and Non-Toxic Thin-Film Solar Cells

    Science.gov (United States)

    Park, Helen Hejin

    Although solar energy is the most abundant energy resource available, photovoltaic solar cells must consist of sufficiently abundant and environmentally friendly elements, for scalable low-cost production to provide a major amount of the world's energy supply. However, scalability is limited in current thin-film solar cell technologies based on Cu(In,Ga)(S,Se)2 and CdTe due to scarce, expensive, and toxic elements. Thin-film solar cells consisting of earth-abundant and non-toxic materials were made from pulsed chemical vapor deposition (pulsed-CVD) of SnS as the p-type absorber layer and atomic layer deposition (ALD) of Zn(O,S) as the n-type buffer layer. Solar cells with a structure of Mo/SnS/Zn(O,S)/ZnO/ITO were studied by varying the synthesis conditions of the SnS and Zn(O,S) layers. Annealing SnS in hydrogen sulfide increased the mobility by more than one order of magnitude, and improved the power conversion efficiency of the solar cell devices. Solar cell performance can be further optimized by adjusting the stoichiometry of Zn(O,S), and by tuning the electrical properties of Zn(O,S) through various in situ or post-annealing treatments. Zn(O,S) can be post-annealed in oxygen atmosphere or doped with nitrogen, by ammonium hydroxide or ammonia gas, during the ALD growth to reduce the carrier concentration, which can be critical for reducing interface recombination at the p-n junction. High carrier concentration buffer layers can be critical for reducing contact resistance with the ITO layer. Zn(O,S) can also be incorporated with aluminum by trimethylaluminum (TMA) doses to either increase or decrease the carrier concentration based on the stoichiometry of Zn(O,S).

  3. Crystalline silicon solar cells with high resistivity emitter

    Science.gov (United States)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  4. Multijunction Ultralight Solar Cells and Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation...

  5. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  6. High Efficiency Quantum Well Waveguide Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  7. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  8. Plasmonic nano-antenna a-Si:H solar cell.

    Science.gov (United States)

    Di Vece, Marcel; Kuang, Yinghuan; van Duren, Stephan N F; Charry, Jamie M; van Dijk, Lourens; Schropp, Ruud E I

    2012-12-03

    In this work the effects of plasmonics, nano-focusing, and orthogonalization of carrier and photon pathways are simultaneously explored by measuring the photocurrents in an elongated nano-scale solar cell with a silver nanoneedle inside. The silver nanoneedles formed the support of a conformally grown hydrogenated amorphous silicon (a-Si:H) n-i-p junction around it. A spherical morphology of the solar cell functions as a nano-lens, focusing incoming light directly on the silver nanoneedle. We found that plasmonics, geometric optics, and Fresnel reflections affect the nanostructured solar cell performance, depending strongly on light incidence angle and polarization. This provides valuable insight in solar cell processes in which novel concepts such as plasmonics, elongated nanostructures, and nano-lenses are used.

  9. Black silicon solar cells with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  10. InN-Based Quantum Dot Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this STTR program is to employ nanostructured materials in advanced device designs to enhance the tolerance of solar cells to extreme conditions while...

  11. InN-Based Quantum Dot Solar Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this STTR program is to employ nanostructured materials in an advanced device design to enhance the tolerance of solar cells to extreme environments...

  12. Environmental simulation testing of solar cell contamination by hydrazine

    Science.gov (United States)

    Moore, W. W., Jr.

    1972-01-01

    Test results for thermal vacuum and radiation environment simulation of hydrazine contamination are discussed. Solar cell performance degradation, measured by short circuit current, is presented in correlation with the variations used in environmental parameters.

  13. Highly efficient perovskite solar cells with tunable structural color.

    Science.gov (United States)

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

  14. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  15. Recent Development in ITO-free Flexible Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Shudi Lu

    2017-12-01

    Full Text Available Polymer solar cells have shown good prospect for development due to their advantages of low-cost, light-weight, solution processable fabrication, and mechanical flexibility. Their compatibility with the industrial roll-to-roll manufacturing process makes it superior to other kind of solar cells. Normally, indium tin oxide (ITO is adopted as the transparent electrode in polymer solar cells, which combines good conductivity and transparency. However, some intrinsic weaknesses of ITO restrict its large scale applications in the future, including a high fabrication price using high temperature vacuum deposition method, scarcity of indium, brittleness and scaling up of resistance with the increase of area. Some substitutes to ITO have emerged in recent years, which can be used in flexible polymer solar cells. This article provides the review on recent progress using other transparent electrodes, including carbon nanotubes, graphene, metal nanowires and nanogrids, conductive polymer, and some other electrodes. Device stability is also discussed briefly.

  16. Fabrication of Solar Cells by Deposition of Phosphorous Vapour

    International Nuclear Information System (INIS)

    Ika Ismet; Shobih; Sagala, Pahlawan

    2002-01-01

    This paper shows the fabrication of solar cells by deposition of phosphorous vapor using 10x10 cm 2 polycrystalline silicon wafer. The diffusion process for forming p-n junction was carried out in the conveyor furnace at temperature of 860, 875, and 950 o C with belt velocities at 2, 3, 4, 5, 71/2 and 10 inches per minute (Ipm). The emphasize of the research is for understanding the characterization of the doping of phosphorous in order to obtain better performance of solar cells. At this initial research, it was found that solar cell efficiency is still around 7.5 - 8 % with short circuit current I SC in the range of 2.6 - 2.75 A. The current - voltage (I-V) measurement as well as the electrical parameters of solar cell are also discussed here. (author)

  17. Multijunction Ultralight Solar Cells and Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation...

  18. Nanostructured InGaP Solar Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current matching constraints can severely limit the design and overall performance of conventional serially-connected multijunction solar cells. The goal of this...

