WorldWideScience

Sample records for soils mineral sands

  1. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  2. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  3. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  4. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  5. Mineral legislations applicable to beach sand industry

    International Nuclear Information System (INIS)

    D'Cruz, Eric

    2016-01-01

    India has got a wealth of natural resources in different geological environs and shoreline placers form an important constituent of the natural resources. Large reserves of beach sand minerals, viz. imenite, rutile, leucoxene, zircon, sillimanite, garnet and monazite are the economic minerals in the coastal and inland placer sands. In the federal structure of India, the State Governments are the owners of minerals located within their respective boundaries. The State Governments grant the mineral concessions for all the minerals located within the boundary of the State, under the provisions of the Acts and Rules framed for the purpose. Though the mineral wealth is under the control of the State, the power for framing the rules for the grant of mineral concessions vastly rest with the Central Government. Since mineral concessions are often granted for a longer duration of thirty to fifty years or more, a historical perspective of these rules are imperative in understanding the issues involved with BSM mining industry. Under the Govt. of India Act, 1935, Regulation of Mines and Oilfields and Mineral Development was kept under Federal control, declared by Federal Law. The word 'Federal' was substituted by the word 'Dominion' by the India (Provincial Constitution) Order, 1947. No legislation was, however, enacted in pursuance of above power until after Independence. However, the Govt. on India made the Mining Concession (Central) Rules, 1939 for regulating grants of prospecting license

  6. Radiation safety in Australia's mineral sands industry

    International Nuclear Information System (INIS)

    Hughes, W.

    1989-06-01

    This brochure is part of a training package aiming to explain in simple terms what radiation is, how it affects people's lives and how, in the specific case of the mineral sand industry, the risk of ill-effects from low-level radioactivity could be effectively guarded against by simple and easily followed safety precautions. ills

  7. Ilmenite Mineral's Recovery from Beach Sand Tailings

    International Nuclear Information System (INIS)

    Mulaba-Bafubiandi, Antoine F.; Mukendi-Ngalula, David; Waanders, Frans B.

    2002-01-01

    The mineral ilmenite is the major source of rutile for industrial use and is of interest to paint and fertiliser industries. Enormous unutilised tailing dams lie on the eastern coast of the South Africa. Although covered by a simulation of the original indigenous vegetation, these tailings are still ilmenite bearing and of economic value. Tailings emanating from beach sand mineral slimes dams of the Kwazulu-Natal area (South Africa) have been processed. Screening, flotation, spiral concentration and magnetic separation methods were used either separately or successively. The present work sheds light on alternative routes for the extraction of the ilmenite, from these tailings. It moreover points out the usefulness of the Moessbauer spectroscopy in the mineral processing product monitoring. Tailings from the beach sands were used in the present study after the economic industrial minerals zirconia, ilmenite and rutile had been extracted in previous mining operations. About 61% natural ilmenite recovery was observed in the flotation concentrate of a Humphrey Spiral concentrate while a 62% recovery of hematite was found in the flotation tailings. The combination of screening, spiral concentration and magnetic separation, and flotation yielded a product with the highest ilmenite and hematite concentration being 71% and 19%, respectively. A natural ilmenite mineral, containing 87% ilmenite and 13% hematite, could be produced and extracted from the tailings of the flotation process, collected subsequently to the spiral concentration and the initial screening.

  8. Basic exchangeable cations in Finnish mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1972-09-01

    Full Text Available The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.

  9. Characterization of sands and mineral clays in channel and floodplain deposits of Portuguesa river, Venezuela

    Directory of Open Access Journals (Sweden)

    Orlando José González Clemente

    2013-11-01

    Full Text Available In the main channel and floodplain of Portuguesa River were studied the mineralogical characteristics of sand and clay minerals respectively. The methodology consisted of X-ray diffraction (XRD analysis, for both mineral fractions. The results indicated the presence of mainly of quartz sands with minor amounts of chlorite, muscovite, calcite and feldspar which are considered quartz sand mature. Its origin is related to the source area and rework of soils and sediments of the floodplain. The clay fraction is characterized by the presence of 13 mineral crystalline phases consisting mainly of quartz, muscovite and chlorite, and clay minerals such as kaolinite, vermiculite, montmorillonite and nontronita. Its detrital origin may be due to mineral neoformation and inheritance. Therefore both mineral fractions consist mainly of quartz and kaolinite, which are essential components of the source area as well as the Quaternary alluvial deposits and the soils that make up the region.

  10. Design of dry sand soil stratified sampler

    Science.gov (United States)

    Li, Erkang; Chen, Wei; Feng, Xiao; Liao, Hongbo; Liang, Xiaodong

    2018-04-01

    This paper presents a design of a stratified sampler for dry sand soil, which can be used for stratified sampling of loose sand under certain conditions. Our group designed the mechanical structure of a portable, single - person, dry sandy soil stratified sampler. We have set up a mathematical model for the sampler. It lays the foundation for further development of design research.

  11. Critical State of Sand Matrix Soils

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  12. Recovering byproduct heavy minerals from sand and gravel, placer gold, and industrial mineral operations

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.M.; Martinez, G.M.; Wong, M.M.

    1979-01-01

    The Bureau of Mines, as part of an effort to maximize minerals and metals recovery from domestic resources, has investigated the feasibility of recovering heavy minerals as byproducts from sand and gravel, placer gold, and industrial mineral operations in northern California. Sand samples from about 50 locations were treated by gravity separation to yield heavy-mineral cocentrates (black sands). Mineral compositions of the concentrates were determined by chemical analysis and mineralogical examination. Individual zircon, ilmenite, magnetite, platinum-group metals, thoria, and silica products were prepared from heavy-mineral concentrates by selective separation using low- and high-intensity magnetic, high-tension, and flotation equipment.

  13. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA

    2008-12-01

    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  14. Noise Exposure and Hearing Loss Among Sand and Gravel Miners

    OpenAIRE

    Landen, Deborah; Wilkins, Steve; Stephenson, Mark; McWilliams, Linda

    2004-01-01

    The objectives of this study were to describe workplace noise exposures, risk factors for hearing loss, and hearing levels among sand and gravel miners, and to determine whether full shift noise exposures resulted in changes in hearing thresholds from baseline values. Sand and gravel miners (n = 317) were interviewed regarding medical history, leisure-time and occupational noise exposure, other occupational exposures, and use of hearing protection. Audiometric tests were performed both before...

  15. Radiogenic heavy minerals in Brazilian beach sand

    International Nuclear Information System (INIS)

    Malanca, A.

    1998-01-01

    Sand samples collected on the beaches of the 'radioactive' Brazilian town of Guarapari were first separated by flotation in bromoform and successively divided into various magnetic fractions with a Franz isodynamic separator. concentrations of background radionuclides in samples of monazite, ilmenite, and zircon were determined by a γ-ray spectrometer. Chemical composition of monazite, ilmenite and magnetite were assessed by means of an electron microprobe. Monazite resulted to be relatively rich in ThO 2 whose abundance ranged from 5.3 to 7.7 (wt%). (author)

  16. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  17. Reclamation of prime farmland following mineral sands mining in Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, W.L.; Schroeder, P.D.; Nagle, S.M.; Zelazny, L.W.; Alley, M.M.

    1999-07-01

    Significant deposits of mineral sands were discovered in Virginia's Upper Coastal Plain in 1989. The Old Hickory deposit is the largest ore body in the state (>2,000 ha) and supports a productive rowcrop agriculture on prime farmlands. field experiments were installed on pilot-scale (25 m x 60 m) mining pits in the late summer of 1995 and replicated on an adjacent undisturbed area. Half of each mining pit was topsoiled (25 cm) while the remaining half was left as either (1) mixed tails/slimes or (2) re-graded subsoil over tails/slimes to simulate various pit closure scenarios. Both non-topsoiled areas received 112 Mg/ha of yard waste compost as a soil building amendment. The entire area was ripped/disked to ameliorate compaction and incorporate lime and fertilizer additions. The experiment was cropped through a wheat/soybeans/corn/cotton rotation over the 1995 to 1998 growing seasons. Taken as a whole, these combined results clearly indicate that mining and reclamation of these prime farmlands will lead to a substantial decrease in rowcrop productivity, at least over the initial years following pit closure and reclamation. For the rotation studied, post-mining productivity was estimated by this experiment to be reduced by 23%, 3%, 27%, and 20% for each crop (wheat/soybeans/corn/cotton) in sequence. For a given crop in a given year, response to topsoiling versus compost addition to the surface varied, and neither treatment appeared superior. Corn and cotton yields on the mined land treatments were reduced despite the application of irrigation. Cotton quality was also adversely affected by the mining reclamation treatments. Results of these controlled experiments are somewhat encouraging. However, the implementation of protocols will be complicated in practice if tailings and slimes cannot be re-blended to generate a reasonably uniform final reclaimed surface.

  18. Mineralogy and Genesis of Heavy Minerals in Coastal Dune Sands, South Eastern Qatar

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El-Kassas, Ibrahim A.; Sadiq, A. Ali M.

    1999-01-01

    Large amounts of aeolian sand occur in the southeastern coastal zone of Qatar Peninsula as sand dunes accumulated in a vast sand field locally called " Niqyan Qatar ". The present work, carried out on a sand dune belt of this field near Mesaied Industrial City, revealed the distribution of heavy minerals shows a regional variability induced by provenance and local variability reflecting genetic differences. The studied dune sands are rich in shells of pelecypods, with the light mineral assemb...

  19. Mineralogical characterization of beach sand minerals: traditional and modern approaches

    International Nuclear Information System (INIS)

    Krishnamurthy, P.

    2016-01-01

    Precise identification of beach sand minerals is an essential prerequisite for the reserve estimation of a given deposit and also in the subsequent evaluation of the process flow sheet for its optimal recovery. Traditional methods that are used for the identification of the beach sand minerals such as magnetite, hematite, ilmenite, rutile, anatase, zircon, garnet, sillimanite, monazite, quartz and others include heavy liquid separation (bromoform and methylene iodide) and studying the optical properties of the grains from different fractions so as to identify the specific phases in a sample. Grain counting of specific minerals from a given sievefraction under a petrological microscope to estimate the mode and their subsequent conversion in to weight percent fractions forms the critical second stage that is followed by the reserve estimates. These methodologies are tedious and time consuming often involving a few days for a single sample. The paper introduces the numerous instrumental methods (XRF, XRD - Rietveld and CCSEM) of mineral speciation and their qualification in with case studies from the west coast deposits in India

  20. Particle size analyses in and around mineral sands operations

    International Nuclear Information System (INIS)

    Koperski, J.

    1993-01-01

    Activity Median Aerodynamic Diameters (AMADs) of airborne dust in and around West Australian heavy mineral sands operations have been investigated. Monitoring of dry separation plant workers, positional monitoring of the plant environment and positional monitoring outdoors were conducted. The number of AMAD detections was 49, 21 and 37, respectively. Mean AMAD values of 15.7μm (GSD 2.9) for personal monitoring, 4.6μm (GSD 3.5) for positional monitoring indoors and 2.7 μm (GSD 4.8) for hi-vol positional monitoring outdoors were obtained. The size distribution of airborne radioactivity was observed to be log-normal. Applying the ICRP 30 inhalation model (ICRP 1979) and both, ICRP 26 (ICRP 1977) and ICRP 60 (ICRP 1990) recommendations, intake-to-dose conversion factors for internal alpha exposure from the Th series radionuclides (in secular equilibrium, solubility Class Y) associated with airborne dust were subsequently assessed. It has been concluded that no single AMAD value would characterise heavy mineral sands operations. In the areas of the greatest radiological impact (dry separation plants indoors) emphasis should be focused upon personal monitoring strategies. In the areas of a lower impact (outdoors), a positional cascade impactor data may be used for personal AMAD assessment. Application of the reference 1μm AMAD value may lead to an over 5-fold overestimation of internal doses for the dry separation plant workers and to about 2-fold dose overestimation for the other workers. Hence, the need and importance of conducting site-specific particle size analyses for individual mineral sands operations. 13 refs., 4 tabs., 6 figs

  1. The Western Australian mineral sands industry: radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    The need for radiation protection in the mineral sand industry derives from the production and handling of monazite, a rare earth phosphate which contains 6 to 7% thorium. The purpose of this booklet is to outline the complex and detailed radiation protection surveillance program already in place. It is estimated that the quality of radiation protection has improved in recent years with respect to reporting and recording-keeping dust sampling procedures, analytical determination, training and instruction, as well as to a corporate commitment to implement dust reduction strategies. 15 figs., 2 tabs., ills

  2. Constitutive Soil Properties for Mason Sand and Kennedy Space Center

    Science.gov (United States)

    Thomas, Michael A.; Chitty, Daniel E.

    2011-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.

  3. DEGRADATION AND MIGRATION OF VINCLOZOLIN IN SAND AND SOIL

    Science.gov (United States)

    The migration of the dicarboximide fungicide vinclozolin and its principal degradation products through porous media was experimentally determined by simulating pesticide applications to a 23-30 mesh Ottawa sand and a North Carolina Piedmont, aquic hapludult soil in laboratory ...

  4. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  5. ESTIMATE OF THE HEAVY MINERAL-CONTENT IN SAND AND ITS PROVENANCE BY RADIOMETRIC METHODS

    NARCIS (Netherlands)

    DEMEIJER, RJ; LESSCHER, HME; SCHUILING, RD; ELBURG, ME

    1990-01-01

    A comparison has been made of the traditional gravimetric method for measuring the heavy mineral mass fraction in sand with a method based on the emission of gamma-rays from the uranium and thorium series by radiogenic heavy-minerals. The comparision reveals that beach sand along the Dutch coast may

  6. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  7. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  8. Interactions between microbial activity and distribution and mineral coatings on sand grains from rapid sand filters treating groundwater

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    Rapid sand filtration is a traditional and widespread technology for drinking water purification which combines biological, chemical and physical processes together. Granular media, especially sand, is a common filter material that allows several oxidized compounds to accumulate on its surface....... Preliminarily, we detected a strong relation between the amount of DNA and mineral coating mass. We hypothesized that the accumulated mineral coatings have a positive effect on amount of bacterial biomass, its spatial distribution and substrate removal rates. In this study, we combined molecular, microscopic...

  9. Concentration of metals in surface soil around Orissa Sands Complex (OSCOM), IREL, Orissa

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Raghunath, R.; Tripathi, R.M.; Vidya Sagar, D.; Khan, A.H.

    2004-01-01

    Indian Rare Earth Limited (IREL) has been carrying beach-sand mineral separation (Monazite, Ilmenite, Zircon etc.) in Bay of Bengal. Since last decade thorium plant at OSCOM processes thorium oxalate to produce mantle grade thorium nitrate and nuclear grade thorium oxide by solvent extraction process. A study has been initiated to check the environmental impact of the operating plants on the soil contamination in the surrounding areas. The results of preliminary survey are discussed

  10. The impact on environment and population of the sands with radioactive heavy minerals processing activity

    International Nuclear Information System (INIS)

    Aurelian, F.; Popescu, M.; Georgescu, D.

    2006-01-01

    The paper presents a case study concerning the impact on environment and population of a Pilot Station, which was used between 1970 and 1996 to obtain mono-mineral concentrates (ilmenite, zircon, garnet, rutile, monazite) by processing alluvial and seashore sands. The processing technological flow sheet was constituted only of physical separation processes, where were operating equipments such as shaking tables, electric and magnetic separators, attrition equipments, etc. The paper is structured on three levels and presents: - A brief description of the Pilot Station activity, sand types processed and its physical, chemical and mineralogic characteristics. The obtained products were: garnets with 10 ppm uranium and 60 ppm thorium, ilmenite with 10 ppm uranium and 20 ppm thorium, zircon with 450 ppm uranium and 750 ppm thorium and monazite with 3,000 ppm uranium and 20,000 ppm thorium. The sterile accumulated during the Pilot Station functioning time is also characterized. - The impact of the Pilot Station activity on environment (soil, air). The contamination sources are identified and characterized. The only one contamination pathway is represented by 'radioactive dust' resulted from the sands processing activity. The contamination processes are explained and justified. The contaminated soil surface was investigated through: gamma rate doses determination (at the surface and on a depth o f up to 40 cm), measurement of Rn 222 + Rn 220 concentration at one meter distance from the surface and for 40 cm soil depth, analysis of uranium, radium and thorium for samples collected from a soil depth ranging between 10 and 40 cm. There were elaborated maps showing gamma rate doses distribution and the specific activity for the surface as well as for the different soil depths. It was established the contamination level and its value was compared to the ones stipulated by Romanian Nuclear Authority norms, namely 0.2 Bq/g for the specific activity (Ra 226 + Th 232) and 0.3

  11. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  12. Mechanism of groundwater arsenic removal by goethite-coated mineral sand

    Science.gov (United States)

    Cashion, J. D.; Khan, S. A.; Patti, A. F.; Adeloju, S.; Gates, W. P.

    2017-11-01

    Skye sand (Vic, Australia) has been considered for arsenic removal from groundwater. Analysis showed that the silica sand is coated with poorly crystalline goethite, hematite and clay minerals. Mössbauer spectra taken following arsenic adsorption revealed changes in the recoilless fraction and relaxation behaviour of the goethite compared to the original state, showing that the goethite is the main active species.

  13. Advanced testing and characterization of transportation soils and bituminous sands

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2007-12-01

    Full Text Available This research study was intended to develop laboratory test procedures for advance testing and characterization of fine-grained cohesive soils and oil sand materials. The test procedures are based on typical field loading conditions and the loading...

  14. Radon diffusion studies in air, gravel, sand, soil and water

    International Nuclear Information System (INIS)

    Singh, B.; Singh, S.; Virk, H.S.

    1993-01-01

    Radon isotopes are practically inert and have properties of gases under conditions of geological interest. During their brief lives their atoms are capable of moving from sites of their generation. Radon diffusion studies were carried out in air, gravel, sand, soil and water using silicon diffused junction electronic detector, Alphameter-400. Diffusion constant and diffusion length is calculated for all these materials. (author)

  15. Scheme study of separation and concentration of heavy minerals from the black sand in Aguas dulces beach - Rocha

    International Nuclear Information System (INIS)

    Mujica, H.; Marotta, L.

    1968-12-01

    This work is about a study of separation and concentration of heavy minerals from the black sand in Aguas dulces beach - Rocha. The beneficial minerals in that prospected zone are: ilmenite, zircon, rutile and monazite, associated with gangue minerals

  16. Geochemistry of dark coastal heavy-mineral beaches sand (Annaba ...

    African Journals Online (AJOL)

    Acer

    3 Institute of Earth and Environmental Science, University of Potsdam, ... Some beaches are characterized by a red-brownish sand colour, the Ain Achir and the ... The occurrence of clays has been determined using the methyl-blue method.

  17. Flotation and screening recovery of titanium minerals from a monazite mineral sands circuit

    International Nuclear Information System (INIS)

    Bruckard, W.J.; Heyes, G.W.; Guy, P.J.

    2001-01-01

    Investigations were undertaken to assess the suitability of CSIRO flotation methods for improving the efficiency of separation of heavy minerals in the monazite circuit at the Westralian Sands Limited operations at Capel, Western Australia. Flotation work was conducted on two plant samples. The first was a high-titanium product containing considerable amounts of zircon and silica as quartz and aluminosilicates, and the second was a low monazite/zircon material containing high levels of silica. A three-stage process including reverse flotation was developed to treat the first sample. In this process monazite, zircon, quartz, and aluminosilicates were selectively concentrated by flotation and screening to produce a titanium-rich product. In the first stage, an acid amine float, monazite, zircon, and some non-zircon silica were recovered and in the second stage, an alkaline amine float using a fluoride activator, more quartz and staurolite were floated. The titanium minerals were thus concentrated in the unfloated fraction. In the third stage, the titanium-rich flotation tail was screened at 250 μm to remove the remaining coarse aluminosilicates. In a single pass, the three-stage process yielded a TiO 2 recovery of 64.0 per cent with the titanium-rich product assaying 70.3 per cent TiO 2

  18. Statistical mineralogy based on the heavy fraction of sand soils

    International Nuclear Information System (INIS)

    Karlsson, A.; Mansilla, L.; Ayala, R.

    1998-01-01

    The object of this work is to realize a detail mineral statistical method in a soil catena who is in Cordoba Province. Argentine. The heavy mineral fraction of the 100-50 micron rates was made up by petrographical microscope. The sedimentary discordances are discriminated by the mineral variation (VM) between the three parental materials in order to establishing sedimentary differences, determined by Karisson (1993). The heavy mineral fraction is shows constituted mainly by muscovite, biotite, hornibicude, opaque, hiperstene and plagioclase. That parental materials show sedimentary differences, even though all are corresponded to a loesic deposits.(author)

  19. Provenance analyses of the heavy mineral beach sands of the ...

    Indian Academy of Sciences (India)

    18

    Annaba displays an average temperature of 18.4 °C throughout the year. Rain fall averages 712 mm .... Concrete slabs cover the back of the shoreline. Only a ..... The rare earth element behavior of whole sand and rock. In order to identify the ...

  20. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Origin and prospectivity of heavy mineral enriched sand deposits along the Somaliland coastal areas

    Science.gov (United States)

    Ali, M. Y.; Hibberd, P.; Stoikovich, B.

    2018-04-01

    Sixty-one heavy mineral enriched samples along the Somaliland coast from Eil Sheikh to Ras Khatib, a distance of about 130 km, were analyzed using X-ray Fluorescence, X-ray Diffraction and SEM-EDS techniques. This study reveals that a considerable amount of heavy minerals is present along the Somaliland coast and confirms the presence of high concentration titanium and iron bearing minerals. However, the backshore deposits in the mouths of Waaheen and Biyo Gure ephemeral rivers as well as raised paleo-beaches in the east of port city of Berbera demonstrate the highest level of titaniferous heavy minerals with most samples showing concentration greater than 50 wt %. The titanium detected in geochemical analysis occurs in the form of ilmenite, rutile, titanite and titaniferous magnetite. Also, present in minor or trace amounts, are garnet, zircon and monazite. Heavy mineral accumulations in the east and west of Berbera have different mineralogical assemblages. The east of Berbera is dominated by quartz with moderate concentration of plagioclase, K-feldspar, magnetite, hematite and titanium bearing minerals, whereas in the west of Berbera, the dominant minerals are quartz, K-feldspar and plagioclase with variable proportions of ilmenite, rutile, mica, amphibole and pyroxene. These variations in mineral assemblages suggest different composition of the catchment areas that supply sediment to these deposits. The catchment area in the east of Berbera consists mainly of Proterozoic crystalline basement of the Qabri Bahar complex, Gabbro-Synenite belt and granitic intrusions that outcrop in Hudiso, Tulo Dibijo and surrounding areas. The primary sources of heavy minerals in the west of Berbera comprise of high-grade metamorphic rocks of the Mora and Qabri Bahar complexes as well as the Miocene volcanics that outcrop in Laferug and Hagabo areas. The heavy mineral sand deposits observed along the Somaliland coast have the potential to provide commercially important heavy

  2. The Soil-Land use System in a Sand Spit Area in the Semi-Arid ...

    African Journals Online (AJOL)

    The Soil-Land use System in a Sand Spit Area in the Semi-Arid Coastal Savanna Region of Ghana – Development, Sustainability and Threats. ... The investigation comprises soil profile descriptions and analyses on the dominant soil type on the sand spit, measurement of electrical conductivity of well water and in the soil, ...

  3. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  4. Forms of newly retained phosphorus in mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1964-01-01

    Full Text Available The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the

  5. Estimation of radioactivity in some sand and soil samples

    International Nuclear Information System (INIS)

    Gupta, Monika; Chauhan, R.P.; Garg, Ajay; Kumar, Sushil; Sonkawade, R.G.

    2010-01-01

    Natural radioactivity is composed of the cosmogenic and primordial radionuclides. It is common in the rocks and soil that make up our planet, water and oceans, and in our building materials and homes. Natural radioactivity in sand and soils comes from 238 U and 232 Th series and natural 40 K. Radon is formed from the decay of radium which in turn is formed from uranium. The gaseous radioactive isotope of radon from natural sources has a significant share in the total quantum of natural sources exposure to the human bwings. Gamma radiation from 238 U, 232 Th and 40 K represents the main external source of irradiation of the human body. In the present study, the activity for 238 U, 232 Th and 40 K is found to vary from 45 ± 1.2 to 97 ± 4.9 Bq/kg, 63 ± 2.0 to 132 ± 3.2 Bq/kg and 492 ± 5.9 to 1110 ± 10.5 Bq/kg, respectively in the soil samples while the variations have been observed from 63 ± 3.8 to 65 ± 3.7 Bq/kg, 86 ±2.5 to 96 ± 2.6 Bq/kg and 751 ± 7.7 to 824 ± 8.2 Bq/kg, respectively in the sand samples. (author)

  6. Laboratory assessment of the influence of the proportion of waste foundry sand on the geotechnical engineering properties of clayey soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2006-01-01

    Full Text Available Soil improvement can be achieved through mechanical stabilisation using industrial byproducts. Clayey soils were blended with waste foundry sand to examine its influence on the geotechnical engineering properties of the soils. The waste foundry sand...

  7. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    2014-01-01

    of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area...

  8. Chromosome aberrations in workers of beach sand mineral industries

    International Nuclear Information System (INIS)

    Meenakshi, C.; Mohankumar, Mary N.

    2013-01-01

    Beach Sand Mining (BSM) is a profitable industry earning a sizable income for the country by way of foreign exchange. The Indian coast is rich in rare earths such as ilmenite, rutile, leucoxene, zircon, garnet and sillimanite, and is invariably associated with radioactive monazite. Due to the nature of the separation processes involved and the manual handling, workers in these factories are continuously being exposed to suspended particles containing naturally occurring radioactive materials. An attempt was made to estimate DNA damage using a chromosome aberration assay to monitor radiation effects in workers of BSM industries in India. The study group comprised 27 BSM workers and 20 controls. Percentage yields of dicentrics, acentric fragments and chromatid breaks observed in the control group were 0.058 ± 0.017, 0.073 ± 0.03 and 0.22 ± 0.112, respectively. Percentage yields of dicentrics + centric rings, acentric fragments and chromatid breaks observed in the BSM group were 0.029 ± 0.01 (P value 0.19), 0.24 ± 0.06 (P value 0.006) and 0.455 ± 0.06 (P value 0.0004), respectively. Elevated levels of fragments and chromatid aberrations are suggestive of low-dose radiation effects and also chemically-induced DNA damage. (authors)

  9. The Study of Abundance of Soil Minerals on Micro Toposequen of Karst Gunungsewu Pegunungan Selatan

    Directory of Open Access Journals (Sweden)

    Djoko Mulyanto

    2008-05-01

    Full Text Available Landform of Gunungsewu karst topography dominated by positive forms consists of hills and negative forms of dolines. On the micro toposequen of karst, most of dolines dominated by red soils which hue 2.5 YR – 5 YR, whereas on hills by soils which hue 5 YR – 7.5 YR. The aim of research was to study of soil minerals status on karst micro toposequent. Results showed that soil minerals of sand fraction on dolines dominated by quartz, opaque, and iron concretion, whereas on hills dominated by labradorite, and mafic minerals. Clay minerals on doline dominated by kaolinite whereas on hills by halloysite. The high concentration of kaolinite, quartz, opaque and iron concretions of soils on dolines appropriate with degree of soil weathering which in a line with decreasing of soil pH, silt/ clay ratio, and hue of soils on dolines redder than hue of soils on hills. The origin of soil parent material suggested come from volcanic materials.

  10. Mineralization of 14C-labeled agrochemicals in soil

    International Nuclear Information System (INIS)

    Xu Bujin; Huang Xiaohua; Hu Xiuqing; Zhang Yongxi

    2001-01-01

    14 C-labeled compounds were used to study the mineralization of methamidophos, 2,4-D and metsulfuron in soil. Mineralization rate was influenced by the type of soil, concentration of chemical in the soil, the initial soil microbial population and the nature of the chemical. (author)

  11. Radiation protection in the mineral sands industry in New South Wales

    International Nuclear Information System (INIS)

    Carter, M.W.; Coundouris, A.N.

    1993-01-01

    The mineral sands industry in New South Wales (NSW) mines and concentrates the heavy minerals ilmenite, rutile, zircon and monazite; principally for export. Mineral sands concentrates contain small quantities of thorium and uranium series radionuclides and therefore are radioactive. The protection of workers, the public and the environment is a responsibility of mine operators. NSW Government Departments administer legislation, grant approvals and specify conditions for radiation protection. A summary of the history and current size of the industry is presented, together with current legislative and licensing activities. The paper reviews available literature on radiation measurements in the East coast mineral sands industry and re-interprets the earlier data in the light of the contemporary methodology of dose assessment. Some unpublished information and the results of some new surveys are also presented. A comparison is made with results that have been reported from Western Australia. Procedures for reducing radiation exposures are discussed and areas of future information needs are suggested. 17 refs., 6 refs., 3 tabs

  12. Natural radiation in mineral sands deposits in Vietnam and problem of radiological protection

    International Nuclear Information System (INIS)

    Hung, Bui Van; Duong, Pham Van; Dien, Pham Quang; Quang, Nguyen Hao

    1993-01-01

    There are about 40 mineral sands deposits located along the Vietnamese coast between Binh Ngoc in the North to Vung Tau in the South of the country. Most of them are being exploited for both, domestic and foreign markets. It has been assessed that the natural gamma background levels over the deposits vary between 0.2 to over 10μGy/h. This wide range indicates that the level of naturally occurring radioactivity in the deposits will warrant its further investigations due to the likelihood of an occurrence of elevated radioactivity levels in mineral processing plants. This paper presents results of the following preliminary investigations: determinations of U and Th concentrations in mineral sands ore samples from several deposits, and determinations of U and Th concentrations in various ilmenite concentrate fractions and secondary separation tailings from Ha Tinh province. The radioactivity levels in the heavy minerals and the labour intensive mineral separation technology currently applied will warrant closer attention to be paid to mineral processing and waste handling in order to improve both, occupational and environmental radiological aspects of the operations. 4 refs., 3 tabs., 1 fig

  13. Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique

    International Nuclear Information System (INIS)

    Carvalho, F. P.; Matine, O. F.; Taimo, S.; Oliveira, J. M.; Silva, L.; Malta, M.

    2014-01-01

    Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, 238 U and 232 Th concentrations were 70±2 and 308±9 Bq kg -1 dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg -1 (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg -1 of 238 U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y -1 ) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive traditional mining and a large number of artisan miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects. (authors)

  14. Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique.

    Science.gov (United States)

    Carvalho, Fernando P; Matine, Obete F; Taímo, Suzete; Oliveira, João M; Silva, Lídia; Malta, Margarida

    2014-01-01

    Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, (238)U and (232)Th concentrations were 70±2 and 308±9 Bq kg(-1) dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg(-1) (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg(-1) of (238)U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y(-1)) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive artisanal mining and a large number of artisanal miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects.

  15. Titanium mineral resources in heavy-mineral sands in the Atlantic coastal plain of the southeastern United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Ellefsen, Karl J.

    2018-04-16

    This study examined titanium distribution in the Atlantic Coastal Plain of the southeastern United States; the titanium is found in heavy-mineral sands that include the minerals ilmenite (Fe2+TiO3), rutile (TiO2), or leucoxene (an alteration product of ilmenite). Deposits of heavy-mineral sands in ancient and modern coastal plains are a significant feedstock source for the titanium dioxide pigments industry. Currently, two heavy-mineral sands mining and processing operations are active in the southeast United States producing concentrates of ilmenite-leucoxene, rutile, and zircon. The results of this study indicate the potential for similar deposits in many areas of the Atlantic Coastal Plain.This study used the titanium analyses of 3,457 stream sediment samples that were analyzed as part of the U.S. Geological Survey’s National Geochemical Survey program. This data set was analyzed by an integrated spatial modeling technique known as Bayesian hierarchical modeling to map the regional-scale, spatial distribution of titanium concentrations. In particular, clusters of anomalous concentrations of titanium occur: (1) along the Fall Zone, from Virginia to Alabama, where metamorphic and igneous rocks of the Piedmont region contact younger sediments of the Coastal Plain; (2) a paleovalley near the South Carolina and North Carolina border; (3) the upper and middle Atlantic Coastal Plain of North Carolina; (4) the majority of the Atlantic Coastal Plain of Virginia; and (5) barrier islands and stretches of the modern shoreline from South Carolina to northeast Florida. The areas mapped by this study could help mining companies delimit areas for exploration.

  16. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  17. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  18. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  19. The radiological impact of past and present practices of the mineral sands industry in Queensland

    International Nuclear Information System (INIS)

    Alexander, E.G.; Stewart, N.D.; Wallace, B.J.

    1993-01-01

    It is shown that the introduction of uniform Australian national Codes of Practice for radiation protection in the mining and milling of radioactive ores in the early 1980's has led to the mining and health regulatory authorities implementing the provisions of the Codes. Deficiencies involving dust and external gamma radiation levels in the mineral sands industry have led to various administrative and engineering controls being introduced to reduce the levels of radiation doses to employees well below 20 mSv/y limit. There are guidelines for screening the radioactivity of tailings released into the environment and some products for industrial use. Future activities by the regulatory authorities and industry will involve an optimisation of radiation protection, ongoing remedial programs, register of data about contaminated lands and assessments of the environmental, occupational and the public radiological impacts from downstream processing of mineral sands. The latter involves synthetic rutile, zircon flour, rare earth and refractory technologies. 7 refs., 1 tab., 1 fig

  20. Khnifiss Beach's Black Sand: Provenance and Transport Pathways Investigation Using Heavy Minerals' Characterization

    Science.gov (United States)

    Adnani, M.; Elbelrhiti, H.; Ahmamou, M.; Masmoudi, L.

    2014-12-01

    Arid areas in south of Morocco suffer from silting problem causing destruction of villages infrastructure, roads, agriculture land and oasis heritage. Black sand on Khnifiss beach near Tarfaya city (S-W Morocco) is marked by enrichment of heavy minerals. This later is an important fraction that could help to assess the provenance and transport pathways of sediment. The sand's origin investigation could be useful to fight against erosion and silting problems from the source of supply, to this end, mineralogical analysis was carried out in Khnifiss beach's sand using Optic Microscope and Scanning Electronic Microscope with dispersive energy (SEM- EDS), in addition to physico-chemical analysis provided by Electronic Microprobe. The results revealed: (i) a high grade of oxides (Rutile, Ilmenite, Magnetite, Ulvöspinel) in samples, (ii) silicates (Quartz, Clinopyroxene, feldspar, Zircon), (iii) phosphate (apatite) and (iv) carbonate (calcite). The dominance of iron oxides justifies the black sand's colour. Then, the mineral composition supposes interference between different origins: proximal source (Calcareous cliff) for calcite, distal sources of oxides and silicates are supposed to be eroded and carried by Drâa valley from granite and igneous rocks in Anti-Atlasic field. Another source supposed might be a proximal volcanic island (Canaries island).

  1. Restoration of Prime Farmland Disturbed by Mineral Sand Mining in the Upper Coastal Plain of Virginia

    OpenAIRE

    Schroeder, Philip D.

    1996-01-01

    Economic deposits of heavy mineral sand were identified in the late 1980's under prime farmland along the Upper Coastal Plain of Virginia. Mining in Virginia will commence in 1997 on the Old Hickory Deposit in Dinwiddie/Sussex Counties. Experiments were established on two mine pits representing two likely pit closure scenarios; regrading the surface with unprocessed subsoil (Pit 1) or filling to the surface with processed material (Pit 3). To evaluate topsoil replacement vs. organic amendment...

  2. Characterisation of radioactivity carrying aerosol in a mineral sand processing plant

    International Nuclear Information System (INIS)

    Jeffries, C.; Morawska, L.

    1998-01-01

    The techniques used to separate heavy mineral sand into mineral products produce a large amount of airborne particulate. Some of these particles are radioactive which is due to the thorium and, to a lesser extent, the uranium content of mineral sands. This study has investigated both the radioactive and respirable particle components (<10 μm) of the aerosol in a dry sand processing plant in Brisbane, Australia. A number of different measurement techniques have been used to characterise the aerosol in the plant. The mass, number and activity distributions have been determined by an eight stage cascade impactor and an Aerodynamic Particle Sizer (APS) with both instruments measuring 0.4 to 10 μm. Measurements of radon progeny concentrations and the extent of radon progeny attachment to micrometer sized particles has been investigated, as well as the extent of airborne thorium and uranium. The preliminary results from two sites are presented and comments are made on the relationship between total and radioactive aerosol

  3. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas; Miller, Micah; Kovarik, Libor

    2017-07-01

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soil erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.

  4. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  5. Characterization of human exposure to mineral sands dust in a brazilian village

    International Nuclear Information System (INIS)

    Cunha, K. Dias da; Santos, M.S.; Medeiros, G.; Dalia, K.C.; Lima, C.; Leite, Barros C. V.

    2008-01-01

    The aim of this study was to characterize human exposure to mineral dust particles using PIXE (Particle Induced X rays Emission) and 252 Cf-PDMS (Plasma Desorption Mass Spectrometry) techniques. The dust particles were generated during the separation process of mineral sands to obtain rutile, ilmenite, zircon and monazite concentrates. The aerosol samples were collected at the village and during the process to concentrate ilmenite. A cascade impactor with six stages was used to collect mineral dust particles with aerodynamic diameter in the range of 0.64 to 19.4 μm. The particles impacted on each stage of the cascade impactor were analyzed by PIXE (Particle Induced X ray Emission) and the elemental mass concentration and the MMAD (Mass Median Aerodynamic Diameter) were determined. Employing the 252 Cf-PDMS technique the chemical compound present in aerosols particles and in urine samples were identified. The mass spectra ( 252 Cf-PDMS technique) of dust samples showed the presence of the thorium silicate, thorite and zircon in the fine fraction of aerosol. The 252 Cf-PDMS technique was, also, used to characterize urine sample from a inhabitant of the village. The results show that Buena village inhabitants inhale mineral sands dust particles. Based on the results from the lichen samples it could be concluded that at least during the last 15 years the inhabitants of the village have been exposed to monazite particles. Results suggest that the there is natural source of aerosol particles containing 226 Ra and 210 Pb (probably the swamp) besides the mineral sands dust. (author)

  6. Nitrogen stabilization in organo-mineral fractions from soils with different land uses

    Science.gov (United States)

    Giannetta, Beatrice; Zaccone, Claudio; Rovira, Pere; Vischetti, Costantino; Plaza, César

    2017-04-01

    Understanding the processes that control quantity and quality of soil organic matter (SOM) interacting with mineral surfaces is of paramount importance. Although several physical fractionation methods have been proposed to date to obtain fractions that mirror SOM degree of stability and protection, a detailed quantification of stabilisation modes through which SOM bounds to the mineral matrix is still lacking. In this research we determined C and N distribution in several soils including coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil amended with biochar at rates of 0 and 20 t/ha in a factorial combination with two types of organic amendment (municipal solid waste compost and sewage sludge). We performed a physical size fractionation by ultrasonic dispersion and wet sieving, splitting particles into four different size fractions: coarse sand (2000-200 µm diameter), fine sand (200-50 µm), coarse silt (50-20 µm) and fine silt plus clay (stabilization modes. This method, in fact, allows resolving the nature of different bonds between mineral and organic components by the use of sequential extractions with chemical reagents (potassium sulphate, sodium tetraborate, sodium pyrophosphate, sodium hydroxide, sodium hydroxide after weak acid attack, sodium hydroxide after sodium dithionite pretreatment, and sodium hydroxide after hydrofluoric acid pretreatments). Elemental analysis (CHN) was then carried out on SOM pools isolated from different fractions. Preliminary data show that, for all land uses in general, and for grassland soils in particular, most of the total N is found in organo-mineral complexes (fraction soil N content. Although a small N loss was observed during the fractionation procedure, especially in N-rich samples, and data analysis is still ongoing, these preliminary results could already represent a valuable insight into organic N stabilization by mineral matrix.

  7. Radio nuclides in mineral rocks and beach sand minerals in south east coast, Odisha

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Sahoo, S.K.; Essakki, Chinna; Tripathy, S.K.; Ravi, P.M.; Tripathi, R.M.; Mohanty, D.

    2014-01-01

    The primordial and metamorphic mineral rocks of the Eastern Ghats host minerals such as rutile, ilmenite, Silmenite, zircon, garnet and monazite in quartz matrix. The weathered material is transported down to the sea by run-off through Rivers and deposited back in coastal beach as heavy mineral concentrates. The minerals are mined by M/S Indian Rare Earths Ltd at the Chatrapur plant in Odisha coast to separate the individual minerals. Some of these minerals have low level radioactivity and may pose external and internal radiation hazard. The present paper deals with natural Thorium and Uranium in the source rocks with those observed in the coastal deposits. The study correlates the nuclide activity ratios in environmental samples in an attempt to understand the ecology of the natural radio nuclides of 238 U, 232 Th, 40 K and 226 Ra in environmental context. Further work is in progress to understand the geological process associated with the migration and reconcentration of natural radio-nuclides in the natural high background radiation areas

  8. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  9. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  10. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    International Nuclear Information System (INIS)

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-01-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles ( 200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0–20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: ► PAH concentrations varied largely in different sized fractions. ► The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. ► Soil organic matter (SOM) is an important factor to dominate the distribution of PAHs in this study site.

  11. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    , because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably

  12. Moessbauer analysis of high-energy mechanical-milled sand fraction of a magnetic soil developing on basalt

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jose Flavio Marcelino; Hneda, Marlon Luiz; Brinatti, Andre Mauricio [State University of Ponta Grossa, Department of Physics (Brazil); Cunha, Joao Batista Marimon da [Federal University of Rio Grande do Sul, Institute of Physics (Brazil); Rosa, Jadir Aparecido [Polo Regional de Ponta Grossa, Agronomy Institute of Parana (Brazil); Fabris, Jose Domingos, E-mail: jdfabris@ufmg.br [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM) (Brazil)

    2011-11-15

    A sample of the coarse sand fraction from the soil material of the A-horizon (0-0.2 m from the soil surface) of a dusky red magnetic Oxisol was submitted to high-energy mechanical milling for different times. This assay aimed mainly at (a) monitoring the individualization of strongly aggregated mineral particles, and (b) measuring the effect of the milling pressure on the mineralogy changes of the material. These data are also intended to experimentally subside any physical model describing the mechanical behavior of the superficial soil layer that is subjected to intensive machine management, in agriculture fields. Powder X-ray data reveal that some mineralogical phases, notably gibbsite, disappear soon after the first few hours milling. The 298 K-transmission Moessbauer spectrum for the non-milled sand sample shows a qualitatively typical pattern for the sand fraction of basalt derived soils, with magnetically ordered sextets, assignable mainly to hematite and maghemite, and an intense central (super)paramagnetic Fe{sup 3 + } doublet. For the milled samples, spectra revealed progressive spectral reduction of the magnetic hyperfine structure, with concomitant increase of relative subspectral areas due to (super)paramagnetic phases, as the milling time increased. This result is consistent with the reduction of measured saturation magnetization, from 4.96(8) J T{sup - 1} kg{sup - 1}, for the non-milled sample, to 3.26(7) J T{sup - 1} kg{sup - 1}, for the sample milled for 8 hours.

  13. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    Science.gov (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  14. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  15. Beach sand mineral industries in India and challenges of value addition

    International Nuclear Information System (INIS)

    Patra, R.N.

    2016-01-01

    Beach sand minerals (BSM) are a suite of seven minerals that often occur together in various proportions in the beach sands of coastal India. They are also called heavy minerals as they have densities in the range 3.2 gms/cc to 5.2 gms/cc, which are higher than the sand. Ilmenite, leucoxene and rutile are oxide minerals of titanium metal. Zircon is silicate of zirconium where as silimanite is silicate of aluminum. The titanium, zirconium and thorium bearing minerals are atomic minerals under the atomic energy act 1962 and need no objection from the Department of Atomic Energy (DAE) for their mining. Further authorization is necessary from DAE to handle and process monazite as it contains thorium, as it is a prescribed substance under the notification issued under the atomic energy act. Radioactive nature of monazite also mandates obtaining permission from Atomic Energy Regulatory Board (AERB) with a view to ensure regulatory compliance with radiological safety. Monazite is processed to produce rare earths, trisodium phosphate (TSP) and thorium compounds.Thorium values are stockpiled in engineered trenches for use in nuclear power program of the country where as rare earths are used for manufacture of high power permanent magnets, energy efficient optical phosphors, metal alloys for battery to store electricity and hydrogen, as additives to glass for imparting special optical properties and myriads of applications in defence and strategic sectors. Rare earths of late have assumed importance as high power rare earths based permanent magnets are used in manufacture of wind mills, MRI machines, magnetic levitated bearings etc, having minimal impact on green house gas generation and use in renewable energy sector. The presentation brings out the limitation of value added product industries in India, the efforts taken by Indian Rare Earths Ltd. (IREL) in developing value added products in the face of technology denial regime and hostile market dynamics. The road map for

  16. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    Science.gov (United States)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  17. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra

    2013-05-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability soils in the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the “extinction depth”, where it is protected from evaporation during long dry periods. Moreover, desert sand dunes have sparse vegetation, which results in low transpiration losses from the stored water. The water accumulated below the extinction depth of the sand dunes can be utilized for various purposes such as in irrigation to support desert agriculture. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. The dune sand was saturated with water and was exposed to natural conditions (evaporation and precipitation). The decline of the water level in the sand column was continuously recorded using transducers and sensors installed at different depths monitored the temporal variation of temperature and moisture content within the sand. The hydrological simulator HYDRUS-1D was used to construct the vertical profiles of soil water content and temperature and the results obtained from HYDRUS-1D were compared to the gradients monitored by the sensors.

  18. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  19. Minerals in soil select distinct bacterial communities in their microhabitats.

    Science.gov (United States)

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (Ppermanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  20. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  1. The impact of mineral composition on compressibility of saturated soils

    OpenAIRE

    Dolinar, Bojana

    2012-01-01

    This article analyses the impact of soils` mineral composition on their compressibility. Physical and chemical properties of minerals which influence the quantity of intergrain water in soils and, consequently, the compressibility of soils are established by considering the previous theoretical findings. Test results obtained on artificially prepared samples are used to determine the analytical relationship between the water content and stress state, depending on the mineralogical properties ...

  2. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  3. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  4. Efficient Use of Organic Sources by Sorghum Plants Grown on Sand Soil Using "1"5N Stable Isotope Technique

    International Nuclear Information System (INIS)

    EL Hassanin, A.S; Khalifa, A.M; Abdel Aziz, H.A; Galal, Y.G.M; Abdel Salam, M.F

    2015-01-01

    A green house experiment was conducted at Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt. Different organic/bio fertilizer and mineral fertilizers were existed for detection and evaluation of sorghum crop response when grown on sand soils. Mineral fertilizer in the form of labeled ammonium sulfate with 2% "1"5N atom excess was applied at two rates of 200 and 400 mg N pot-1 and unfertilized control treatment also included. Different organic fertilizers such as compost, chicken manure and leucaena residues were applied at the same rates per pot according to its content of nitrogen. Sorghum plants treated with organic or mineral fertilizers were inoculated with Azotobacter chrooccocum as a representative of associative nitrogen fixing microorganisms. Un inoculated plants were also included. Completely randomized block design was followed for statistical analysis. Nitrogen use efficiency (%NUE) was estimated using the portion of N derived from mineral fertilizer. Experimental data released from this work could be summarized as following: Dry matter yield of stalks and roots were increased with increasing mineral fertilizer rates where the best increments detected at 100% N rate as compared to the unfertilized control

  5. Mineralization of Nitrogen in Hydromorphic Soils Amended with ...

    African Journals Online (AJOL)

    ... to 320.00 mg kg-1 for Mangrove soil (mangal acid sulphate soils). The order of cumulative nitrogen released in the waste amended soil followed the order: sewage sludge>kitchen waste> poultry manure> oil palm waste> cow manure. Total mineralized N indicated negative correlation with total organic N and C:N ratio ...

  6. Organic matter dynamics and N mineralization in grassland soils

    OpenAIRE

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly and can be used in soil organic matter models, iii) to develop a model that predicts the long-term dynamics of soil organic matter, iv) to develop a simple model that can be used by farmers and advi...

  7. PIXE analysis of sand and soil from Ulaanbaatar and Karakurum, Mongolia

    Science.gov (United States)

    Markwitz, A.; Barry, B.; Shagjjamba, D.

    2008-09-01

    Twenty-one sand and soil samples were collected at the surface from 22 to 25 June 2007 at sampling sites from Ulaanbaatar to Karakurum, Mongolia. The sand samples were collected from constantly changing sand dunes which may still contain salt from prehistoric oceans. The dry sand and soil samples were processed for PIXE and PIGE analyses. A clear division between soils and sand become apparent in the silicon results. Concentrations of all bulk elements in human habitation samples and of Si, Al, K and Fe in dry lake/flood plain samples are similar to those in the soils and sands. Among elements which could be regarded as being at trace concentrations the average S concentration in the soils is 0.9 g kg-1 whereas it is not detected in the sand samples. Zinc and Cu concentrations are both higher in the soils than the sands and are strongly correlated. A surprising presence of uranium at a concentration of 350 mg kg-1 was detected in the PIXE measurement on one of the dry lake samples. Gamma spectrometry confirmed the presence of U in this sample and also at a lower level in a sample from the lake shore, but in none of the other samples. Further, the gamma spectrometry showed that 238U decay products were present only at a level corresponding to about 3 mg kg-1 U for a system in radioactive equilibrium, a figure which is typical for U in the earth's crust. Disequilibria between 238U and its decay products occur naturally but such a high degree of separation at high concentration would be unique if confirmed. PIXE and PIGE measurements of these samples highlight the difficulty in correlating trace element measurements with occurrence of indicators of sea salt in air particulate samples.

  8. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  9. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  10. Rice straw biochar affects water retention and air movement in a sand-textured tropical soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Ahmed, Fauziatu

    2017-01-01

    Despite the current global attention on biochar (BC) as a soil amendment, knowledge is limited on how BC impacts the physical properties of coarse-textured soils (sand > 95%), particularly in tropical regions. A two-season field-study was conducted to investigate the effect of rice straw BC (3% w...

  11. Creating a soil-like profile for plant growth using tailings sand and fine tails

    International Nuclear Information System (INIS)

    Li, X.; Fung, M. P. Y.

    1996-01-01

    Development of a technology to create stable aggregates with a soil-like profile capable of supporting a stable plant community, was discussed as the major challenge and primary task in restoring oil sands processing wastes, and in re-creating a self-sustaining ecosystem. A procedure for creating a soil-like profile using oil sands mining wastes, was described. Clay and water content were critical factors in the aggregation procedure. A study to evaluate the physical, chemical and biological properties of these soils and their suitability as a plant growth medium is currently underway. 6 refs., 3 figs

  12. Correlation studies of mineral nutrients' concentrations in soils and ...

    African Journals Online (AJOL)

    Ananas comosus) plants growth and development in the southern agricultural zone of Cross River State. Fields experiment were conducted to evaluate the relationships existing between mineral nqutrients in the soils and pineapple plants.

  13. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  14. Biochar effect on the mineralization of soil organic matter

    Directory of Open Access Journals (Sweden)

    Sander Bruun

    2012-05-01

    Full Text Available The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM. In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.

  15. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  16. Picloram and Aminopyralid Sorption to Soil and Clay Minerals

    Science.gov (United States)

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  17. Mineralization of nitrogen by protozoan activity in soil

    NARCIS (Netherlands)

    Kuikman, P.

    1990-01-01

    In general, more than 95% of the nitrogen in soils is present in organic forms. This nitrogen is not directly available to plants unless microbial decomposition takes place with the release of mineral nitrogen. In modern agriculture, nitrogen is often applied to arable soils as a fertilizer

  18. Radon exhalation rates from soil and sand samples collected from the vicinity of Yamuna river

    International Nuclear Information System (INIS)

    Garg, A.K.; Sushil Kumar; Chauhan, Pooja; Chauhan, R.P.

    2011-01-01

    Soil, sand and stones are the most popular building materials for Indian dwellings. Radon is released into ambient air from these materials due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in sand and soils is related to radioactivity in the rocks from which they are formed. These materials contain varying amount of uranium. In the present investigation, the radon emanated from soil and sand samples from different locations in the vicinity of Yamuna river has been estimated. The samples have been collected from different locations near the Yamuna river. The samples collecting sites are from Yamunanagar in Haryana to Delhi. The radon concentration in different samples has been calculated, based upon the data, the mass and the surface exhalation rates of radon emanated from them have also been calculated

  19. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures

    NARCIS (Netherlands)

    Matus, F.J.

    1994-01-01

    To evaluate the significance of cropping, soil texture and soil structure for the decomposition of 14C- and 15N-labelled crop residues, a study was conducted in a sand and a

  20. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Institute of Scientific and Technical Information of China (English)

    Giovanna B.MELAS; Oriol ORTIZ; Josep M.ALACA(N)IZ

    2017-01-01

    Biochar could help to stabilize soil organic (SOM) matter,thus sequestering carbon (C) into the soil.The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter (SOM)mineralization in an artificial soil,proposed by the Organization for Economic Co-operation and Development (OECD),amended with glucose and ii) to measure the amount of labile organic matter (glucose) that can be sorbed and thus be partially protected in the same soil,amended or not amended with biochar.A factorial experiment was designed to check the effects of three single factors (biochar,nutrients,and glucose) and their interactions on whole SOM mineralization.Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass,and then they were incubated in the dark at 21 ℃ for 619 d.Periodical measurements of C mineralized to carbon dioxide (CO2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools.The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract.Two different models,the Freundlich and Langmuir models,were selected to assess the equilibrium isotherms of glucose sorption.The CO2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil.The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately.Furthermore,a significant amount of glucose can be sorbed on the biochar-amended soil,suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.

  1. The study of the sorption capacity of mineral kasongan and sand mixture of the waste of uranium organic phase

    International Nuclear Information System (INIS)

    Budiyono, M. E.; Sardjono, D.; Sukosrono

    1996-01-01

    An experimental investigation on the sorption capacity of mineral Kasongan and sand of Progo of the waste of uranium organic phase which to be connected with a backfill material which can be used to carried out of waste transportation from uncertain unit of the wastes to process of the wastes. The aim of the investigation wastes transportation must be conducted of the anticipation, that of the wastes with safe to unit management of wastes. Therefore must be investigated of the uranium organic wastes. This investigations which influence sorption ability, so an experimental investigation on its absorbability is necessary since this nuclide can not be dispersed to the environment. This investigation was carried out by varying some parameters which influence the sorption ability or sorptive capacity of the mineral Kasongan and the sand of Progo. The variables investigated were the grains size of the backfill material. Also the composition of mineral Kasongan/sand of Progo. The grains size were varied from 10-200 mesh and the composition were varied from 100/0 to 0/100 by weight. The sorption capacity of the maximum results was also determined. It can be concluded that the sorption capacity of the mineral Kasongan was the best at the grains of size about 80 mesh. The sorption capacity was 58 x 10 -2 ml/g and the grains size of the sand of Progo about 20 to 80 mesh was 30 x 10 -2 ml/g. The best sorption capacity of 58 x 10 -2 ml/g was gained at the composition of 100 % mineral Kasongan and 0% sand Progo. (author)

  2. Molecular analysis of manufactured gas plant soils for naphthalene mineralization

    International Nuclear Information System (INIS)

    Sanseverino, J.; Werner, C.; Fleming, J.; Applegate, B.M.; King, J.M.H.; Sayler, G.S.; Blackburn, J.

    1991-01-01

    New molecular tools are being developed and tested to ascertain the biodegradability of hazardous wastes by soil bacterial population. The potential for manufactured gas plant (MGP) soil bacterial populations to degrade naphthalene, as a component mixture of polynuclear aromatic hydrocarbons, was evaluated by the detection of a naphthalene biodegradative genotype by DNA probe hybridization with DNA extracts and colonies of cultured bacteria of the MGP soils. The activity of the naphthalene-degrading populations was evaluated by mineralization assays, 14 CO 2 production from 14 C-naphthalene. Direct messenger RNA (mRNA) extraction from MGP soil was evaluated as an instantaneous measure of naphthalene catabolic gene expression in MGP soil. The bioavailability of naphthalene for bacterial degradation within the MGP soils was assessed by measuring the bioluminescent response of a naphthalene-lux catabolic reporter strain Pseudomonas fluorescens HK44 (pUTK21). DNA extracted from 5 MGP soils and 1 creosote-contaminated soil and hybridized with a nahA gene probe indicated that the naphthalene degradative genes were present in all samples in the range of 0.06 to 0.95 ng/100 μl DNA extract which was calculated to represent 3.58 x 10 8 to 1.05 x 10 10 nahA positive cells/g soil. Phenanthrene, anthracene, and benzo(a)pyrene were mineralized also by some of the soils. NAH7 homologous messenger RNA transcripts were detectable in one MGP soil and in the creosote-contaminated soil

  3. Development of soil-cement blocks with three interventions: natural soil, soil corrected with sand and soil more phase change materials (PCMs)

    International Nuclear Information System (INIS)

    Dantas, Valter Bezerra; Gomes, Uilame Umbelino; Reis, Edmilson Pedreira; Valcacer, Samara Melo; Silva, A.S.

    2014-01-01

    In this work, the results of characterization tests of soil samples collected in Mossoro-RN, UFERSA-RN Campus, located approximately 20 meters high, and "5 ° 12'34.68 south latitude and 37 ° 19'5.74 "west longitude, with the purpose of producing soil-cement for the manufacture of pressed blocks with good resistance to compression and thermal stability. The following tests were performed: granulometry, plasticity limit, liquidity limit, particle size correction, scanning electron microscopy (SEM), X-ray fluorescence. In this soil, based on the results of the granulometric analysis, 10% of medium sand with 3% and 5% of eicosane paraffin and 10% of medium sand with 3% and 5% of paraffin 120 / 125F were added, forming analysis compositions, standard soil-cement block and natural soil-cement block with addition of 10% medium sand and 0% paraffin. Paraffins are referred to as PCMs (Phase Change Material). The contrasting effect between the different dosages on the compressive strength values of the soil-cement blocks was observed. The objective is to create new materials that give the block quality equal to or higher than the recommendations of ABNT norms, and that offer greater thermal comfort in the constructions. Soil particles of different sizes were added to 8% (by weight) of cement, and about 9.20% of water added to the mixture

  4. Development of low thermal mass cement-sand block utilizing peat soil and effective microorganism

    Directory of Open Access Journals (Sweden)

    Irham Hameeda Mohamad Idris

    2018-06-01

    Full Text Available The development of low thermal mass cement-sand block by incorporating peat soil and Effective Microorganism (EM was studied systematically. In total, seven mixtures of cement-sand block targeted at a 28-days compressive strength of 7 MPa are designed. One control sample is made with a water/cement ratio (w/c of 0.5, three mixes using 3%, 6% and 10% peat soil replacing sand and three mixes using 10%, 20% and 30% EM replacing water. Modified blocks with 6% of peat soil and 30% of EM are the most optimum blocks to be used in the construction of masonry as they successfully reduced the thermal conductivity of the blocks with the value of 1.275 W/mK and 1.792 W/mK respectively when being compared to the thermal conductivity of the control sample which is 2.400 W/mK. Besides, they are also able to achieve higher strength than the desired compressive strength which is 7 MPa. The compressive strength of the samples with 6% of peat soil is 16.48 MPa at 28-days while 30.39 MPa for samples with 30% of EM. On the other hand, the water absorption rate of samples with 6% of peat soil is 7.6% while 6.1% for samples with 30% EM and both are okay since their rate of water absorption is lower than 20%. In conclusion, the addition of peat soil and EM in the cement-sand mix show promising performance as a low cost material to produce low thermal mass cement-sand block. Keywords: Effective microorganism, Peat soil, Thermal conductivity, Cement brick

  5. Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca oil sands area

    International Nuclear Information System (INIS)

    Pauls, R.W.; Abboud, S.A.; Turchenek, L.W.

    1996-01-01

    A study was conducted to monitor the accumulation and impact on the environment of emissions from oil sands processing plants. SO 2 , H 2 S, NO x and hydrocarbon concentrations in the air were monitored. Syncrude Canada Ltd. conducted surveys to determine elemental levels in lichens and mosses. The objective of the study was to monitor the pattern of accumulation of emissions by oil sand plants in, and their effects on, lichens and mosses, and examine changes in wood induced by soil acidity. The moss, lichen and wood samples were analyzed for total elemental content. Soils were analyzed for pH, soluble sulphate and other properties related to soil acidity and soil composition. Little or no evidence was found to indicate that wood tissue chemistry has been affected by atmospheric deposition of substances originating from oil sands plants. These results led to the inference that no large changes in soil acidity have resulted from oil sands plant emissions either. 66 refs., 21 tabs., 124 figs

  6. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhe [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Zeng, Fangang [School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Xue, Nandong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Li, Fasheng, E-mail: ligulax@vip.sina.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China)

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (< 2 {mu}m clay, 2-20 {mu}m silt, 20-200 {mu}m fine sand, and > 200 {mu}m coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 {mu}g/g in profile 1 and 10.8 to 0.143 {mu}g/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: Black-Right-Pointing-Pointer PAH concentrations varied largely in different sized fractions. Black-Right-Pointing-Pointer The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Black-Right-Pointing-Pointer Soil organic

  7. Application of EDRXF technique for the determination of uranium and thorium in beach sand minerals

    International Nuclear Information System (INIS)

    Natarajan, V.

    2013-01-01

    Zircon is a naturally occurring mineral and is available in many locations all over the world, This mineral usually contains U and Th at about 100-500 μg/g. Naturally occurring TiO 2 , containing minerals, rutile and ilmenite have small quantities of associated uranium. Natural rutile may contain upto 10% iron and upto 500 μg/g of uranium. Since the availability of rutile in nature is limited, ilmenite is used as raw material for producing synthetic rutile. In India, from monazite, thorium is separated by Indian Rare Earths Ltd., wherein uranium is a bye product. Since rutile is of importance to the gemstone markets, this is also produced from ilmenite ore. Roasting, reduction and leaching processes are important steps for removal of iron economically and efficiently from ilmenite ore during the production of synthetic rutile. We have developed a method to determine U and Th in zircon, using synthetic powder standards of ZrO 2 , containing U and Th in the range of 50 to 1000 μg/g. The limits of detection for U and Th were determined to be 200 and 100 μg/g respectively. Three zircon ore samples from different locations in India were analyzed for uranium and thorium using the method. The standardized method can be used for fast determination U and Th in zircon samples non-destructively with a precision of 10-20 %. Further another method was developed for the determination of uranium in rutile. Since iron and chromium are among the other impurities co-existing with U in rutile, these analytes have been included in the method. Synthetic standards containing U at 200-10,000 μg/g and Fe, Cr at 100- 2000 μg/g level were prepared and the spectrometer was calibrated using these standards. Two synthetic samples were analyzed using this method to evaluate the method for its reliability and reproducibility. In the present talk, details of these studies will be discussed. Moreover the work carried out on the determination of U/Th in sand minerals by other international

  8. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  9. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...... prepared model tests made in laboratories....

  10. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra

    2013-01-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability

  11. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    International Nuclear Information System (INIS)

    Singh, Virendra; Agrawal, H.M.