  19. Electron migration and stability of dye solar cells

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-07-01

    Full Text Available Dye-sensitised photoelectrochemical solar cells with four different electrolyte combinations were assembled and characterised using current voltage measurements. The effects that the solvents (acetonitrile - ACN and propionitrile - PN) have...

  20. Water and oxygen induced degradation of small molecule organic solar cells

    DEFF Research Database (Denmark)

    Hermenau, Martin; Riede, Moritz; Leo, Karl

    2011-01-01

    Small molecule organic solar cells were studied with respect to water and oxygen induced degradation by mapping the spatial distribution of reaction products in order to elucidate the degradation patterns and failure mechanisms. The active layers consist of a 30 nm bulk heterojunction formed...

  1. Light intensity dependence of open-circuit voltage of polymer : fullerene solar cells

    NARCIS (Netherlands)

    Koster, LJA; Mihailetchi, VD; Blom, PWM

    2005-01-01

    The open-circuit voltage V-oc of polymer:fullerene bulk heterojunction solar cells is investigated as a function of light intensity for different temperatures. Devices consisted of a blend of a poly(p-phenylene vinylene) derivative as the hole conductor and 6,6-phenyl C-61-butyric acid methyl ester

  2. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    International Nuclear Information System (INIS)

    Hofstetter, J.; Lelievre, J.F.; Canizo, C.; Luque, A. del

    2009-01-01

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10 -3 ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10 -4 ppma and the allowed concentration of 2.2x10 -2 ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  3. Radiation resistant low bandgap InGaAsP solar cell for multi-junction solar cells

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Dharmaras, Nathaji; Yamada, Takashi; Tanabe, Tatsuya; Takagishi, Shigenori; Itoh, Hisayoshi; Ohshima, Takeshi

    2001-01-01

    We have explored the superior radiation tolerance of metal organic chemical vapor deposition (MOCVD) grown, low bandgap, (0.95eV) InGaAsP solar cells as compared to GaAs-on-Ge cells, after 1 MeV electron irradiation. The minority carrier injection due to forward bias and light illumination under low concentration ratio, can lead to enhanced recovery of radiation damage in InGaAsP n + -p junction solar cells. An injection anneal activation energy (0.58eV) of the defects involved in damage/recovery of the InGaAsP solar cells has been estimated from the resultant recovery of the solar cell properties following minority carrier injection. The results suggest that low bandgap radiation resistant InGaAsP (0.95eV) lattice matched to InP substrates provide an alternative to use as bottom cells in multi-junction solar cells instead of less radiation ressitant conventional GaAs based solar cells for space applications. (author)

  4. The interplay of nanostructure and efficiency of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin Chunhong

    2008-12-04

    The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: the polymer-polymer solar cells, and the polymer-small molecule solar cell which has polymer as electron donor incorporating with organic small molecule as electron acceptor. For the polymer-polymer devices, I compared the photocurrent characteristics of bilayer and blend devices as well as the blend devices with different nano-morphology, which is fine tuned by applying solvents with different boiling points. The main conclusion based on the complementary measurements is that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel small molecule electron acceptor vinazene. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V without thermal treatment of the devices were achieved. In the past, fill factors of solar cells exceeding 50 % have only been observed when using fullerene-derivatives as the electron-acceptor. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. (orig.)

  5. Simple Photovoltaic Cells for Exploring Solar Energy Concepts

    Science.gov (United States)

    Appleyard, S. J.

    2006-01-01

    Low-efficiency solar cells for educational purposes can be simply made in school or home environments using wet-chemistry techniques and readily available chemicals of generally low toxicity. Instructions are given for making solar cells based on the heterojunctions Cu/Cu[subscript 2]O, Cu[subscript 2]O/ZnO and Cu[subscript 2]S/ZnO, together with…

  6. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  7. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.

    2014-11-10

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  8. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2011-06-03

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Organic Solar Cell by Inkjet Printing—An Overview

    OpenAIRE

    Sharaf Sumaiya; Kamran Kardel; Adel El-Shahat

    2017-01-01

    In recent years, organic solar cells became more attractive due to their flexible power devices and the potential for low-cost manufacturing. Inkjet printing is a very potential manufacturing technique of organic solar cells because of its low material usage, flexibility, and large area formation. In this paper, we presented an overall review on the inkjet printing technology as well as advantages of inkjet-printing, comparison of inkjet printing with other printing technologies and its poten...

  10. Resistivity and thickness effects in dendritic web silicon solar cells

    Science.gov (United States)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  11. Recombination process in solar cells: Impact on the carrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, Yuri G. [Departamento de Fisica, CINVESTAV-IPN, Av. IPN 2508, Apartado Postal 14-740, Mexico D.F. 07000 (Mexico); Velazquez-Perez, Jesus E. [Departamento Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced, 37008 Salamanca (Spain)

    2012-10-15

    Thickness of Si solar cells is being reduced below 200 {mu}m to reduce costs and improve their performance. In conventional solar cells recombination of photo-generated charge carriers plays a major limiting role in the cell efficiency. High quality thin-film solar cells may overcome this limit if the minority diffusion lengths become large as compared to the cell dimensions, but, strikingly, the conventional model fails to describe the cell electric behaviour under these conditions. Moreover, it is shown that in the conventional model the reverse-saturation current diverges (tends to infinity) in thin solar cells. A new formulation of the basic equations describing charge carrier transport in the cell along with a set of boundary conditions is presented. An analytical closed-form solution is obtained under a linear approximation. In the new framework given, the calculation of the open-circuit voltage of the solar cell diode does not lead to unphysical results. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. CZTS nanoparticle absorber layer for thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ørnsbjerg; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells have the potential to revolutionize the solar energy market. They are cheap, non-toxic and present an efficiency up to 9,2% [1]. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. There are various fabrication...... is furthermore characterized. Photoluminescence measurements indicate which absorber layer are of higher efficiency, which allows us to study why some crystalline configurations enhance the efficiency of resulting solar cells....