    2012-01-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil–plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully. - Highlights: ► Qualitative soil minerals analysis by EDXRF, AAS and XRD methods. ► There is a requirement of other means and methods due to inadequacy of XRD. ► Principal component analysis (PCA) provides an idea of minerals present in soil. ► Trace elements complexes can be determined by AAS probe. ► EDXRF, AAS and XRD, in combination, enable

  12. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication

    Science.gov (United States)

    Yasmin, Sabina; Barua, Bijoy Sonker; Uddin Khandaker, Mayeen; Kamal, Masud; Abdur Rashid, Md.; Abdul Sani, S. F.; Ahmed, H.; Nikouravan, Bijan; Bradley, D. A.

    2018-03-01

    Accurate quantification of naturally occurring radioactive materials in soil provides information on geological characteristics, possibility of petroleum and mineral exploration, radiation hazards to the dwelling populace etc. Of practical significance, the earth surface media (soil, sand and sediment) collected from the densely populated coastal area of Chittagong city, Bangladesh were analysed using a high purity germanium γ-ray spectrometer with low background radiation environment. The mean activities of 226Ra (238U), 232Th and 40K in the studied materials show higher values than the respective world average of 33, 36 and 474 Bq/kg reported by the UNSCEAR (2000). The deduced mass concentrations of the primordial radionuclides 238U, 232Th and 40K in the investigated samples are corresponding to the granite rocks, crustal minerals and typical rocks respectively. The estimated mean value of 232Th/238U for soil (3.98) and sediment (3.94) are in-line with the continental crustal average concentration of 3.82 for typical rock range reported by the National Council on Radiation Protection and Measurements (NCRP). But the tonalites and more silicic rocks elevate the mean value of 232Th/238U for sand samples amounting to 4.69. This indicates a significant fractionation during weathering or associated with the metasomatic activity in the investigated area of sand collection.

  13. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  14. A Comparative Analyses of Granulometry, Mineral Composition and Major and Trace Element Concentrations in Soils Commonly Ingested by Humans

    Directory of Open Access Journals (Sweden)

    Veronica M. Ngole-Jeme

    2015-07-01

    Full Text Available This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA and Chemical Index of Weathering (CIW being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t. These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils.

  15. A Comparative Analyses of Granulometry, Mineral Composition and Major and Trace Element Concentrations in Soils Commonly Ingested by Humans

    Science.gov (United States)

    Ngole-Jeme, Veronica M.; Ekosse, Georges-Ivo E.

    2015-01-01

    This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010

  16. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  17. Stability of the Inherent Target Metallome in Seed Crops and a Mushroom Grown on Soils of Extreme Mineral Spans

    Directory of Open Access Journals (Sweden)

    Gerhard Gramss

    2016-02-01

    Full Text Available Extremes in soil mineral supply alter the metallome of seeds much less than that of their herbage. The underlying mechanisms of mineral homeostasis and the “puzzle of seed filling” are not yet understood. Field crops of wheat, rye, pea, and the mushroom Kuehneromyces mutabilis were established on a set of metalliferous uranium mine soils and alluvial sands. Mineral concentrations in mature plants were determined from roots to seeds (and to fungal basidiospores by ICP-MS following microwave digestion. The results referred to the concentrations of soil minerals to illustrate regulatory breaks in their flow across the plant sections. Root mineral concentrations fell to a mean of 7.8% in the lower stem of wheat in proportions deviating from those in seeds. Following down- and up-regulations in the flow, the rachis/seed interface configured with cuts in the range of 1.6%–12% (AsPbUZn and up-regulations in the range of 106%–728% (CuMgMnP the final grain metallome. Those of pea seeds and basidiospores were controlled accordingly. Soil concentration spans of 9–109× in CuFeMnNiZn shrank thereby to 1.3–2× in seeds to reveal the plateau of the cultivar’s desired target metallome. This was brought about by adaptations of the seed:soil transfer factors which increased proportionally in lower-concentrated soils. The plants thereby distinguished chemically similar elements (As/P; Cd/Zn and incorporated even non-essential ones actively. It is presumed that high- and low-concentrated soils may impair the mineral concentrations of phloems as the donors of seed minerals. In an analytical and strategic top performance, essential and non-essential phloem constituents are identified and individually transferred to the propagules in precisely delimited quantities.

  18. Areal variability of the mineral soil cover in a reclaimed soda waste dumping site

    Directory of Open Access Journals (Sweden)

    Klatka Sławomir

    2017-03-01

    Full Text Available Areal variability of the mineral soil cover in a reclaimed soda waste dumping site. This paper provides an analysis of the areal variability of the thickness and selected physical and chemical properties of the mineral cover formed in the process of settling ponds reclamation at the former Krakow Soda Plant “Solvay”. The topsoil is intended to provide a substrate for plants, therefore, its quality is the main determinant of the development for herbaceous and woody vegetation. Areal variability of the topsoil parameters was determined by kriging. In the context of the envisaged direction of management of the settling ponds, the analysis showed that electrical conductivity, thickness of the soil cover and the sand fraction content have potentially the highest impact on the diversification of vegetation. Understanding the spatial variability of the soil cover parameters, that are essential for vegetation, may contribute to increasing the efficiency of biological reclamation and also to cost reduction. Precise selection of the areas unsuitable for plant growth makes it possible to improve soil parameters on limited areas similarly as in the precision agriculture.

  19. Mineralization of residual fertilizer nitrogen in soil after rice harvest

    International Nuclear Information System (INIS)

    Hazarika, S.; Sarkar, M.C.

    1994-01-01

    Remineralization of immobilized 15 N labelled urea N applied to rice crop at the rate of 180 kg N/ha was determined. Mineral N increased rapidly up to 14 days of incubation and thereafter remained more or less constant. The recovery of fertilizer as mineral N varied between 0.7 and 3.1 μg/g soil. The percent mineralization of labelled organic N ranged between 3.1 and 9.5. (author). 5 refs., 2 tabs., 1 fig

  20. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    Science.gov (United States)

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  1. Distribution of clay minerals in the process streams produced by the extraction of bitumen from Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W.; Etsell, T.H.; Ivey, D.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Omotoso, O. [Natural Resources Canada, Devon, AB (Canada). CETC

    2009-02-15

    The clay minerals present in the oil sands were studied with particular reference to how they are partitioned in bitumen ore during the extraction process. Bitumen production from surface-mined oil sands accounts for nearly two-thirds of the total bitumen production in Alberta. Every cubic meter of mined ore results in 1.3 cubic meters of mature fine tailings (MFT). The characteristic differences between the clay minerals that report to the froth versus the tailings streams were also examined to determine which minerals could impact different unit operations in the bitumen extraction process. X-ray diffraction and random powder samples were used to quantify the clay minerals. Particle size distribution and clay activity balances were also conducted. The degree of partitioning during the conditioning and flotation stages in a batch extractor was determined by the surface properties of the clay minerals. The water-continuous tailings stream was separated into fine and coarse tailings fractions through sedimentation. The study showed that bitumen-clay interactions may be dominated by kaolinite or iron oxides. Clays are responsible for the poor settling behaviour of MFTs. The clay minerals present in the oil sands include illite, illite-smectite, kaolinite, kaolinite-smectite, and chlorite. The close proximity of the tailings ponds to the Athabasca River and volatile organic compounds (VOCs) emission require that the ponds be reclaimed to a natural landscape before mine closure. In addition to its impact on fine tailings reclamation, clay mineralogy plays a role in extraction froth flotation and emulsion stability during froth treatment. The mineralogy of the froth solids was found to be different from the mineralogy of the middlings and tailings solids. 39 refs., 6 tabs., 6 figs.

  2. EFFECT OF COMPLEX FERTILIZERS USED IN EARLY CROP POTATO CULTURE ON LOAMY SAND SOIL

    Directory of Open Access Journals (Sweden)

    Wanda Wadas

    2015-03-01

    Full Text Available To obtain a high tuber yield of early crop potato good conditions for plant growth must be ensured. Potato has a relatively shallow root system and requires significant nutrient inputs to maintain tuber productivity and quality. The paper presents the results of the research on the effect of complex fertilizers type NPK MgS with and without microelements from the nitrophoska (HydroComplex, Nitrophoska Blue Special and Viking 13 and the amophoska group (Polimag S, and single-nutrient fertilizers on the plant growth and tuber yield of very early potato cultivars (‘Aster’, ‘Fresco’, ‘Gloria’ on loamy sand soil. The field experiment was carried out in mideastern Poland (52°03'N, 22°33'E. Potatoes were harvested 75 days after planting (the end of June. The type of fertilizer (single-nutrient or complex fertilizer slightly affected the growth of potato plants. With the use of complex fertilizers, the assimilation leaf area and leaf area index (LAI were similar to the application of single-nutrient fertilizers. Of the examined complex fertilizers, Viking 13 (representing the nitrophoska group without microelements resulted in a smaller increase of assimilation leaf area in comparison with the cultivation without mineral fertilization. The type of fertilizer exerted a greater influence on the plant growth of ‘Aster’ (Poland than ‘Fresco’ (The Netherlands and ‘Gloria’ (Germany. The productive effects of complex fertilizers in early crop potato culture on loamy sand soil were comparable with single-nutrient fertilizers. The highest tuber yield was achieved with the application of Nitrophoska Blue Special (from the nitrophoska group with the lowest NNH4+ concentration; the total tuber yield was higher on average by 2.94 t*ha-1 (21.0% and the yield of marketable tuber fraction (diameter above 30 mm by 2.55 t*ha-1 (20.4% in comparison with the cultivation without mineral fertilization. Although the total tuber yield was a little

  3. Assessment of natural radioactivity levels and identification of minerals in Brahmaputra (Jamuna) river sand and sediment, Bangladesh

    International Nuclear Information System (INIS)

    Khalil, Md. Ibrahim; Majumder, Ratan Kumar; Kabir, Md. Zafrul; Deeba, Farah; Khan, Md. Nazrul Islam; Ali, Md. Idris; Paul, Debasish; Haydar, Md. Abu; Islam, Syed Mohammad Azharul

    2016-01-01

    Distribution of the natural radionuclides ( 238 U, 232 Th, and 40 K) and their specific activities in sands and sediments of the Brahmaputra (Jamuna) river of Bangladesh together with mineral characteristics has been studied to assess the radiation levels as well as to develop a baseline database for comparison in the future in case of any change in the area under study due to anthropogenic activities. The radiological parameters of natural radioactivity were assessed calculating the radium equivalent activity, hazard index, the absorbed dose rate, and annual effective dose. The average activity concentrations of 226 Ra ( 238 U), 232 Th, and 40 K in sand and sediment were found to be 59 ± 2 and 60 ± 2 Bq/kg, 113 ± 5 and 135 ± 5 Bq/kg, and 983 ± 42 and 1002 ± 43 Bq/kg, respectively. The calculated average absorbed dose rate and annual effective dose were found to be 150 nGy/h and 0.18 mSv/year respectively. These high values are associated with mineral content of the sediment. X-ray diffraction peaks of sand and sediment samples identify quartz, feldspar, rutile, zircon, monazite, uranium fluoride, hematite, kyanite, and uranium arsenide minerals to be present in the samples. (author)

  4. Sand-RAPG combination simulating fertile clayey soil (Part I to IV)

    International Nuclear Information System (INIS)

    Azzam, R.; El-Hady, O.A.; Lotfy, A.A.; Hegela, M.

    1983-01-01

    I. Radiation Preparation of RAPG. Sites of co-ordination and reinforcement are dominated in reclaimer ameliorator polymeric gel (RAPG). It is a modified acrylonitrile base multifunction polymer grafted upon a binder of worthless cellulosic agricultural discard. It varies chemically from non-ionic through anionic and cationic to ampholite. The hydroproperty of the gel is similarly controlled. Thus, RAPG can be tailored for any soil texture under various climatic conditions. II. Structure Stability and Maintenance. Sinai dune sand is treated with non-ionic and anionic RAPGs at rates varying from 0.05 to 0.2 wt.%. The stability increased with RAPG anionicity and application rate. The structure formed maintained three cycles of complete destruction and re-formation without significant changes in erosion index. The resistance of sand-RAPG combination to breakdown by tillage, as well as to wind and water erosion, is practically proved. This is in addition to the beneficial changes in bulk density, void ratio and microporosity, which were also achieved. III. Water Preservation. Inshas sandy soil treated by RAPG is compared with fertile clayey soil. The water-holding capacity and retention at different suctions are increased. The available water to plants in treated sand has reached 15 times that of the control, and even exceeded clay by 11%. Water losses by evaporation and leaching as well as deep percolation are all reduced to a minimum. IV. Plantation and Nutritional Status. Pepper seed germination, growth and dry matter are increased in the sand-RAPG combination relative to fertile clayey soil. The optimum rate and anionicity of RAPG are determined. This increases water-use efficiency to twice that of the fertile clayey soil. Macro- and micro-nutrient uptake have also increased. Thus, fertilizer use efficiency is increased by almost three times over that of clay. These factors lead convincingly to the conclusion that RAPG furnishes adequate conditions for sandy soil

  5. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II

    Science.gov (United States)

    The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  6. Forest soil mineral weathering rates: use of multiple approaches

    Science.gov (United States)

    Randy K. Kolka; D.F. Grigal; E.A. Nater

    1996-01-01

    Knowledge of rates of release of base cations from mineral dissolution (weathering) is essential to understand ecosystem elemental cycling. Although much studied, rates remain enigmatic. We compared the results of four methods to determine cation (Ca + Mg + K) release rates at five forested soils/sites in the northcentral U.S.A. Our premise was that multiple...

  7. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative ... 2. Basic principles. The mineralogical constitution of soil is rather complex. ... K2O, MgO, and TFe as variables for the calculation.

  8. Decontamination of Uranium-Contaminated Soil Sand Using Supercritical CO2 with a TBP–HNO3 Complex

    Directory of Open Access Journals (Sweden)

    Kwangheon Park

    2015-09-01

    Full Text Available An environmentally friendly decontamination process for uranium-contaminated soil sand is proposed. The process uses supercritical CO2 as the cleaning solvent and a TBP–HNO3 complex as the reagent. Four types of samples (sea sand and coarse, medium, and fine soil sand were artificially contaminated with uranium. The effects of the amount of the reagent, sand type, and elapsed time after the preparation of the samples on decontamination were examined. The extraction ratios of uranium in all of the four types of sand samples were very high when the time that elapsed after preparation was less than a few days. The extraction ratio of uranium decreased in the soil sand with a higher surface area as the elapsed time increased, indicating the possible formation of chemisorbed uranium on the surface of the samples. The solvent of supercritical CO2 seemed to be very effective in the decontamination of soil sand. However, the extraction of chemisorbed uranium in soil sand may need additional processes, such as the application of mechanical vibration and the addition of bond-breaking reagents.

  9. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    Science.gov (United States)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  10. Glyphosate behavior at soil and mineral-water interfaces

    International Nuclear Information System (INIS)

    Pessagno, Romina C.; Torres Sanchez, Rosa M.; Santos Afonso, Maria dos

    2008-01-01

    Adsorption isotherms and surface coverage of glyphosate, N-phosphonomethylglycine (PMG), in aqueous suspensions of three Argentine soils with different mineralogical composition were measured as a function of PMG concentration and pH. Zeta potential curves for PMG/soils system were also determined. Montmorillonite and soil sample surface charges were negative and increased as the amount of adsorbed PMG increased, showing that the surface complexes are more negative than those formed during the surface protonation. PMG adsorption on soils were described using Langmuir isotherms and the affinity constants, and the maximum surface coverage was estimated at pH 4 and 7 using a two-term Langmuir isotherm, the mineralogical composition percentages, and maximum surface coverage and Langmuir constants for pure minerals. The influence of organic matter (OM) and iron content of soils on the PMG adsorption was evaluated. The surface coverage of PMG decreased when the OM and iron content decreased for minerals and soils. - Adsorption isotherms, surface coverage and zeta potential curves of glyphosate in aqueous suspensions of montmorillonite and three Argentine soils were measured as a function of PMG concentration and pH

  11. Glyphosate behavior at soil and mineral-water interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pessagno, Romina C. [INQUIMAE and Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II, (C1428EHA) Buenos Aires (Argentina)], E-mail: rpessagno@qi.fcen.uba.ar; Torres Sanchez, Rosa M. [CETMIC, CC 49, (B1896ZCA) M.B. Gonnet, Buenos Aires Province (Argentina)], E-mail: rosats@cetmic.unlp.edu.ar; Santos Afonso, Maria dos [INQUIMAE and Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II, (C1428EHA) Buenos Aires (Argentina)], E-mail: dosantos@qi.fcen.uba.ar

    2008-05-15

    Adsorption isotherms and surface coverage of glyphosate, N-phosphonomethylglycine (PMG), in aqueous suspensions of three Argentine soils with different mineralogical composition were measured as a function of PMG concentration and pH. Zeta potential curves for PMG/soils system were also determined. Montmorillonite and soil sample surface charges were negative and increased as the amount of adsorbed PMG increased, showing that the surface complexes are more negative than those formed during the surface protonation. PMG adsorption on soils were described using Langmuir isotherms and the affinity constants, and the maximum surface coverage was estimated at pH 4 and 7 using a two-term Langmuir isotherm, the mineralogical composition percentages, and maximum surface coverage and Langmuir constants for pure minerals. The influence of organic matter (OM) and iron content of soils on the PMG adsorption was evaluated. The surface coverage of PMG decreased when the OM and iron content decreased for minerals and soils. - Adsorption isotherms, surface coverage and zeta potential curves of glyphosate in aqueous suspensions of montmorillonite and three Argentine soils were measured as a function of PMG concentration and pH.

  12. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  13. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  14. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  15. The influence of site factors on nitrogen mineralization in forest soils ...

    African Journals Online (AJOL)

    The influence of site factors on nitrogen mineralization in forest soils of the ... on N mineralization, as well as the effect of N mineralization on forest productivity. ... of the natural log of mean annual temperature, geological substrate and total N ...

  16. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  17. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at Presistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required, which instead isolates soil N fractions on the basis of bonding strength. In this respect bonding strength should be seen as opposite of proneness to dissolution of released N into water, the habitat of soil microorganisms mediating soil N mineralization. We hypothesize that soil N extracted by water at increasing temperatures would reflect such N fractions with increasing bonding strength, in

  18. Compaction and rotovation effects on soil pore characteristics of a loamy sand soil with contrasting organic matter content

    DEFF Research Database (Denmark)

    Eden, Marie; Schjønning, Per; Møldrup, Per

    2011-01-01

    only mineral fertilizer (MF) or, in addition, animal manure (OF). Undisturbed soil cores were taken from two separate fields in consecutive years at an identical stage in the crop rotation. We measured soil organic carbon (OC), soil microbial biomass carbon (BC), and hot-water extractable carbon (Chot...... OF had larger porosity than that from treatment MF. Treatment P eliminated this difference and significantly reduced the volume of macropores. This interaction between soil organic matter content and mechanical impact was also reflected in the gas diffusion data. Specific air permeability was mainly...

  19. Effect of class F fly ash on fine sand compaction through soil stabilization

    Directory of Open Access Journals (Sweden)

    Siavash Mahvash

    2017-03-01

    Full Text Available This paper presents the results of an experimental investigation carried out to evaluate the effect of fly ash (FA on fine sand compaction and its suitability as a material for embankments. The literature review demonstrates the lack of research on stabilization of sandy material using FA. The study is concerned with the role of FA content in stabilized soil physical characteristics. The main aim of this paper is to determine the optimum quantity of FA content for stabilization of this type of soil. This is achieved through particle size distribution and compaction (standard proctor tests. The sand was stabilized with three proportions of FA (5%, 10% and 15% and constant cement content of 3% was used as an activator. For better comparison, the sand was also stabilized by 3% cement only so that the effect of FA could be observed more clearly. The results were in line with the literature for other types of soil, i.e. as the % of FA increases, reduction in maximum dry density and higher optimum moisture content were observed.

  20. INVESTIGATION OF GEOTECHNICAL SPECIFICATIONS OF SAND DUNE SOIL: A CASE STUDY AROUND BAIJI IN IRAQ

    Directory of Open Access Journals (Sweden)

    Abbas J. Al-Taie

    2013-11-01

    Full Text Available ABSTRACT: While more than half the land surface of Iraq consists of deserts covered mainly with sand dunes, little research has taken place to study the characteristics and the behavior of dune soils. This paper directed toward studying the geotechnical properties of dune sands taken from Baiji city (northwest of Iraq. A vast laboratory testing program was carried out to achieve the purpose of this paper. The physical tests, chemical tests, X-ray diffraction analysis, permeability test, compaction characteristics, compressibility and collapsibility tests; and shear strength tests were included in this program. The results indicate that soil of Baiji sand dune exhibits prefer engineering properties according to their state. As such, this soil is considered suitable for use in geotechnical constructions. ABSTRAK: Walaupun lebih separuh daripada bumi Iraq terdiri daripada gurun yang dipenuhi dengan bukit-bukit pasir, tidak banyak penyelidikan dijalankan untuk mengkaji sifat-sifat dan ciri-ciri tanah pasir  tersebut. Kertas kerja ini menyelidik sifat geoteknikal bukit pasir yang diambil dari pekan Baiji (di bahagian barat utara Iraq.  Program penyelidikan makmal yang menyeluruh telah  dijalankan bagi mencapai objektif kajian ini. Ujian fizikal, ujian kimia, analisis belauan sinar-x, ujian kebolehtelapan, ciri pemadatan, faktor ketermampatan, ujian keruntuhan dan ujian kekuatan ricih diambilkira dalam program ini. Keputusan menunjukkan bahawa tanih bukit pasir Baiji mengutamakan ciri kejuruteraan berdasarkan keadaannya. Oleh itu, tanah ini dianggap sesuai untuk kegunaan pembinaan geoteknikal.

  1. Effect of class F fly ash on fine sand compaction through soil stabilization.

    Science.gov (United States)

    Mahvash, Siavash; López-Querol, Susana; Bahadori-Jahromi, Ali

    2017-03-01

    This paper presents the results of an experimental investigation carried out to evaluate the effect of fly ash (FA) on fine sand compaction and its suitability as a material for embankments. The literature review demonstrates the lack of research on stabilization of sandy material using FA. The study is concerned with the role of FA content in stabilized soil physical characteristics. The main aim of this paper is to determine the optimum quantity of FA content for stabilization of this type of soil. This is achieved through particle size distribution and compaction (standard proctor) tests. The sand was stabilized with three proportions of FA (5%, 10% and 15%) and constant cement content of 3% was used as an activator. For better comparison, the sand was also stabilized by 3% cement only so that the effect of FA could be observed more clearly. The results were in line with the literature for other types of soil, i.e. as the % of FA increases, reduction in maximum dry density and higher optimum moisture content were observed.

  2. Sugarcane Yield Response to Furrow-Applied Organic Amendments on Sand Soils

    Directory of Open Access Journals (Sweden)

    J. Mabry McCray

    2015-01-01

    Full Text Available Organic amendments have been shown to increase sugarcane yield on sand soils in Florida. These soils have very low water and nutrient-holding capacities because of the low content of organic matter, silt, and clay. Because of high costs associated with broadcast application, this field study was conducted to determine sugarcane yield response to furrow application of two organic amendments on sand soils. One experiment compared broadcast application (226 m3 ha−1 of mill mud and yard waste compost, furrow application (14, 28, and 56 m3 ha−1 of these materials, and no amendment. Another experiment compared furrow applications (28 and 56 m3 ha−1 of mill mud and yard waste compost with no amendment. There were significant yield (t sucrose ha−1 responses to broadcast and furrow-applied mill mud but responses to furrow applications were not consistent across sites. There were no significant yield responses to yard waste compost suggesting that higher rates or repeated applications of this amendment will be required to achieve results comparable to mill mud. Results also suggest that enhancing water and nutrient availability in the entire volume of the root zone with broadcast incorporation of organic amendments is the more effective approach for low organic matter sands.

  3. Distribution of natural radionuclides in soils and beach sands of Abana-Çatalzeytin (Kastamonu)

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaz, Aslı, E-mail: akurnaz@kastamonu.edu.tr; Özcan, Murat, E-mail: murat-ozcan@kastamonu.edu.tr; Çetiner, M. Atıf, E-mail: macetiner@kastamonu.edu.tr [Kastamonu University, Arts and Sciences Faculty, Department of Physics, Kastamonu (Turkey)

    2016-03-25

    A gamma spectrometric study of distribution of natural radionuclides in soil and beach sand samples collected from the terrestrial and coastal environment of Abana and Çatalzeytin counties of Kastamonu Province in Turkey was performed with the aim of estimating the radiation hazard of the tourist area and the concentrations of {sup 238}U, {sup 232}Th and {sup 40}K were determined. The activity concentrations of {sup 238}U, {sup 232}Th and {sup 40}K were determined in the ranges 14.95–56.0, 46.5–99.4 and 357.5–871.3 Bqkg{sup −1} for soil samples and the mean concentrations were ascertained as 42.34, 71.24 and 624.18 Bqkg{sup −1}, respectively. In sand samples, {sup 238}U, {sup 232}Th and {sup 40}K contents were varied in the ranges of 13.35-41.6, 30.9-53.4 and 275.5-601.3 Bqkg{sup −1} and the mean concentrations were ascertained as 20.57, 45.05 and 411.71 Bqkg{sup −1}, respectively. The mean annual effective doses were calculated as 113.08 and 69.16 µSvy{sup −1} for the soil and sand samples, respectively.

  4. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    Science.gov (United States)

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  5. Effect of Mineral and Humic Substances on Tailing Soil Properties and Nutrient Uptake by Pennisetum purpureum Schumach

    Directory of Open Access Journals (Sweden)

    Adhe Phoppy Wira Etika

    2015-05-01

    Full Text Available Tin mining produces a by-product sand tailing from soil leaching with characteristic low pH and total organic carbon, and can be reclaimed by providing a suitable ameliorant. When available in situ, ameliorant materials can be economically used as they are required in large amounts. Fortunately, Bangka Belitung has sample stock of such kaolinite-rich minerals that can be utilized for improving soil chemical properties. Extracted organic materials, such as humic substances, can also be utilized as they influence the complex soil reactions, and promote plant growth. Thus, this study aimed to assess the effects of mineral, humic materials and interaction of both material on soil chemical properties and nutrient uptake of Pennisetum purpureum Schumach. A completely randomized design with 2 factors and 3 replications each was employed. Factor 1 was mineral matter is 0; 420; 840; 1.260 Mg ha-1 while Factor 2 was humic material is 0; 0.46; 0.92; 1.38 kg C ha-1. Air-dried samples of tailing were applied with oil palm compost then mixed evenly with mineral and humic materials. Penissetum purpureum Schumach was planted after 4 weeks incubation, and maintained for another 4 weeks. The results demonstrated that the addition of mineral matter significantly increased soil organic carbon content, total N, exchangeable K, Fe, Mn and boosted nutrient - total Ca, Mg and Mn – uptake of the plant. But the application of humic material increased only soil organic carbon content. The interaction of both materials only lowered soil pH.

  6. Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands

    CSIR Research Space (South Africa)

    Aranibar, JN

    2004-03-01

    Full Text Available ). This and the fact that the driest savannas of the Kalahari sands are dominated by Mimosoideae species lead us to hypothe- size that symbiotic N2 fixation is more prevalent in drier sites of the Kalahari transect. Cyanobacteria are also capable of fixing atmospheric... enrichment for soils and plants; lower soil organic C and N; increased symbiotic and non-symbiotic N2 fixation; and de- creased NO losses from the system. The processes and pools analyzed are compared with the isotopic signatures along the precipitation...

  7. Aided Phytostabilization of Copper Contaminated Soils with L. Perenne and Mineral Sorbents as Soil Amendments

    Science.gov (United States)

    Radziemska, Maja

    2017-09-01

    The present study was designed to assess phytostabilization strategies for the treatment of soil co-contaminated by increasing levels of copper with the application mineral amendments (chalcedonite, zeolite, dolomite). From the results it will be possible to further elucidate the benefits or potential risks derived from the application of different types of mineral amendments in the remediation of a copper contaminated soil. A glasshouse pot experiment was designed to evaluate the potential use of different amendments as immobilizing agents in the aided phytostabilization of Cu-contaminated soil using ryegrass (Lolium perenne L.). The content of trace elements in plants and total in soil, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of L. perenne were significantly different in the case of applying mineral amendments to the soil, as well as increasing concentrations of copper. The greatest average above-ground biomass was observed for soil amended with chalcedonite. In this experiment, all analyzed metals accumulated predominantly in the roots of the tested plant. In general, applying mineral amendments to soil contributed to decreased levels of copper concentrations.

  8. Evaluation of Soils Contained in Mineral Tailings at Junin Lake

    International Nuclear Information System (INIS)

    Gomez, Javier; Fabian, Julio; Vela, Mariano

    2008-01-01

    The Junin National Reserve is located between the provinces of Junin and Pasco, Sierra Central, high land of Peru. It was analyzed 20 samples from different geographic locations soil of the Reserve. The results showed us that there are pollutants minerals very harmful to the environment because of some of the centers miners deposited the tailings in the vicinity of the nature reserve. The techniques used for characterization of mineralogical soil were: neutron activation analysis, x-ray fluorescence and spectroscopy Moessbauer by transmission. The analysis done by the method of X-ray fluorescence indicate the presence of Rubidium, tungsten, calcium, iron, nickel, copper, zinc, gold and zirconium. With spectroscopy Moessbauer technique was observed the presence a higher proportion of paramagnetic iron; while thanks to neutron activation analysis, besides these elements, it was observed the presence of Molybdenum, Manganese and a high concentration of arsenic. (authors)

  9. Evaluation of Soils Contained in Mineral Tailings at Junin Lake

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier [Instituto de Investigacion de Fisica, Av. Universitaria s/n, Lima (Peru); Fabian, Julio; Vela, Mariano [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)

    2008-07-01

    The Junin National Reserve is located between the provinces of Junin and Pasco, Sierra Central, high land of Peru. It was analyzed 20 samples from different geographic locations soil of the Reserve. The results showed us that there are pollutants minerals very harmful to the environment because of some of the centers miners deposited the tailings in the vicinity of the nature reserve. The techniques used for characterization of mineralogical soil were: neutron activation analysis, x-ray fluorescence and spectroscopy Moessbauer by transmission. The analysis done by the method of X-ray fluorescence indicate the presence of Rubidium, tungsten, calcium, iron, nickel, copper, zinc, gold and zirconium. With spectroscopy Moessbauer technique was observed the presence a higher proportion of paramagnetic iron; while thanks to neutron activation analysis, besides these elements, it was observed the presence of Molybdenum, Manganese and a high concentration of arsenic. (authors)

  10. Continued studies of soil improvement and revegetation of tailings sand slopes. Environmental Research Monograph 1977-4

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J

    1977-01-01

    Fertilizer studies continued on a 5-year old revegetated area on a tailings sand dike in the Athabasca Tar Sands area. In June 1976 levels of available N, P, K, and S were adequate for plant growth. However, even where fertilizers were added levels of mineral N had dropped to low levels by September. Plant top production early in the 1976 season was increased by application of nitrogen fertilizer during the previous August. Erosion of the area was negligible in 1976. In the new revegetation experiments on steep tailings and slopes, erosion could be minimized by the rapid establishment of a plant cover. Nutrient losses in surface water runoff amounted to a maximum of only 2.6 kg N, 0.4 kg P, 4.1 kg K and 3.4 kg S/ha in the treatments studied. Water infiltration into the dike was rapid and varied between 24.0 and 30.5 cm/h. Estimates suggested that between 13 and 34% of the intercepted rainfall leached below the 30 cm depth while plants were being established during the first year of growth. Estimates of nutrient losses below the root zone (30 cm) ranged between 1.3 and 31.2 kg N/ha; <0.1 kg P/ha; 1.1 and 10.1 kg K/ha and 4.8 to 38.1 kg S/ha in the different treatments studied. The seed mix used contained oats as a nurse crop and 9 grass and 4 legume species. Plant growth was adequate to protect the soil surface from serious erosion. The dry weight production by the oats was considerably greater than for either the grasses or legumes. The cover produced by grasses and legumes alone would have been adequate in terms of erosion control except in those treatments involving heavy applications of mine overburdens. The dry weight production of root and shoot tissues was about the same. Root growth was largely restricted to the surface 15 cm. Total numbers of bacteria, fungi and actinomycetes as well as total soil respiration was considerably greater in soils from the revegetation experiments in comparison to samples of fresh or weathered tailings sand.

  11. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  12. Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils.

    Science.gov (United States)

    Ghislain, Thierry; Faure, Pierre; Biache, Coralie; Michels, Raymond

    2010-11-15

    Reactivity of polycyclic aromatic hydrocarbons (PAHs) in the subsurface is of importance to environmental assessment, as they constitute a highly toxic hazard. Understanding their reactivity in the long term in natural recovering systems is thus a key issue. This article describes an experimental investigation on the air oxidation of fluoranthene (a PAH abundant in natural systems polluted by industrial coal use) at 100°C on different mineral substrates commonly found in soils and sediments (quartz sand, limestone, and clay). Results demonstrate that fluoranthene is readily oxidized in the presence of limestone and clay, leading to the formation of high molecular weight compounds and a carbonaceous residue as end product especially for clay experiments. As demonstrated elsewhere, the experimental conditions used permitted the reproduction of the geochemical pathway of organic matter observed under natural conditions. It is therefore suggested that low-temperature, mineral-catalyzed air oxidation is a mechanism relevant to the stabilization of PAHs in sediments and soils.

  13. Remedial action in areas of enhanced natural background radiation levels (with particular emphasis in areas with mineral sand mining residues)

    International Nuclear Information System (INIS)

    Swindon, T.N.

    1985-01-01

    In areas where individuals may receive doses from natural background sources which are higher than those received in areas of normal background radiation, it may be considered desirable that some remedial action be taken to reduce those doses. Contributions to these higher doses may be through high gamma ray fields from the ground or from the use of local building materials, the intake of food or water derived from the areas or of food covered with dust from the areas, the ingestion of dirt and the inhalation of dust, and radon or thoron. Guidelines for remedial action in areas where residues from mineral sand mining and processing have been deposited are given

  14. Code of Practice on Radiation Protection in the Mining and Processing of Mineral Sands (1982) (Western Australia)

    International Nuclear Information System (INIS)

    1982-01-01

    This Code establishes radiation safety practices for the mineral sands industry in Western Australia. The Code prescribes, not only for operators and managers of mines and processing plants but for their employees as well, certain duties designed to ensure that radiation exposure is kept as low as reasonably practicable. The Code further provides for the management of wastes, again with a view to keeping contaminant concentrations and dose rates within specified levels. Finally, provision is made for the rehabilitation of those sites in which mining or processing operations have ceased by restoring the areas to designated average radiation levels. (NEA) [fr

  15. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  16. How biological crusts are stabilizing the soil surface? The devolpment of organo-mineral interactions in the initial phase

    Science.gov (United States)

    Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.

    2009-04-01

    First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR

  17. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia.

    Science.gov (United States)

    Khandaker, Mayeen Uddin; Asaduzzaman, Khandoker; Sulaiman, Abdullah Fadil Bin; Bradley, D A; Isinkaye, Matthew Omoniyi

    2018-02-01

    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40 K and the natural-series indicator radionuclides 226 Ra and 232 Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226 Ra, 232 Th and 40 K from 451±9 to 2411±65Bqkg -1 (mean of 1478Bqkg -1 ); 232±4 to 1272±35Bqkg -1 (mean of 718Bqkg -1 ) and 61±6 to 136±7Bqkg -1 (mean of 103Bqkg -1 ) respectively. Conversely, in white sands the respective values for 226 Ra and 232 Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg -1 (mean of 9.8Bqkg -1 ) and 4.5±0.7 to 9.4±1.0Bqkg -1 (mean of 5.9Bqkg -1 ); 40 K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg -1 with a mean of 102Bqkg -1 . The mean activity concentrations of 226 Ra and 232 Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226 Ra and 232 Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Vulnerability of soils towards mining operations in gold-bearing sands in Chile

    Science.gov (United States)

    Jordán, Manuel Miguel; González, Irma; Bech, Jaume; Sanfeliu, Teófilo; Pardo, Francisco

    2015-04-01

    The contamination levels in handicraft mining, despite less production and processing less equipment, have high repercussions upon the environment in many cases. High-grade ore extraction, flotation, gravity concentration, acid leaching cementation and mercury amalgamation are the main metallurgical technologies employed. Gold recovery involving milling and amalgamation appears to the most contamination source of mercury. This research work is only a starting point for carrying out a risk probability mapping of pollutants of the gold bearing sands. In southern Chile, with a mild and rainy climate, high levels of pollutants have been detected in some gold placer deposits. The handicraft gold-bearing sands studied are located in X Region of "Los Lagos" in southern Chile. A great quantity of existing secondary deposits in the X Region is located in the coastal mountain range. The lithological units that are found in this range correspond with metamorphic rocks of a Paleozoic crystalline base that present an auriferous content liberated from the successive erosive processes suffered. Metasedimentary and metavolcanic rocks also make up part of this range, but their auriferous load is much smaller. The methodology used in the characterization of the associated mineralization consists of testing samples with a grain size distribution, statistical parameter analysis and mineralogical analysis using a petrographic microscope, XRD and SEM/EDX. The chemical composition was determined by means of XRF and micro-chemical analysis. The major concentrations of heavy minerals are located in areas of dynamic river energy. In the studied samples, more the 75 % of the heavy minerals were distributed among grain sizes corresponding to thin sand (0.25-0.05 mm) with good grain selection. The main minerals present in the selected analysed samples were gold, zircon, olivine, ilmenite, hornblende, hematite, garnet, choromite, augite, epidote, etc. The main heavy metals found were mercury

  19. Weeds of cereal stubble-fields on various soils in the Kielce region. P. 1. Podzolic and brown soils developed from sands and loams

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Occupying cereal stubble-fields weed flora is the most characteristic of the environmental (especially soil conditions. Because of its developing and accomplishing the reproductive stages there it can threatens cultivated plants. They are considered to complete the seed store in a soil by 393 min per ha. The results presented in the paper concern the species composition, number and constancy (S and indice of coverage (D of the cereal stubble-field weed species on various soils in the Kielce region (the central part of Poland. The report was based upon 885 phytosociological records collected in the 268 stands. The records were carried out after the crop harvest, in the latter part of September, in 1976-1980. Soil were chosen on the base of soil maps. The analyse of soil samples, taken at the investigation process, were done in order to confirm the soil quality. The worked out material was divided into three parts. The first part, including 369 phytosociological records collected in the 112 stands (in 90 localities concerns stubble-field weeds on podzolic and brown soils developed from sands (loose, weakly loamy and loamy and loams (light and medium. It was found that these soils were grown by 108 (loamy sands to 132 (weakly loamy sands weed species. Among them 66 species were common for all of the soils. Species composition was not differentiated by the soil type (brown, podzolic within kind of the. soil (sand or loams. Among soil examined, the brown loams was the most abundant with species of high constancy degree (30 species but brown loose sands and podzolic loamy sands was the poorest one with (16 species.

  20. Quantifying the Effect of Soil Water Repellency on Infiltration Parameters Using a Dry Sand

    Science.gov (United States)

    Shillito, R.; Berli, M.; Ghezzehei, T. A.; Kaminski, E.

    2017-12-01

    Water infiltration into less than perfectly wettable soils has usually been considered an exceptional case—in fact, it may be the rule. Infiltration into soils exhibiting some degree of water repellency has important implications in agricultural irrigation, post-fire runoff, golf course and landscape management, and spill and contaminant mitigation. Beginning from fundamental principles, we developed a physically-based model to quantify the effect of water repellency on infiltration parameters. Experimentally, we used a dry silica sand and treated it to achieve various known degrees of water repellency. The model was verified using data gathered from multiple upward infiltration (wicking) experiments using the treated sand. The model also allowed us to explore the effect of initial soil moisture conditions on infiltration into water-repellent soils, and the physical interpretation of the simple water drop penetration time test. These results provide a fundamental step in the physically-based understanding of how water infiltrates into a less than perfectly wettable porous media.

  1. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    OpenAIRE

    Weijing Yao; Jianyong Pang; Yushan Liu

    2018-01-01

    Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry inject...

  2. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  3. Seasonal variations in heavy mineral placer sand from Kalbadevi Bay, Ratnagiri, Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    spaced at ~1.5 km apart (Fig. 1). More details are given in Valsangkar (2005). Beach samples were obtained by push cores from the different beach environment that included dune, berm, hide tide (HT), mid tide (MT) and low tide (LT) area. The samples...) decreased to 12 % during post-monsoon season. Increase of sand content with depth in bern environment is therefore considered related to deposition due to wave and current action. May, 2K4; BP-02 0 20 40 60 80 100 120 Dune Berm HT MT LT Sand % 0-5 5...

  4. Test work of sand compaction pile method on coal ash soil foundation. Sekitanbai jiban ni okeru sand compaction pile koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Goto, K.; Maeda, S.; Shibata, T. (The Kansai Electric Power Co. Inc., Osaka (Japan))

    1992-01-25

    As an electric power supply source after the 1990 {prime}s, Nos. 5 and 6 units are additionally being constructed by Kansai Electric Power in its Himeji Power Station No.1 which is an exclusively LNG burning power station. The additional construction site of those units is of soil foundation reclaimed with coal ash which was used residual product in the existing No.1 through No.4 units. As a result of soil foundation survey, the coal ash layer and sand layer were known to be of material to be possibly liquidized at the time of earthquake. As measures against the liquidization, application was basically made of a sand compaction pile (SCP) method which is economical and abundant in record. However, that method was so short of record in the coal ash layer that its evaluation was difficult in soil reforming effect. Therefore, its applicability was evaluated by a work test on the site, which resulted in a confirmation that the coal ash as well as the sand can be sufficiently reformed by the SCP method. Started in September, 1991, the additional construction of Nos. 5 and 6 units in Himeji Power Station No.1 uses a 1.5m pitch SCP method to reform the soil foundation. 3 refs., 10 figs., 1 tab.

  5. Improved soil characterization for pipe piles in sand in API RP-2A

    International Nuclear Information System (INIS)

    Hossain, M.K.; Briaud, J.L.

    1993-01-01

    In the offshore, most foundations are steel pipe piles and most of them are designed using the API RP 2A guidelines. For axial capacity of piles in sand the current guidelines in many cases show definite discrepancies when compared against actual load capacities of piles. An updated data base analysis shows that there are three major weaknesses in the current guidelines with respect to soil characterization: (a) the consideration of the lateral earth pressure coefficient, K, as a constant (1.0 or 0.8); (b) the consideration of the unit point bearing resistance, q, as a linear function of depth; and (c) the absence of an unambiguous soil parameter determination process based on reliable in-situ test results. In this paper, specific modifications to the current API RP 2A guidelines are proposed on the basis of a data base analysis to account for the discrepancies arising from (a), (b), and (c) above. These modifications will reduce the discrepancies in the current API RP 2A method and increase the accuracy of the prediction of axial capacity of pipe piles in sand. Furthermore this will make the method fundamentally more consistent with soil behavior in deep foundations

  6. Reclamation research for the future at Syncrude Canada Ltd. : soil simulation-revegetation studies on tailings sand

    Energy Technology Data Exchange (ETDEWEB)

    Fedkenheuer, A W; Browne, J

    1979-12-01

    In response to the rising demand for energy in today's world, oil extracted from oil sands has become a viable energy source. Syncrude Canada Ltd. is a 2.2 billion dollar oil sands surface mining and processing venture situated in the Athabasca oil sands of northeastern Alberta. It is located near the town of Fort McMurray approximately 420 km north of Edmonton. During its planned 25 years of mine life, Syncrude expects to produce more than 1 billion barrels of oil from a 2800 ha mine area. Syncrude is committed to reclaiming this immense mine area. The reclamation objective is to return the disturbed site to a vegetative cover having a productivity which is equal to or greater than that which existed prior to disturbance. The reclaimed area must also be compatible with the neighboring natural areas. To accomplish this the vast quantities of tailings sand (that is, the leftover sand from which the oil has been extracted) must be reformed into a soil which is capable of supporting native plant communities. Researchers at Syncrude are looking for ways to use indigenous materials with the tailings sand to simulate a naturally-formed soil. Native plant species are being tested to see how well they will grow in such simulated soils and to evaluate their potential for use in large scale reclamation projects. This brochure describes the soil simulation-revegetation experiments going on at Syncrude.

  7. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  8. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  9. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  10. Basinal analysis of the Ecca and Lowermost Beaufort Beds and associated coal, uranium and heavy mineral beach sand occurrences

    International Nuclear Information System (INIS)

    Ryan, P.J.; Whitfield, G.G.

    1979-01-01

    The regional sediment transport directions, major provenance areas and the controlling palaeotectonic and palaeogeographic frameworks of sedimentation have been reconstructed for the Great Karoo Basin during the Permian. Analyses of this magnitude can be useful in regional exploration programmes for coal, uranium and fossil heavy mineral beach sand deposits. The strong palaeogeographic control on coal deposition is demonstrated by the fact that some of the most important deposits accumulated in topographically low lying areas on the pre-Karoo surface. Such areas formed sheltered environments ideal for the growth and accumulation of organic material. Elsewhere relatively slow rates of subsidence of a broad, protected, low lying delta plain controlled the deposition of coal. North of the main Karoo Basin many of the coal deposits are confined to structurally controlled linear basins. Hundreds of sedimentary uranium occurrences of varying grade and size occur within a broad, discontinuous belt in the Lower Beaufort of the southwestern portion of the Karoo Basin. The uranium mineralization occurs in a variety of fluvial deposits usually rich in carbonaceous material. Minute tuffaceous fragments, reflecting contemporaneous vulcanism, form a minor but significant constituent in some of the uraniferous sandstones. The uranium occurrences are confined largely to the Southern and Western Facies of the Lower Beaufort, and occur mainly within the confines of the Karoo Trough. Consolidated heavy mineral beach deposits have been found in the predominantly fluvio-deltaic Middle Ecca Group of the Northern Facies at a number of widely separated locations. These deposits were formed by shore line processes, such as the reworking of delta-front sands, during periods of temporary marine regression

  11. Medicinal significance of vegetables cultivated over minerals supplemented soil

    International Nuclear Information System (INIS)

    Bangash, J.A.; Arif, M.; Khan, F.; Khan, F.; Khan, A.S.

    2010-01-01

    Three winter season vegetables Fenugreek/Methi (Trigonella-foenum-graceum), Sarson (Brassica-campestris-var-sarson) and Garlic (Allium-sativum) were included in the present study to determine some of their mineral components and see if some of their mineral (Cr, Zn, Mn, Cu, Mg and Fe) content could be increased by supplementation through their roots. Thus calculated amount of Cr, Zn, Mn, Cu, Mg and Fe salts (as fertilizer) were applied in solution form to the roots of vegetables in different concentration as individual or in combinations. These vegetables were grown from seeds in the soil plot. After harvesting vegetables were dried, acid digested and analyzed for Cr, Mn, Zn, Cu, Fe and Mg on Hitachi Zeeman Japan Z-8000, Atomic Absorption Spectrophotometer. Thus in Fenugreek/Methi (Trigonella-foenum-graceum) total increase of Cr, Zn, Mn, Mg and Fe recorded was (10, 94, 10, 256 and 520) mg/Kg dry weight basis; in Sarson (Brassica-campestris-var-sarson) total increase of Cr, Zn, Mn and Mg recorded was (12, 30, 22 and 424) mg/Kg dry weight basis and ( Garlic) (Allium-sativum) total increase of Cr, Zn, Mn, Cu, Mg and Fe recorded was (14, 28, 4, 4, 116 and 10) mg/Kg dry weight basis. From the present study it can be concluded that by changing the soil minerals environment the uptake of required mineral content of vegetables, perhaps could be enhanced. This could play important role in management of diabetes control and also in the elimination of other deficiency diseases like anemia. (author)

  12. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Science.gov (United States)

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  13. Who's on first? Part I: Influence of plant growth on C association with fresh soil minerals

    Science.gov (United States)

    Neurath, R.; Whitman, T.; Nico, P. S.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Mineral surfaces provide sites for carbon stabilization in soils, protecting soil organic matter (SOM) from microbial degradation. SOM distributed across mineral surfaces is expected to be patchy and certain minerals undergo re-mineralization under dynamic soil conditions, such that soil minerals surfaces can range from fresh to thickly-coated with SOM. Our research investigates the intersection of microbiology and geochemistry, and aims to build a mechanistic understanding of plant-derived carbon (C) association with mineral surfaces and the factors that determine SOM fate in soil. Plants are the primary source of C in soil, with roots exuding low-molecular weight compounds during growth and contributing more complex litter compounds at senescence. We grew the annual grass, Avena barbata, (wild oat) in a 99 atom% 13CO2 atmosphere in soil microcosms incubated with three mineral types representing a spectrum of reactivity and surface area: quartz, kaolinite, and ferrihydrite. These minerals, isolated in mesh bags to exclude roots but not microorganisms, were extracted and analyzed for total C and 13C at multiple plant growth stages. At plant senescence, the quartz had the least mineral-bound C (0.40 mg-g-1) and ferrihydrite the most (0.78 mg-g-1). Ferrihydrite and kaolinite also accumulated more plant-derived C (3.0 and 3.1% 13C, respectively). The experiment was repeated with partially digested 13C-labled root litter to simulate litter decomposition during plant senescence. Thus, we are able evaluate contributions derived from living and dead root materials on soil minerals using FTIR and 13C-NMR. We find that mineral-associated C bears a distinct microbial signature, with soil microbes not only transforming SOM prior to mineral association, but also populating mineral surfaces over time. Our research shows that both soil mineralogy and the chemical character of plant-derived compounds are important controls of mineral protection of SOM.

  14. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, Jonatan, E-mail: jonatan.klaminder@emg.umu.se [Department of Ecology and Environmental Science, Umea University, 90187 Umea (Sweden); Farmer, John G. [School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, Scotland (United Kingdom); MacKenzie, Angus B. [Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, Scotland (United Kingdom)

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ({sup 206}Pb/{sup 207}Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ({sup 206}Pb/{sup 207}Pb = 1.170 {+-} 0.002; mean {+-} SD) overlapped with that of the peat ({sup 206}Pb/{sup 207}Pb = 1.16 {+-} 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ({sup 206}Pb/{sup 207}Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by {sup 206}Pb/{sup 207}Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: {yields} We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. {yields} Ombrotrophic peat

  15. The origin of lead in the organic horizon of tundra soils: Atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    International Nuclear Information System (INIS)

    Klaminder, Jonatan; Farmer, John G.; MacKenzie, Angus B.

    2011-01-01

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ( 206 Pb/ 207 Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ( 206 Pb/ 207 Pb = 1.170 ± 0.002; mean ± SD) overlapped with that of the peat ( 206 Pb/ 207 Pb = 1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ( 206 Pb/ 207 Pb = 1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by 206 Pb/ 207 Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources. - Highlights: → We used Pb isotopic composition to aid interpretation of Pb profiles in tundra soils. → Ombrotrophic peat cores were used as records of atmospheric inputs of Pb.

  16. Temporal and spatial dynamics of mineral levels of forage, soil and ...

    African Journals Online (AJOL)

    Temporal and spatial dynamics of mineral levels of forage, soil and cattle blood ... In the plain lands, local variations occurred for soil phosphorus and magnesium. ... Rangeland improvement and supplementation strategies are suggested to ...

  17. Determination of total organic phosphorus in samples of mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  18. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming

    2001-01-01

    . Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  19. Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile

    OpenAIRE

    Moya, Héctor; Verdejo, José; Yáñez, Carolina; Álvaro, Juan E.; Sauvé, Sébastien; Neaman, Alexander

    2017-01-01

    Microbiological bioassays of nitrification and nitrogen mineralization have been used for evaluation of soil quality on metal-contaminated soils. We evaluated the effectiveness of nitrification and nitrogen mineralization bioassays as quality indicators of soil degradation caused by metal contamination. We performed standard tests based on protocols of ISO 14238 (2012) and ISO 15685 (2012) on 90 soil samples collected from agricultural areas in central Chile that were historically contaminate...

  20. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar

    Science.gov (United States)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.

    2015-03-01

    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the

  1. Mineralization and volatilization of ring labelled 14C-2,4-D in three different soils

    International Nuclear Information System (INIS)

    Shrivastwa, M.; Singh, D.K.; Jindal, T.; Agarwal, H.C.

    2001-01-01

    Mineralization and volatilization of ring labelled 14 C-2,4-dichlorophenoxyacetic acid in soil was studied over a period of six weeks under laboratory conditions at 25 deg. C in three different soils collected from three sites, Delhi, Jaipur and Ludhiana. A very slow rate of both mineralization and volatilization was observed in all the three soils. The observed mineralization, was highest for the Delhi soil, 0.93%, followed by the Ludhiana soil, 0.73% and the Jaipur soil 0.14% in 42 days. The extent of volatilization was 0.46% for the Jaipur soil, 0.37% for the Ludhiana soil and 0.32% for the Delhi soil. (author)

  2. Deflouridation of water using physico-chemically treated sand as a ...

    African Journals Online (AJOL)

    Prof. Dr. Mahamadi

    chemically modified sand has potential application as an adsorbent for fluoride ions removal. ... activated carbon, minerals, fish bone charcoal, coconut ... (2003), established that red soils ..... solutions by granular ferric hydroxide (GFH). Water ...

  3. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer

    Science.gov (United States)

    Cohen, Grégory J. V.; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier

    2016-09-01

    Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as 222Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and 222Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. 222Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at this

  4. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  5. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Science.gov (United States)

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  6. Vertical migration of nematodes and soil-borne fungi to developing roots of Ammophila arenaria (L.) link after sand accretion

    NARCIS (Netherlands)

    De Rooij van der Goes, P.C.E.M.; Peters, B.A.M.; Van der Putten, W.H.

    1998-01-01

    Ammophila arenaria benefits from regular burial of windblown beach sand as it allows escape from soilborne pathogens (nematodes and fungi). The present study was done to obtain more insight into the timing and order of migration of the soil organisms towards the newly formed roots. Accordingly,

  7. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada

    Science.gov (United States)

    Shaun A. Watmough; Colin J. Whitfield; Mark E. Fenn

    2014-01-01

    Industrial activities in the oil sands region of Alberta, Canada have resulted in greatly elevated emissions of SO2 and N (NOx and NH3) and there are concerns over possible widespread ecosystem acidification. Acid sensitive soils in the region are common and have very low base cation weathering rates...

  8. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  9. The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand

    Directory of Open Access Journals (Sweden)

    Mostafa El Sawwaf

    2012-10-01

    Full Text Available This paper presents the results of laboratory model tests on the influence of deep excavation-induced lateral soil movements on the behavior of a model strip footing adjacent to the excavation and supported on reinforced granular soil. Initially, the response of the strip footings supported on un-reinforced sand and subjected to vertical loads (which were constant during the test due to adjacent deep excavation-induced lateral soil movement were obtained. Then, the effects of the inclusion of geosynthetic reinforcement in supporting soil on the model footing behavior under the same conditions were investigated. The studied factors include the value of the sustained footing loads, the location of footing relative to the excavation, the affected depth of soil due to deep excavation, and the relative density of sand. Test results indicate that the inclusion of soil reinforcement in the supporting sand significantly decreases both vertical settlements and the tilts of the footings due to the nearby excavation. However, the improvements in the footing behavior were found to be very dependent on the location of the footing relative to excavation. Based on the test results, the variation of the footing measured vertical settlements with different parameters are presented and discussed.

  10. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  11. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    Science.gov (United States)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    Liquefaction has been a source of major damages during severe earthquakes. To evaluate this phenomenon there are several stress, strain and energy based approaches. Use of the energy method has been more focused by researchers due to its advantages with respect to other approaches. The use of the energy concept to define the liquefaction potential is validated through laboratory element and centrifuge tests as well as field studies. This approach is based on the hypothesis that pore pressure buildup is directly related to the dissipated energy in sands which is the accumulated areas between the stress-strain loops. Numerous investigations were performed to find a relationship which correlates the dissipated energy to the soil parameters, but there are not sufficient studies to relate this dissipated energy, known as demand energy, concurrently, to the seismological and the soil parameters. The aim of this paper is to investigate the dependency of the demand energy in sands to seismological and the soil parameters. To perform this task, an effective stress analysis has been executed using FLAC finite difference program. Finn model, which is a built-in constitutive model implemented in FLAC program, was utilized. Since an important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point, a simple numerical framework is presented to assess its generation during a cyclic loading in a given centrifuge test. According to the results, predicted excess pore water pressures did not closely match to the measured excess pore water pressure values in the centrifuge test but they can be used in the numerical assessment of excess pore water pressure with an acceptable degree of preciseness. Subsequently, the centrifuge model was reanalyzed using several real earthquake acceleration records with different seismological parameters such as earthquake magnitude and Hypocentral distance. The accumulated energies (demand energy) dissipated in

  12. Mineral Resource Assessment of Marine Sand Resources in Cape- and Ridge-Associated Marine Sand Deposits in Three Tracts, New York and New Jersey, United States Atlantic Continental Shelf

    Science.gov (United States)

    Bliss, James D.; Williams, S. Jeffress; Arsenault, Matthew A.

    2009-01-01

    geographic, economic, preemptive use, environmental, geologic and political factors. In addition, offshore sand resources should only be considered if the area is seaward of the active zone of significant nearshore sediment transport, about 10 to 12 m in depth, and in sufficiently shallow water so that sand can be extracted within U.S. dredging equipment limits, currently about 40 m in depth. If the material is to be used for beach nourishment, material must be of an appropriate sediment texture and character (grain size, sorting, shape, and color) to match the native beach and have mineralogical properties important to its use. Extraction of sand can disturb or alter the benthic habitat and seafloor ecology, so these factors and other site-specific effects will need to be evaluated for any intended use. These and other factors are not considered in this report but can be expected to reduce the total net volume of sand resources available for production. The purpose of this report is to describe and present results from a probabilistic mineral modeling technique previously applied to onshore mineral resources. This modeling and assessment procedure is being used for the first time to assess and estimate offshore aggregate resources; this study is part of the U.S. Geological Survey (USGS) Marine Aggregates Resources and Processes Project (http://woodshole.er.usgs.gov/project-pages/aggregates/).

  13. Physiochemical Influence of Soil Minerals on the Organic Reduction of Soil Chromium

    International Nuclear Information System (INIS)

    Njoku, P.C.; Nweze, C.A.

    2009-01-01

    The physiochemical influence of soil minerals (Bentonite, Kaolinite, Diatomite,Rutile and Ferrihydrite) on the organic reduction ofchromium (VI) has been investigated with Oxalic acid as the organic reductant. The effect of pH and particle sizes of the soil minerals were also investigated. Results showed that with 0.1mol/dm3 concentration of Oxalic acid, the concentration of chromium(VI) remaining was 0.28, 0.34,0.38, 0.46 and 0.52mg/kgfor Bentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite respectively whereas at 0.5mol/dm3of oxalic acid, the concentration of chromium reduced to 0.20,0.26, 0.30, 0.38, and0.44mg/kg for Bentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite. Increasedconcentration of oxalic acid increased the reduction of chromium(VI) to chromium(III). At pH 5.0, the concentration of chromium(VI)left was 0.28, 0.34, 0.38,0.46 and 0.52mg/kg forBentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite while at pH 2.5, concentration was0.16, 0.22, 0.26, 0.34 and 0.43mg/kg respectively. At particle size of 47-42 microns, concentration of chromium(VI) was 0.28, 0.34,0.38, 0.46, 0.52mg/kg for the same order ofthe soil minerals. At micron sizes of33-29 and 28-25 ranges the concentration ofchromium(VI) left was 0.23, 0.29, 0.33,0.41 and 0.47mg/kg for both micron sizes and corresponding minerals as well. These results showed that above 33-29 micron sizes, the influence of particle size was negligible. (author)

  14. Study on adsorption of 60Co in soils and minerals and transportation of 60Co in bean-soil system

    International Nuclear Information System (INIS)

    Feng Yonghong; Chen Chuanqun; Wang Shouxiang; Zhang Yongxi; Sun Zhiming

    1998-02-01

    The adsorption and desorption of 60 Co in soils and minerals, and the transportation, accumulation, distribution in bean-soil system are studied. The results are as follows: (1) 60 Co was adsorbed rapidly and desorbed difficultly by soils and minerals. The order of the saturated adsorption rate and K d (distribution coefficient) of 60 Co at the balance value was: kieselguhr>paddy soil (loamy clay)>yellowish red soil>kaoline>perlite>silt-loamy soil. The order of D f (desorption factor) value was: yellowish red soil>silt-loamy soil>kaoline>perlite>paddy soil (loamy clay)>kieselguhr. The dynamic behavior of 60 Co in the soils and minerals could be described as a closed two--compartment model. (2) After 60 Co was introduced to the bean-soil system, the concentration of 60 Co in the root is about 10.4∼23.3 times of that in the stalk, and 30 times of that in the bean pod. The negative correlation between the concentration of 60 Co in the soil and depth was detected, over 90 per cent of 60 Co was retained within 6 centimeters of the surface layer, the half residual depth was 2 centimeters. An opened two-compartment model was applied to describe the behavior of 60 Co in the bean-soil system

  15. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.

    Science.gov (United States)

    Keith, Alexandra; Singh, Balwant; Singh, Bhupinder Pal

    2011-11-15

    Biochar is considered as an attractive tool for long-term carbon (C) storage in soil. However, there is limited knowledge about the effect of labile organic matter (LOM) on biochar-C mineralization in soil or the vice versa. An incubation experiment (20 °C) was conducted for 120 days to quantify the interactive priming effects of biochar-C and LOM-C mineralization in a smectitic clayey soil. Sugar cane residue (source of LOM) at a rate of 0, 1, 2, and 4% (w/w) in combination with two wood biochars (450 and 550 °C) at a rate of 2% (w/w) were applied to the soil. The use of biochars (~ -36‰) and LOM (-12.7‰) or soil (-14.3‰) with isotopically distinct δ(13)C values allowed the quantification of C mineralized from biochar and LOM/soil. A small fraction (0.4-1.1%) of the applied biochar-C was mineralized, and the mineralization of biochar-C increased significantly with increasing application rates of LOM, especially during the early stages of incubation. Concurrently, biochar application reduced the mineralization of LOM-C, and the magnitude of this effect increased with increasing rate of LOM addition. Over time, the interactive priming of biochar-C and LOM-C mineralization was stabilized. Biochar application possesses a considerable merit for long-term soil C-sequestration, and it has a stabilizing effect on LOM in soil.

  16. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  17. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions

  18. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands.

    Science.gov (United States)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.

    2017-12-01

    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is

  19. Mineral capacity of peat soils organic matter and entry of Cs137 into perennial grasses

    International Nuclear Information System (INIS)

    Tsybulko, N.N.; Shapsheeva, T.P.; Arastovich, T.V.; Zajtsev, A.A.

    2010-01-01

    The results of the study of peat soils organic substance structure with various peat ash content are given. Contents of active organic substance and carbon of microbial biomass in peat and boggy soil with 20% peat ash content is 3.0-3.5 and 1.6-1.8 times higher correspondingly, than thus in peaty-gley soil with 70% peat ash content. At peat and boggy soil with low peat ash content Cs137 transition into hay is minimal. 14 times higher than at peaty-gley soil with 70% peat ash content. Application of fertilizers at peat and boggy soil reduces Cs137 transition factor 4.7-6.4 times if compared to peaty-gley soil (2.1-4.7 times). Close positive interconnection between Cs137 transition factors from soil into the plants and organic carbon soil contents, absolute contents of potentially mineralized carbon and mineralization degree

  20. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  1. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  3. Gross mineralization of nitrogen in fertile soils. Effects of the tillage system and soil depths

    International Nuclear Information System (INIS)

    Videla, C.; Echeverria, H.; Studdert, G.