  13. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  14. Metamorphic III–V Solar Cells: Recent Progress and Potential

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ivan; France, Ryan M.; Geisz, John F.; McMahon, William E.; Steiner, Myles A.; Johnston, Steve; Friedman, Daniel J.

    2016-01-01

    Inverted metamorphic multijunction solar cells have been demonstrated to be a pathway to achieve the highest photovoltaic (PV) conversion efficiencies. Attaining high-quality lattice-mismatched (metamorphic) semiconductor devices is challenging. However, recent improvements to compositionally graded buffer epitaxy and junction structures have led to the achievement of high-quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. For this high material quality, photon recycling is significant, and therefore, the optical environment of the solar cell becomes important. In this paper, we first present recent progress and performance results for 1- and 0.7-eV GaInAs solar cells grown on GaAs substrates. Then, an electrooptical model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that the quality of 1-eV subcells is such that further improving its electronic quality does not produce significant Voc increases in the four-junction inverted metamorphic subcells, unless a back reflector is used to enhance photon recycling, which would significantly complicate the structure. Conversely, improving the electronic quality of the 0.7-eV subcell would lead to significant Voc boosts, driving the progress of four-junction inverted metamorphic solar cells.

  15. Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2017-01-01

    We propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding to inactive solar cell cracks, resulting from their disconnection from the electrical circuit of the cell. The method enables automatic quantification of the cell crack size an...

  16. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  17. Synthesis and Characterization of Antireflective ZnO Nanoparticles Coatings Used for Energy Improving Efficiency of Silicone Solar Cells

    Science.gov (United States)

    Pîslaru-Dǎnescu, Lucian; Chitanu, Elena; El-Leathey, Lucia-Andreea; Marinescu, Virgil; Marin, Dorian; Sbârcea, Beatrice-Gabriela

    2018-03-01

    The paper proposes a new and complex process for the synthesis of ZnO nanoparticles for antireflective coating corresponding to silicone solar cells applications. The process consists of two major steps: preparation of seed layer and hydrothermal growth of ZnO nanoparticles. Due to the fact that the seed layer morphology influences the ZnO nanoparticles proprieties, the process optimization of the seed layer preparation is necessary. Following the hydrothermal growth of the ZnO nanoparticles, antireflective coating of silicone solar cells is achieved. After determining the functional parameters of the solar cells provided either with glass or with ZnO, it is concluded that all the parameters values are superior in the case of solar cells with ZnO antireflection coating and are increasing along with the solar irradiance.

  18. Real-Time Determination of Solar Cell Parameters

    Science.gov (United States)

    Hassan Ali, Mohamed; Rabhi, Abdelhamid; Haddad, Sofiane; El Hajjaji, Ahmed

    2017-11-01

    The extraction of solar cell parameters is a difficult task but is an important step in the assessment procedure of solar cells and panels. This work presents numerical methods for determining these parameters and compares their performances under different solar irradiances when they are implemented in an equivalent electrical circuit model with one or two diodes. To obtain a fast convergence rate in real-time applications, the fractional-order Darwinian particle swarm optimization (FODPSO) method is used through experimental data collected from a platform of photovoltaic (PV) energy installed near the modeling, information and systems laboratory at Amiens, France. The results showed that the one-diode model is less representative than the two-diode model. Furthermore, it is envisaged that the proposed FODPSO-based extraction method is more effective in modeling with two diodes. This will allow real-time determination of solar cells parameters and consequently will help to select the most suitable PV model.

  19. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael; Buonassisi, Tonio

    2017-09-30

    penetration to overcome the often-reported thermal and environmental instability of metal halide perovskites23. Previous perovskite-containing tandems utilized molybdenum oxide (MoOx) as a sputter buffer layer9,11,12, but this has raised concerns over long-term stability, as the iodide in the perovskite can chemically react with MoOx24. Mixed-cation perovskite solar cells have consistently outperformed their single-cation counterparts. The first perovskite device to exceed 20% PCE was fabricated with a mixture of methylammonium (MA) and formamidinium (FA)25. Recent reports have shown promising results with the introduction of cesium mixtures, enabling high efficiencies with improved photo-, moisture, and thermal stability26–30. The increased moisture and thermal stability are especially important as they broaden the parameter space for processing on top of the perovskite, enabling the deposition of metal oxide contacts through atomic layer deposition31,32 (ALD) or chemical vapor deposition (CVD) that may require elevated temperatures or water as a counter reagent. Both titanium dioxide (TiO2) and tin oxide (SnO2) have consistently proven to be effective electron-selective contacts for perovskite solar cells and both can be deposited via ALD at temperatures below 150 °C33–35. We introduced a bilayer of SnO2 and zinc tin oxide (ZTO) that can be deposited by either low-temperature ALD or pulsed-CVD as a window layer with minimal parasitic absorption, efficient electron extraction, and sufficient buffer properties to prevent the organic and perovskite layers from damage during the subsequent sputter deposition of a transparent ITO electrode. We explored pulsed-CVD as a modified ALD process with a continual, rather than purely step-wise, growth component in order to considerably reduce the process time of the SnO2 deposition process and minimize potential perovskite degradation. These layers, when used in an excellent mixed-cation perovskite solar cell atop a silicon solar

  20. Thermodynamics of photon-enhanced thermionic emission solar cells

    International Nuclear Information System (INIS)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures

  1. Thermodynamics of photon-enhanced thermionic emission solar cells

    DEFF Research Database (Denmark)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE...... solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures. ©...