    2002-01-01

    A greenhouse experiment was carried out with the aim of determining the effect of different tillage systems and soil depths on gross mineralization rates (TMB). The studied soil was a Typic Argiudoll Petrocalcic Paleudoll complex, under: conventional tillage for 23 yr. (PC treatment); no tillage for 6 yr. (PD treatment), and pasture for 4 yr. (P treatment) and 0-10 and 10-20 sampling depths. TMB were estimated through 15 N dilution technique, by addition of labelled (NH 4 ) 2 SO 4 (10% 15 N at. exc.) at days 0, 7, 21 and 35. Twenty-four and 72 h after each addition, N inorganic content and 15 N enrichment of inorganic were determined on 2M KCl extracts in order to estimate the TMB. At 0-10 cm depth, TMB increase until day 21 and decreased afterwards. There were no significant differences between tillage treatments. At 10-20 cm soil depth PC and PD TMB were constant during the whole analysed period. P treatment had a quadratic adjust, with negative linear component. P TMB was lower than PC and PD until day 21 but afterwards it was significantly higher. These results suggest the presence in the pasture of an organic matter fraction, which mineralizes lately but with a high rate. (author)

  4. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    International Nuclear Information System (INIS)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G.

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg −1 ) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. -- Highlights: •Phenanthrene desorption and mineralization compared in soils with activated carbon, charcoal or compost. •Only activated charcoal and biochar hindered both desorption and mineralization. •A linear relationship was found between the extents desorbed and mineralized. •Modelling indicated that bacterial activity was not limiting but that desorption was. -- Extraction into an exhaustive silicone sink measures the maximum phenanthrene desorption from soils with amendments, and this is reflected in the extent of mineralization

  5. Effect of heavy store dressing with rock phosphate on a fine sand soil

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1969-05-01

    Full Text Available Results are reported of a long-term field trial on acid fine sand soil in which the effects of store dressing with rock phosphate in amounts of 0, 4000, 8000, or 12000 kg/ha was studied comparing them with an annual application of 200 kg/ha of superphosphate using the split plot technique. In the first four years, more thoroughly studied, the response to the store dressing with rock phosphate was distinct both in the dry matter yields and the phosphorus content of the cereal and the red clover-timothy hay. The differences between the various rates of rock phosphate treatments were not statistically significant, though there was some tendency to higher results with larger amounts of rock phosphate. The annual applications of superphosphate as surface dressing to the ley did not brought about any significant increase in the dry matter yield of the rock phosphate plots, and although they tended to increase the phosphorus content of hay, the increase was statistically significant only in a few cases. No effect was found on the phosphorus content of barley grain and straw in the ninth experimental year. No differences were found in the calcium, magnesium, or potassium content of the plant samples from the variously treated plots. Nitrogen content of clover and timothy was increased by both rock phosphate and superphosphate, particularly in the first year ley. In this soil, 4000 kg/ha of rock phosphate was effective enough to produce higher dry matter yields of hay, with equal phosphorus content, than the annual application of 200 kg/ha of superphosphate. Soil analyses indicated that this soil represented the extreme pattern of phosphorus retention in which applied phosphate is almost completely retained as aluminium bound forms of the fluoride soluble fraction supposed to be fairly available. It was suggested that in soils which retain the slowly dissolving rock phosphate phosphorus mainly as less available iron bound forms, heavy applications of

  6. Mineralization of polycyclic and n-heterocyclic aromatic compounds in hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Grosser, R.J.; Warshawsky, D.; Vestal, J.R.

    1995-01-01

    The comparative mineralization of eight polycyclic aromatic compounds in five soils collected from an abandoned coal tar refinery in eastern Ohio was determined. The soils showed differences only in total extractable hydrocarbon content of the soil chemical characteristics measured. The compounds studied included five polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and carcinogenic benz[a]anthracene and benzo[a]pyrene) and three N-heterocyclic aromatics (9H-carbazole, and carcinogenic 7H-dibenzo[c,g]carbazole and dibenz[a,j]acridine). Mineralization was measured by serum bottle radiorespirometry. Only phenanthrene, anthracene, pyrene, benz[a]anthracene, and carbazole were mineralized in the soils after 64 d. Two of the soils with eight to 15 times the hexane -extractable hydrocarbon content consistently showed more rapid initial rates and higher overall extents of mineralization compared to the other three soils. Overall extents of mineralization ranged from 38 to 55% for phenanthrene, 10 to 60% for anthracene, 25 to 70% for pyrene, background to 40% for benz[a]anthracene, and 25 to 50% for carbazole after 64 d. Extents of mineralization by indigenous soil microbiota appear to be more dependent on the chemical characteristics of the soil and not soil total biomass and activity. Cultures capable of degrading phenanthrene, anthracene, and pyrene were obtained following enrichment techniques. A Mycobacterium sp. capable of degrading these three compounds was isolated and reintroduced into two of the soils, resulting in mineralization enhanced above that of the indigenous soil microbial population. These data indicate that the future success of bioremediation methods relies on the characterization of environmental parameters affecting microbial degradation as well as the isolation of microbial populations that can reduce toxicity in the environment

  7. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  8. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  9. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    Science.gov (United States)

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  10. Soil N mineralization profiles of co-existing woody vegetation islands at the alpine tree line

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Godbold, Douglas

    2017-01-01

    Roč. 136, 5-6 (2017), s. 881-892 ISSN 1612-4669 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Tree line * Soil N mineralization * in situ field incubation * Soil N availability * Resin capsule * Woody vegetation islands Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.017, year: 2016

  11. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    Science.gov (United States)

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.

  12. Chemical composition of the humus layer, mineral soil and soil solution of 200 forest stands in the Netherlands in 1995

    NARCIS (Netherlands)

    Leeters, E.E.J.M.; Vries, de W.

    2001-01-01

    A nationwide assessment of the chemical composition of the soil solid phase and the soil solution in the humus layer and two mineral layers (0-10 cm and 10-30 cm) was made for 200 forest stands in the year 1995. The stands were part of the national forest inventory on vitality, included seven tree

  13. Relative nitrogen mineralization and nitrification potentials in relation to soil chemistry in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1996-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oak-dominated, unmanaged forest stands in seven USDA Forest Service experimental forests (EF) ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia.

  14. Effect of clay minerals on the stabilization of black cotton and lateritic soils

    International Nuclear Information System (INIS)

    Nyambok, I.O.

    1986-01-01

    The problem associated with black cotton and lateritic soils because of the swelling-shrinkage property of their constituent clay minerals were investigated. Samples of black cotton lateritic soils were collected from different parts of Kenya. The samples were analysed for their mineral compositions and later treated with hydrated lime in order to eliminate the swelling shrinkage behaviour. The samples were subsequently tested for their engineering properties in a soil mechanics laboratory using shear box and Casagrande apparatus. It was found that the chemical treatment of the soils with hydrated lime removes their plastic property and improves their shear strength. (author)

  15. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    Science.gov (United States)

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)).

  16. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    International Nuclear Information System (INIS)

    Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-01-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  17. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  18. Chromate Adsorption on Selected Soil Minerals: Surface Complexation Modeling Coupled with Spectroscopic Investigation.

    Czech Academy of Sciences Publication Activity Database

    Veselská, V.; Fajgar, Radek; Číhalová, S.; Bolanz, R.M.; Göttlicher, J.; Steininger, R.; Siddique, J.A.; Komárek, M.

    2016-01-01

    Roč. 318, NOV 15 (2016), s. 433-442 ISSN 0304-3894 Institutional support: RVO:67985858 Keywords : surface complexation modeling * chromate * soil minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  19. Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil

    Science.gov (United States)

    Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.

    2017-12-01

    Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering

  20. Microbial mineralization processes in Antarctic soils and on plant material

    International Nuclear Information System (INIS)

    Boelter, M.

    1991-01-01

    Soil samples and different plant material from the maritime and continental Antarctic were analyzed for their actual and potential respiration by different methods: total CO 2 -evolution, biological oxygen demand and use of 14C-labeled glucose which may serve as a model for dissolved organic carbohydrates. Since these methods are argued to indicate the mineralization of different fractions of the total organic material by different actual populations, a comparison between the data from these techniques is carried out with regard to their contributions of the total organic matter debris in these environments. The part of respired material calculated from 14C-studies may contribute to nearly 90% of the metabolized material. Results show that the individual fractions differ significantly with respect to the parent material. There are several aspects which have to be taken into account when looking at these data: the original content of water; the contents of dissolved and particulate carbohydrates; and, other edaphic factors. Of special interest is the overall respiration of plant material (mainly lichens) which is strongly influenced by the bacterial respiration of dissolved carbohydrates, probably by ongrowing organisms due to their efficiency in using dissolved organic matter. In terms of respiratory activity, the (bacterial) respiration of glucose may contribute to more than 50% of the total CO 2 -evolution. This influences considerably the modeling of overall respiration of plant material in those environments where close interactions between different parts of the system are very important for their life strategy. Further, the bacterial part may be an overlooked part of metabolic rates in Antarctic lichens

  1. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  2. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xuejun; ZHOU Guoyi; HUANG Zhongliang; ZHOU Cunyu; LI Jiong; SHI Junhui; ZHANG Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Gnangdong Province, China). The soils were incubated at 25℃ for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4+-N and NO3--N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and

  3. Soil Fertility and Radicular System Depth of Sand Coastal Plain Forest

    Science.gov (United States)

    Casagrande, José Carlos; Akemi Sato, Claudia; Reis-Duarte, Rose Mary; Soares, Marcio Roberto; Sérgio Galvão Bueno, Mário

    2010-05-01

    The sand coastal plain vegetation (Restinga Forest) is a type of ecosystem associated with the Atlantic Forest constituted of mosaics, which occur in areas of great ecological diversity. This vegetation is currently assigned as edaphic communities. In this study we present data on soil fertility in different vegetation physiognomies to discuss on abiotic factors related to Restinga Forest stability and recovery potential. This work was carried out in several points of Restinga Forest in the litoral coast of the state of São Paulo, namely: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W); State Park of Anchieta Island, in the city of Ubatuba (45°02' e 45°05' W / 23°31' e 23° 45' S); Restinga Forest in the residential joint ownership Riviera of São Lourenço, in the city of Bertioga (46°08' W e 23°51' S); Ecological Station Juréia-Itatins, Ecological Station of Chauas , in the city of Iguape (24°45' S e 47°33' W) and State Park of Cardoso Island, Pereirinha Restinga Forest, in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W), Brazil. Sampling was carried out as follows in every area above mentioned. One sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. All areas investigated showed very low contents of phosphorous, calcium and magnesium. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil. The nutritional reserve is present primarily in a depth of 15 cm, although mainly in the vegetable biomass. The level of calcium and magnesium were mainly low in the subsurface soil layer, associate with high concentration of

  4. Characterization of Minerals: From the Classroom to Soils to Talc Deposits

    Science.gov (United States)

    McNamee, Brittani D.

    2013-01-01

    This dissertation addresses different methods and challenges surrounding characterizing and identifying minerals in three environments: in the classroom, in soils, and in talc deposits. A lab manual for a mineralogy and optical mineralogy course prepares students for mineral characterization and identification by giving them the methods and tools…

  5. Soil respiration and net N mineralization along a climate gradient in Maine

    Science.gov (United States)

    Jeffery A. Simmons; Ivan J. Fernandez; Russell D. Briggs

    1996-01-01

    Our objective was to determine the influence of temperature and moisture on soil respiration and net N mineralization in northeastern forests. The study consisted of sixteen deciduous stands located along a regional climate gradient within Maine. A significant portion of the variance in net N mineralization (41 percent) and respiration (33 percent) was predicted by...

  6. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    Science.gov (United States)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  7. Mineral oil residues in soil and apple under temperate conditions of Kashmir, India.

    Science.gov (United States)

    Ahmad, Malik Mukhtar; Wani, Ashraf Alam; Sofi, Mubashir; Ara, Ishrat

    2018-03-09

    The study was undertaken to ascertain the persistence of Orchol-13, a mineral oil used against insect pests of horticultural fruit crops in soil and apple following the dormant and summer applications of 2 and 0.75% respectively. Soil samples were collected during dormant, while as both soil and apple samples were collected during summer season. Samples were collected at 0, 1, 3, and 5 days post treatment in both the seasons. Average recoveries of paraffinic constituents (which constitute about 60% of mineral oils by composition) from soil and apple at 1 μg ml -1 spiking level were found to be 74.18 and 76.81% respectively. The final quantification of paraffinic constituents was performed on gas chromatograph equipped with flame ionization detector (GC-FID). No paraffinic constituents of mineral oil could be detected in soil and apple at 0 day post treatment in both the seasons.

  8. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  9. Biological N2 fixation by chickpea in inter cropping system on sand soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant nutrition and fertilization unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea incorporating. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. In cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes, where benefit is found, it is mainly due to sparing of soil N rather than direct transfer from the legume. Inter cropped wheat, has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system an increase of wheat grain yield against the sole system, regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between or gain sources reflected the superiority of compost under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil systems. While totally organic materials had accumulates more N in grains than those of untreated treated control. In the some time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. A mong the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (%Ndfa) shoots and seeds of chickpea plants: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  10. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  11. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  12. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  13. Researches concerning the influence of inorganic substratum over glyphosate mineralization capacity in soil

    Directory of Open Access Journals (Sweden)

    Monica NEGREA

    2009-05-01

    Full Text Available The object of this work was to study the dynamic of glyphosate mineralization in different agricultural soils characteristic to the west part of Romania: Black Chernozem, Typical Gleysol, Phaeozom and Slight Vertisol with moderate carbonatation. The degradation experiment was conducted under controlled laboratory conditions using Glyphosatephosphonomethyl- 14C-labeled with specific activity 2,2mCi/mmol. The experimental results indicated that the dynamic of glyphosate mineralization until the stage CO2 in present of inorganic compounds is different for each soil, the mineralization of the herbicide is important in the first days of incubation and then decreases with time until the end of experimentation.

  14. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    Science.gov (United States)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  15. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  16. Response of Soil Bulk Density and Mineral Nitrogen to Harvesting and Cultural Treatments

    Science.gov (United States)

    Minyi Zhou; Mason C. Carter; Thomas J. Dean

    1998-01-01

    The interactive effects of harvest intensity, site preparation, and fertilization on soil compaction and nitrogen mineralization were examined in a loblolly pine (Pinus taeda L.) stand growing on a sandy, well-drained soil in eastern Texas. The experimental design was 2 by 2 by 2 factorial, consisting of two harvesting treatments (mechanical whole-...

  17. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  18. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Science.gov (United States)

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  19. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Science.gov (United States)

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  20. The hydrolytic enzymes produced by fungi strains isolated from the sand and soil of recreational areas

    Science.gov (United States)

    Kurnatowski, Piotr; Wójcik, Anna; Błaszkowska, Joanna; Góralska, Katarzyna

    2016-10-01

    The pathogenicity of fungi depends on, inter alia, the secretion of hydrolytic enzymes. The aim of this study was to determine the enzymatic activity of yeasts and yeast-like fungi isolated from children’s recreation areas, and compare the results with literature data of strains obtained from patients with mycoses. The enzymatic activity of 96 strains was assessed using an API ZYM kit (bioMerieux, France) and their biotypes were established. The fungal species were found to produce from 16 to 19 hydrolases: the most active were: leucine arylamidase (e5), acid phosphatase (e10), alkaline phosphatase (e1), naphthol-AS-BI-phosphohydrolase (e11), esterase – C4 (e2), β-galac - tosidase (e13) and β-glucosidase (e16). In addition, 13 biotypes characteristic of particular species of fungi were defined. Most strains could be categorized as biotypes C2 – 39.5% and A – 26%. The examined fungal strains isolated from recreational areas have selected biochemical characteristics i.e. production of hydrolases, which demonstrate their pathogenicity. They produce a number of enzymes which are also present in strains isolated from patients with mycoses, including: leucine arylamidase (e5), acid phosphatase (e10), naphthol-AS-BI-phosphohydrolase (e11) and alkaline phosphatase (e1). The biotypes identified in the course of this study (A, B3, B4, C1, C6 and D3) have been also reported in cases of fungal infection. Therefore, the fungi present in the sand and soil of recreational have pathogenic properties and are possible factors of fungal infection among children.

  1. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  2. Study on Mineral Weathering induced by Soil Ecosystem Engineers

    OpenAIRE

    阿部, 進

    2016-01-01

    研究成果の概要(和文):本研究ではまず、土壌動物による鉱物風化作用に関する研究の現状と課題を明らかにするため、既往の研究のレビューを行った。また、ナイジェリア産のシロアリ塚土壌の試料を用いて、対照土壌との鉱物組成の比較を行なった結果、土壌動物が鉱物風化に及ぼす影響は小さいため、野外調査でその影響を定量的に調査することが難しいことを確認した。他方、熱帯の強風下土壌におけるシロアリの営巣活動に起因する遊離酸化鉱物の移動・集積が土壌生成過程で無視できない影響を及ぼすことを示唆した。この他、インドネシアの火山灰土壌地帯において、土地利用や管理主方が土壌動物相の変遷と非晶質鉱物の含有量に変化をもたらすことを明らかにした。研究成果の概要(英文):First of all, the present study reviewed the literature on mineral weathering by soil fauna to highlight the current status and future challenges in this study topic. Then, the...

  3. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-11-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  4. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar

    Science.gov (United States)

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  5. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  6. On the recovery of oil-polluted soils with mineral zeolite

    International Nuclear Information System (INIS)

    Rasulova, Z.Q.; Huseynzade, G.A.; Hajiyeva, S.A.

    2014-01-01

    Full text : The purpose of this study - ecological analysis of soil invertebrates in the oil-polluted soils and testing adsorbent for purificatication of such soils. In the study cenoses of Absheron 48 species of soil invertebrates belonging to 5 families, 13 orders, 24 families were revealed. For these purposes the local mineral -zeolite was applied. The results of experiments showed that refinement with zeolite makes positive impact on development of fauna of soil invertebrates. The studies were conducted in 2011-2013 in locally contaminated areas of oilfields of Absheron Peninsula. Radiation background in the studied areas ranges from 50-600 mR/hr

  7. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    ), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative...... amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC...

  8. Chemical compositions and sources of organic matter in fine particles of soils and sands from the vicinity of Kuwait city.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T

    2006-09-01

    Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.

  9. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  10. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  11. Transport and Deposition of Suspended Soil-Colloids in Saturated Sand Columns

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Understanding colloid mobilization, transport and deposition in the subsurface is a prerequisite for predicting colloid‐facilitated transport of strongly adsorbing contaminants and further developing remedial activities. This study investigated the transport behavior of soil‐colloids extracted from...... caused tailing of colloid BTCs with higher reversible entrapment and release of colloids than high flow velocity. The finer Toyoura sand retained more colloids than the coarser Narita sand at low pH conditions. The deposition profile and particle size distribution of colloids in the Toyoura sand clearly...

  12. Improvement of nitrogen utilization and soil properties by addition of a mineral soil conditioner: mechanism and performance.

    Science.gov (United States)

    Yan, Xiaodan; Shi, Lin; Cai, Rumeng

    2018-01-01

    A mineral soil conditioner (MSC) composed of activated potash feldspar, gypsum, and calcium carbonate and containing an amount of available mineral nutrients, is shown to be effective for plant growth and acidic soil amelioration. In this study, a field test was conducted over four rice seasons by examining treatment with control check (CK), MSC, biological active carbon, and lime to investigate the nitrogen-use efficiency and mechanism of soil characteristic variations due to the desilicification and allitization of soil as well as the unrestrained use of nitrogen (N) fertilizer in recent years. Influences of MSC on the xylem sap intensity and mean rice yields were evaluated, and the soil type was also analyzed using the FactSage 6.1 Reaction, phase diagram, and Equilib modules. The results of the field trial showed that MSC application increased the xylem sap intensity and nitrogen export intensity by 37.33-39.85% and 31.40-51.20%, respectively. A significant increase (5.63-15.48%) in mean grain yields was achieved with MSC application over that with biological active carbon and lime application. The effects of MSC had a tendency to increase with time in the field experiment results, and grain yields increased after the initial application. The new formation of clay minerals exhibits a significant influence on [Formula: see text] fixation, especially for 2:1 phyllosilicates with illite, owing to the interlayers of the clay minerals. Our preliminary results showed that kaolinite, the main 1:1 phyllosilicate clay mineral in ferralsol, transformed to illite at room temperature as a consequence of the presence of H 4 SiO 4 and available K + supplied by MSC. This indicated that improving the soil quality combined with reducing N losses from soils is an efficient way to control non-point source pollution from agriculture without the risk of decreased in grain yield.

  13. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  14. Determination of soil weathering rates with U-Th series disequilibria: approach on bulk soil and selected mineral phases

    International Nuclear Information System (INIS)

    Gontier, Adrien

    2014-01-01

    The aim of the present study was to evaluate weathering and soil formation rates using U-Th disequilibria in bulk soil or separated minerals. The specific objectives of this work were to evaluate the use of U-Th chronometric tools 1) regarding the impact of a land cover change and the bedrock characteristics 2) in selected secondary mineral phases and 3) in primary minerals. On the Breuil-Chenue (Morvan) site, no vegetation effect neither a grain size effect was observed on the U-Th series in the deepest soil layers (≤ 40 cm). The low soil production rate (1-2 mm/ka) is therefore more affected by regional geomorphology than by the underlying bedrock texture. In the second part of this work, based on a thorough evaluation of different techniques, a procedure was retained to extract Fe-oxides without chemical fractionation. Finally, the analysis of biotites hand-picked from one of the studied soil profile showed that U-series disequilibria allow to independently determinate the field-weathering-rate of minerals. (author)

  15. Stress tolerance of soil fungal communities from native Atlantic forests, reforestations, and a sand mining degraded area.

    Science.gov (United States)

    Ferreira, Paulo C; Pupin, Breno; Rangel, Drauzio E N

    2018-06-01

    Microorganisms are essential to the functionality of the soil, particularly in organic matter decomposition and nutrient cycling, which regulate plant productivity and shape the soil structure. However, biotic and abiotic stresses greatly disrupt soil fungal communities and, thereby, disturb the ecosystem. This study quantified seasonal tolerances to UV-B radiation and heat of fungal communities, which could be cultured, found in soil from two native Atlantic forest fragments called F1 and F2, five reforested areas (RA) planted in 1994, 1997, 2004, 2007, and 2009 with native species of the Atlantic forest, and one sand mining degraded soil (SMDS). The cold activity of the soil fungal communities (FC) from the eight different areas was also studied. Higher tolerance to UV-B radiation and heat was found in the FC from the SMDS and the 2009RA, where the incidence of heat and UV radiation from sun was more intense, which caused selection for fungal taxa that were more UV-B and heat tolerant in those areas. Conversely, the FC from the native forests and older reforested sites were very susceptible to heat and UV-B radiation. The cold activity of the soil FC from different areas of the study showed an erratic pattern of responses among the sampling sites. Little difference in tolerance to UV-B radiation and heat was found among the FC of soil samples collected in different seasons; in general soil FC collected in winter were less tolerant to UV-B radiation, but not for heat. In conclusion, FC from SMDS soil that receive intense heat and UV radiation, as well as with low nutrient availability, were more tolerant to both UV-B radiation and heat. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Predicting Potential C Mineralization of Tundra Soils Using Spectroscopy Techniques

    Science.gov (United States)

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better unde...

  17. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  18. Soil Survey Geographic (SSURGO) database for White Sands National Monument, New Mexico

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  19. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  20. Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil

    DEFF Research Database (Denmark)

    Sørensen, P.; Ladd, J.N.; Amato, M.

    1996-01-01

    The influence of grinding plant materials on the microbial decomposition and the distribution of plant-derived carbon in soil was measured. Ground and unground, C-14-labelled subclover leaves (Trifolium subterraneum) were added to a loamy sand and clay soil and incubated for 42 d at 25 degrees C....

  1. Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and (NH4+)-N-15-N was determined in three soils of different textrue. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N...... and from an equivalent amount of NH4+-N in ((NH4)-N-15) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4+-N...... were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4+-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)(2)SO4-N in a sand soil, a sandy loam soil...

  2. Phosphorus conditions at various depths in some mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1963-05-01

    Full Text Available The fractionation method of CHANG and JACKSON (2 was used for the analysing of the distribution of inorganic phosphorus in the topsoil and subsoil of twelve virgin and twelve cultivated soils from various parts of the country; two virgin soils and twenty cultivated soils were studied down to the depths of 60 cm or 70 cm, one even to 2 m. In the more intensively podsolized virgin soils the surface layers, particularly the A2-horizon, are very poor in all the forms of inorganic phosphorus while the enrichment layer will contain fairly high amounts of iron and aluminium bound phosphorus. The application of fertilizers and the other cultivation managements tend to accumulate aluminium and iron bound phosphorus in the plough layer. In some soils the minimum content of calcium bound phosphorus occurs in the layer below the plough layer, but an increase with the depth seems to be typical to it in all the non-Litorina soils, while the first two fractions usually decrease with the depth. In the Litorina soils the iron bound phosphorus is dominant in all the layers studied, but the content of reductant soluble phosphorus is low in these soils, and their content of calcium bound phosphorus is higher than the content of phosphorus bound by aluminium. The predominance of calcium phosphate in the subsoil and the rather low content of reductant soluble and occluded fractions indicate that the chemical weathering in most of our soils is not yet at an advanced stage. The test values determined were in accordance with the results of the fractionation and the estimation of ammonium oxalate soluble aluminium and iron.

  3. Aerobic mineralization of selected organic nutrient sources for soil ...

    African Journals Online (AJOL)

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  4. correlation studies of mineral nutrients' concentrations in soils

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    Samples were labeled and processed for soil and plant laboratory analyses. The parameters analyzed .... crushed with pestle, and mortar into finer particles before subjected to the ..... Economic Botany in the Tropics. Macmillan India. p. 203.

  5. Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments

    International Nuclear Information System (INIS)

    Syed, H.S.

    1999-01-01

    Adsorption studies of thorium and uranium radionuclides on 9 different pure clay minerals and 4 local Malaysian soil sediments were conducted. Solution containing dissolved thorium and uranium at pH 4.90 was prepared from concentrate sludges from a long term storage facility at a local mineral processing plant. The sludges are considered as low level radioactive wastes. The results indicated that the 9 clay minerals adsorbed more uranium than thorium at pH ranges from 3.74 to 5.74. Two local Malaysian soils were observed to adsorb relatively high concentration of both radionuclides at pH 3.79 to 3.91. The adsorption value 23.27 to 27.04 ppm for uranium and 33.1 to 50.18 ppm for thorium indicated that both soil sediments can be considered as potential enhanced barrier material for sites disposing conditioned wastes containing uranium and thorium. (author)

  6. The distribution of selected elements and minerals in soil of the conterminous United States

    Science.gov (United States)

    Woodruff, Laurel G.; Cannon, William F.; Smith, David; Solano, Federico

    2015-01-01

    In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1600 km2, 4857 sites) geochemical and mineralogical survey of soil of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Three soil samples were collected, if possible, from each site; (1) a sample from a depth of 0 to 5 cm, (2) a composite of the soil A-horizon, and (3) a deeper sample from the soil C-horizon or, if the top of the C-horizon was at a depth greater than 100 cm, from a depth of approximately 80–100 cm. The The major mineralogical components in samples from the soil A- and C-horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling ended in 2010 and chemical and mineralogical analyses were completed in May 2013. Maps of the conterminous United States showing predicted element and mineral concentrations were interpolated from actual soil data for each soil sample type by an inverse distance weighted (IDW) technique using ArcGIS software. Regional- and national-scale map patterns for selected elements and minerals apparent in interpolated maps are described here in the context of soil-forming factors and possible human inputs. These patterns can be related to (1) soil parent materials, for example, in the distribution of quartz, (2) climate impacts, for example, in the distribution of feldspar and kaolinite, (3) soil age, for example, in the distribution of carbonate in young glacial deposits, and (4) possible anthropogenic loading of phosphorus (P) and lead (Pb) to surface soil. This new geochemical and mineralogical data set for the conterminous United States represents a major step forward from prior national-scale soil geochemistry data and provides a robust soil data framework for the United States now and into the future.

  7. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data

    NARCIS (Netherlands)

    Ros, G.H.

    2012-01-01

    Extractable organic matter (EOM) fractions have been used to assess the capacity of soils to supply nitrogen (N), but their role in N mineralization and their potential to improve agricultural fertilizer management are still under debate. This paper shows evidence that the relationship between EOM

  8. Chemical composition of the humus layer, mineral soil and soil solution of 150 forest stands in the Netherlands in 1990

    NARCIS (Netherlands)

    Vries, de W.; Leeters, E.E.J.M.

    2001-01-01

    A nationwide assessment of the chemical composition of the humus layer, mineral topsoil (0-30 cm) and soil solution in both topsoil and subsoil (60-100 cm) was made for 150 forest stands in the year 1990. The stands, which were part of the national forest inventory on vitality, included seven tree

  9. Influence of iron redox cycling on organo-mineral associations in arctic tundra soils

    Science.gov (United States)

    Herndon, E.; AlBashaireh, A.; Duroe, K.; Singer, D. M.

    2016-12-01

    Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in arctic tundra systems. In tundra soils that are periodically to persistently saturated, the accumulation of iron oxyhydroxides and organo-iron precipitates at redox interfaces may inhibit decomposition by binding organic molecules and protecting them from microbial degradation. Here, we couple synchrotron-source spectroscopic techniques with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in organic and mineral horizons of the seasonally thawed active layer in tundra soils from northern Alaska. Mineral-associated organic matter comprised 63 ± 9% of soil organic carbon stored in the active layer of ice wedge polygons. Ferrous iron produced in anoxic mineral horizons diffused upwards and precipitated as poorly-crystalline oxyhydroxides and organic-bound Fe(III) in the organic horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris and in aggregates with clays and particulate organic matter. Organic matter released through acid-dissolution of iron oxides may represent a small pool of readily-degradable organic molecules temporarily stabilized by sorption to iron oxyhydroxide surfaces, while larger quantities of particulate organic carbon and humic-like substances may be physically protected from decomposition by Fe-oxide coatings and aggregation. We conclude that formation of poorly-crystalline and crystalline iron oxides at redox interfaces contributes to mineral protection of organic matter through sorption, aggregation, and co-precipitation reactions. Further study of organo-mineral associations is necessary to determine the net impact of mineral-stabilization on carbon storage in rapidly warming arctic ecosystems.

  10. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  11. Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations.

    Science.gov (United States)

    Chen, Yan; Ren, Cheng-Gang; Yang, Bo; Peng, Yao; Dai, Chuan-Chao

    2013-01-01

    Nitrogen (N) is a crucial nutrient for soil biota, and its cycling is determined by the organic carbon decomposing process. Some endophytic fungi are latent saprotrophs that trigger their saprotrophic metabolism to promote litter organic matter cycling as soon as the host tissue senesces or dies. However, the effects of endophytic fungi on litter and soil N dynamics in vitro have rarely been investigated. In this study, we investigated N dynamics (total and mineral N) in both litter and soil in incubations of a pure culture of an endophytic fungus Phomopsis liquidambari with litter and following soil burial of the litter. Soil enzymes and microbial communities participating in the N transformations were also investigated. A pure culture of P. liquidambari released litter NH (4) (+) -N in the initial stages (10 days) of the incubation. However, following soil burial, the presence of both P. liquidambari and soil ammonia-oxidizing bacteria (AOB) resulted in an increase in soil NO (3) (-) -N. These results indicate that the endophytic fungus P. liquidambari in vitro stimulates organic mineralization and promote NH (4) (+) -N release. Such effects triggered soil AOB-driven nitrification process.

  12. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, Rong-liang; Li, Xin-rong; Liu, Li-chao; Pan, Yan-xia; Gao, Yan-hong; Wei, Yong-ping

    2014-11-01

    Sand burial and dew deposition are two fundamental phenomena profoundly influencing biological soil crusts in desert areas. However, little information is available regarding the effects of sand burial on dew deposition on biological soil crusts in desert ecosystems. In this study, we evaluated the effects of sand burial at depths of 0 (control), 0.5, 1, 2 and 4 mm on dew formation and evaporation of three dominant moss crusts in a revegetated area of the Tengger Desert (Northern China) in 2010. The results revealed that sand burial significantly decreased the amount of dew deposited on the three moss crust types by acting as a semi-insulator retarding the dew formation and evaporation rates. The changes in surface temperature cannot fully explain the variations of the formation and evaporation rates of dew by moss crusts buried by sand. The extension of dew retention time was reflected by the higher dew ratios (the ratio of dew amount at a certain time to the maximum value in a daily course) in the daytime, and may to some extent have acted as compensatory mechanisms that diminished the negative effects of the reduction of dew amount induced by sand burial of moss crusts. The resistances to reduction of dewfall caused by sand burial among the three moss crusts were also compared and it was found that Bryum argenteum crust showed the highest tolerance, followed by crusts dominated by Didymodon vinealis and Syntrichia caninervis. This sequence corresponds well with the successional order of the three moss crusts in the revegetated area, thereby suggesting that resistance to reduction of dewfall may act as one mechanism by which sand burial drives the succession of moss crusts in desert ecosystems. This side effect of dew reduction induced by sand burial on biological soil crusts should be considered in future ecosystem construction and management of desert area.

  13. Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals

    Science.gov (United States)

    Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

    2011-12-01

    A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the

  14. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  15. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  16. Application of passive sonar technology to mineral processing and oil sands applications : if you can measure it, you can manage it

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Viega, J.; Fernald, M. [CiDRA Corp., Wallingford, CT (United States)

    2007-07-01

    SONAR-based flow and entrained air measurement instruments were described. This new class of industrial flow and compositional analyzers was developed by CiDRA to provide new measurement insight and quantifiable value to industrial process operators. Passive sonar array-based processing units have been installed worldwide in several industrial applications and are particularly suited for a wide range of mineral processing applications, including slurry flow rate measurement and fluid characterization. This paper also described the SONAR-based, clamp-on SONARtrac technology, a scalable platform that provides several other value added measurements and information such as speed of sound, entrained air/gas, gas hold-up, and velocity profile. Oil sands, tailings and bitumen slurries present considerable measurement challenges for in-line flow measurement devices in terms of measurement accuracy, reliability and maintenance. The sonar-based technology platform has been used in a variety of oil sands processes, hydrotransport, and minerals beneficiation applications. This paper described these applications with particular reference to difficult slurry flow measurement and control in the areas of comminution and flotation such as mill discharge, hydrocyclone feed/overflow, final concentrate, thickener discharge, and tailings. 5 refs., 4 tabs., 23 figs.

  17. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    Science.gov (United States)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume

  18. Temperature response of permafrost soil carbon is attenuated by mineral protection.

    Science.gov (United States)

    Gentsch, Norman; Wild, Birgit; Mikutta, Robert; Čapek, Petr; Diáková, Katka; Schrumpf, Marion; Turner, Stephanie; Minnich, Cynthia; Schaarschmidt, Frank; Shibistova, Olga; Schnecker, Jörg; Urich, Tim; Gittel, Antje; Šantrůčková, Hana; Bárta, Jiři; Lashchinskiy, Nikolay; Fuß, Roland; Richter, Andreas; Guggenberger, Georg

    2018-05-18

    Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO 2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO 2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils. © 2018 John Wiley & Sons Ltd.

  19. Distribution of natural radioactive and trace elements in the soils and sands from the high radiation coastal belt of India

    International Nuclear Information System (INIS)

    Kulkarni, V.V.; Pillai, T.N.V.; Ganguly, A.K.

    1974-01-01

    A brief introduction of the work, already done in connection with the radioactivity present in soils in India, is given. Thorium daughter product activity is estimated in samples collected from monazite area, using gamma spectrometry. The activity is estimated quantitatively and the external dose as well as the genetically significant dose are calculated. Labile components in field soils and beach sands are estimated and the elements are analysed. The experimental procedure adopted is also described. The physico-chemical investigations carried out are explained with reference to the base exchange capacity, loss on ignition, particle size analysis, etc. The results have been presented in the form of tables and they are discussed in detail. (K.B.)

  20. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  1. Can Simple Soil Parameters Explain Field-Scale Variations in Glyphosate-, Bromoxyniloctanoate-, Diflufenican-, and Bentazone Mineralization?

    DEFF Research Database (Denmark)

    Norgaard, Trine; de Jonge, Lis Wollesen; Møldrup, Per

    2015-01-01

    The large spatial heterogeneity in soil physico-chemical and microbial parameters challenges our ability to predict and model pesticide leaching from agricultural land. Microbial mineralization of pesticides is an important process with respect to pesticide leaching since mineralization...... is the major process for the complete degradation of pesticides without generation of metabolites. The aim of our study was to determine field-scale variation in the potential for mineralization of the herbicides glyphosate, bromoxyniloctanoate, diflufenican, and bentazone and to investigate whether....... The mineralization potentials for glyphosate and bentazone were compared with 9-years leaching data from two horizontal wells 3.5 m below the field. The field-scale leaching patterns, however, could not be explained by the pesticide mineralization data. Instead, field-scale pesticide leaching may have been governed...

  2. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  3. Optimal Inference of Modelling Parameters to Simulate Complex Trends across Soft Boundaries : A Case Study in Heavy Mineral Sands

    NARCIS (Netherlands)

    Wambeke, T.; Benndorf, J.

    2014-01-01

    A risk-robust development of a heavy mineral resource requires an assessment of the geological uncertainty and spatial variability of the key factors impacting the mining and processing operation. Attributes of interest are the total heavy mineral grade, the slime content and the amount of oversized

  4. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  5. Wood strength loss as a measure of decomposition in northern forest mineral soil

    Science.gov (United States)

    Martin Jurgensen; David Reed; Deborah Page-Dumroese; Peter Laks; Anne Collins; Glenn Mroz; Marek Degorski

    2006-01-01

    Wood stake weight loss has been used as an index of wood decomposition in mineral soil, but it may not give a reliable estimate in cold boreal forests where decomposition is very slow.Various wood stake strength tests have been used as surrogates of weight loss, but little is known on which test would give the best estimate of decomposition over a variety of soil...

  6. EFFECTS OF NITRIFICATION INHIBITORS ON MINERAL NITROGEN DYNAMICS IN AGRICULTURE SOILS

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; ohannes Carl Gottlieb Ottow

    2011-01-01

    Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dimethylpyrazo-lephosphate (DMPP), 4-Chlormethylpyrazole (ClMP) and dicyandiamide (DCD) on mineral nitrogen dynamics of (NH4)2SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC) was measured gas chromatographically. DMPP, ClMP and DCD ...

  7. Effects of Nitrification Inhibitors on Mineral Nitrogen Dynamics in Agriculture Soils

    OpenAIRE

    Tindaon, Ferisman; Benckiser, Gero; Ottow, Johannes Carl Gottlieb

    2011-01-01

    Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dime-thylpyrazo-lephosphate (DMPP), 4-Chlormethylpyrazole (ClMP) and dicyandiamide (DCD) on mineral nitrogen dynamics of (NH4)2SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC) was measured gas chromatographically. DMPP, ClMP and DCD...

  8. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  9. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  10. Amending a loamy sand with three compost types: impact on soil quality

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico-chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic...... carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S-index’, soil air capacity...... are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils....

  11. Tractability Conditions for Disc Ploughing on a Loamy Sand Soil in ...

    African Journals Online (AJOL)

    -Ecological Zone. ... drawbar pull, soil cone index and tyre slip generated and analyzed using regression analysis, were used to establish empirical trafficability prediction equations; which are useful in studies of soil-machine interactions.

  12. Soil organic nitrogen mineralization across a global latitudinal gradient

    Science.gov (United States)

    D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy

    2009-01-01

    Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...

  13. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Science.gov (United States)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  14. Major soil classes of the metropolitan region of Curitiba (PR, Brazil: I - mineralogical characterization of the sand, silt and clay fractions

    Directory of Open Access Journals (Sweden)

    Ana Christina Duarte Pires

    2007-03-01

    Full Text Available The aim of this work was to evaluate the mineralogical and chemical characteristics of most representative soils of the Region of Curitiba, Paraná State. Samples were collected at different depths. The results showed: (a the quartz was the only identified mineral at the silt and sand fractions. The dominant clay mineral was Kaolinite, with contents ranging from 676.7 to 820.8 g kg-1. The gibbsite was also an important constituent of the most weathered horizons and the hematite and goethite contents were low, mainly in the Histosol; (b at the C horizon of the Inceptisol, high intensity of vermiculite/smectite reflections were detected (X-ray diffraction, justifying the high capacity of expansion and contraction, normally showed for this soil horizon; (c was observed a good relation between pedogenetic degree and crystallographic mineral characteristics.Devido a grande importância dos minerais, notadamente aqueles da fração argila, sobre o planejamento de uso e sobre os impactos das atividades antrópicas, estudos detalhados da composição dos solos das regiões metropolitanas são imprescindíveis. Para avaliar as características mineralógicas e químicas de solos mais representativos da Região Metropolitana de Curitiba, estado do Paraná, foram coletadas amostras das classes Organossolo, Latossolo e Cambissolo, em diferentes profundidades. As frações areia, silte e argila foram estudadas por difratometria de Raios-X (DRX e a fração mais fina foi submetida a análise térmica e extrações químicas com oxalato de amônio (OA, ditionito-citrato-bicarbonato (DCB e solução de NaOH 5 mol L-1 fervente. As características cristalográficas da hematita (Hm, goethita (Gt, gibbsita (Gb e caulinita (Ct foram determinadas por DRX. Os resultados permitiram concluir que: (a o quartzo foi o único mineral identificado nas frações areia e silte. Na fração argila, verificou-se o predomínio de Ct, com teores variando de 661,7 a 820,8 g kg-1

  15. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  16. Sand and clay mineralogy of sal forest soils of the Doon Siwalik ...

    Indian Academy of Sciences (India)

    3Forest Soil & Land Reclamation Division, Forest Research Institute, Dehradun 248 006, India. .... also helps in characterizing the soil mineralogical make-up in relation to the growth and develop- ment of the species essential for sustainable forest management. ...... and Weed S B (Madison: Soil Science Society of America).

  17. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  18. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    Science.gov (United States)

    Herndon, Elizabeth; AlBashaireh, Amineh; Singer, David; Roy Chowdhury, Taniya; Gu, Baohua; Graham, David

    2017-06-01

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo-iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhance decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence (μXRF) mapping, micro-X-ray absorption near-edge structure (μXANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons. Concentrations of organic

  19. Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought

    NARCIS (Netherlands)

    Andresen, L.C.; Bode, S.; Tietema, A.; Boeckx, P.; Rütting, T.

    2015-01-01

    Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a

  20. Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2003-01-01

    Calcium (Ca) is an important element for neutralizing soil acidity in temperate forests. The immediate availability of Ca in forested acid soils is largely dependent on mineralization of organic Ca, which may differ significantly among tree species. I estimated net Ca mineralization in the forest

  1. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Science.gov (United States)

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Soil attributes drive nest-site selection by the campo miner Geositta poeciloptera

    Science.gov (United States)

    Teixeira, João Paulo Gusmão; Solar, Ricardo; Vasconcelos, Bruno Nery F.; Fernandes, Raphael B. A.; Lopes, Leonardo Esteves

    2018-01-01

    Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common. PMID:29381768

  4. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  5. Soil attributes drive nest-site selection by the campo miner Geositta poeciloptera.

    Science.gov (United States)

    Meireles, Ricardo Camargos de; Teixeira, João Paulo Gusmão; Solar, Ricardo; Vasconcelos, Bruno Nery F; Fernandes, Raphael B A; Lopes, Leonardo Esteves

    2018-01-01

    Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common.

  6. Scoping key soil issues for the Suncor Voyageur Oil Sands Project EIA

    Energy Technology Data Exchange (ETDEWEB)

    Doram, D.; Gulley, J. [Golder Associates, Calgary, AB (Canada); Fordham, C. [Suncor Energy, Calgary, AB (Canada)

    2002-07-01

    An issue scoping process to focus the soil impact assessment undertaken in conjunction with Suncor Energy's Voyageur Project near Fort McMurray, Alberta, is described. Potential impacts to soils considered include disturbances from mining and in-situ developments, re-constructing soils to meet equivalent capability and predicting how soils will respond to acid deposition. The assessment also provides an opportunity to evaluate unique soil mitigation strategies at both the local and regional levels. New regulatory and soil reclamation challenges include developing soil salvage criteria for restoring the biodiversity which existed prior to the disturbance necessitated by the mining and in-situ operations and creating a suitable habitat for the caribou in the Firebag lease.

  7. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant.

    Science.gov (United States)

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying

    2012-05-01

    In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.

  8. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    Science.gov (United States)

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Healthy sand : a farmers initiative on soil protection and ecosystem service management

    Science.gov (United States)

    Smit, Annemieke; Verzandvoort, Simone; Kuikman, Peter; Stuka, Jason; Morari, Francesco; Rienks, Willem; Stokkers, Jan; Hesselink, Bertus; Lever, Henk

    2015-04-01

    In a small region in the Netherlands a group of dairy farmers (cooperated in a foundation HOE Duurzaam) cooperates with the drinking water company and together aim for a more healthy soil. They farm a sandy soil, which is in most of the parcels low in organic matter. The local farmers perceive loss of soil fertility and blame loss of soil organic matter for that. All farmers expect that increasing the soil organic matter content will retain more nitrates in the soil, leading to a reduction in nitrate leaching and a higher nutrient availability for the crops, forage and grass and probably low urgency for grassland renewal. The drinking water company in the area also has high expectations that a higher SOM content does relate to higher quality of the (drinking) water and lower costs to clean and filter the water to meet drinking water quality requirements. Most farmers in the area face suboptimal moisture conditions and thrive for increasing the soil organic matter content and improving the soil structure as key factors to relieve, soil moisture problems both in dry (drought) and wet (flooding) periods. A better water holding capacity of the soil provides benefits for the regional water board as this reduces leaching and run-off. The case study, which is part of the Recare-project, at first glance deals with soil management and technology to improve soil quality. However, the casus in fact deals with social innovation. The real challenge to this group of neighbours, farmers within a small region, and to science is how to combine knowledge and experience on soil management for increasing the content of soil organic matter and how to recognize the ecosystem services that are provided by the adapted and more 'healthy' soils. And also how to formalize relations between costs and benefits of measures taken in the field and how these could be financially rewarded from an agreed and acceptable financial awarding scheme based on payments for securing soil carbon stocks and

  10. Mycobacterium Diversity and Pyrene Mineralization in Petroleum-Contaminated Soils

    OpenAIRE

    Cheung, Pui-Yi; Kinkle, Brian K.

    2001-01-01

    Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the ...

  11. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  12. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  13. Effect of pH on the adsorption of carbendazim in Polish mineral soils

    International Nuclear Information System (INIS)

    Paszko, Tadeusz

    2012-01-01

    The study aimed to determine the influence of pH on the adsorption of carbendazim in soil profiles of three mineral agricultural soils: Hyperdystric Arenosol, Haplic Luvisol and Hypereutric Cambisol. In the examined pH range between 3 and 7 the adsorption of carbendazim was inversely correlated to the pH of the soil. The adsorption coefficients were in the range between 0.3 and 151.8 mL g −1 . Decreasing the pH in the soil suspensions from 7 to 3 increased the value of this coefficient by 3 to 70 times. A decrease in the amounts of organic matter down the soil profiles was not associated with weaker carbendazim adsorption. In the samples from all soil horizons, at pH values between 3 and 6, the predominant sorption process was carbendazim adsorption on clay minerals. The adsorption of carbendazim on organic matter prevailed over that on clays only at pH > 6 and only in the Ap horizon of the examined soils. The developed mathematical models yielded very good results when the adsorption of the protonated form of carbendazim was assumed to be the predominant adsorption process on clays together with the adsorption of neutral molecules on organic matter and clays. The results from both the model fitting and the experiments revealed the negative effect of Al oxides and hydroxides and Al cations on the adsorption of the protonated form of carbendazim on clay minerals. The developed models successfully described the pH-dependent adsorption processes of carbendazim for both data from particular soil horizons and those from all three examined soil profiles. -- Highlights: ► Adsorption of carbendazim in soils was inversely correlated to soil pH. ► At low pH carbendazim was adsorbed predominantly by clay minerals. ► Al 3+ influenced adsorption of the protonated form of carbendazim on clays. ► Created models predict pH-dependent sorption processes in the whole soil profiles.

  14. Geochemical radioactive investigation of beach sands and stream sediments, using heavy minerals, trace elements and radon measurements, (Qerdaha sheet of the Syrian coast)

    International Nuclear Information System (INIS)

    Jubeli, Y.; Kattaa, B.; Al-Hilal, M.

    2000-05-01

    Reconnaissance geochemical radiometric survey of stream sediments resulting from the weathering of outcropped rocks in and around the study area was performed. This survey included heavy mineral sampling, trace and radioelements and radon measurements to evaluate the radioactivity of the source rocks and to understand the nature and distribution of the heavy minerals and trace elements in the study area. Several techniques were used to achieve these objectives. The results of heavy mineral geochemical survey show that the abundant minerals are iron oxides (magnetite, hematite, goehtite and limonite) pyroxene and olivine; less abundant minerals are apatite, ilmenite, garnet, barite, siderite and gloconite, while rare minerals are zircon and rutile. Amphibole is reported as an abundant mineral in sand dunes and is less abundant in samples located in the northern part of the study area. The amphibole seems to be derived from the ophiolitic complex north of the study area. Grain size analysis of heavy minerals revealed that the concentration of economic minerals such as zircon rutile and ilmenite increases with the decrease of the grain size. The microscopic study showed fragments and fossils of foraminifere mostly impregnated with heavy metals such as iron and manganese resulting from diagenetic metasomatism and replacement processes of. Fish teeth (< 2 mm) and oolite of iron were also noticed in most of the samples. The morphology of heavy mineral grains shows that most of the grains are angular to subangular suggesting that they were transported for short distance from their source rocks. Normally, phosphate pellets, gloconite and iron ooids are not considered since their original morphological features show clear roundness that attributed to their sedimentological origin, not to transportation factor. The source rock of most of the heavy mineral assemblage is the basalt. Apatite and gloconite are derived from the phosphorite and phosphatized limestone encountered

  15. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China

    Science.gov (United States)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong

    2016-04-01

    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  17. Effect of three typical sulfide mineral flotation collectors on soil microbial activity.

    Science.gov (United States)

    Guo, Zunwei; Yao, Jun; Wang, Fei; Yuan, Zhimin; Bararunyeretse, P; Zhao, Yue

    2016-04-01

    The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.

  18. Initial growth of Schizolobium parahybae in Brazilian Cerrado soil under liming and mineral fertilization

    Directory of Open Access Journals (Sweden)

    Ademilson Coneglian

    Full Text Available ABSTRACT High prices and the scarcity of hardwoods require the use of alternative wood sources, such as the Guapuruvu (Schizolobium parahybae, an arboreal species native to the Atlantic Forest, which has fast growth and high market potential. However, there is no information on its cultivation in the Brazilian Cerrado. Thus, this study aimed to analyze the contribution of mineral fertilization and liming in a Cerrado soil on the initial growth of Schizolobium parahybae. The experiment was set in a randomized block design, with 4 treatments (Cerrado soil; soil + liming; soil + fertilizer; and soil + fertilizer + liming and 15 replicates. The following variables were analyzed: plant height, stem diameter, number of leaves, total, shoot, leaf, root and stem dry matter, and root/shoot ratio. The obtained data were subjected to the analysis of variance, Tukey test and regression analysis. During the initial growth, Schizolobium parahybae can be cultivated in a Brazilian Cerrado soil only under mineral fertilization, with no need for soil liming.

  19. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Science.gov (United States)

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  20. Kemiskinan Pada Keluarga Penambang Pasir Di Tiga Desa Daerah Aliran Sungai Tajum Kabupaten Banyumas Poverty of Sand Miner Family in Three Villages at Tajum River Flowing Area, Banyumas Regency

    OpenAIRE

    Sudjarwanto; Sugito

    2007-01-01

    The aim of this research was to know poverty of sand miner family at Tajum river flowing area, Banyumas and their received advocacy. Data were collected from 60 respondents chosen by cluster sampling method. Result of the research showed that respondents worked daily as sand miner in average of 7.25 hours and received their income of Rp10,131.00 or Rp303,979.00 per month. Their low income and high number of family member (average of 4.75 persons) pushed they and their family member to work fo...

  1. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  2. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    International Nuclear Information System (INIS)

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  3. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

  4. Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils

    Institute of Scientific and Technical Information of China (English)

    TAO Guang-Can; TIAN Shu-Jun; CAI Miao-Ying; XIE Guang-Hui

    2008-01-01

    Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavailability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophylli,Pseudomonas ciehorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-sohibilizing abilities ranging between 25.4-41.7 μg P mL-1 and organic P-mineralizing abilities between 8.2-17.8 μg P mL-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL-1 and from 13.8 to 62.8 μg P mL-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P < 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.

  5. The Interfacial Behavior between Biochar and Soil Minerals and Its Effect on Biochar Stability.

    Science.gov (United States)

    Yang, Fan; Zhao, Ling; Gao, Bin; Xu, Xiaoyun; Cao, Xinde

    2016-03-01

    In this study, FeCl3, AlCl3, CaCl2, and kaolinite were selected as model soil minerals and incubated with walnut shell derived biochar for 3 months and the incubated biochar was then separated for the investigation of biochar-mineral interfacial behavior using XRD and SEM-EDS. The XPS, TGA, and H2O2 oxidation were applied to evaluate effects of the interaction on the stability of biochar. Fe8O8(OH)8Cl1.35 and AlCl3·6H2O were newly formed on the biochar surface or inside of the biochar pores. At the biochar-mineral interface, organometallic complexes such as Fe-O-C were generated. All the 4 minerals enhanced the oxidation resistance of biochar surface by decreasing the relative contents of C-O, C═O, and COOH from 36.3% to 16.6-26.5%. Oxidation resistance of entire biochar particles was greatly increased with C losses in H2O2 oxidation decreasing by 13.4-79.6%, and the C recalcitrance index (R50,bicohar) in TGA analysis increasing from 44.6% to 45.9-49.6%. Enhanced oxidation resistance of biochar surface was likely due to the physical isolation from newly formed minerals, while organometallic complex formation was probably responsible for the increase in oxidation resistance of entire biochar particles. Results indicated that mineral-rich soils seemed to be a beneficial environment for biochar since soil minerals could increase biochar stability, which displays an important environmental significance of biochar for long-term carbon sequestration.

  6. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  7. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-03-23

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  8. Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption.

    Science.gov (United States)

    Zimmerman, Andrew R; Kang, Dong-Hee; Ahn, Mi-Youn; Hyun, Seunghun; Banks, M Katherine

    2008-01-01

    Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a phenoloxidase enzyme derived from the fungi Trametes versicolor, was found to exert a large influence on iron-cyanide speciation and mobility. In the presence of laccase, up to 93% of ferrocyanide (36-362ppm) was oxidized to ferricyanide within 4h. No significant effect of pH (3.6 and 6.2) or initial ferrocyanide concentration on the extent or rate of oxidation was found and ferrocyanide oxidation did not occur in the absence of laccase. Relative to iron-cyanide-mineral systems without laccase, ferrocyanide adsorption to aluminum hydroxide and montmorillonite decreased in the presence of laccase and was similar to or somewhat greater than that of ferricyanide without laccase. Laccase-catalyzed conversion of ferrocyanide to ferricyanide was extensive though up to 33% of the enzyme was mineral-bound. These results demonstrate that soil enzymes can play a major role in ferrocyanide speciation and mobility. Biotic soil components must be considered as highly effective oxidation catalysts that may alter the mobility of metals and metal complexes in soil. Immobilized enzymes should also be considered for use in soil metal remediation efforts.

  9. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  11. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    Science.gov (United States)

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  12. A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality and plant properties

    Directory of Open Access Journals (Sweden)

    JUN eYE

    2016-04-01

    Full Text Available Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e. a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  13. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  14. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Science.gov (United States)

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  15. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  16. Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence

    Science.gov (United States)

    Powers, Matthew; Kolka, Randall; Bradford, John B.; Palik, Brian J.; Jurgensen, Martin

    2018-01-01

    We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosaAit.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in a 31-year-old stand (Y31) than in 9-year-old (Y9), 61-year-old (Y61), or 123-year-old (Y123) stands. This pattern was most apparent during warm summer months, but there were no consistent differences in RFF among different-aged stands. RFF represented an average of 4–13% of total soil respiration, and forest floor removal increased moisture content in the mineral soil. We found no evidence of an age effect on the temperature sensitivity of RS, but respiration rates in Y61 and Y123 were less sensitive to low soil moisture than RS in Y9 and Y31. Our results suggest that soil respiration’s sensitivity to soil moisture may change more over the course of stand development than its sensitivity to soil temperature in red pine, and that management activities that alter landscape-scale age distributions in red pine forests could have significant impacts on rates of soil CO2 efflux from this forest type.

  17. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  18. Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil.

    Science.gov (United States)

    Hussain, Sabir; Devers-Lamrani, Marion; El Azhari, Najoi; Martin-Laurent, Fabrice

    2011-06-01

    The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.

  19. Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration

    Science.gov (United States)

    Mo, Qifeng; Li, Zhi'An; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming

    2016-01-01

    Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.

  20. From bulk soil to intracrystalline investigation of plant-mineral interaction

    Science.gov (United States)

    Lemarchand, D.; Voinot, A.; Chabaux, F.; Turpault, M.

    2011-12-01

    Understanding the controls and feedbacks regulating the flux of matter between bio-geochemical reservoirs in forest ecosystems receives a fast growing interest for the last decades. A complex question is to understand how minerals and vegetation interact in soils to sustain life and, to a broader scope, how forest ecosystems may respond to human activity (acid rain, harvesting,...) and climate perturbations (temperature, precipitation,...). Many mineralogical and biogeochemical approaches have longtime been developed, and occasionally coupled, in order to investigate the mechanisms by which chemical elements either are exchanged between soil particles and solutions, or are transferred to plants or to deeper soil layers and finally leave the system. But the characterization of particular processes like the contribution of minor reactive minerals to plant nutrition and global fluxes or the mechanisms by which biology can modify reaction rates and balance the bioavailability of nutrients in response to environmental perturbation sometimes fails because of the lack of suitable tracers. Recent analytical and conceptual advances have opened new perspectives for the use of light "non traditional" stable isotopes. Showing a wild range of concentrations and isotopic compositions between biogeochemical reservoirs in forest ecosystem, boron has physico-chemical properties particularly relevant to the investigation of water/rock interactions even when evolving biologically-mediated reactions. In this study, we focused on the distribution of boron isotopes from intracrystalline to bulk soil scales. An overview of the boron distribution and annual fluxes in the soil-plant system clearly indicates that the vegetation cycling largely controls the mobility of boron. We also observe that the mineral and biological B pools have drastically different isotopic signature that makes the transfer of B between them very easy to follow. In particular, the podzol soil we analyzed shows a

  1. Natural nanoparticles in soils and their role in organic-mineral interactions and cooloid-facilitated transport

    NARCIS (Netherlands)

    Regelink, I.C.

    2014-01-01

    Mineral nanoparticles are naturally present in the soil and play an important role in several soil processes. This thesis uses a combination of novel analytical techniques, among which Field-Flow-Fractionation, to study nanoparticles in soil and water samples. The results show that nanoparticles

  2. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  3. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  4. Potential Nitrification and Nitrogen Mineral of Soil in Coffee Agroforestry System with Various Shading Trees

    Directory of Open Access Journals (Sweden)

    Purwanto .

    2007-05-01

    Full Text Available The role of shading trees in coffee farms has been well understood to establish suitable condition for the growth of coffee trees, on the other hand their role in nitrogen cycle in coffee farming is not yet well understood. The objectives of this study are to investigate the influence of various legume shading trees on the concentration of soil mineral N (N-NH4 + and N-NO3-, potential nitrification and to study the controlling factors of nitrification under field conditions. This field explorative research was carried out in Sumberjaya, West Lampung. Twelve observation plots covered four land use systems (LUS, i.e. 1 Coffee agroforestry with Gliricidiasepium as shade trees; 2 Coffee agroforestry with Gliricidiaas shade trees and Arachis pintoias cover crops; 3Coffee agroforestry with Paraserianthes falcataria as shade trees; and 4 Mixed/multistrata coffee agroforestry with Gliricidiaand other fruit crops as shade trees. Measurements of soil mineral-N concentration were carried out every three weeks for three months. Results showed that shade tree species in coffee agroforestry significantly affected concentrations of soil NH4 +, NO3- and potential nitrification. Mixed coffee agroforestry had the highest NH4+/N-mineral ratio (7.16% and the lowest potential nitrification (0.13 mg NO2-kg-1 hour -1 compared to other coffee agroforestry systems using single species of leguminous shade trees. Ratio of NH4 + /N-mineral increased 0.8—21% while potential nitrification decreased 55—79% in mixed coffee agroforestry compared to coffee agroforestry with Gliricidia or P. falcatariaas shade trees. Coffee agroforestry with P. falcatariaas shade trees had potential nitrification 53% lower and ratio of NH4 + /N-mineral concentration 20% higher than that with Gliricidia. Coffee agroforestry with P. falcataria as shade trees also had organic C content 17% higher, total N 40% higher, available P 112% higher than that with Gliricidia. The presence of A. pintoiin

  5. Minerals

    Science.gov (United States)

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  6. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    Science.gov (United States)

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  7. Sand and clay mineralogy of sal forest soils of the Doon Siwalik ...

    Indian Academy of Sciences (India)

    3Forest Soil & Land Reclamation Division, Forest Research Institute, Dehradun 248 006, India. ∗ e-mail: ... understanding the distribution of forest types and ... Material and methods. 2.1 Study area .... Finally, for the qualitative and quan-.

  8. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  9. Centimeter-scale spatial variability in 2-methyl-4-chlorophenoxyacetic acid mineralization increases with depth in agricultural soil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Sørensen, Jan

    2013-01-01

    Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralization...... was mineralized in all samples in the plow layer, but only about 60% in the transition zone immediately below the plow layer showed mineralization; at greater depth even fewer samples showed mineralization. A patchy spatial distribution of mineralization activity was observed from right below the plow layer...... activity at different depths (8-115 cm) in a Danish agricultural soil profi le using a 96-well microplate C-radiorespirometric method for small-volume samples. The heterotrophic microbial population and specifi c MCPA degraders decreased 10- to 100-fold from the plow layer to a depth of 115 cm. MCPA...

  10. Programs to obtain vertical heights from mean sea level and for computing volume of sand/mineral along beaches: A case study with Kalbadevi beach profiling data and results

    Digital Repository Service at National Institute of Oceanography (India)

    Ganesan, P.

    Two programs have been developed to process profile data, for obtaining vertical heights with respect to mean sea level (M.S.L.) and for computation of volume of heavy mineral / sand accumulation or erosion along the beaches. The final output...

  11. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    Science.gov (United States)

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  12. Substantiation of the hydrodynamic disintegration of hydraulic fluid’s mineral component of high-clay sand in precious metals placers

    Directory of Open Access Journals (Sweden)

    N.P. Khrunina

    2018-03-01

    Full Text Available General regularities and theoretical approaches determining hydroimpulsive effects on the mineral component of the hydraulic fluid are analyzed, with reference to the disintegration of high-clay sands of gold-bearing placers. Theoretical conclusions on the hydrodynamic effect on the solid component of the hydraulic fluid give insight into emerging processes in multicomponent media under hydrodynamic influences initiated by various sources of physical and mechanical influence. It is noted that the theoretical justification of the structurally complex hydrodynamic effect on the hydraulic fluid with the formation of phenomena arising from the collision of solid components with each other and obstacles includes the consideration of changes in such force characteristics as speed, pressure, flow power, and also changes in design parameters and characteristics of the environment. A conceptual approach is given to the theoretical substantiation of the disintegration of the hydraulic fluid’s mineral component using the example of the proposed installation. Calculation of economic indicators for the use of a hydrodynamic generator in comparison with processes based on known technologies has shown significant advantages of using the proposed installation, which can increase productivity and quality production indicators.