  2. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  3. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  4. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  5. Radiation induced damage and recovery in poly(3-hexyl thiophene) based polymer solar cells

    Science.gov (United States)

    Li, Gang; Yang, Yang; Devine, R. A. B.; Mayberry, Clay

    2008-10-01

    Polymer solar cells have been characterized during and after x-ray irradiation. The open circuit voltage, dark current and power conversion efficiency show degradation consistent with the generation of defect states in the polymer semiconductor. The polymer solar cell device remained functional with exposure to a considerable dose (500 krad (SiO2)) and showed clear signs of recovery upon removal of the irradiation source (degraded from 4.1% to 2.2% and recovered to 2.9%). Mobility-relaxation time variation, derived from J-V measurement, clearly demonstrates that radiation induced defect generation mechanisms in the organic semiconductor are active and need to be further studied. Optical transmission results ruled out the possibility of reduced light absorption and/or polymer crystallinity. The results suggest that organic solar cells are sufficiently radiation tolerant to be useful for space applications.

  6. Roll-to-Roll Fabricated Polymer Solar Cells: Towards Low Environmental Impact and Reporting Consensus

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod

    The sun is by far the largest source of renewable energy available; consequently solar cells, which are able to convert light into electricity, have the technical potential to cover the global energy needs. Polymer solar cells (PSCs) on flexible plastic substrate have a low embodied energy and can...... in conjunction with PEDOT:PSS in R2R double slot-die coating, a process that demonstrates the simultaneous formation of a P3HT:PCBM/PEDOT:PSS bilayer on a substrate comprising PET/ITO/ZnO. Devices are subsequently completed with a metal electrode demonstrating working solar cells. A third way of utilizing...... devices based on flexible PET. Also described in this thesis, is the development of an all-solution processed alternative to ITO as transparent conductor in PSCs. In its simples form the electrode consist of high conductive PEDOT:PSS R2R coated on a PET substrate. To enable functional devices...

  7. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces.

    Science.gov (United States)

    Litzov, Ivan; Brabec, Christoph J

    2013-12-10

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.

  8. Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    M. Malekshahi Byranvand

    2016-01-01

    Full Text Available Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such as cost-effectiveness, environmental friendliness, availability, corrosion resistance and excellent catalytic activity towards the redox species make them ideal for replacing Pt in the CEs of DSCs. The review presented below gives a succinct summary of the Carbon nanotubes materials in use as counter electrode  in dye-sensitized solar cells .

  9. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ Solar Cells Using Different Metal Oxide Interfaces

    Directory of Open Access Journals (Sweden)

    Ivan Litzov

    2013-12-01

    Full Text Available Solution-processed inverted bulk heterojunction (BHJ solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL and as hole transport/extraction layers (HTL/HEL in inverted BHJ solar cells will be reviewed and discussed.

  10. Gastric Collision Tumor Consisting of Mucinous Carcinoma and Large Cell Neuroendocrine Carcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Su Min; Lee, Ye Ri; Han, Eun Mee; Yeon, Jae Woo; Yoo, Jin Young; Choi, Jong Mun; Sim, Ji Ye [Bundang Jesaeng General Hospital, Seongnam (Korea, Republic of)

    2010-06-15

    The concurrence of two different pathological tumors of the stomach is infrequent. Even rarer is a gastric collision tumor of both tumor types. Although there have been a few reported cases of gastric collision tumors that consisted of an adenocarcinoma and neuroendocrine carcinoma, to the best of our knowledge, there is no documented case report of a gastric collision tumor consisting of a mucinous carcinoma and large cell neuroendocrine carcinoma. We report a case of gastric collision tumor, consisting of a mucinous carcinoma and large cell neuroendocrine carcinoma that presented as abdominal discomfort in a 64-year-old man. This finding draws attention to the related findings from previous studies on gastric collision tumors

  11. Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1

    Science.gov (United States)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.

  12. Characterization of Thin Films for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    of solar cells with low embedded time, material, and energy consumption as compared to silicon solar cells. Consequently, different demonstration products of small mobile gadgets based on polymer solar cells have been produced, which are fully competitive with conventional energy technologies, illustrating...... time of the cell is highly increased. An alternative approach is to increase the photo stability of the cell components, and especially the light absorbing conjugated polymer has been subject to extensive attention. The photo stability of conjugated polymers varies by orders of magnitude from type...... to type depending on the chemical structure of the material and consequently, the lifetime is highly influenced by the polymer stability. Photochemical degradation of polymers, i.e. degradation of thin films of polymer in the ambient under light exposure, is a technique normally applied to evaluate...

  13. Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing

    DEFF Research Database (Denmark)

    Amb, Chad M.; Craig, Michael R.; Koldemir, Unsal

    2012-01-01

    The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively...... as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs...... devices with PGREEN: PCBM blends as active light absorbing layers, and compare performance to slot die-coated individual solar cells, and slot-die-coated solar modules consisting of many cells connected in series. We find that the optimum ratio of polymer to PCBM varies significantly when changing from...

  14. Increased cell hydration promotes both tumor growth and metastasis: a biochemical mechanism consistent with genetic signatures.