  13. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  14. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degrades soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.; Isitekhale, H.H.E.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1:1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  15. Effects of sawdust and organo mineral fertilizer and their residual effect on the yield of maize on degraded soil

    International Nuclear Information System (INIS)

    Dania, S.O.; Fagbola, O.

    2012-01-01

    Conventional mineral fertilizer alone cannot sustain arable crop production in soil which top layer has been eroded hence it is necessary to employ the application of organic base fertilizer. A greenhouse experiment was conducted to investigate the effects of sawdust, organo mineral fertilizer and their residual effects on the growth and yield of maize. Organo mineral fertilizer is the combination of organic manure and mineral fertilizer. Simulated degraded soil was used and the experimental design was a 2 x 2 x 3 factorial in a completely randomized design with three replicates. The factors investigated were: two levels of organo mineral fertilizer (with and without), two levels of soil amendment (with and without sawdust) and three levels of application methods. The methods of organo mineral fertilizer used were ring, subsurface and mixed methods. The amendment of soil to sawdust was ratio 1: 1 by volume. The growth and yield of maize was significantly (p = 0.05) higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust with or without OMF application. Ring method of application of OMF in non-amended soil significantly increased the growth and yield of maize compared to other methods of OMF application. The residual effect of OMF and sawdust on the growth and yield of maize was significantly higher in non-amended soil with OMF under different application methods compared to soil amended with sawdust. Addition of sawdust to soil does not improve the growth and yield of maize with or without OMF and under different application methods. Organo mineral fertilizer using ring and subsurface application methods has a beneficial effect in improving the growth and yield of maize in degraded soil where the top layer has been eroded. (author)

  16. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    Science.gov (United States)

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This

  17. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    Science.gov (United States)

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in 5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  18. The role of organo-mineral interactions on the capacity of soils to store carbon

    Science.gov (United States)

    Georgiou, K.; Abramoff, R. Z.; Riley, W. J.; Torn, M. S.

    2017-12-01

    Observed patterns of soil organic carbon (SOC) content across geochemical regimes are signatures of process and provide opportunities to understand the underlying decomposition and stabilization mechanisms that can guide their representation in models. The type of sorption equation used in soil decomposition models has large implications for both SOC stock and its temperature sensitivity. Here we compared different model formulations of SOC sorption to mineral surfaces, motivated by the myriad of chemical associations between organic and mineral surfaces, and used laboratory and field incubations to inform model parameters. We explored linear, Langmuir, and Freundlich adsorption models, where the latter emerges from heterogeneous compositions of substrate and surface components. We show the effect of model representations on predicted trends of SOC as a function of mineralogy and discuss the role of soil C saturation on emergent patterns. Specifically, our results highlight that the response of mineral-associated (`protected') SOC to changes in plant C inputs depends greatly on the C saturation deficit of the soil and thus, the representation of organo-mineral interactions in models can lead to nonlinear steady-state responses in protected SOC. We also find that, consistent with field experiments, the trend in protected SOC and mineral C saturation capacity is linear, but, interestingly, the slope depends on the degree of C saturation. We contend that this latter finding is an important consideration for field studies that did not find a universal slope and interpreted this as an inability of mineralogy to explain observed patterns. Our results also suggest that warming affects this slope, with higher temperatures causing a decrease in the amount of protected C for a given saturation capacity and C input rate. This means that more C inputs will be needed to keep the same amount of protected C at higher temperatures. Organo-mineral interactions play a key role in

  19. Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil

    Energy Technology Data Exchange (ETDEWEB)

    Hybholt, Trine K.; Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-05-15

    The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of {sup 14}C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm{sup 3}. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 x 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates. - Highlights: > Geostatistics were applied at the centimeter scale. > Glucose and benzoic acid mineralization showed little spatial variation. > PAH mineralization was highly variable at the sub-centimeter scale. > High spatial heterogeneity may be caused by low functional redundancy. - This study supports the hypothesis that specialized xenobiotic degraders may show high spatial heterogeneity in soil due to low functional redundancy.

  20. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    Directory of Open Access Journals (Sweden)

    Dexter B. Watts

    2012-01-01

    Full Text Available Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults soil common to the USA Appalachian Plateau region. Three poultry litter components (broiler cake, total cleanout, and bedding material from a broiler house were evaluated and compared to a soil control. Chemical amendments lime (CaCO3, gypsum (CaSO4, aluminum sulfate (AlSO4, and ferrous sulfate (FeSO4 were added to the poultry litter components to determine their impact on C and N mineralization. Litter component additions increased soil C mineralization in the order of broiler cake > total cleanout > bedding > soil control. Although a greater concentration of organic C was observed in the bedding, broiler cake mineralized the most C, which can be attributed to differences in the C : N ratio between treatments. Chemical amendment in addition to the manured soil also impacted C mineralization, with AlSO4 generally decreasing mineralization. Nitrogen mineralization was also significantly affected by poultry litter component applications. Broiler cake addition increased N availability followed by total cleanout compared to soil control, while the bedding resulted in net N immobilization. Chemical amendments impacted N mineralization primarily in the broiler cake amended soil where all chemical amendments decreased mineralization compared to the no chemical amendment treatment. This short-term study (35-day incubation indicates that N availability to crops may be different depending on the poultry litter component used for fertilization and chemical amendment use which could

  1. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  2. Determination of volatile trace elements in terrestrial minerals and lunar soils by RNAA

    International Nuclear Information System (INIS)

    Kraehenbuehl, U.; Wegmueller, F.

    1978-01-01

    A procedure is reported for the simultaneous determination of Au, Cd, Ge, Hg, In, Sb, Te and Zn in 5-50 mg aliquots of minerals and lunar soils. After irradiation with thermal neutrons the samples are dissolved in digestion bombs by HF/HClO 4 . Sulfide precipitates provide the necessary group separations. The purified elements are measured on Ge(Li) detectors. Accuracy and precision are generally better than 10%. (author)

  3. Mineralization of soil-aged isoproturon and isoproturon metabolites by Sphingomonas sp. strain SRS2.

    Science.gov (United States)

    Johannesen, Helle; Sørensen, Sebastian R; Aamand, Jens

    2003-01-01

    The aim of the study was to determine the effect of aging of the herbicide isoproturon and its metabolites monodesmethyl-isoproturon and 4-isopropyl-aniline in agricultural soil on their availability to the degrading bacterium Sphingomonas sp. strain SRS2. The 14C-ring-labeled isoproturon, monodesmethyl-isoproturon, and 4-isopropyl-aniline were added to sterilized soil and stored for 1, 49, 71, or 131 d before inoculation with strain SRS2. The availability of the compounds was estimated from the initial mineralization and the amount of 14CO2 recovered after 120 d of incubation. Aging in soil for 131 d reduced the initial mineralization of isoproturon and monodesmethyl-isoproturon and, in the case of isoproturon, also reduced the recovery of 14CO2. Initial mineralization and recovery of 14CO2 from aged 4-isopropyl-aniline were slightly reduced, but less 14CO2 was generally produced than with isoproturon or monodesmethyl-isoproturon. Thus, recovery of 14CO2 from 14C-isoproturon and 14C-monodesmethyl-isoproturon was 50.7 to 64.4% of the initially added 14C, while recovery from 14C-4-isopropyl-aniline was only 11.7 to 17.0%. Sorption measurements revealed similar Freundlich constants (K(f)) for isoproturon and monodesmethyl-isoproturon, whereas K(f) for 4-isopropyl-aniline was more than fivefold greater. The findings imply that in soil, partial degradation of isoproturon to 4-isopropyl-aniline may lead to reduced mineralization of the herbicide due to sorption of the aniline moiety.

  4. Certified reference materials for the determination of mineral oil hydrocarbons in water, soil and waste

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Liebich, A.; Win, T.; Nehls, I.

    2005-07-01

    The international research project HYCREF, funded by the European Commission in the 5{sup th} Framework programme, aimed to develop methods to prepare homogeneous and stable water-, soil- and waste reference materials contaminated with mineral oil hydrocarbons and to test certify the mineral oil content by gas chromatographic methods. As mineral oil products are important sources for environmental contaminations a high need exists for certified reference materials for their determination using the new gas chromatographic methods (soil: ISO/FDIS 16703, waste: ENpr 14039, water: ISO 9377-2). The experimental conditions and results for preparation and characterisation of a total of nine reference materials (3 water, 3 soil- and 3 waste materials) are described and discussed. Target values for the reference materials were defined at the beginning of the project in order to have clear quality criteria, which could be compared with the achieved results at the end of the project. These target specifications were related to the maximum uncertainty from test certification exercises (<5% for soil/waste and <10% for water), the maximum inhomogeneity between bottles (<3%) and minimum requirements for stability (>5 years for soil/waste and >2 years for water). The feasibility studies showed that solid materials (soil, waste) could be prepared sufficiently homogeneous and stable. The test certified values of the 6 solid materials comprise a wide range of mineral oil content from about 200-9000 mg/kg with expanded uncertainties between 5.7-13.1% using a coverage factor k (k=2). The development of new water reference materials - the so-called ''spiking pills'' for an offshore- and a land-based discharge water represents one of the most innovative aspects of the project. The spiking pill technology facilitates the application and storage and improves the material stability compared with aqueous materials. Additional to the preparation and test certification of

  5. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    Science.gov (United States)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in

  6. Soil phosphorus redistribution among iron-bearing minerals under redox fluctuation

    Science.gov (United States)

    Lin, Y.; Bhattacharyya, A.; Campbell, A.; Nico, P. S.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Phosphorus (P) is a key limiting nutrient in tropical forests that governs primary production, litter decomposition, and soil respiration. A large proportion of P in these highly weathered soils is bound to short-range ordered or poorly crystalline iron (Fe) minerals. It is well-documented that these Fe minerals are redox-sensitive; however, little is known about how Fe-redox interactions affect soil P turnover. We evaluated the impacts of oxic/anoxic fluctuation on soil P fractions and reactive Fe species in a laboratory incubation experiment. Soils from a humid tropical forest were amended with plant biomass and incubated for up to 44 days under four redox regimes: static oxic, static anoxic, high frequency fluctuating (4-day oxic/4-day anoxic), and low frequency fluctuating (8-day oxic/4-day anoxic). We found that the static anoxic treatment induced a 10-fold increase in Fe(II) (extracted by hydrochloric acid) and a 1.5-fold increase in poorly crystalline Fe (extracted by ammonium oxalate), suggesting that anoxic conditions drastically increased Fe(III) reduction and the formation of amorphous Fe minerals. Static anoxic conditions also increased Fe-bound P (extracted by sodium hydroxide) and increased the oxalate-extractable P by up to 110% relative to static oxic conditions. In two fluctuating treatments, Fe(II) and oxalate-extractable Fe and P were all increased by short-term reduction events after 30 minutes, but fell back to their initial levels after 3 hours. These results suggest that reductive dissolution of Fe(III) minerals mobilized a significant amount of P; however, this P could be rapidly re-adsorbed. Furthermore, bioavailable P extracted by sodium bicarbonate solution was largely unaffected by redox regimes and was only increased by static anoxic conditions after 20 days. Overall, our data demonstrate that a significant amount of soil P may be liberated and re-adsorbed by Fe minerals during redox fluctuation. Even though bioavailable P appears to be

  7. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  8. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  9. Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies

    Science.gov (United States)

    Trolard, F.; Génin, J.-M. R.; Abdelmoula, M.; Bourrié, G.; Humbert, B.; Herbillon, A.

    1997-03-01

    Mössbauer and Raman spectroscopies are used to identify for the first time a green rust as a mineral in a reductomorphic soil from samples extracted in the forest of Fougères (Brittany-France). The Mossbauer spectrum displays two characteristic ferrous and ferric quadrupole doublets, the abundance ratio Fe(II)/Fe(Ill) of which is close to 1. Comparison with synthetic mixed valence Fe(II)Fe(HI) hydroxides supports the conclusion that the most probable formula is Fe2(OH)5, i.e., according to the pyroaurite-like crystal structure [Fe(n1Fe1III)(OH),]+o [OH] -. The microprobe Raman spectrum exhibits two bands at 518 and 427 cm-' as for synthetic green rusts. When exposed to the air, the new mineral goes rapidly from bluish-green to ochrous. The formula is compatible with the values of ionic activity products Q for equilibria between aqueous iron species and minerals obtained from soil waters, which suggests that this new mineral is likely to control the mobility of Fe in the environment.

  10. Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil

    Science.gov (United States)

    Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are...

  11. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    Science.gov (United States)

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.

  12. Organic nitrogen storage in mineral soil: Implications for policy and management

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Andrew H., E-mail: drew_bingham@nps.gov [Air Resources Division, National Park Service, P.O. Box 25287, Denver, CO 80225 (United States); Cotrufo, M. Francesca [Department of Soil and Crop Sciences and Natural Resources Ecology Laboratory, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 (United States)

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. - Highlights: • We review the current framework for long-term nitrogen stabilization in soils. • We highlight the most important factors according to this framework. • We discuss how these factors may influence management and policy decisions.

  13. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    Science.gov (United States)

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  15. Primary sand-dune plant community and soil properties during the west-coast India monsoon

    Directory of Open Access Journals (Sweden)

    Willis A.

    2016-06-01

    Full Text Available A seven-station interrupted belt transect was established that followed a previously observed plant zonation pattern across an aggrading primary coastal dune system in the dry tropical region of west-coast India. The dominant weather pattern is monsoon from June to November, followed by hot and dry winter months when rainfall is scarce. Physical and chemical soil characteristics in each of the stations were analysed on five separate occasions, the first before the onset of monsoon, three during and the last post-monsoon. The plant community pattern was confirmed by quadrat survey. A pH gradient decreased with distance from the shoreline. Nutrient concentrations were deficient, increasing only in small amounts until the furthest station inland. At that location, there was a distinct and abrupt pedological transition zone from psammite to humic soils. There was a significant increase over previous stations in mean organic matter, ammonium nitrate and soil-water retention, although the increase in real terms was small. ANOVA showed significant variation in electrical conductivity, phosphorus, calcium, magnesium and sodium concentrations over time. There was no relationship between soil chemistry characteristics and plant community structure over the transect. Ipomoea pes-caprae and Spinifex littoreus were restricted to the foredunes, the leguminous forb Alysicarpus vaginalis and Perotis indica to the two stations furthest from the strand. Ischaemum indicum, a C4 perennial grass species adopting an ephemeral strategy was, in contrast, ubiquitous to all stations.

  16. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter

    Science.gov (United States)

    Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel

    2017-07-01

    The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment

  17. Mineralization of 14C-labelled aromatic pesticide molecules in Egyptian soils under aerobic and anaerobic conditions

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Earghaly, M.; Mahdy, F.; El-Maghraby, S.; Taha, H.; Soliman, S.M.

    2001-01-01

    The mineralization of 2,4-D, carbofuran and pirimiphos-methyl in Egyptian soils was studied over a period of 90 days. Laboratory studies under aerobic and anaerobic conditions were conducted using 14 C-ring labelled pesticides. Under anaerobic conditions 10-14% of applied ring labelled 2,4-D mineralized during 90 days with no significant variations due to soil type. Under aerobic conditions, 2,4-D mineralized more readily in clay soil to reach 29-34% of applied dose within 90 days. In clay loam soil, 14 C-carbofuran and 14 C-pirimiphos-methyl mineralized at a rather slow rate to reach 12-14% and 12-13% of applied dose in 90 days, respectively under aerobic conditions. Generally, soils repeatedly treated with pesticides gave a slightly lower percentage of mineralization than control soils. In all studies, the soil extractable pesticide residues decreased with time and the bound residues gradually increased. The highest binding affinity of about 26-29% was observed with 2,4-D in clay soil under aerobic conditions in 90 days. Carbofuran, and pirimiphos-methyl, on the other hand, had lower binding capacity that did not exceed 16% of applied radioactivity. (author)

  18. Mineralization of alanine enantiomers in soil treated with heavy metals and nutrients

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2011-01-01

    Full Text Available This work deals with the determination of the effect of heavy metals and nutrients applied to the soil on alanine enatiomers mineralization with the main focus on evaluating the effect on L/D alanine respiration rate ratio. This study was initiated because previous research works revealed a change in L/D amino acid respiration under acid- or heavy metal-stress in soil. Generally, D-amino acids artificially supplied to soil are less utilized by microorganisms compared with their L-enantiomers. Stress of soil microorganisms cause decreased discrimination of D-amino acids utilization. Also, previous research showed that an application of fertilizers or combinations of fertilizers may affect the mineralization rate of L-amino acids differently, compared with their D-enantiomers. The results of this study show, that the effect of both heavy metals and nutrients on the L/D ratio was not clear, increasing or decreasing this ratio. Further research is necessary to broaden this study.

  19. Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture.

    Science.gov (United States)

    Kumar, Anup; Singh, Neera

    2016-03-01

    An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.

  20. Mineral content in soil and pasture in bovine dairy herds of the Andean region of Ecuador

    Directory of Open Access Journals (Sweden)

    Luís Rodrigo Balarezo Urresta

    2017-10-01

    Full Text Available The objective of this research was to characterize the mineral status of the soil and pasture in of the Andean Ecuadorian region, during the rainy and dry periods, three dairy farms were used as study cases investigated him three dairy farms of the El Carchi province. They determined the chemical indicators of the soil and the pasture, the descriptive statisticians were calculated themselves and it was used a multifactorial ANOVA to determine the main factors affecting them on them, comparing means with Bonferroni and Duncan test. The soil classified as acid lightly, 100 % of the samples presented elevated levels of organic matter, NH4+, Mg, Cu, Zn, Fe and Mn. The farm had a significant effect on the pH, Ca, Mg, K, Cu, Fe, Mg and P, and the climatic period on the organic matter, NH4+, S, Cu and P. Pasture presented deficiencies of Mg, Zn and Na, the other minerals were above the critical limits. The farm affected the Ca, P, Mg, Na and Mn, and the climatic period the levels of Ca, K, Cu y Zn. In conclusion, 100 % soil samples presented high OM, slight acidity, low levels of Ca and high concentrations of NH4+, S, Mg, Cu, Zn and Mn. In pastures, there were diagnosed deficiencies of P, Cu and Zn, and their concentrations differed among farms and the two climatic periods of the year.

  1. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica

    International Nuclear Information System (INIS)

    Kerry, E.

    1993-01-01

    The effect of nutrient and water enhancement on the biodegradation of petroleum was tested in Antarctic mineral soils. Nitrogen, phosphorus and potassium were applied in solution, with or without gum xanthan or plastic covers, to sites artificially contaminated with distillate. The effectiveness of these procedures was assessed by measuring changes in total petroleum hydrocarbons; heptadecane/pristane and octadecane/phytane ratios; in concentrations of major hydrocarbon components and in microbial numbers and activity. Significantly lower hydrocarbon concentration were recorded after one year in soils treated with fertilizer solutions, but only in the surface 3 cm. These soils also showed lowered heptadecane/pristane and octadecane/phytane ratios and had the highest levels of microbial activity relative to other plots. Soils treated with gum xanthan or covered with plastic had the highest residual hydrocarbon levels. Both treatments inhibited evaporative loss of hydrocarbon, and there were indications that gum xanthan was utilized by the microbiota as an alternative carbon source to distillate. Higher temperatures were recorded under the plastic but no stimulation of biodegradation was detected. Estimated numbers of metabolically active bacteria were in the range 10 7 to 10 8 g -1 dry weight of soil, with an estimated biomass of 0.03 to 0.26 mg g -1 soil. Estimated numbers of amoebae were in the range 10 6 10 7 g -1 soil (biomass of 2 to 4 mg g -1 ). The highest populations were recorded in fertilized, contaminated soils, the only soils where petroleum degradation was demonstrated. 23 refs., 1 fig., 4 tabs

  2. A mechanistic study of the uniform corrosion of copper in compacted clay-sand soil

    International Nuclear Information System (INIS)

    Litke, C.D.; Ryan, S.R.; King, F.

    1992-08-01

    The results of a study of the mechanism of uniform corrosion of copper under simulated nuclear fuel waste disposal conditions are presented. Evidence is given that suggests that the rate-controlling process is the transport of copper corrosion products away from the corroding surface. In the experiments described here, the copper diffused through a column of compacted clay-sand buffer. The properties of the buffer material, especially its ability to sorb copper species, are significant in determining the rate of uniform corrosion of copper. The evidence that copper diffusion is rate-controlling stems from the effect of γ-radiation on the tests. In the presence of γ-radiation, copper diffused farther along the column of compacted buffer material than in the unirradiated tests, but the corrosion rate was lower. These two effects can be best explained in terms of a slow copper-diffusion process. Irradiation is thought to reduce the extent of sorption of copper by the clay component of the buffer. This results in a more mobile copper species and a smaller interfacial flux of copper (i.e., a lower corrosion rate)

  3. Stabilization of organic matter in soils: role of amorphous mineral phases

    Science.gov (United States)

    Zewde Tamrat, Wuhib; Rose, Jérôme; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2016-04-01

    Soil organic matter (SOM) globally contributes the largest portion of continental carbon stock. One major issue concerning this large C pool includes its instability by mineralization and erosion due to land use. The main hypothesis of this work is that physicochemical stabilization of SOM is mainly driven by interactions of organic compounds, not with mineral surfaces as classically considered, but with amorphous polymers continuously formed by the alteration of soil minerals(1-3). Our objective is to understand how nano-organomineral complexes (nCOMx) are structured at the nanoscale, assess mechanisms of their formation, and quantify the effects of their occurrence on SOM turnovers. Due to inherent high complexity of natural samples, our methodology is based on the formation of nCOMx from both synthetic systems and natural mineral-weathered components. For the mineral component, biotite (from Bancroft, Canada) was selected. For the organic component, 3,4-Dihydroxy-L-phenylalanine, an amino acid with hydroxyl (pKa=9.95), carboxyl (pKa=2,58), amino (pKa=9,24) and an aromatic functions was chosen. The methodology aimed at developing conditions that generate biotite dissolution and nCOMx precipitation. The second step of the experiment consisted of the precipitation of nCOMx by slowly increasing pH over 3 to 12 hours of hydrolysis. Three final pH conditions were tested (4.2, 5 and 7) with Metal/Carbon ratios of 0.01, 0.1, 1, 10 and 'No Carbon'. The first results of dissolution rates and congruency, AFM imaging, ICPMS, HR-TEM and XRD as well as XAS characterizations (transmission and florescence mode at the Fe K-edge) of nCOMx will be presented. Experiments and analysis techniques were designed to study these synthetic phases with regard to Si, Al, Fe and OM proportions to increase the OM proportion (as in natural soil phases) and also increase the stability of the OM phase (as in increased residence time of OM in the soil). We will focus particularly on the Fe state

  4. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  5. Degradation and leaching behaviour of 14C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    International Nuclear Information System (INIS)

    Kubiak, R.

    1996-12-01

    Degradation and leaching behaviour of 14 C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The 14 C-loss during application was 4.8-8.2%. The 14 C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of 14 C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of 14 C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  6. Degradation and leaching behaviour of {sup 14}C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, R

    1996-12-01

    Degradation and leaching behaviour of {sup 14}C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The {sup 14}C-loss during application was 4.8-8.2%. The {sup 14}C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of {sup 14}C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of {sup 14}C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  7. Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities

    Czech Academy of Sciences Publication Activity Database

    Kaneda, Satoshi; Kaneko, N.

    2008-01-01

    Roč. 44, č. 3 (2008), s. 435-442 ISSN 0178-2762 Institutional research plan: CEZ:AV0Z60660521 Keywords : Collembola * mineral soil * nitrogen mineralization Subject RIV: EH - Ecology, Behaviour Impact factor: 1.446, year: 2008

  8. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  9. The use of LANDSAT-1 imagery in mapping and managing soil and range resources in the Sand Hills region of Nebraska

    Science.gov (United States)

    Seevers, P. M. (Principal Investigator); Drew, J. V.

    1976-01-01

    The author has identified the following significant results. Evaluation of ERTS-1 imagery for the Sand Hills region of Nebraska has shown that the data can be used to effectively measure several parameters of inventory needs. (1) Vegetative biomass can be estimated with a high degree of confidence using computer compatable tape data. (2) Soils can be mapped to the subgroup level with high altitude aircraft color infrared photography and to the association level with multitemporal ERTS-1 imagery. (3) Water quality in Sand Hills lakes can be estimated utilizing computer compatable tape data. (4) Center pivot irrigation can be inventoried from satellite data and can be monitored regarding site selection and relative success of establishment from high altitude aircraft color infrared photography. (5) ERTS-1 data is of exceptional value in wide-area inventory of natural resource data in the Sand Hills region of Nebraska.

  10. Study on the water retention effect of compound soil of arsenic sandstone and sand under the condition of typical crop planting

    Science.gov (United States)

    Liu, S. Y.; Wang, N.; Xie, J. C.; Jiang, R. G.; Zhao, M. L.

    2017-08-01

    Arsenic sandstone is the main reason of soil erosion in the Mu Us Sandy Land, simultaneously was proved to be a kind of good water retaining agent. In order to provide references for the utilization of water and soil resources and the prevention and control of desertification and soil erosion of the southern margin of Mu Us Sandy Land, on the basis of earlier studies the farmland experiments of compound soil with three ratios of 1:1, 1:2 and 1:5 between arsenic sandstone and sand under maize planting patterns were designed, whose experimental process was divided into six stages according to the crop growth status. The results showed that the soil moisture content was highest in the layer of 0˜40cm where the compound soil mainly concentrated in, which was related to the potent water retention of arsenic sandstone and strong water permeability of undisturbed sandy soil. The variation coefficients in the soil of 1:1 and 1:2 were more stable and evenly distributed. The compound soil can effectively improve the soil water retention capacity, and prolong the storage time of soil water. Among them, water loss rate in soil of 1:1 and 1:2 were lower. The coefficient of variation also confirms that the water distributions of the two types of soil were more uniform and stable. Besides illustrating the effects of the soil amelioration measures on spatial and temporal variation of soil moisture content and the improvement of soil water regime, the study provides some references for the development and utilization of agriculture in Mu Us Sandy Land.

  11. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    Science.gov (United States)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  12. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  13. The mineralization and transformation of both added organic nitrogen and native soil N in red soils from four different ecological conditions

    International Nuclear Information System (INIS)

    Ye Qingfu; Zhang Qinzheng; He Zhenli; Xi Haifu; Wu Gang; Wilson, M.J.

    1998-01-01

    The NH 4 + -N, microbial biomass-N, humus-N, and extractable organic N derived from the added 15 N-labelled ryegrass and soil indigenous pool were measured separately with 15 N tracing techniques. Based on the recovery of NH 4 + - 15 N and lost- 15 N (mainly as NH 3 ), more than 30% of the added ryegrass 15 N was mineralized in 15 d. The amount of mineralized N increased with time up to 90 d for all soils except for the upland soil in which it decreased slightly. The mineralization of ryegrass N and incorporation of ryegrass- 15 N into microbial biomass was greatest in upland soil. The transformation of ryegrass 15 N into humus 15 N occurred rapidly in 15 d, with higher humus 15 N occurring in the upland or tea-garden soil than the paddy and unarable soil. The addition of ryegrass caused additional mineralization of soil indigenous organic N and enhanced the turnover of both microbial biomass N and stable organic N in soils

  14. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  15. Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea.

    NARCIS (Netherlands)

    Vuuren, van M.M.I.; Berendse, F.

    1993-01-01

    The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been

  16. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    Science.gov (United States)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  17. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Science.gov (United States)

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  18. Mineralization and volatilization of 14C-ring labelled 2,4-dichlorophenoxy acetic acid in Pakistani soils

    International Nuclear Information System (INIS)

    Hussain, Altaf; Iqbal, Zafar; Asi, Muhammad Rafique; Chaudhry, Jamil Anwar

    2001-01-01

    The mineralization and volatilization of [U-ring 14 C] 2,4-D in three Pakistani soils was investigated under laboratory conditions using 50 g of soil and uniform distribution of 1.345 μg/g of 2,4-D. Maximum losses of 14 CO 2 and volatile organic compounds occurred at day 7 and losses gradually slowed down after 21 days of incubation. The relative distribution of 14 C losses differed with soil type. Volatilization was higher in control soil as compared to test and treated soil in both the study seasons. The contribution of volatile material to the total loss in 1997 was highest in test soil (24.4%), and lowest in farm soil (19.8%) but in 1998 was highest in control soil (26%) and lowest in test and farm soils (7%) during 1998. (author)

  19. Nitrogen mineralization in forestry-drained peatland soils in the Stołowe Mountains National Park (Central Sudetes Mts

    Directory of Open Access Journals (Sweden)

    Glina Bartłomiej

    2016-06-01

    Full Text Available The aim of this work was to determine the intensity of nitrogen mineralization in forestry drained ombrotrophic peatland soils in the Stołowe Mountains National Park, SW Poland. Additionally discussion about the shallow organic soils classification according to Polish Soil Classification (2011 is presented. For the study three research transects were established on forestry drained ombrotrophic peatlands in the Stołowe Mountains. Each of the transect consisted of four (site A and B or five (site C sampling plots. Sampling was conducted in the year 2012. The soil samples for the basic soil properties analysis were sampled in April, whereas undisturbed soil samples were collected in stainless steel rings (100 cm3 every 10 cm in April (spring, July (summer and October (autumn to show the seasonal dynamics of nitrogen mineralization. Statistical analysis showed that the content of N-NH4 was mainly determined by actual soil moisture and precipitation rate, whereas the content of N-NO3 was positively correlated with air temperature. Among investigated peatlands the highest concentrations of mineral nitrogen forms was observed in the Długie Mokradło bog, situated on the Skalniak Plateau-summit. Additionally, the results obtained showed that implementation of new subtype: shallow fibric peat soils (in Polish: gleby torfowe fibrowe płytkie within the type of peat soils (in polish: gleby torfowe should be considered during developing of the next update of Polish Soil Classification.

  20. The weed seed bank assessment in two soil depths under various mineral fertilising

    Directory of Open Access Journals (Sweden)

    Elena Hunková

    2011-01-01

    Full Text Available The field trial at the experimental station of Slovak Agricultural University in Nitra - Kolíňany (Slovak Republic, maize growing region, Haplic Luvisol and Stagni-Haplic Luvisol in 1997 year was established. Experiments were based on 14 ha area (424 x 432.2 m by long strips method. The impact of different mineral fertilisers on six model crops was observed: winter wheat, spring barley, sunflower, winter oilseed rape, maize and sugar beet. Weed infestation of winter wheat, spring barley, maize and sugar beet as well as weed seed bank composition since 2000 year till 2002 year were detected. Three variants of mineral fertilisation were applied: variant 1 – without fertilisers, variant 2 – N-P-K fertilisation, steady state soil nutrients balance, variant 3 – high doses of N-P-K fertilisers (positive soil nutrients balance. Soil weed seed bank was analysed once per year before crop germination (on February from depths 0–0.05 m and 0.20–0.25 m in five replicates. From the depth 0–0.05 m 26 weed species were found, from the depth 0.20–0.25 m 23 weed species, from late spring group mainly. Chenopodium album, Stellaria media and Amaranthus spp. (77.57 % from intact seeds in total were the most occurred weeds in both depths. The year, depth of soil sampling and fertilisation did not have statistically significant impact on weed seeds number in the soil.

  1. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides.

    Science.gov (United States)

    Ma, Wenting; Peng, Donghai; Walker, Sharon L; Cao, Bin; Gao, Chun-Hui; Huang, Qiaoyun; Cai, Peng

    2017-01-01

    Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis . The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid-air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3-16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid-air interface. Additionally, the expressions of abrB and sinR , key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.