    Science.gov (United States)

    McIntyre, G I

    2007-01-01

    It was postulated previously that a progressive increase in cell hydration, induced by successive genetic or epigenetic changes, is the basic mechanism of multistep carcinogenesis, and also that the degree of malignancy increases with the degree of cell hydration. These hypotheses implied that increased cell hydration is a common factor promoting both tumor growth and metastasis, and that metastatic potential increases with the degree of cell hydration. This paper discusses these implications in relation to current concepts of genetic mechanisms determining the acquisition of metastatic potential. It was also postulated previously that the enhancement of metabolic activity by increased cell hydration will increase the ability of tumor cells to compete for nutrients with their normal counterparts. This effect may favor the preferential selection of cells whose genotypes confer the greatest increase in cell hydration and which, on the present hypothesis, would be those with the greatest capacity for metastasis. An important feature of this "common factor" hypothesis is that it suggests a biochemical explanation for DNA-microarray data showing a similarity between the gene expression patterns associated with both tumor growth and metastasis, while the postulated role of genes causing increased cell hydration might explain the apparent acquisition of metastatic potential at an early stage of tumorigenesis. Previous investigations were consistent with the hypothesis that various factors promoting carcinogenesis may do so by increasing cell hydration. A survey of the literature showed that all of these factors also promote cell motility, migration or metastasis, and provided evidence that these effects could be attributed to the associated increase in cell hydration. Methods are suggested for testing the hypothesis, and the paper concludes by emphasizing the need for more research on the biochemistry of cancer, and on the role of water as a biochemical factor of

  15. Plasma deposition of microcrystalline silicon solar cells. Looking beyond the glass

    Energy Technology Data Exchange (ETDEWEB)

    Donker, M.N. van den

    2006-07-01

    Microcrystalline silicon emerged in the past decade as highly interesting material for application in efficient and stable thin film silicon solar cells. It consists of nanometer-sized crystallites embedded in a micrometer-sized columnar structure, which gradually evolves during the SiH{sub 4} based deposition process starting from an amorphous incubation layer. Understanding of and control over this transient and multi-scale growth process is essential in the route towards low-cost microcrystalline silicon solar cells. This thesis presents an experimental study on the technologically relevant high rate (5-10 Aa s{sup -1}) parallel plate plasma deposition process of state-of-the-art microcrystalline silicon solar cells. The objective of the work was to explore and understand the physical limits of the plasma deposition process as well as to develop diagnostics suitable for process control in eventual solar cell production. Among the developed non-invasive process diagnostics were a pyrometer, an optical spectrometer, a mass spectrometer and a voltage probe. Complete thin film silicon solar cells and modules were deposited and characterized. (orig.)

  16. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    Science.gov (United States)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  17. CDTE alloys and their application for increasing solar cell performance

    Science.gov (United States)

    Swanson, Drew E.

    -ray photoelectron spectroscopy, and energy-dispersive x-ray spectroscopy were performed to characterize these cells. Voltage improvements on the order of 50 mV are presented at a thin (1 ?m) CdTe absorber condition. However an overall reduction in fill factor (FF) is seen, with a strong reduction in FF as the magnesium incorporation is increased. Detailed material characterization shows the formation of oxides at the back of CdMgTe during the passivation process. A CdTe capping layer is added to reduce oxidation and help maintain the uniformity of the CdMgTe layer. A tellurium back contact is also added in place of a carbon paint back contact, reducing the impact of the valance band offset (VBO) from the CMT. With the addition of the capping layer and tellurium back contact a consistent 50 mV increase is seen with improved FF. However this voltage increase is well below modeled Voc increases of 150 mV. CMT double hetero-structures are manufactured and analyzed to estimate the interface recombination at the CdTe/CMT interface. The CdTe/CMT interface is approximated at 2*105 cm s-1 and modeling is referenced predicting significant reduction in performance based on this interface quality. To improve interface quality by removing the need for a vacuum break, the deposition hardware is incorporated into the primary deposition system. Second, CdTe has a somewhat higher band gap than optimal for single-junction terrestrial solar-cell power generation. A reduction in the band gap could therefore result in an overall improvement in performance. To reduce the band gap, selenium was alloyed with CdTe using a novel co-sublimation extension of the close-space-sublimation process. Co-sublimated layers of CdSeTe with various selenium concentrations were characterized for optical absorption and atomic concentrations, as well as to track changes in their morphology and crystallinity. The lower band-gap CdSeTe films were then incorporated into the front of CdTe cells. This two-layer band

  18. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  19. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  20. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    Science.gov (United States)

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  1. Light trapping effects in thin film silicon solar cells

    OpenAIRE

    Haug, FJ; Söderström, T; Dominé, D; Ballif, C

    2009-01-01

    We present advanced light trapping concepts for thin film silicon solar cells. When an amorphous and a microcrystalline absorber layers are combined into a micromorph tandem cell, light trapping becomes a challenge because it should combine the spectral region from 600 to 750 nm for the amorphous top cell and from 800 to 1100 for the microcrystalline bottom cell. Because light trapping is typically achieved by growing on textured substrates, the effect of interface textures on the material an...

  2. Rapid mitigation of carrier-induced degradation in commercial silicon solar cells

    Science.gov (United States)

    Hallam, Brett J.; Chan, Catherine E.; Chen, Ran; Wang, Sisi; Ji, Jingjia; Mai, Ly; Abbott, Malcolm D.; Payne, David N. R.; Kim, Moonyong; Chen, Daniel; Chong, CheeMun; Wenham, Stuart R.

    2017-08-01

    We report on the progress for the understanding of carrier-induced degradation (CID) in p-type mono and multi-crystalline silicon (mc-Si) solar cells, and methods of mitigation. Defect formation is a key aspect to mitigating CID. Illuminated annealing can be used for both mono and mc-Si solar cells to reduce CID. The latest results of an 8-s UNSW advanced hydrogenation process applied to industrial p-type Czochralski PERC solar cells are shown with average efficiency enhancements of 1.1% absolute from eight different solar cell manufacturers. Results from three new industrial CID mitigation tools are presented, reducing CID to 0.8-1.1% relative, compared to 4.2% relative on control cells. Similar advanced hydrogenation processes can also be applied to multi-crystalline silicon passivated emitter with rear local contact (PERC) cells, however to date, the processes take longer and are less effective. Modifications to the firing processes can also suppress CID in multi-crystalline cells during subsequent illumination. The most stable results are achieved with a multi-stage process consisting of a second firing process at a reduced firing temperature, followed by extended illuminated annealing.