  2. APPRAISAL OF THE SNAP MODEL FOR PREDICTING NITROGEN MINERALIZATION IN TROPICAL SOILS UNDER EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    Philip James Smethurst

    2015-04-01

    Full Text Available The Soil Nitrogen Availability Predictor (SNAP model predicts daily and annual rates of net N mineralization (NNM based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate. The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March. Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84. In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.

  3. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1980-01-01

    Recent progress and current status are reported for research concerned with mineral element dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition systems, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer techniques with radioactive analogs of nutrients. Experimental measurement of radioactive tracer excretion and nutrient element pools are reported for soil microarthropods, using new methods of counting and microprobe elemental analysis. Research on arthropod-fungal relations is utilizing high-efficiency extraction followed by dissection of 13 x 13 cm soil blocks. A two-component excretion model is reported for Cobalt-60 in earthworms (Eisenia foetida), demonstrating that no assimilation of cobalt occurs from the mineral soil fraction but is entirely from organic matter. Collection of data sets on soil arthropod communities and abundances is completed

  4. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  5. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization

    International Nuclear Information System (INIS)

    Gatiboni, Luciano Colpo; Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz; Pandolfo, Carla Maria; Veiga, Milton

    2013-01-01

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha -1 year -1 of moist poultry litter; 4) 60 m 3 ha -1 year -1 of liquid cattle manure and 5) 40 m 3 ha -1 year -1 of liquid swine manure. The 31 P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  6. Heavy mineral sorting as a tool to distinguish depositional characteristics of “in situ” sands from their related injected sands in a Palaeogene submarine Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Moatari Kazerouni, Afsoon; Friis, Henrik; Svendsen, Johan. B

    Postdepositional remoblization and injection of sand are important processes in deep-water clastic systems. Subsurface mobilisation and injection of sand has been recently recognised as a significant control of deep-water sandstone geometry. Kilometre-scale injection complexes have been interpreted...

  7. Lead determination in uranium mineralization soils by atomic absorption spectrometry with graphite oven

    International Nuclear Information System (INIS)

    Teixeira, Gleber Tacio

    2001-01-01

    The contamination of soils by lead has a great environmental importance due to its toxicity to vegetables, animals and humans. In general, the mobility of the lead is small due to its low solubility and strong adsorption in the soil. However, its solubility can be altered by several conditions (pH, redox potential and ionic stronger). Consequently, lead can migrate through the soil and can contaminate superficial and underground waters. The objective of this work was to determine the concentration of total lead in soil samples with uranium mineralization, in an area at Ipora/GO, having been evaluated as economically insuitable the extraction of that mineral. The radiogenic lead appears as a product of natural radioactive elements decay. In the decay series of uranium-238 we found the isotope lead-214 (half-life of 26,8 min), lead-210 (half-life of 22,3 min), and lead-206 that is stable. The sampling was done in profiles around north, south, east and west directions, starting from a reference point (FT), chosen by presenting the largest radiation of that place (4800 cps). A mass of 1 Kg of superficial soil was collected to each 20 m, in each profile, until 150 m of FT. Approximately, 1 g of dry soil, fraction 2 mm, was digested with a mixture of acids HNO 3 /HClO 4 2:1 (v/v), and the resulting solution was analyzed by atomic absorption. An atomic absorption spectrometer was used with graphite furnace, with deuterium arc to background correction and pyrolytic coated tube. Phosphoric acid was used as chemical modifier. The obtained results, using the standard additions method, presented a decrease of the lead concentration, in all profiles, when the distance of FT was increased. It was also made a radiometric screening in each sampling point. The lead concentration variate from 115,1 μg.g -1 in FT, to less than 40 μg.g -1 at 150 m of distance of FT ( 3 ) 2 was used. The method was applied to a certified sample, showing a good agreement between certified and

  8. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    El Sebai, T. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Lagacherie, B. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Soulas, G. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Martin-Laurent, F. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France)]. E-mail: fmartin@dijon.inra.fr

    2007-02-15

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass.

  9. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    International Nuclear Information System (INIS)

    El Sebai, T.; Lagacherie, B.; Soulas, G.; Martin-Laurent, F.

    2007-01-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass

  10. Peculiarities of pulse crops mineral feeding on sod-podzolic sandy soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Sedukova, G.V.; Demidovich, S.A.

    2010-01-01

    In the conditions of the Republic of Belarus there was analyzed the influence of mineral fertilizers of leguminius crops (blue lupine (Lupinus angustifolius) of Gelena variety and field pea (Pisum arvense) of Alex variety) on yielding capacity, grain and green mass quality, and parameters transit of 137Cs and 90Sr radionuclides into leguminous products. In course of the experiment there were analyzed six variants of mineral fertilizer application P30K30; P30K90; P30K120; P60K60; P60K90; and P60K120. Variant without any fertilizers was as control. Double superphosphate (46% of P2O5) and potash chloride (60% of K2O) were applied as mineral fertilizers. Research results showed that application of phosphate-potassium fertilizers on sod-podzolic sandy soils moderately supplied with phosphate and potassium made it possible to increase pea and lupine yield. The highest efficiency of application of phosphate-potassium fertilizers was in the ratio of 1 (ðá2ð×5) : 2 (ðÜ2ð×) provided. Fertilizer system did not render substantial influence on indexes of nutritive value of green mass of pea and lupine. There was marked a tendency of increasing of phosphorous in lupine grain after its application in dose of P60. Mineral fertilizer application made it possible to lower 137Cs transit from soil into lupine green mass in 2 times and seeds ÔÇô in 1,5 times. Application of potassium fertilizer in dose of 120 kg/ha proved to be the most efficient for the lowering of 137Cs accumulation in products of the analyzed crops

  11. Use of endotrophic mycorhiza and soil microorganisms and vegetation establishment on mineral green roof substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. [GeoVerde Inc., Schaffhausen (Switzerland)

    2004-07-01

    Green roofs have the potential to introduce colour and nature into urban and industrial areas. This paper showed how the addition of soil microorganisms into a green roof substrate can help establish vegetation. Microorganisms help the roots exploit essential nutrient and water reserves in the substrate by making them more readily available to the plant. Microorganisms facilitate uniform germination, plant development at the young stage, and prolonged vegetation development on the roof. Soil microorganisms and mycorrhizal fungi can be added directly in to the seed blends. As the products are blended with the seed, they also fulfill the function of a seeding aid. Mycorrhizal and other soil fungi were examined on mineral roof substrates by means of dry and hydroseeding in greenhouse and field tests. Results of this developmental work and experiences from practical applications were presented. It was noted that vegetation on green roof areas must be able to withstand harsh environmental conditions. As such, the challenges include drought that causes water stress, warm and cold temperatures, wind, acid rain and air pollution. This paper also presented details of the following categories of green roof systems. Intensive green roofs are usually referred to as roof gardens. They are constructed over reinforced concrete decks and usually are accessible. Simple intensive green roofs are vegetated with lawns or ground covering plants. Regular maintenance including irrigation, fertilization and mowing is also required. Extensive green roofs are low maintenance and low weight. Growing media is usually composed of purely mineral material or a blend of mineral with a low proportion of organic matter. Substrate is low in nutrient content and the depth . Vegetation usually consists of succulents that require minimal maintenance. The requirements to install each of these types of green roof systems were also presented. 7 refs., 3 tabs.

  12. Soil seed-bank germination patterns in natural pastures under different mineral fertilizer treatments

    Directory of Open Access Journals (Sweden)

    Anna Iannucci

    2014-11-01

    Full Text Available Degraded native grasslands in Mediterranean areas can be improved by encouraging seedling regeneration from soil seed banks using chemical fertilization. The effect of mineral fertilizers on soil seed banks was studied in natural pastures at two locations in southern Italy: Carpino and Rignano Garganico. The aim was to determine if nitrogen (N, phosphorus (P and combined nitrogen and phosphorus (NP fertilization can promote increased soil seed density. The seed-bank size and composition were analysed over two growth cycles (2004-2006 at two periods of the year: at the early summer and at the early autumn. The plant species were classified into three functional groups: grasses, legumes and other species (all other dicots. A two-pool model (ephemeral and base pools derived from the germination patterns was developed to quantify the dynamics of the germinated seed populations. The mean total seed number in the seed bank ranged from 2,915 to 4,782 seed m-2 with higher values in early summer than in early autumn. Mineral fertilizer applications increased the seed-bank size (by 27%, 23% and 46%, for N, P and NP, respectively and modified the composition in both localities. The three plant functional groups showed different potentials for ephemeral and persistent seed-bank production; however, within each plant group, the proportion between the ephemeral and base pool fractions did not change with fertilizer application. These data show that mineral fertilization can have positive effects on the seed-bank size of ungrazed natural pastures, and can be used to improve degraded Mediterranean pastures.

  13. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  14. Effect of simplified tillage and mineral fertilization on weed infestation of potato growing on loess soil

    Directory of Open Access Journals (Sweden)

    Karol Bujak

    2012-12-01

    Full Text Available In the paper effect of limitation of postharvest measure to single cultivating or disking of soil and mineral fertilization level on number, air-dry matter and botanical composition of weeds in the potato-field is presented. Simplifield postharvest measure was increasing insignificantly and more intensive fertilization was limiting the weed infestation of potato-field. Decteasing of weeds number increasing fertilization was ststistically significant. Dominating species of weeds in the potato-field were Capsella bursa-pastoris, Poa annua, Viola arvensis, Chenopodium album, Elymus repens i Equisetum arvense.

  15. Complexity of clay mineral formation during 120,000 years of soil development along the Franz Josef chronosequence, New Zealand

    International Nuclear Information System (INIS)

    Dietel, J.; Dohrmann, R.; Guggenberger, G.; Meyer-Stueve, S.; Turner, S.; Schippers, A.; Kaufhold, S.; Butz-Braun, R.; Condron, L.M.; Mikutta, R.

    2017-01-01

    Weathering of primary silicates to secondary clay minerals over time affects multiple soil functions such as the accumulation of organic matter and nutrient cations. However, the extent of clay mineral (trans)formation as a function of soil development is poorly understood. In this study, the degree of weathering of sediments along a 120 kyr soil formation gradient was investigated using X-ray diffraction, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy. Irrespective of site age, mica and chlorite were the dominant clay minerals. During weathering, a remarkable suite of transitional phases such as vermiculite and several interstratifications with vermiculitic, smectitic, chloritic and micaceous layers developed. The degree of weathering was correlated with soil pH and depletion of K, Ca, Na, Fe and Al, regarding both soil depth and site age. Kaolinite occurred especially at the 120 kyr site, indicating slow formation via transitional phases. The findings of this study revealed that long-term soil development caused complex clay mineral assemblages, both temporally and spatially, and linking this variability to soil functioning warrants further research. (author).

  16. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Science.gov (United States)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  17. Influences upon the lead isotopic composition of organic and mineral horizons in soil profiles from the National Soil Inventory of Scotland (2007–09)

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, John G., E-mail: J.G.Farmer@ed.ac.uk [School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF Scotland (United Kingdom); Graham, Margaret C. [School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF Scotland (United Kingdom); Eades, Lorna J. [School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ Scotland (United Kingdom); Lilly, Allan; Bacon, Jeffrey R. [James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland (United Kingdom)

    2016-02-15

    Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon {sup 206}Pb/{sup 207}Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon {sup 206}Pb/{sup 207}Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of {sup 208}Pb/{sup 207}Pb vs. {sup 208}Pb/{sup 206}Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The {sup 206}Pb/{sup 207}Pb ratio of the organic top horizon in (ii) was unrelated to the {sup 206}Pb/{sup 207}Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the {sup 206}Pb/{sup 207}Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m{sup −2} were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean {sup 206}Pb/{sup 207}Pb ratio ~ 1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column. - Highlights: • Pb isotope ratios were determined for 644

  18. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  19. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    Science.gov (United States)

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  20. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N.

    Science.gov (United States)

    Li, Shuailin; Liang, Chutao; Shangguan, Zhouping

    2017-12-31

    The incorporation of biochar into soil has been proposed as a strategy for enhancing soil fertility and crop productivity. However, there is limited information regarding the responses of soil respiration and the C, N and P cycles to the addition of apple branch biochar at different rates to soil with different levels of N. A 108-day incubation experiment was conducted to investigate the effects of the rate of biochar addition (0, 1, 2 and 4% by mass) on soil respiration and nutrients and the activities of enzymes involved in C, N and P cycling under two levels of N. Our results showed that the application of apple branch biochar at rates of 2% and 4% increased the C-mineralization rate, while biochar amendment at 1% decreased the C-mineralization rate, regardless of the N level. The soil organic C and microbial biomass C and P contents increased as the rate of biochar addition was increased to 2%. The biochar had negative effects on β-glucosidase, N-acetyl-β-glucosaminidase and urease activity in N-poor soil but exerted a positive effect on all of these factors in N-rich soil. Alkaline phosphatase activity increased with an increase in the rate of biochar addition, but the available P contents after all biochar addition treatments were lower than those obtained in the treatments without biochar. Biochar application at rates of 2% and 4% reduced the soil nitrate content, particularly in N-rich soil. Thus, apple branch biochar has the potential to sequester C and improve soil fertility, but the responses of soil C mineralization and nutrient cycling depend on the rate of addition and soil N levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.

    Science.gov (United States)

    Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnès

    2015-01-01

    Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. EFFECTS OF NITRIFICATION INHIBITORS ON MINERAL NITROGEN DYNAMICS IN AGRICULTURE SOILS

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon

    2011-10-01

    Full Text Available Experiments were conducted under laboratory conditions to elucidate the effect of three nitrification inhibitors viz, 3.4dimethylpyrazo-lephosphate (DMPP, 4-Chlormethylpyrazole (ClMP and dicyandiamide (DCD on mineral nitrogen dynamics of (NH42SO4 in soil incubated at 25oC in soils. The quantitative determination of ammonium, nitrite and nitrate were carried out spectrophotometrically, while potential denitrify-cation capacity (PDC was measured gas chromatographically. DMPP, ClMP and DCD were used on recommended rates of 90kg N ha-1 corresponding to 0.36µg DMPP; 0.25µg ClMP and 10µg DCD g-1 dry soil. In all treatments, the influence of 1, 10, 50, 100, 250 and 500 times of the recommended-concentrations were examined. Results suggested that DMPP, ClMP and DCD applied at rates generally recommended for agricultural use may not be effective to inhibit nitrification. Thus even at the highest tested NIs-concentrations, nitrate and nitrite formation still occurred. Application of high concentrations of these chemicals up to 180µg DMPP, 125µg ClMP and 2500µg DCD were needed for inhibiting nitrification completely. The three NIs began to inhibit PDC at 10 to 50 times recommended concentration and were more effective in sandy than in loamy or clay soils. ClMP influenced PDC at much lower concentration as DMPP or DCD.

  3. Mineralization of 14C-Pirimiphos-Methyl in Soil Under Aerobic and Anaerobic Conditions

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Farghly, M.; El-Maghrby, S.

    2006-01-01

    The mineralization of 14 C-ring labelled pirimiphos-methyl in clay loam soil was determined in a three months laboratory incubation period under anaerobic and aerobic conditions. Evolution of 14 CO2 increased with time and reached 9.2% and 12 %, of the initial 14 C-concentration , within 90 days in case of anaerobic and aerobic conditions, respectively, at that time, soil contained about 61.5% of the applied dose as extractable residues under anaerobic conditions and 59% under aerobic conditions. the unextractable pesticide residues gradually increased with time and the highest binding capacity of about 11%-13% was observed after 90 days of incubation. the total 14 C-activity recovered from soil was generally between 82% and 92% of the applied radiocarbon. the nature of methanolic 14 C-residues was determined by chromatographic analysis and the results revealed the presence of pirimiphos- methyl as a main product together with its phenol. the principle of radio-respirometry has been used for evaluating the effect of different application rates of pirimiphos-methyl on soil microbial activity using U- 14 C-glucose as a substrate. At two concentrations used, pirimiphos-methyl showed an inhibition in the rate of 14 Co2 evolution over 14 days of incubation as a result of oxidation of 14 C-glucose by microorganisms especially in case of high concentration

  4. Long-term variations in the distribution of radioactive Cs in plant, soil, stream bottom sand in a small forest in Fukushima prefecture

    International Nuclear Information System (INIS)

    Kinno, Shuntaro; Okochi, Hiroshi; Katsumi, Naoya; Ogata, Hiroko; Kataoka, Jun; Kishimoto, Aya; Iwamoto, Yasuhiro; Sorimachi, Atsuyuki; Tokonami, Shinji

    2017-01-01

    Radio-Cs concentrations in fresh leaves/needles, litter, surface soil, and stream sand were continuously investigated in a deciduous broadleaf forest and cedar forest in Namie-town, Fukushima prefecture from June 2012 to June 2016, except for snow-cover periods. The result of a car-borne survey from Fukushima city to Minamitsushima showed that the air dose rate declined faster than the physical attenuation due to decontamination, outside of forests. Radio-Cs concentrations ("1"3"7Cs + "1"3"4Cs) in litter and surface soil in broadleaf forest were constant at 52.0, 102 kBq kg-dry"-"1, respectively from 2014. In a cedar forest, however, the radio-Cs concentrations in fresh needles and litter declined from 2012 to 2015, probably because of washing and leaching by throughfall, and radio-Cs was accumulated in surface soil. In broadleaf forest, the buffer depth of radio-Cs in soil (1.26 cm) which indicates the extent of infiltration into deeper layers was greater than in the cedar forest (1.14 cm) in April 2013. However, the buffer depth in the cedar forest overtook that in the broadleaf forest in December, 2015 (1.5 cm in broadleaf forest and 2.6 cm in cedar forest). The radio-Cs values in the stream bottom sand were concentrated in smaller sand (over 2 mm, 3.04; 0.21-2.0 mm, 10.2; under 0.21 mm, 54.5 kBq kg-dry"-"1 in downstream near the broadleaf forest and over 2.0 mm, 2.67, 0.21-2.0 mm, 7.95; under 0.21 mm, 41.3 kBq kg-dry"-"1 in the upstream area near the cedar forest). It is concerned that a part of them causes the outflow of radio-Cs as suspended sand. The relative radio-Cs concentration ratio between smaller bottom sand and surface soil, which indicates the outflow of radio-Cs from forest via stream declined (2013: 0.54, 2016: 0.29 in downstream and 2013: 1.4, 2016: 0.31 in the upstream region). However, we found that floating male flowers of cedar containing high radio-Cs (23.8 kBq kg-dry"-"1) could be another transport media in the spring. (author)

  5. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    Science.gov (United States)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  6. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    Science.gov (United States)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together

  7. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori

    2011-01-01

    To our knowledge, this paper is the most comprehensive review to cover most studies, published in the past three decades at least, of radon emanation measurements. The radon emanation fraction, a possibility of radon atoms generated in a material escaping from its grains, has been widely measured for a variety of materials. The aim of this review is to organize a huge number of such data accumulated. The representative values of the emanation fraction for minerals, rocks, soils, mill tailings and fly ashes were derived to be 0.03, 0.13, 0.20, 0.17 and 0.03, respectively. Current knowledge of the emanation processes was also summarized to discuss their affected factors. - Highlights: → Recent radon emanation measurements were thoroughly reviewed. → Averages of radon emanation fractions: 0.03 (mineral), 0.13 (rock), 0.20 (soil), 0.17 (mill tailing) and 0.03 (fly ash). → Grain-size effect was not significantly found for size larger than 1 μm. → Pore water generally enhances the emanation fraction by a factor of 5 or less. → Definition of 'radon emanation' should be shared among researchers.

  8. LEAF MINERAL CONCENTRATION OF FIVE OLIVE CULTIVARS GROWN ON CALCAREOUS SOIL

    Directory of Open Access Journals (Sweden)

    Igor Pasković

    2013-12-01

    Full Text Available There are limited numbers of scientific publication regarding genotypic differences which exist among olive cultivars concerning nutrient uptake and translocation. For that purpose, the object of our study was to determine possible differences between leaf mineral content of five selected olive cultivars since leaf nutrient analysis is consider being the best method for diagnosing olive tree nutritional status. Plant material was obtained from an olive collection, grown on calcareous soil maintained at Institute of Adriatic Crops and Karst Reclamation, Split, Croatia. The study was conducted with two Croatian autochthonous olive cultivars (“Istarska bjelica”, “Lastovka”, two Italian cultivars (“Pendolino”, “Leccino” and one Spanish cultivar (“Hojiblanca”. Completely randomized design was applied. This study has shown questionably low Mg concentration in all olive cultivars with exception for “Hojiblanca” cultivar. Also, only Croatian cultivars “Istarska bjelica” and “Lastovka” as well as Spanish cultivar “Hojiblanca” recorded sufficient levels of iron leaf mineral content. Regarding other elements studied (P, K, Ca, Zn, Mn, Cu all cultivars were above literature cited thresholds for possible deficiencies. Selected olive cultivars in our experiment demonstrated different nutrient leaf concentration, which is of particular importance for fertilization requirements and fertilization practice in Croatian orchards grown on calcareous soil.

  9. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    Science.gov (United States)

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  10. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  11. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  12. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radioisotopes in plant mineral nutrition

    International Nuclear Information System (INIS)

    Singh, Bhupinder

    2016-01-01

    Extensive investigations on mineral composition of different plant species growing on various soils, helped in realizing that neither the presence nor the concentration of a mineral element in a plant can be regarded as a criterion for essentially. Plants have a limited capability for selective uptake of those mineral elements which are essential for their growth. They also take up mineral element which are not necessary for growth and may even be toxic. The mineral composition of plants growing in soils cannot, therefore, be used to establish essentially of a mineral element. Once this fact was appreciated, both water and sand culture experiments were carried out in which particular mineral elements were omitted. Von Sach and Knop are credited with reintroduction of the solution culture method using which they demonstrated the absolute requirement of ten macronutrients. As evident, these techniques made possible a more precise characterization of essentially of mineral elements and led to a better understanding of their role in plant metabolism. By the beginning of 20"t"h century importance of micronutrients like B, Mn, Cu, Mo and CI was also established

  14. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    Crossley, D.A. Jr.

    1983-01-01

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported

  15. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    Science.gov (United States)

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  16. Stiffness Evolution in Frozen Sands Subjected to Stress Changes

    KAUST Repository

    Dai, Sheng; Santamarina, Carlos

    2017-01-01

    Sampling affects all soils, including frozen soils and hydrate-bearing sediments. The authors monitor the stiffness evolution of frozen sands subjected to various temperature and stress conditions using an oedometer cell instrumented with P-wave transducers. Experimental results show the stress-dependent stiffness of freshly remolded sands, the dominant stiffening effect of ice, creep after unloading, and the associated exponential decrease in stiffness with time. The characteristic time for stiffness loss during creep is of the order of tens of minutes; therefore it is inevitable that frozen soils experience sampling disturbances attributable to unloading. Slow unloading minimizes stiffness loss; conversely, fast unloading causes a pronounced reduction in stiffness probably attributable to the brittle failure of ice or ice-mineral bonding.

  17. Stiffness Evolution in Frozen Sands Subjected to Stress Changes

    KAUST Repository

    Dai, Sheng

    2017-04-21

    Sampling affects all soils, including frozen soils and hydrate-bearing sediments. The authors monitor the stiffness evolution of frozen sands subjected to various temperature and stress conditions using an oedometer cell instrumented with P-wave transducers. Experimental results show the stress-dependent stiffness of freshly remolded sands, the dominant stiffening effect of ice, creep after unloading, and the associated exponential decrease in stiffness with time. The characteristic time for stiffness loss during creep is of the order of tens of minutes; therefore it is inevitable that frozen soils experience sampling disturbances attributable to unloading. Slow unloading minimizes stiffness loss; conversely, fast unloading causes a pronounced reduction in stiffness probably attributable to the brittle failure of ice or ice-mineral bonding.

  18. Organic horizon and mineral soil mercury along three clear-cut forest chronosequences across the northeastern USA.

    Science.gov (United States)

    Richardson, Justin B; Petrenko, Chelsea L; Friedland, Andrew J

    2017-12-01

    Mercury (Hg) is a globally distributed pollutant trace metal that has been increasing in terrestrial environments due to rising anthropogenic emissions. Vegetation plays an important role in Hg sequestration in forested environments, but increasing tree removal for biofuels and wood products may affect this process. The long-term effect of clear-cutting on forest soil Hg remains uncertain, since most studies are limited to measuring changes for event. The chronosequence approach, which substitutes space for time using forest stands of different ages since clear-cutting, allows for investigation of processes occurring over decades to centuries. Here, we utilized three clear-cut forest soil chronosequences across the northeastern USA to understand Hg accumulation and retention over several decades. Total Hg concentrations and pools were quantified for five soil depth increments along three chronosequences. Our results showed Hg concentrations and pools decreased in the initial 20 years following clear-cutting. Mineral soil Hg pools decreased 21-53% (7-14 mg m -2 ) between 1-5-year-old stands and 15-25-year-old stands but mineral soil Hg pools recovered in 55-140-year-old stands to similar values as measured in 1-5-year-old stands. Our study is one of the first to demonstrate a decrease and recovery in Hg pool size. These changes in Hg did not correspond with changes in bulk density, soil C, or pH. We utilized a simple two-box model to determine how different Hg fluxes affected organic and mineral soil horizon Hg pools. Our simple model suggests that changes in litterfall and volatilization rates could have caused the observed changes in organic horizon Hg pools. However, only increases in leaching could reproduce observed decreases to mineral soil Hg pools. Further studies are needed to determine the mechanism of Hg loss from forest soils following clear-cutting.

  19. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  20. Mineralization of Organically Bound Nitrogen in Soil as Influenced by Plant Growth and Fertilization

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1982-01-01

    A loam soil containing an organic fraction labelled with15N was used for pot experiments with spring barley, rye-grass and clover. The organically bound labelled N was mineralized at a rate corresponding to a half-life of about 9 years. Fertilization with 106 and 424 kgN/ha of unlabelled N...... in the form of KNO3 significantly increased uptake of labelled N from the soil in barley and the first harvest of rye-grass crops. The fertilized plants removed all the labelled NH4 and NO3 present in the soil, whereas the unfertilized plants removed only about 80%. The second, third and fourth harvests...... of the unfertilized rye-grass took up more labelled N than the fertilized rye-grass. The total uptake in the four harvests was similar whether the plants were fertilized or not. Application of KCl to barley plants in amounts equivalent to that of KNO3 resulted in a small but insignificant increase in uptake...

  1. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P arbuscular mycorrhizal colonization of roots.

  2. Stimulating soil microorganisms for mineralizing the herbicide isoproturon by means of microbial electroremediating cells.

    Science.gov (United States)

    Rodrigo Quejigo, Jose; Dörfler, Ulrike; Schroll, Reiner; Esteve-Núñez, Abraham

    2016-05-01

    The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Microbial electroremediating cells (MERCs) consist in a variety of bioelectrochemical devices that aim to overcome electron acceptor limitation and maximize metabolic oxidation with the purpose of enhancing the biodegradation of a pollutant in the environment. The objective of this work was to use MERCs principles for stimulating soil bacteria to achieve the complete biodegradation of the herbicide (14) C-isoproturon (IPU) to (14) CO(2) in soils. Our study concludes that using electrodes at a positive potential [+600 mV (versus Ag/AgCl)] enhanced the mineralization by 20-fold respect the electrode-free control. We also report an overall profile of the (14) C-IPU metabolites and a (14) C mass balance in response to the different treatments. The remarkable impact of electrodes on the microbial activity of natural communities suggests a promising future for this emerging environmental technology that we propose to name bioelectroventing. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Development of soil-cement blocks with three interventions: natural soil, soil corrected with sand and soil more phase change materials (PCMs); Desenvolvimento de blocos solo-cimento com tres intervencoes: solo natural, solo corrigido com areia e solo mais materiais de mudanca de fase (MMFs)

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Valter Bezerra; Gomes, Uilame Umbelino; Reis, Edmilson Pedreira; Valcacer, Samara Melo; Silva, A.S., E-mail: valter.fisic@hotmail.com, E-mail: umbelino@dfte.ufrn.br, E-mail: pedreira.reis@ig.com.br, E-mail: gmarinho@ct.ufrn.br, E-mail: samaravalcacer@hotamil.com, E-mail: ariadness2@yahoo.com.br [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal, RN (Brazil). Departamento de Fisica Teorica e Experimental. Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    In this work, the results of characterization tests of soil samples collected in Mossoro-RN, UFERSA-RN Campus, located approximately 20 meters high, and {sup 5} ° 12'34.68 south latitude and 37 ° 19'5.74 {sup w}est longitude, with the purpose of producing soil-cement for the manufacture of pressed blocks with good resistance to compression and thermal stability. The following tests were performed: granulometry, plasticity limit, liquidity limit, particle size correction, scanning electron microscopy (SEM), X-ray fluorescence. In this soil, based on the results of the granulometric analysis, 10% of medium sand with 3% and 5% of eicosane paraffin and 10% of medium sand with 3% and 5% of paraffin 120 / 125F were added, forming analysis compositions, standard soil-cement block and natural soil-cement block with addition of 10% medium sand and 0% paraffin. Paraffins are referred to as PCMs (Phase Change Material). The contrasting effect between the different dosages on the compressive strength values of the soil-cement blocks was observed. The objective is to create new materials that give the block quality equal to or higher than the recommendations of ABNT norms, and that offer greater thermal comfort in the constructions. Soil particles of different sizes were added to 8% (by weight) of cement, and about 9.20% of water added to the mixture.

  4. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  5. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  6. Concentration/time-dependent dissipation, partitioning and plant accumulation of hazardous current-used pesticides and 2-hydroxyatrazine in sand and soil.

    Science.gov (United States)

    Neuwirthová, Natália; Bílková, Zuzana; Vašíčková, Jana; Hofman, Jakub; Bielská, Lucie

    2018-07-01

    The dissipation, partitioning dynamics and biouptake was measured for selected hazardous current-used pesticides (conazole fungicides: epoxiconazole, flusilazole, tebuconazole; prochloraz, chlorpyrifos, pendimethalin) and for a transformation product (2-hydroxyatrazine) in agricultural soil and quartz sand as representatives of a real and a worst-case scenario. Dissipation, uptake to Lactuca sativa and the freely dissolved concentration along with the organic carbon-normalized sorption coefficients (K oc ) were determined on days 12, 40, and 90 following the application of compounds at three fortification levels (0.1-1.0-10 mg/kg). Conazole fungicides showed similar dissipation patterns and were more persistent in soil than prochloraz, chlorpyrifos and pendimethalin. 2-Hydroxyatrazine showed a concentration-depended decrease in persistency in soil. Lettuce roots were shown to accumulate higher amounts than shoots where the extent of root uptake was driven by compound partitioning. This was evidenced by the ability of freely dissolved concentration (C free ) to reliably (r 2  = 0.94) predict root uptake. Concentration in leaves did not exceed the maximum residue levels (MRLs) for lettuce, which was likely given by the low root-to-shoot translocation factors (TFs) of the tested compounds varying between 0.007 and 0.14. K oc values were in the range of literature values. Sorption to soil was higher than to sand for all compounds, yet following the K oc dynamics compounds did not appear to be sequestered in soil with increasing residence time. From these results, it follows that the tested compounds may persist in soil but since they did not accumulate in lettuce above MRLs, contamination of the food web is unlikely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Predicting bi-decadal organic carbon mineralization in northwestern European soils with Rock-Eval pyrolysis

    Science.gov (United States)

    Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric

    2017-04-01

    The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic

  8. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  9. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  10. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.

    Science.gov (United States)

    Voegelin, Andreas; Pfenninger, Numa; Petrikis, Julia; Majzlan, Juraj; Plötze, Michael; Senn, Anna-Caterina; Mangold, Stefan; Steininger, Ralph; Göttlicher, Jörg

    2015-05-05

    We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.

  11. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    OpenAIRE

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-01-01

    Soil carbon (C) and nitrogen (N) cycling are sens