  3. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  4. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  5. Brief overview of dye-sensitized solar cells.

    Science.gov (United States)

    Hagfeldt, Anders

    2012-01-01

    Dye-sensitized solar cells (DSC) are based on molecular and nanometer-scale components. Record cell efficiencies of 12%, promising stability data and means of energy-efficient production methods have been accomplished. As selling points for the DSC technology the prospect of low-cost investments and fabrication are key features. DSCs offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. The basic principles of the operation of DSC, the state-of-the-art as well as the potentials for future development are described.

  6. Quantum mechanical effects analysis of nanostructured solar cell models

    Directory of Open Access Journals (Sweden)

    Badea Andrei

    2016-01-01

    Full Text Available The quantum mechanical effects resulted from the inclusion of nanostructures, represented by quantum wells and quantum dots, in the i-layer of an intermediate band solar cell will be analyzed. We will discuss the role of these specific nanostructures in the increasing of the solar cells efficiency. InAs quantum wells being placed in the i-layer of a gallium arsenide (GaAs p-i-n cell, we will analyze the quantum confined regions and determine the properties of the eigenstates located therein. Also, we simulate the electroluminescence that occurs due to the nanostructured regions.

  7. Fabrication and characterization of poly[diphenylsilane]-based solar cells

    Science.gov (United States)

    Iwase, M.; Oku, T.; Suzuki, A.; Akiyama, T.; Tokumitsu, K.; Yamada, M.; Nakamura, M.

    2012-03-01

    Poly[diphenylsilane] (PDPS)-based photovoltaic cells were fabricated by using mixture solution of PDPS, phosphorus and boron. An influence of phosphorus and boron doping into PDPS on the performance of the photovoltaic device was investigated. The solar cell using fluorine doped tin oxide glass plates provided short-circuit current density of 0.12 mA/cm2 and open-circuit voltage of 0.28 V under simulated sunlight. Energy levels, formation mechanism and microstructure of the solar cells were discussed.

  8. Solar cells in architecture; Solceller i arkitekturen

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Svensson, O.

    2002-07-01

    This book contains the results of an architectural evaluation of building examples with integrated photovoltaic. Danish Building and Urban Research and Danish Technological Institute conducted the work within the framework of Solar Energy Centre Denmark. Seven examples are selected to inspire Danish architects and building owners to use PV in the building environment. The examples come from Denmark and countries (the Netherlands and Germany) with similar building traditions, climate and solar conditions. All the examples demonstrate architectural concepts that integrate photovoltaic as a natural part of the building envelope. (BA)

  9. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  10. Design and Optimization of Copper Indium Gallium Selenide Solar Cells for Lightweight Battlefield Application

    Science.gov (United States)

    2014-06-01

    Photoelectric affect in solar cells , from [15]. ...................................................18 Figure 14. Solar spectral irradiance versus wavelength...depicted in Figure 13. Figure 13. Photoelectric affect in solar cells , from [15]. An in-depth explanation of solar cell losses is found in [20...the load. Since the window layer is on top of the solar cell , it needs to be transparent to the light spectrum that is required for photoelectric

  11. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications)

    Science.gov (United States)

    Vedam, K.; Das, M. B.; Krishnaswamy, S. V.

    1980-02-01

    Emphasis during the third quarter of the program was on the improvement of the quality of sputtered films, their characterization and use in the fabrication of Schottky barrier type diodes and solar cell structures. Films prepared under different conditions and on different substrates were examined showing modular growths under certain conditions. I-V, C-V, and photovoltaic characteristics were measured on numerous samples based on n- and p-type films on Ni substrates having top metallization of either evaporated Au and Al. The n-type samples showed up to 200 mV V/sub oc/and small short-circuit currents. The characteristics observed are indicative of the presence of interfacial layer and surface states. Surface state's capacitance were measured on p-type samples metalized with Au.

  12. Development of A Thin Film Crystalline Silicon Solar Cell

    International Nuclear Information System (INIS)

    Sopori, B.; Chen, W.; Zhang, Y.

    1998-01-01

    A new design for a single junction, thin film Si solar cell is presented. The cell design is compatible with low-temperature processing required for the use of a low-cost glass substrate, and includes effective light trapping and impurity gettering. Elements of essential process steps are discussed

  13. InP solar cell with window layer

    Science.gov (United States)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  14. Fabrication of dye-sensitized solar cells with multilayer photoanodes ...

    Indian Academy of Sciences (India)

    TiO2 NPs. This could show an increase of about 30% in the efficiency compared to the similar cell with a photoanode made of two layers of hydrothermally grown TiO2 NCs. Keywords. Dye-sensitized solar cells; hydrothermal method; TiO2 nanocrystals; multilayer photoanodes; energy conversion efficiency. 1. Introduction.

  15. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    Science.gov (United States)

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-efficiency solar cell and method for fabrication

    Science.gov (United States)

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  17. Colloidal quantum dot solar cells on curved and flexible substrates

    KAUST Repository

    Kramer, Illan J.

    2014-10-20

    © 2014 AIP Publishing LLC. Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods - such as spin-coating - that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.

  18. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photol......-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  19. Material and Device Stability in Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Hui-Seon; Seo, Ja-Young; Park, Nam-Gyu

    2016-09-22

    Organic-inorganic halide perovskite solar cells have attracted great attention because of their superb efficiency reaching 22 % and low-cost, facile fabrication processing. Nevertheless, stability issues in perovskite solar cells seem to block further advancements toward commercialization. Thus, device stability is one of the important topics in perovskite solar cell research. In the beginning, the poor moisture resistivity of the perovskite layer was considered as a main problem that hindered further development of perovskite solar cells, which encouraged engineering of the perovskite or protection of the perovskite by a buffer layer. Soon after, other parameters affecting long-term stability were sequentially found and various attempts have been made to enhance intrinsic and extrinsic stability. Here we review the recent progresses addressing stability issues in perovskite solar cells. In this report, we investigated factors affecting stability from material and device points of view. To gain a better understanding of the stability of the bulk perovskite material, decomposition mechanisms were investigated in relation to moisture, photons, and heat. Stability of full device should also be carefully examined because its stability is dependent not only on bulk perovskite but also on the interfaces and selective contacts. In addition, ion migration and current-voltage hysteresis were found to be closely related to stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Graphene and Graphene-like Molecules: Prospects in Solar Cells.

    Science.gov (United States)

    Loh, Kian Ping; Tong, Shi Wun; Wu, Jishan

    2016-02-03

    Graphene is constantly hyped as a game-changer for flexible transparent displays. However, to date, no solar cell fabricated on graphene electrodes has out-performed indium tin oxide in power conversion efficiency (PCE). This Perspective covers the enabling roles that graphene can play in solar cells because of its unique properties. Compared to transparent and conducting metal oxides, graphene may not have competitive advantages in terms of its electrical conductivity. The unique strength of graphene lies in its ability to perform various enabling roles in solar cell architectures, leading to overall improvement in PCE. Graphene can serve as an ultrathin and transparent diffusion barrier in solar cell contacts, as an intermediate layer in tandem solar cells, as an electron acceptor, etc. Inspired by the properties of graphene, chemists are also designing graphene-like molecules in which the topology of π-electron array, donor-acceptor structures, and conformation can be tuned to offer a new class of light-harvesting materials.

  1. Progress in nanostructured photoanodes for dye-sensitized solar cells

    Science.gov (United States)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  2. Peptide-templating dye-sensitized solar cells.

    Science.gov (United States)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-07

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating.

  3. Nano-photonic Light Trapping In Thin Film Solar Cells

    Science.gov (United States)

    Callahan, Dennis M., Jr.

    Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells. In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases. We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by

  4. Single crystalline silicon solar cells with rib structure

    Directory of Open Access Journals (Sweden)

    Shuhei Yoshiba

    2017-02-01

    Full Text Available To improve the conversion efficiency of Si solar cells, we have developed a thin Si wafer-based solar cell that uses a rib structure. The open-circuit voltage of a solar cell is known to increase with deceasing wafer thickness if the cell is adequately passivated. However, it is not easy to handle very thin wafers because they are brittle and are subject to warpage. We fabricated a lattice-shaped rib structure on the rear side of a thin Si wafer to improve the wafer’s strength. A silicon nitride film was deposited on the Si wafer surface and patterned to form a mask to fabricate the lattice-shaped rib, and the wafer was then etched using KOH to reduce the thickness of the active area, except for the rib region. Using this structure in a Si heterojunction cell, we demonstrated that a high open-circuit voltage (VOC could be obtained by thinning the wafer without sacrificing its strength. A wafer with thickness of 30 μm was prepared easily using this structure. We then fabricated Si heterojunction solar cells using these rib wafers, and measured their implied VOC as a function of wafer thickness. The measured values were compared with device simulation results, and we found that the measured VOC agrees well with the simulated results. To optimize the rib and cell design, we also performed device simulations using various wafer thicknesses and rib dimensions.

  5. Carcinosarcoma of the larynx consisting of squamous cell carcinoma and inflammatory myofibroblastic tumor components.

    Science.gov (United States)

    Suzuki, Shinsuke; Hanata, Kyoshi; Toyoma, Satoshi; Nanjo, Hiroshi; Saito, Hidekazu; Iikawa, Nobuko; Ishikawa, Kazuo

    2016-08-01

    Carcinosarcoma is a rare malignant tumor with both carcinomatous and sarcomatous components. Carcinosarcoma can appear in various organs, but its occurrence in the head and neck, particularly larynx, is extremely rare. Furthermore, its response to treatment has not been well established. We report the case of a 79-year-old man with a 6-month history of hoarseness who presented with a mass having a polypoid appearance at the anterior commissure of the larynx. Further analyses revealed carcinosarcoma in the larynx that consisted of squamous cell carcinoma and an inflammatory myofibroblastic tumor (IMT). The tumor was excised at the first hospital visited. Because pathological examination revealed an IMT and positive margin, the patient was referred to our hospital. A front lateral vertical partial laryngectomy was performed for further treatment. Histological examination demonstrated a biphasic component, consisting of squamous cell carcinoma (SCC) and IMT. IMT rarely occurs in the head and neck region. Moreover, to best of our knowledge, no carcinosarcoma cases consisting of SCC and IMT in the larynx have been reported in the literature. The prognosis of carcinosarcoma is considered to be dependent on the type of malignant mesenchyme, and surgical excision with wide margins is generally used to treat IMT. Therefore, the treatment of laryngeal carcinosarcoma consisting of IMT can be best accomplished with complete excision of the tumor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby

    Science.gov (United States)

    Gonzalez, Franklin N.; Neugroschel, Arnost

    1984-02-14

    A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

  7. Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and -concentrating diffractive optical element

    International Nuclear Information System (INIS)

    Wang Jin-Ze; Huang Qing-Li; Xu Xin; Quan Bao-Gang; Luo Jian-Heng; Li Dong-Mei; Meng Qing-Bo; Yang Guo-Zhen; Zhang Yan; Ye Jia-Sheng

    2015-01-01

    Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar cells was obtained based on Shockley–Queisser’s theory. An efficiency exceeding the Shockley–Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells. (paper)

  8. Boosting the Efficiency of III-V/Si Tandem Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Stephanie; Allebe, Christophe; Geisz, John F.; Steiner, Myles A.; Paviet-Salomon, Bertrand; Descoeudres, Antoine; Tamboli, Adele; Barraud, Loris; Ward, Scott; Badel, Nicolas; LaSalvia, Vincenzo; Levrat, Jacques; Despeisse, Matthieu; Ballif, Christophe; Stradins, Paul; Young, David L.

    2016-11-21

    We have developed Si-based tandem solar cells with a certified 1-sun efficiency of 29.8% (AM1.5g). The four-terminal tandem devices consist of 1.8 eV rear-heterojunction GaInP top cells and silicon heterojunction bottom cells. The two subcells were fabricated independently in two different labs and merged using an optically transparent, electrically insulating epoxy. Work is ongoing to further improve the performance of each subcell and to push the tandem cell efficiency to > 30%.

  9. Efficiency of bulk-heterojunction organic solar cells

    Science.gov (United States)

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  10. Peeled film GaAs solar cell development

    Science.gov (United States)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    1990-01-01

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.

  11. Role of Mn2+ in Doped Quantum Dot Solar Cell

    International Nuclear Information System (INIS)

    Santra, Pralay K.; Chen, Yong-Siou

    2014-01-01

    In recent times, Mn doped quantum dot sensitized solar cells (QDSSCs) have shown a lot of interest as it provides a different strategy to improve the photovoltaic performances. In this work, we have systematically studied the effect of Mn 2+ dopant concentration on the photovoltaic performances of CdS based QDSSCs. The open circuit potential increases systematically with increase in Mn 2+ dopant concentration. The efficiency of the solar cell increases from 1.63% to 2.53% from undoped to 7.5% doped CdS. The role of Mn 2+ in enhancing the photovoltaic performances was further probed by open circuit voltage decay and the energy levels were studied using transient absorption spectroscopy. Both spin and orbital forbidden Mn d-d transition ( 4 T 1 – 6 A 1 ) helps in reducing the recombination inside the solar cell, which improves the overall photovoltaic performances

  12. Single material solar cells: the next frontier for organic photovoltaics?

    Energy Technology Data Exchange (ETDEWEB)

    Roncali, Jean [Group Linear Conjugated Systems, CNRS, Moltech-Anjou, UMR 6200, University of Angers, 2 Bd Lavoisier 49045 Angers (France)

    2011-03-18

    An overview of various approaches for the realization of single-material organic solar cells (SMOCs) is presented. Fullerene-conjugated systems dyads, di-block copolymers, and self-organized donor-acceptor molecules all represent different possible approaches towards SMOCs. Although each of them presents specific advantages and poses specific problems of design and synthesis, these different routes have witnessed significant progress in the past few years and SMOCs with efficiencies in the range of 1.50% have been realized. These performances are already higher than those of bi-component bulk heterojunction solar cells some ten years ago, demonstrating that SMOCs can represent a credible approach towards efficient and simple organic solar cells. Possible directions for future research are discussed with the aim of stimulating further research on this exciting topic. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Nano-structured electron transporting materials for perovskite solar cells

    Science.gov (United States)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  14. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    Science.gov (United States)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  15. Peeled film GaAs solar cell development

    Science.gov (United States)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.

  16. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  17. Ultrathin and lightweight organic solar cells with high flexibility

    Science.gov (United States)

    Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2012-04-01

    Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date.

  18. A polymer scaffold for self-healing perovskite solar cells

    Science.gov (United States)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  19. Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures.

    Science.gov (United States)

    Bauer, Christina; Giessen, Harald

    2013-05-06

    Solar cells are important in the area of renewable energies. Since it is expensive to produce solar-grade silicon [Electrochem. Soc. Interface 17, 30 (2008)], especially thin-film solar cells are interesting. However, the efficiency of such solar cells is low. Therefore, it is important to increase the efficiency. The group of Polman has shown that a periodic arrangement of metal particles is able to enhance the absorbance of light [Nano Lett. 11, 1760 (2011)]. However, a quasicrystalline arrangement of the metal particles is expected to enhance the light absorbance independent of the incident polar and azimuthal angles due to the more isotropic photonic bandstructure. In this paper, we compare the absorption enhancement of a quasiperiodic photonic crystal to that of a periodic photonic crystal. We indeed find that the absorption enhancement for the quasicrystalline arrangement shows such an isotropic behavior. This implies that the absorption efficiency of the solar cell is relatively constant during the course of the day as well as the year. This is particularly important with respect to power distribution, power storage requirements, and the stability of the electric grid upon massive use of renewable energy.

  20. Anomalous charge storage exponents of organic bulk heterojunction solar cells.

    Science.gov (United States)

    Nair, Pradeep; Dwivedi, Raaz; Kumar, Goutam; Dept of Electrical Engineering, IIT Bombay Team

    2013-03-01

    Organic bulk heterojunction (BHJ) devices are increasingly being researched for low cost solar energy conversion. The efficiency of such solar cells is dictated by various recombination processes involved. While it is well known that the ideality factor and hence the charge storage exponents of conventional PN junction diodes are influenced by the recombination processes, the same aspects are not so well understood for organic solar cells. While dark currents of such devices typically show an ideality factor of 1 (after correcting for shunt resistance effects, if any), surprisingly, a wide range of charge storage exponents for such devices are reported in literature alluding to apparent concentration dependence for bi-molecular recombination rates. In this manuscript we critically analyze the role of bi-molecular recombination processes on charge storage exponents of organic solar cells. Our results indicate that the charge storage exponents are fundamentally influenced by the electrostatics and recombination processes and can be correlated to the dark current ideality factors. We believe that our findings are novel, and advance the state-of the art understanding on various recombination processes that dictate the performance limits of organic solar cells. The authors would like to thank the Centre of Excellence in Nanoelectronics (CEN) and the National Centre for Photovoltaic Research and Education (NCPRE), IIT Bombay for computational and financial support